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Abstract

Sea ice plays a major role in the global climate system. Its presence governs the radiation
budget and determines how much heat and momentum can be transferred between ocean
and atmosphere. In order to monitor sea ice and analyse how it has changed over the
recent past, different satellite observations are used. Sea ice area is monitored by passive
microwave and optical sensors. To make accurate estimates of the sea ice volume, sea
ice thickness (SIT) estimates are also needed. The monitoring and estimation of SIT
from satellite observations is an active area of research. This thesis contributes to
this research by developing sea ice model-based parameterizations for satellite radar
observations and an assimilation framework for these observations, with the aim of
improving our understanding of Arctic SIT. The work presented here concentrates on
CryoSat-2 freeboard observations.

When estimating SIT from space, only the part above the sea surface, called free-
board (FB), can be observed. To convert FB to SIT, assumptions about sea ice density,
snow thickness, snow density and water density are made. These assumptions are known
to introduce errors, and the work presented here introduces a model-based approach to
estimating them. The main novelty is the derivation of a sea ice density and the use of
ocean model water density.

Further, this thesis introduces a Kalman Filter-based approach to assimilate FB to
improve SIT. One challenge in retrieving CryoSat-2 FB is to know where the radar signal
is reflected. CryoSat-2 carries a Ku-band radar, which prior to launch was assumed to
penetrate the snow and to be reflected at the ice snow interface. Later studies found that
this is not the case and that the scattering horizon varies depending on the region and
season. Comparing the SIT from a classically-derived SIT product to the SIT-derived
from the FB assimilation framework, presented here, shows that the assimilation gives
better results in two regions where independent SIT observations were available.

Finally, this thesis analyses the sea ice model used to derive the FB and the influence
different model parameterizations have on the SIT, sea ice concentration and snow
thickness. The form drag parameterisation is found to have the largest influence on the
sea ice volume and snow thickness. More work is needed to determine which form drag
parameterisation is best suited for the model FB parametrisation.
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Resumé

Havis spiller en stor rolle i det globale klimasystem. Dens tilstedeværelse styrer hvor
meget varme og momentum der kan overføres mellem havet og atmosfæren inklusiv
strålingsbudgettet. For at overvåge og analysere ændringer i havisen siden 1970’erne
anvendes forskellige satellitobservationer. Havisens udbredelse bestemmes med passive
mikrobølger og optiske sensorer. For at få den fulde beskrivelse af havis er det også
nødvendigt at lave præcise skøn over havisens tykkelse og volumen, hviket eksempelvis
gøres ved brug af altimeter målinger.

Overvågning og estimater af havistykkelsen baseret på satellitobservationer er et
aktivt forskningsområde. Denne afhandling bidrager ved at integrere fribords obser-
vationer i en fysisk havis model baseret på assimilering af fribord. Samtidig er der
udviklet parameteriseringer til at bestemme de variable der bliver anvendt til at kon-
verterer fribord til havistykkelse og omvendt. Formålet er at forbedre vores forståelse
af havistykkelsen i Arktis. Hovedfokus er på CryoSat-2 altimeter observationer og det
deraf afledte fribord. Det er kun den del af fribordet der er over havniveau der bliver
observeret. For at konvertere fribord til havis laver man nogle antagelser om masse-
fylden af havis, sne og havvand. Derudover laver man et estimat af sneens tykkelse.
Det er velkendt at disse antagelser introducerer usikkerheder og fejl. Denne afhandling
introducerer en fysisk modelbaseret tilgang til at estimere disse variable i stedet for den
klassiske konstante/klimatologiske tilgang. Dette studie har introduceret en ny formu-
lering for havisens massefylde og brug af havmodellens massefylde for vand til udledning
af havistykkelsen.

Yderligere introducerer denne afhandling en Kalman Filter-baseret tilgang til at
assimilere fribord med henblik på at forbedre havistykkelsen. En udfordring ved at an-
vende CryoSat-2 fribord er at vide hvor radar signalet afspejles. CryoSat-2 bruger en
Ku-band radar. Før opsendelsen var antagelsen at signalet trænger igennem sneen og
bliver reflekteret ved is/sne grænsefladen. Efterfølgende undersøgelser fandt at dette
ikke er tilfældet og at spredningshorisonten varierer afhængigt af region og sæson. Sam-
menligning af havistykkelsen fra et klassisk afledt havistykkelses produkt og det der
er udviklet her baseret på assimilering af fribord i en ”state of the art” ismodel viser,
at assimileringen giver bedre resultater i to regioner. Sammenligningen er baseret på
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tilgængelige uafhængige havistykkelses observationer. Til sidst analyserer afhandlingen
den havis model, der er anvendt til at udlede fribord og indflydelsen af forskellige model
parameteriseringer på den modellerede havis og sne. Den såkaldte ”form drag” param-
eterisering har vist sig at have den største indflydelse på havis volumen og snetykkelse.
Det kræver stadig mere arbejde at bestemme, hvilken parameterisering der bedst egnet
til at parameterisere modelleret fribord.
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Chapter 1

Introduction

1 Aim and Objectives of this Thesis
The overall aim of this thesis is to improve our understanding of Arctic sea ice thickness
(SIT) and quantify and reduce the uncertainties of it by combining observations and
sea ice models. Apart from SIT being an important variable to estimate the currently
present sea ice volume in the Arctic, a good estimate can also be used to improve
sea ice predictions (Blockley and Peterson, 2018; Guemas et al., 2016; Ordoñez et al.,
2018). This thesis aims to bridge the gap between observed parameters and modelled
parameters. In particular, this thesis focuses on the relationship between CryoSat-2
radar freeboard (FB) observations and simulated sea ice thickness from numerical sea
ice models. The method for this is to develop a framework for radar FB assimilation.

Satellite-based SIT is calculated from radar satellite-derived FB, and FB is the dis-
tance between the water line and the ice surface. Radar FB is the FB measured by radar
satellites and converted to FB by applying a correction term for slower wave propaga-
tion in the snow pack (Ricker et al., 2014). To assimilate it, it has to be derived from
model values. In this work, the values investigated to do so are snow thickness, SIT, sea
ice density and water density. The hypothesis is that sea ice model output can be used
to derive radar FB, which can be used to assimilate CryoSat-2 radar FB to improve
modelled SIT, and that model variables for snow thickness, sea ice density and water
density can be derived that are closer to observations compared to the values used in
currently available CryoSat-2 SIT products.

One motivation for this work is that the commonly assimilated CryoSat-2 SIT de-
pends on uncertain snow thickness, sea ice density and water density values. Several
studies have found the sea ice density and snow thickness values, currently used, to be
uncertain and potentially biased (Ji et al., 2021; Jutila et al., 2022; Zhou et al., 2021).
Further, there is a need to reassess the uncertainty of water density, since the claim that
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2 Chapter 1. Introduction

it can be neglected emerges from a study that only considered seasonal variability, not
spatial variability (Wadhams et al., 1992).

To achieve that, the main objectives of this thesis are to:

1. Understand the parameterisation in the model and determine their influence on
SIT and snow thickness. This is done by investigation of different sea ice model
parametrization. As the model-derived radar FB is calculated from model SIT and
snow thickness, understanding the origin of their variability in between different
model parameterisations is relevant to the developed assimilation framework and
the derived radar FB. This objective is addressed in Sievers et al. (2022) and the
work in progress section.

2. Prove that model-derived sea ice density, snow thickness and water density values
can substitute the values used in currently available CryoSat-2 SIT products.
Coupled sea ice - ocean models already include parameters for snow thickness and
water density. These can be used but need to be evaluated. The snow density
and sea ice density are constant in current model simulations. Alexandrov et al.
(2010) showed that the sea ice density should be varied when used to convert FB
to SIT. Therefore, a new parameterisation will be derived in this work. For the
snow density, a simple time-dependent parameterisation following Mallett et al.
(2020) will be used. This objective is addressed in Sievers et al. (2023b).

3. Assess the SIT differences based on changing the snow thickness, sea ice density
and water density used in available CryoSat-2 SIT products with modelled values.
This is achieved by substituting the values of snow thickness, sea ice density and
water density used in available CryoSat-2 SIT products with model values. This
objective is addressed in Sievers et al. (2023b). Since Sievers et al. (2023b) finds
that the model values can be used as an alternative to the value used currently
in available CryoSat-2 SIT products, it needs to be assessed if the new values
influence the derived SIT and to which degree.

4. Demonstrate that the assimilation of radar FB can improve SIT estimates. This is
achieved with a model and assimilation system for the radar FB assimilation. The
motivation for this objective is that there has not been any system assimilating
radar FB to date, and it has to be proven that assimilating radar FB can improve
the modelled SIT. This objective is addressed in Sievers et al. (2023a).

2 Motivation
Arctic sea ice plays an important role in the global climate system. It influences atmo-
spheric circulation patterns (Budikova, 2009; Liang et al., 2020; Stroeve et al., 2011),
changes the global radiation budget (Cohen et al., 2014; Serreze et al., 2007), alters the



2. Motivation 3

Arctic fresh water cycle (Rabe et al., 2014; Wang et al., 2018) and has a major impact
on the local biology (Boetius et al., 2013; Hop et al., 2020; Lannuzel et al., 2020). It is
well known that there has been a rapid loss of ice volume over recent decades (Kinnard
et al., 2008; Simmonds, 2015; Walsh et al., 2017). Satellite measurements have played a
key role in observing this loss. The longest ongoing satellite sea ice observations are sea
ice area observations, which have been conducted since the 1970s (Johannessen et al.,
1999; Sissala et al., 1972; Stroeve et al., 2008). However, to make meaningful state-
ments about the development of the Arctic sea ice volume, SIT estimates are needed in
addition to sea ice area estimates.

Arctic-wide SIT observation on high temporal frequencies can only be achieved by
satellite. The satellite observation systems from which most currently available SIT data
products are derived are: passive microwave (Tian-Kunze et al., 2014), laser altimetry
(Martino et al., 2019) and radar altimetry (Wingham et al., 2006). Passive microwave
SIT is, for example, derived from the Soil Moisture and Ocean Salinity SMOS mission
(Huntemann et al., 2014; Tian-Kunze et al., 2014), laser altimetry-based SIT from the
Ice, Cloud and land Elevation Satellite (ICESat) mission (Petty et al., 2020) and radar
altimetry based SIT from CryoSat-2 (Hendricks et al., 2021; Landy et al., 2022; Tilling
et al., 2018), Satellite with ARgos and ALtiKa (SARAL) (Joshi et al., 2020), ENVISAT
Advanced Synthetic Aperture Radar (ASAR) (Nakamura et al., 2009), and European
Remote Sensing Satellites ERS-1 and ERS-2 (Laxon et al., 2003). SIT from SMOS
is only valid for thin ice (Tian-Kunze et al., 2014), and IceSat observations are only
available on limited time scales. Therefore, this thesis focuses on radar-derived SIT,
specifically on the relation between radar-derived CryoSat-2 FB and SIT.

Laxon et al. (2003) were the first to derive SIT from satellite observations and levelled
the ground for the European Space Agency’s (ESA) CryoSat mission, dedicated to
observing the cryosphere (Wingham et al., 2006). To derive SIT, Laxon et al. (2003) used
radar altimetry-based FB observations. CryoSat-2 also carries a radar altimeter, but
with an improved footprint to better distinguish between leads and ice flows (Wingham
et al., 2006). To derive SIT from FB, hydro-static balance is assumed and the FB is
related to the ice thickness through assumptions made for the values of snow density, sea
ice density, snow thickness and water density. In the last decade, both the accuracy of
the observed FB (King et al., 2018; Kwok, 2014; Ricker et al., 2015; Willatt et al., 2011)
and the adequacy of the values of sea ice density and snow thickness used to derive SIT
from FB (Glissenaar et al., 2021; Ji et al., 2021; Jutila et al., 2022; Kern et al., 2015;
Mallett et al., 2021a) have been discussed.

Several uncertainty sources of radar satellite-derived SIT have been discussed in
recent years. For example, the accuracy of the FB observations has been evaluated
regarding where the radar signal is reflected (reflection horizon). Studies found that
snow temperature, snow thickness, moisture content and snow density layering lead to
dislocation of the reflection horizon and thereby introduce errors in the FB measure-
ments (King et al., 2018; Kwok, 2014; Ricker et al., 2015; Willatt et al., 2011). This can
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result in up to 1.7 m biases in the derived SIT (King et al., 2018). Another source of
uncertainty in the retrieved radar FB originates from the interpretation of the received
radar signal. Studies have found that the technique called retracking (fitting a curve to
the received signal to interpret it) can lead to biases in the resulting radar FB (Landy
et al., 2020; Xia and Xie, 2018). The values typically used in the hydro-static balance
equation to derive SIT from FB for snow thickness, snow density and sea ice density
have also been investigated by several studies (Alexandrov et al., 2010; Ji et al., 2021;
Jutila et al., 2022; King et al., 2018; Kurtz and Farrell, 2011; Kwok and Cunningham,
2015). In particular, sea ice density and snow thickness have been proven to introduce
large uncertainties in the FB to SIT conversion.

Another tool that has been widely used to understand Arctic SIT are numerical sea
ice models (Hunke et al., 2020; Long et al., 2021; Notz et al., 2016). In contrast to
satellite observations, sea ice models are based on physical equations solving thermo-
dynamic and dynamic equations of ice, forced by ocean and atmospheric input (Hunke
et al., 2021a; Rousset et al., 2015; Vancoppenolle et al., 2023; Zhang and Rothrock,
2001). They are limited by our understanding of the physical system driving sea ice
growth melt and dynamics, technical implementations and forcing data. Therefore,
model-derived sea ice thickness differs from model to model (Kumar et al., 2021; Long
et al., 2021).

Fig. 1.1: Example of one week FB from sea ice models (left) and CryoSat-2 observations (right) for
the first week of January 2018.

One approach to exploit the advantages of both sea ice models and satellite-based
SIT observations is data assimilation (Fiedler et al., 2022; Mignac et al., 2022; Xie et al.,
2018). Data assimilation combines models and observations and their uncertainties in
order to provide the best estimate of the system one aims to predict. For forecasting
the sea ice state, or improving the estimate of the past state, it is common practice to
assimilate SIT or sea ice concentration (SIC) (Chen et al., 2017a; Collow et al., 2015;
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Mignac et al., 2022; Ponsoni et al., 2023; Posey et al., 2015; Shu et al., 2021; Smith et al.,
2021). The work presented here will explore different aspects of assimilating radar FB
to improve SIT estimates.

The assimilation technique chosen in this thesis is the Kalman Filter, which assumes
that both model and observation errors are unbiased, Gaussian distributed and uncor-
related in time (Kalman and Bucy, 1961). It is however known that sea ice models
often come with a bias in, for example, ice extent (Fiedler et al., 2022; Ponsoni et al.,
2023; Zhang and Rothrock, 2003) and that, especially, the SIC error is not Gaussian
distributed. Despite the approximations made, prior studies show that assimilating sea
ice using Kalman Filters improves the modelled sea ice estimates (Cheng et al., 2023;
Lisæter et al., 2003; Mathiot et al., 2012).

To our knowledge, this thesis includes the first assimilation approach for radar FB.
Several publications have mentioned FB assimilation previously (Chenal et al., 2022;
Kaminski et al., 2018; Mathiot et al., 2012; Vernieres et al., 2016). Vernieres et al.
(2016) and Chenal et al. (2022) have not yet published their methods, Kaminski et al.
(2018) only theoretically investigate the effect of FB assimilation on SIT. The first ever
assimilating FB study by Mathiot et al. (2012) assimilated ICESat monthly snow FB
(FB plus snow thickness). They found that the assimilation of snow FB improves the
central Arctic mean SIT by 50 cm. They also used an Ensemble based Kalman Filter
(EnKF). However, their method differs from the approach taken in this thesis on two
points. First, they assimilated snow FB from ICESat, not FB from CryoSat-2. The
difference here is that snow FB is the distance from the water surface to the snow
surface, and the FB is the distance from the water surface to the ice-snow interface.
Second, their assimilation system is a multivariate Ensemble Kalman filter. In contrast,
the setup presented here is single variate and uses a historical run to estimate the
background error instead of running a full ensemble. The simplifications were made to
ensure that the assimilation setup was feasible to be conducted within the timeframe of
this thesis and to keep computational costs low.

3 Structure of the Thesis
This thesis is based on a collection of Papers, but the model coupling and assimilation
framework development were central parts of the work carried out. Therefore, this thesis
includes an extensive method chapter (chapter 2) where the developed assimilation
system is described. This section also includes a more detailed introduction to CryoSat-
2 FB, sea ice models and Kalman Filter assimilation. In chapter 3, the included Papers
are summarised, and some unpublished results are shown in a work in progress section
(chapter 3 section 3). Here, only a brief overview of the Papers is included.

In the first study included in this thesis, a Kalman Filter-based assimilation setup for
the radar FB is tested to investigate if the derived FB improves the modelled SIT. Since
the satellite-derived FB comes with the above-mentioned uncertainties and the aim of
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deriving modelled FB is to improve our understanding of the satellite-derived FB, it
can not be used to evaluate the modelled FB. Instead, this study uses independent SIT
observations. In theory, if the modelled radar FB was derived correctly, assimilating it
and converting the assimilated FB back to SIT should improve the modelled SIT, under
the condition that the observations come with realistic error estimates.

In the second study included in this thesis, the model parameters for snow thickness,
water density and sea ice density used to derive the model FB are investigated. Three
main points are addressed in this study: a new sea ice density parameterisation is
introduced, the commonly neglected variability of the water density is investigated, and
how the derived SIT would be influenced, on average, when exchanging the commonly
used values of snow thickness, sea ice density and water density with the values from the
model setup is evaluated. The model setup allows for a multi-variable comparison, while
earlier studies only investigated one of the values at a time. Earlier studies discussed
either the influence of changing sea ice density (Ji et al., 2021; Jutila et al., 2022) or
snow thickness (Mallett et al., 2021b) separately.

In the third study of this thesis, the effect of different model parameterisation on
modelled SIT and snow thickness are tested. This is of relevance for the model-derived
FB, because the modelled FB is derived based on model SIT and snow thickness.

For further details, all Papers are attached in the appendix. In chapter 4, the results
from the included Papers and the work in progress are discussed and related to the
overall aim and objective of the thesis. Chapter 5 highlights the overall outcome of the
included studies and outlines a path forward based on the discussed results from the
included studies.



Chapter 2

Method and Background

The following sections give a more detailed introduction to the satellite data assimilated,
sea ice models and the EnKF. Furthermore, it describes the overall setup, consisting
of: the assimilated data, the ice model used in the assimilation setup, the ocean-sea
ice model coupling and the software used to implement the assimilation. The data sets
assimilated in this study are described in section 1. The section covers the SIC data and
the CryoSat-2 FB data, as well as an overview of the techniques, which are typically
used to derive SIT from CryoSat-2 FB. Section 2 provides an overview of sea ice models
in general and the sea ice model used in this study, Community Ice CodE (CICE). It also
includes a list of all runs discussed in the thesis. Section 3 provides a brief introduction
to Kalman Filters and to the software used to implement the assimilation framework.
3.4 brings all parts discussed in chapter 2 together and describes the overall assimilation
framework. The final part, section 4, serves as a technical reference for the coupling
between the ocean model Nucleus for European Modelling of the Ocean (NEMO) and
CICE, and further model development carried out as part of this thesis.

1 Sea Ice Satellite Observations

1.1 Ocean and Sea Ice Satellite Application Facility (OSISAF)
The assimilated SIC data is the European Organisation for the Exploitation of Me-
teorological Satellites (EUMETSAT) Ocean and Sea Ice Satellite Application Facility
(OSISAF) daily climate data record product OSI-430-a (OSISAF, 2022), which can be
downloaded from the Norwegian Meteorological Institute FTP server. The data set is
provided on a 25x25 km Equal-Area Scalable Earth (EASE) grid with a daily frequency.
The OSI-430-a data set is based on passive microwave observations from the satellite-
based instruments Scanning Multichannel Microwave Radiometer (SMMR), Special Sen-
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sor Microwave Imager (SSMI) and Special Sensor Microwave Imager Sounder (SSMIS).
It has an uncertainty of up to 15%. More details can be found in the scientific validation
report by Saldo (2022).

In the very first setup of the assimilation framework, the finer resolution SIC product
OSI-401-d (OSISAF, 2017) was used. The grid resolution of OSI-401-d is 10x10 km and
matches the sea ice model grid resolution used in this study better than OSI-430-a’s
25x25 km grid resolution. However, it was found that OSI-401-d included error estimates
of up to 15% in areas which are ice-free all year. The same is not the case in OSI-430-a,
where the error estimate was processed with an ice mask, ensuring that the error in
ice-free areas is 0%. OSI-430-a was therefore chosen due to its better error estimate.

Even though the main focus of this work is to develop an assimilation framework for
FB observations, the SIC biases discussed in the current chapter, section 3, indicated
the need for assimilation of SIC as well.

1.2 Freeboard Observations
The first conversion of FB to SIT conducted by Laxon et al. (2003) derived its FB from
the European Remote Sensing satellites ERS-1 and ERS-2. The ERS satellites operated
from 1991 to 2000 and from 1995 to 2011, respectively, and covered areas up to 81.5◦

N (Attema et al., 2000). The successful retrieval of SIT from the ERS satellites lay the
foundation for the ESA mission CryoSat-2, which provided the measurements that are
assimilated in this thesis. CryoSat-2 orbits the earth in polar orbit, covering the Arctic
up to 88◦N and carries a Ku-band radar altimeter with a frequency of 13.6 GHz. The
major improvement from the ERS satellites to CryoSat-2, apart from a smaller polar
gap, is the synthetic aperture technique, which reduces the radar’s along-track footprint
from about 5 to 10 km to around 250 m resolution (Wingham et al., 2006). The higher
resolution allows for more unambiguous radar return.

CryoSat-2 is not the only satellite that observes FB from space. The National
Aeronautics and Space Administration (NASA) mission ICESat (Ice, Cloud and land
Elevation Satellite) (2003–2009) and its follow-up mission ICESat-2 (2018-present) (Ab-
dalati et al., 2010) also observes FB, however, they use a laser technique in contrast
to ESA’s ERS and CryoSat-2 missions. ICESat-2s laser is reflected from the snow-air
interface and the measured FB is called snow FB or total FB, whereas CryoSat-2’s radar
is reflected closer to, or at, the snow-ice interface (Ricker et al., 2014). ICESat’s snow
FB was in the first study that assimilates FB (Mathiot et al., 2012).

ESA’s satellites Sentinel-3 (Donlon et al., 2012) and ENVISAT (Louet and Bruzzi,
1999) are also used to derive FB (Louet and Bruzzi, 1999). Sentinel-3 (2016-present)
carries a radar altimeter with Synthetic Aperture Radar (SAR) capabilities similar to
CryoSat-2. Lawrence et al. (2021) showed that FB could be derived from it, similarly, as
from CryoSat-2. Sentinel-3 has a larger polar gap; thus, there are no observations north
of 81.5 ◦N. This also limits ENVISAT (2002–2012), which similar to the ERS satellites
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and CryoSat-2 carried a Ku-band radar, but without SAR capabilities. Guerreiro et al.
(2017), Zhang et al. (2021) and Wang et al. (2022) have successfully derived FB from
it. Compared with CryoSat-2, it has the disadvantage of a poorer resolution, no SAR
mode and therefore, a bigger footprint as well as a large polar gap. Comparing all
the above-mentioned FB measurements, CryoSat-2 provides the longest record of FB
measurements with high latitude coverage.

The Definition of Freeboard

As mentioned above, several different satellites observe FB, but their sensors differ. This
leads to several different definitions of FB. In this text, three different FB definitions
are used:

1. FB: Here describing the distance between the ocean and the snow-ice interface.

2. snow FB: Here describing the distance between the ocean and the snow-air inter-
face.

3. radar FB: Here describing the FB plus a correction term accounting for the slow-
down of the radar signal in snow, following Ricker et al. (2014).

Other studies define other names and sometimes even switch out some of the above def-
initions. They will not be detailed here to not confuse the reader. Figure 2.1 shows the
different kinds of FB introduced above. Snow FB is measured by, for example, ICESat-2
(Martino et al., 2019). The advantage of the laser, in contrast to the radar altimeter, is
that it is unambiguously reflected from the snow-air interface. The disadvantage of this
method is that it depends on cloud-free conditions and has a shorter data record than
CryoSat-2. In this study, we concentrate on CryoSat-2 data and the radar and FB.

When the CryoSat-2 mission was designed, it was assumed that it would measure
FB based on Beaven et al. (1995). However, soon it was discovered that this is not
always the case and that especially thick, wet and warm snow interferes with the radar
signal (King et al., 2018; Kwok, 2014; Kwok et al., 2011; Ricker et al., 2015; Willatt
et al., 2011). Ricker et al. (2014) defined the radar FB as the distance between the
radar scattering horizon and the sea surface. The radar scattering horizon is the surface
from where the radar signal actually is reflected. To convert the radar FB into FB,
Tilling et al. (2018) introduced a correction term depending on the speed of light in
snow, which is subtracted from the FB. It is based on the following equation:

FBr = FB − (
c

cs
− 1) ∗ Hs (2.1)

Here FBr is the radar FB, FB the FB, c the speed of light in vacuum (c = 3×108m/s),
cs the speed of light in snow and Hs the snow thickness. In Tilling et al. (2018) ( c

cs
− 1)
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Fig. 2.1: Overview of FB definitions commonly used. The blue arrows indicate the different FB
definitions, and ice thickness (SIT) and snow thickness (Hs), and the red arrows indicate the satellite
signal used to measure FB. The blue boxes in the upper part of the figures indicate the satellites ICESat
and CryoSat-2. Here, CryoSat-2 appears twice to show the difference between radar FB and FB. FB is
the FB that it was designed to measure (Wingham et al., 2006) and radar FB is the FB that it actually
measures (Ricker et al., 2014).

was approximated to 0.25, but recently Mallett et al. (2020) suggested calculating cs

depending on the snow density as follows:

cs = c(1 + 0.51 × ρs)−1.5 (2.2)

They suggested using a linear function (equation 2.3) derived from the Warren et al.
(1999) (W99) climatology to estimate ρs and found that this leads to an up to 0.15 m
SIT improvement.

ρs = 6.5t + 274.51 (2.3)

The linear function depends on month since October (t in equation 2.3) and is only
valid for the month October to April. This conversion of radar FB to FB does not take
into account the uncertainties based on reflection from within the snow pack.

There is an ongoing debate whether the correction of the Ku-band radar speed in
snow is sufficient (Gerland et al., 2012; King et al., 2018; Kwok, 2014; Ricker et al.,
2015). Overall, there is consensus that Ku-band radar penetrates dry, thin and cold
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snow better than warm, wet and thick snow (Giles and Hvidegaard, 2006; King et al.,
2018; Willatt et al., 2011). Due to the lack of better understanding of the temporal and
spatial scale of the issues, it is here assumed to be sufficient to correct for the radar
speed reduction in snow from equation 2.2 when deriving FB from FBr (Hendricks
et al., 2021).

1.3 CryoSat-2
CryoSat-2 carries the following instruments: The Synthetic Aperture Radar Interfer-
ometric Radar Altimeter (SIRAL), the Doppler navigation system DORIS (Doppler
Orbitography and Radiopositioning Integrated by Satellite), the Star Tracker and the
Laser Retro-Reflector (LRR). The DORIS, Star Tracker and LRR instruments mainly
ensure accurate knowledge of the location and orientation of the satellite and will not
be further discussed. SIRAL can operate in three different modes: Low resolution mode
(LRM), which is mainly used over open ocean, and the central parts of Greenland and
Antarctic, SAR interferometry (SARin) mode, used at the ice sheet margins, and SAR
mode, used over sea ice. The following section will give a brief overview of the processing
needed to derive FB from CryoSat-2 radar observations.

In the SAR mode, the radar transmits a burst of pulses, which are used to decrease
the satellite’s footprint in the flight direction by means of Doppler processing. To do
so, the frequency shift of the reflected signal due to the satellite’s flight velocity is used
to separate the overlapping footprints into thin "slices" and determine if the "slice" was
reflected from a location ahead or behind the satellite.

These "slices" are then stacked to one return signal, which is less noisy and has a
higher resolution than echoes from the low resolution mode. The shape of this return
signal differs depending on which surfaces the radar was reflected from, ice, ocean or a
mix of the two. To derive FB, a return signal from a lead is necessary to determine the
sea surface height. Leads are openings within the ice pack. Their radar return signal
is characterised by higher power of the reflected signal and is typically more narrow
in range than a return signal from an ice floe. More detail about lead detention can
be found in Quartly et al. (2019), as well as typical error sources resulting from lead
detection discussed.

To derive where in the return signal the surface in the nadir direction (direction below
the satellite) is located, a process called retracking is applied to the return signal. There
are a multitude of different retrackers, but mainly two groups of retrackers are used for
CryoSat-2 FB retrievals. The two main groups of retrackers are physical retrackers
(Laforge et al., 2021; Landy et al., 2020; Villadsen et al., 2016) and threshold retrackers
(Davis, 1997; Laxon et al., 2013; Ricker et al., 2014; Tilling et al., 2018). Physical
retrackers model the surface from which the signal was reflected and determine the
point on the received return signal, locating the surface from this (Kurtz et al., 2014).

Threshold retrackers set a percentage of the leading edge of the received return
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signal to be the surface (Davis, 1997). Overall physical retrackers are found to be
more representative, but also more computational expensive (Laforge et al., 2021), than
threshold retrackers. Landy et al. (2020) identified that the way the return signal is
retracked can lead to significant errors in the derived FB. After additional processing
of the signal, taking, for example, the sea surface high into account, or the atmospheric
conditions, the FB is then determined by subtracting distance estimates from ice floes
and leads. The above description of the CryoSat-2 signal processing is only intended to
give an overview. Processing CryoSat-2 return signals to determine the FB is an active
area of research, and the different steps described above only scratch at the surface of
ongoing discussions. Additional post-processing is further discussed in, for example,
Dawson et al. (2022), Tilling et al. (2018), Laxon et al. (2013), Quartly et al. (2019)
and Landy et al. (2020).

The FB assimilated in this study is the weekly CryoSat-2 radar FB from the Alfred
Wegener Institute (AWI) weekly gridded CryoSat-2 SIT product (Hendricks et al., 2021).
This product uses a 50% Threshold First Maximum Retracker Algorithm (TFMRA)
(Ricker et al., 2014). As an input to their algorithm, they use ESA’s Level 1 Baseline-
D ICE data (Meloni et al., 2020). It comes on a 25 km Equal-Area Scalable Earth
Grid version 2 (EASE2-Grid) and on a weekly frequency. Several other similar data
sets exist. These include for example, the Center for Polar Observation and Modelling
(CPOM) data set described by Tilling et al. (2018), or the Jet Propulsion Laboratory
(JPL) data set described by Kwok and Cunningham (2015), or the Laboratoire d’Études
en Géophysique et Océanographie Spatiales (LEGOS) Altimetric SIT Data described
in Guerreiro and Fleury (2017). The reason the AWI data set was chosen is its high
temporal frequency and the fact that it also contains all variables used to derive SIT
from the radar FB as described in the following section.

From CryoSat-2 Freeboard to Sea Ice Thickness

The following section describes how FB is converted into SIT.
Assuming hydrostatic balance, the relationship between FB and SIT can be described

by:
SIT =

FBρw

(ρw − ρi)
+

Hsρs

(ρw − ρi)
(2.4)

Where FB is the FB, ρw is the density of water, ρi is the density of sea ice, ρs is the
density of snow and Hs is the snow thickness. Most available CryoSat-2 SIT products
calculate SIT based on equation 2.4 (or a variation of it) estimating ρw, ρi, ρs and Hs

from climatologies or empirical values depending on the ice type (Guerreiro and Fleury,
2017; Hendricks et al., 2021; Kurtz et al., 2013; Kwok and Cunningham, 2015; Tilling
et al., 2018). The ice types in these products are first year ice (FYI) and multi-year
ice (MYI). The distinction between FYI and MYI is in most cases done with the help
of passive microwave satellite products (Sallila et al., 2019). This method, based on



1. Sea Ice Satellite Observations 13

ice type depending on values for ρi and Hs to derive SIT from CryoSat-2, will in the
following text be called the classical approach. Below is a brief overview of how the
approach was developed and the values that are typically used for ρw, ρi, ρs and Hs.

In the early days of satellite-derived SIT, it was assumed that these values could be
substituted by climatological and empirical values. This was the first time that Arctic-
wide SIT was derived from radar satellite FB. The uncertainties of ρw, ρi, ρs and Hs

were estimated to result in an SIT uncertainty in the order of 0.1 m (Laxon et al., 2003).
Alexandrov et al. (2010) conducted a study on in situ SIT, snow thickness and

FB observations, which showed that the sea ice density error was significantly under-
estimated by Laxon et al. (2003). Alexandrov et al. (2010) proposed to differentiate
between sea ice density values FYI and MYI. Their proposed value for FYI is 916.7 ±
35.7 kg/m3. It is based on the assumption of hydrostatic balance and snow, ice and FB
measurements from the Sever expedition (Romanov, 2004). Their value for MYI is 882
± 23 kg/m3 based on measurements from Khohlov (1978). These values are the ones
most commonly used to date (Fiedler et al., 2022; Hendricks et al., 2021; Landy et al.,
2022; Sallila et al., 2019).

In recent years, new estimates of sea ice density have been derived. Ji et al. (2021)
suggested a statistical approach using a comprehensive amount of Arctic field observa-
tions from 2001 to 2015, which were mostly taken during summer. They also find that
there is an annual variability in sea ice density. The fact that most observations were
taken during summer raises the question of if it is suitable for wintertime FB to SIT
conversion. Jutila et al. (2022) derived sea ice density from airborne snow, total snow
and ice thickness and snow FB observations to derive sea ice density. Based on the
airborne observations, Jutila et al. (2022) derived sea ice density from a fitted curve,
relating FB to sea ice density. Their observations are based on two field companies from
the west Arctic in April 2017 and 2019. They acknowledge that more research is needed
before their methodology can be used to derive sea ice density for FB to SIT conversion.

Snow thickness introduces uncertainty to the conversion of FB to SIT in two different
ways. The first contribution is the snow load, which determines how much ice sticks out
of the water, as illustrated by equation 2.4. The other contribution is the uncertainty
introduced by snow to the scattering horizon and the reduction of speed of light (Kwok,
2014; Ricker et al., 2014). The uncertainty of FB to SIT conversion, due to snow
thickness, has made snow thickness the most discussed uncertainty in SIT retrievals
from CryoSat-2 (Fiedler et al., 2022; Kern et al., 2015; Kurtz and Farrell, 2011; Kwok,
2014; Mallett et al., 2020; Ricker et al., 2014; Tilling et al., 2018).

For a long time, this discussion was held back by the fact that no Arctic-wide snow
thickness estimate exists on the same spatial and temporal resolution as CryoSat-2
data, except W99. Recently, several satellite- or model-based snow products have been
published (Lawrence et al., 2018; Liston et al., 2020; Petty et al., 2018; Rostosky et al.,
2018; Shi et al., 2020). Zhou et al. (2021) performed an intercomparison study that
considers most of the above-cited snow products and W99. They found that they agree
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on the general spatial thickness distribution but significantly differ in the annual cycle,
magnitude and inter-annual trend. The researchers concluded that more research is
needed in order to produce reliable Arctic-wide snow products.

The snow thickness that most CryoSat-2-derived SIT products use to date is there-
fore still based on W99 (Warren et al., 1999). W99 was derived from snow measurements
from the late 1950s to the late 1980s. Since the measurements were obtained, Arctic sea
ice has changed dramatically from being dominated by MYI to being dominated by FYI
(Stroeve and Notz, 2018; Tschudi et al., 2016). Kurtz and Farrell (2011) found that snow
on FYI differs significantly from snow on MYI and proposed to use a 50% reduced W99
snow thickness over FYI. Some products still use this modified W99 (MW99) (Ricker
et al., 2017; Tilling et al., 2018). Others have proceeded to partially substitute FYI snow
cover with snow depth climatologies from Advanced Microwave Scanning Radiometer
satellite-derived snow thickness (Hendricks et al., 2021). The climatological snow prod-
uct lacks inter-annual variability, and several studies have shown that this leads to a
significant SIT error (Kern et al., 2015; Zygmuntowska et al., 2014). Recent studies by
Fiedler et al. (2022) and Landy et al. (2022) substituted the entire W99 climatology
with snow model values.

Similar to snow thickness values, snow density values for equation 2.4 are often taken
from W99 or derived from it (Hendricks et al., 2021; Mallett et al., 2020; Tilling et al.,
2018). Alexandrov et al. (2010) concluded that the snow density only leads to small
uncertainties in the FB to SIT conversion.

Water density contributions are in general neglected (Kurtz et al., 2013; Ricker et al.,
2014) when the uncertainty of SIT retrievals is calculated. This is done under the as-
sumption that the water density has an uncertainty of ± 0.5 kg/m3 (Alexandrov et al.,
2010; Hendricks et al., 2021; Kurtz et al., 2013). The water density depends on salinity
and temperature. Particularly, salinity varies greatly within the Arctic Ocean’s top lay-
ers, with low values close to the Russian river outlets (Janout et al., 2020; Shiklomanov
et al., 2021) and high values close to Fram Straight (Zweng et al., 2019). Based on this,
the uncertainty of ± 0.5 kg/m3 might be underestimated.

Even though snow thickness, snow density, sea ice density, snow density and water
density might contribute to SIT uncertainties in different ways, all variables have one
thing in common: their values are estimated on rather crude assumptions. In the
presented thesis, this issue is addressed by the replacement of the traditional values
with values derived from a sea ice model. The model will be described in section 2.1
and the variables introduced to derive SIT from FB will be described in section 4.2.

2 Sea Ice Models
Sea ice models numerically solve the dynamics and thermodynamics of sea ice. Based
on the sea ice model CICE, a description of the main equations is presented in the next
section. Numerical sea ice models have three main applications (Hunke et al., 2020):
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1. Simulating the heat exchange between the ocean and the atmosphere in climate
models, where sea ice plays an important part in the radiation budget. As part
of the World Climate Research Program, sea ice models even have their own
intercomparison project: The SIMIP - Sea-Ice Model Intercomparison Project
(Notz et al., 2016).

2. Sea ice forecasts, used for everything from route planning for ships to climate
adaptation. Many countries bordering the Arctic run short-term forecasts of Arc-
tic sea ice conditions. Examples of such forecast systems are: the HYCOM-CICE
model run operationally at the Danish Meteorological Institute (DMI) (Ponsoni
et al., 2023), the Regional Ice Ocean Prediction System version 2 (RIOPSv2) de-
veloped at the Canadian Centre for Meteorological and Environmental Prediction
(CCMEP) (Smith et al., 2021), and the Coupled Arctic Forecast System (CAFS)
run at the National Oceanic and Atmospheric Administration (NOAA) (Maslowski
et al., 2012).

3. Study of sea ice in a controlled environment to deepen and test our understanding
of it. Studies often aim at development for the above two applications, for example,
Tsamados et al. (2015) investigated melt from different sources, Zhang et al. (2018)
explored the impact of including melt ponds and Roach et al. (2019) researched
the effect of waves on the ice in the marginal ice zone.

SIT is a central property of numerical sea ice models. The first sea ice models
described sea ice thickness as the average thickness of the sea ice present within one grid
cell (Maykut and Untersteiner, 1971). Later, it was shown that models that included
a subgrid parameterization of SIT into several categories improved the simulation of
the sea ice significantly (Björk, 1992; Holland et al., 2006; Schramm et al., 1997; Walsh
et al., 1985). As a consequence, most sea ice models today use a multicategory approach
(Lipscomb and Hunke, 2004; Mélia, 2002; Rousset et al., 2015). The introduction of sub
grid scale SIT distributions not only have a significant influence on the sea ice simulated,
but it also impacts the ocean and the atmosphere by influencing the boundary layers
temperature, density and salinity concentration (Bitz et al., 2001; Holland et al., 2006).

Over the past 20 years, many more parameterizations for sub-grid-scale processes
have been added. For example: surface type varying ocean and atmospheric drag for-
mulations that better resolve the energy transfer between the atmosphere and ice, and
ocean and ice (Lüpkes et al., 2012; Tsamados et al., 2014); multi-scattering albedo for-
mulations depending on snow and ice physical parameters (Briegleb and Light, 2007);
transport of biological matter (Duarte et al., 2017); sub–grid–scale transport of snow
(Hunke et al., 2021a); and sub-gird-scale ice flow size distribution (Roach et al., 2018),
to only name a few.
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2.1 CICE
The primary sea ice model in this study is the Community Ice CodE (CICE) (Hunke
et al., 2021c), which is a widely used sea ice model. For example, was CICE in the
latest version of the Coupled Model Intercomparison Project (CMIP), the most used
sea ice component (Long et al., 2021). The CMIP models are the models that are used
in the International Panel on Climate Change (IPCC) reports, advising governments
worldwide on issues concerning climate change. Apart from being frequently used in
climate models, CICE is also a component in several operational sea ice forecast systems
as, for example, in the HYCOM-CICE model operating at DMI (Ponsoni et al., 2023)
and the RIOPSv2 developed at CCMEP (Smith et al., 2021).

The fundamental equation CICE is solving is:

∂gh

∂t
= −∇ · (gh�u) − ∂(fgh)

∂SIT
+ ψ (2.5)

Where gh is the ice thickness distribution function, t is time, �u the horizontal velocity
in x and y direction, ψ the ridging redistribution function and f the thermodynamic
growth and melt. On the right-hand side, the first and second terms (counting the
nabla operator as one) of equation 2.5 describe the horizontal transport, the third term
the thickness change due to thermal processes and the fourth the thickness change due
to mechanical process like ridging and rafting (Hunke et al., 2017). Each of the three
terms is solved separately. Various options for parameterization are available, and the
ones used in this study will be described in the following.

The default advection scheme, which is used in this study, was introduced by Lip-
scomb and Hunke (2004) and is an incremental remapping scheme. CICE also comes
with the option of using an upwind transport scheme (Smolarkiewicz, 1996). The incre-
mental remapping scheme has the advantage of being more efficient for multicategory
models and conserves tracers (Lipscomb and Hunke, 2004).

The thermodynamic growth and melt described by f are computed by Icepack, which
is developed separately by the CICE consortium and can also be run as a standalone
1-D sea ice model (Hunke et al., 2021b). Icepack computes the thickness distribution
based on the number of categories listed in table 2.1. In this study, the lower bounds
defined by the World Meteorological Organization (WMO) for five sea ice categories are
used.

The thermodynamic formulation of this study is the mushy layer theory option
(Turner et al., 2013), which allows for brine drainage and the calculation of ice ages.

The dynamics of sea ice is described in CICE by:

M
∂�u

∂t
= ∇σ + �τa + �τw + �τb − �k × Mfc�u − Mg∇H0 (2.6)

Here, M is the combined mass of ice and snow per unit area. The first term on the
right-hand side in equation 2.6 is the divergence of the internal stress (σ). To calculate
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Table 2.1: Sea ice categories (cat) bounds following the WMO definition for sea ice models with 5
categories.

category cat upper bound
1 0.3 m
2 0.7 m
3 1.2 m
4 2.0 m
5 ∞

this term, an Elastic-Viscous-Plastic (EVP) rheology is used, which assumes an elliptic
yield curve (Hunke and Dukowicz, 1997). The second and third terms are the stresses
from atmosphere and ocean (�τa,w). They are calculated as follows:

�τa,w = ρa,wCa,w‖�Ua,w − �Ui‖2 (2.7)

Here ρa,w is the air or water density, Ca and Cw the air or ocean drag coefficient and
�Ua,w the atmosphere and ocean velocity and �Ui the ice velocity. The ocean and air
densities are constants, the atmosphere and ocean velocities are boundary conditions
and the ice velocity is calculated by CICE itself. The drag coefficients are by default in
CICE set to constant values. Tsamados et al. (2014) argue that with thinning ice in the
Arctic, the ice pack has become more mobile and the surface rougher, thus a constant
drag coefficient is not sufficient anymore. They suggest using a variable drag coefficient.
This is the form drag parametrization, which is calculated with dependencies on the
surface type as follows:

Ca = Cf + Cr + Cs + Cmp (2.8)

Cw = Cf + Cr + Cs (2.9)
Here Cf is the drag associated with the ice flow edges or FB, Cr the drag component
introduced by the sail or keel of the ice flow, Cs is the contribution from the ice flow
surface skin and Cmp the contribution from the melt pond edges, which is only relevant
for the atmospheric drag. This formulation allows the drag coefficient to vary in time
and space and is the formulation used in this study.

The fourth term in equation 2.6 is the seabed stress. The seabed stress depends on
the SIT. The fifth and the sixth term of equation 2.6 are the Coriolis term and the sea
surface slope. Here �k is the unit vector, fc the Coriolis term, �u the velocity field, g the
gravitational acceleration, τb the basal stress and ∇H0 the surface slope.

2.2 Model Setup
This section describes the model configurations used in all included studies (Sievers
et al., 2022, 2023a,b).
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Fig. 2.2: Model domain bathymetry

The model domain is the 10 x 10 km pan Arctic domain displayed in figure 2.2. The
grid was adapted by Hordoir et al. (2022) and originates from Bentsen et al. (1999).
Both the ocean and the ice model run with a 600-second time step, and they exchange
information at every time step. The NEMO ocean setup follows Hordoir et al. (2022)
except for adjustments required for a change of version from NEMO3.6 to NEMO4 into
account (for more technical details, see section 4).

All forcing and boundary conditions are handled by NEMO. At the lateral bound-
aries, the model is forced by monthly temperature, salinity, sea surface height and
velocity fields from the Global Ocean Physics Reanalysis (GLORYS) (Lellouche et al.,
2021). The atmospheric forcing is from ECMWF Reanalysis v5 (ERA5) (Hersbach
et al., 2017), which has a frequency of three hours. The ERA5 fields used are 2-m tem-
perature, 2-m specific humidity, 10-m winds components, incoming short and long wave
radiation, total precipitation, snowfall and sea level pressure. The river run-off consists
of a monthly climatology from Day et al. (2014). Tidal forcing at the boundaries is
provided by TPXO 7.2 harmonic tidal constituents (Egbert and Erofeeva, 2002). The
CICE runs included in this thesis are:

• BGrun: running from 1995-2020, ocean initialised from temperature and salinity
fields from Ocean Reanalysis System 5 (ORAS5) Zuo et al. (2019), ice initialised
depending on sea surface temperate and latitude. The run was utilised to calculate
the Kalman filter background error in Sievers et al. (2023a) and the model values
in Sievers et al. (2023a).
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Model Option
Time step 600 s

Ice categories 5
Ice layers 7

Snow layers 1
wind-ice drag form drag (Tsamados et al., 2014)
ocean-ice drag form drag (Tsamados et al., 2014)

dynamics solver EVP (Hibler, 1979)
land fast ice yes
melt ponds yes

ridging/rafting yes
heat diffusion in ice mushy layer (Feltham et al., 2006)

Albedo delta Eddington (Joseph et al., 1976)
Sea ice salinity mushy layer (Feltham et al., 2006)

Table 2.2: CICE settings of all model runs

• refRun: subset of model run BGrun from 2018-01-01 to 2020-01-01. The run was
used in Sievers et al. (2023a).

• sicRun: running from 2018-2020, restarted from BGrun restart files at 2018-01-01,
assimilating SIC. The run was used in Sievers et al. (2023a).

• fbRun: running from 2018-2020, restarted from BGrun restart files at 2018-01-01,
assimilating both FB and SIC. The run was used in Sievers et al. (2023a).

• CICEref: running from 2007-01-09 to 2020-01-09, ocean initialised from temper-
ature and salinity fields from Ocean Reanalysis System 5 (ORAS5) Zuo et al.
(2019), ice and snow also initialised from the ORAS5. The run was used in the
model intercomparison study in Sievers et al. (2022).

• CICEtN: same as CICEref, but only running from 2007-01-09 to 2010-01-09 and
with SST calculated following Commission et al. (2015). Discussed in Chapter 3
to 5.

• CICEfd: same as CICEref, but only running from 2007-01-09 to 2010-01-09 with
constant drag coefficients instead of Tsamados et al. (2014) form drag formulation.
Discussed in Chapter 3 to 5.

• CICEs: same as CICEref, but only running from 2007-01-09 to 2010-01-09, with
the original snow forcing increased by 1.22 times. Discussed in Chapter 3 to 5.

All simulations ran with the CICE settings discussed in section 2.1. An overview of the
CICE settings is also listed in table 2.2.
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In Sievers et al. (2022) and Chapter 3, additional model runs from a different sea ice
model are included. These runs originate from the NEMO default sea ice model Sea Ice
Modelling Integrated Initiative (SI3). Sievers et al. (2022) compares these model runs to
the above-mentioned CICE runs. SI3 was developed as a combination of the three most
commonly run sea ice models with NEMO: CICE (Hunke et al., 2017), Louvain-La-
Neuve sea ice model (LIM) (Rousset et al., 2015) and (GELATO) (Salas Mélia, 2002).
Many of the fundamental assumptions are similar to the ones taken in CICE. A detailed
description of the SI3 setup would exceed the scope of this thesis. For further details
on these runs, please see Sievers et al. (2022) or Vancoppenolle et al. (2023) for further
details on the model and table 3.1 for differences between CICEref and SI3ref. Since
these runs are, however, discussed in Chapter 3 a list of the relevant runs and their
differences follows:

• SI3ref: running from 2007-01-09 to 2020-01-09, ocean initialised from temperature
and salinity fields from (ORAS5) Zuo et al. (2019), ice and snow also initialised
from the ORAS5. See also table 3.1 in chapter 3.

• SI3nb: as SI3ref, but without reduction of snow, by blowing snow parameterisa-
tion.

• SI3fd: as SI3ref, but with constant form drag parameters identical to CICEfd.

3 Data Assimilation
Data assimilation in geoscience originates from numerical weather prediction, but it is
also used in other geophysical modelling applications, including sea ice forecasts and
hindcasts (Chen et al., 2017b; Mu et al., 2018; Shu et al., 2021; Yang et al., 2020). It
is used in reanalysis to derive the optimal state of a system based on both observations
and models, as well as their uncertainties. The three most used assimilation methods
are nudging, variational methods and Kalman filtering.

The difference between a nudging scheme and the Kalman Filter is that the Kalman
Filter takes both the model and the observation error into account. The difference
between the Kalman Filter and the variational approaches is that the model errors
evolve over time in the Kalman Filter and that the Kalman Filter is simpler to implement
because no tangent linear model or adjoint model is needed. The variational approach
is more physically consistent than the Kalman Filter, which constrains its solution by
mean and variance, but not physical dependence (Wang et al., 2023). This work uses a
Kalman Filter-based algorithm.



3. Data Assimilation 21

3.1 Sea Ice Assimilation
There are several studies that have assimilated sea ice variables into an ocean sea ice
model with an EnKF prior to the work presented here. Many of these systems are
multivariate, meaning that their state vector x consists of several model state variables,
of which not all necessarily need to be observed. Which variables are in the state
vector differs. Mu et al. (2020) state vector consists of SIC, SIT, sea ice drift, and
temperature and salinity in the mixed layer, Lisæter et al. (2003) state vector consists of
the ocean variables: salinity, temperature, layer thickness, velocities, barotropic velocity
and barotropic pressure, and for the ice of SIC and SIT, Mathiot et al. (2012) state
vector consists of all ocean and ice model state variables plus snow freeboard except ice
temperature and heat content, Liang et al. (2019) state vector consists of sea surface
temperature and SIC and SIT; and Yang et al. (2014) state vector consists of SIT
and SIC. The state vector in the current thesis only consists of either FB or SIC. The
multivariate approach of the studies above is often preferred because variables that are
physically dependent on another are updated simultaneously through cross co-variances.
Particularly, upper ocean temperature and the sea ice edge have been found to be
strongly correlated (Lisæter et al., 2003; Yang et al., 2014). The FB assimilation study
of Mathiot et al. (2012), assimilating snow FB from ICESat, used the cross correlations
between snow FB to update the model SIT without directly observing it.

The aim of the current work is to understand the relationship between the FB
and SIT. Therefore, the approach that Mathiot et al. (2012) followed was not applied.
Rather, the Kalman Filter is used as a tool to derive the best estimate of FB and
investigate its physical relationship with the model SIT. The derived modelled radar FB
could, however, in the future be used as an observation operator in a multivariate system.
An example of an observation operator to assimilate lower level satellite observation is
the brightness temperature observation operator developed in Burgard et al. (2020) to
improve SIC.

3.2 Kalman Filter
A Kalman filter is a sequential assimilation method, which means that a sequence of
steps is repeated in order to estimate the model state and error development. The
sequential steps of the Kalman filter are:

• an initialisation of the model (only done in the first step)

• a forecast of the model (xf )

• an analysis in which the model state and observations (yo) including their errors
are analysed to calculate the optimal state (xa(ti))

• model correction towards the found optimal state and the sequel is repeated
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In the analysing step, the best estimate is calculated based on the assumption that the
assimilated data is Gaussian distributed and therefore can be described by their mean
and variance, and that the model and observation errors are unbiased and uncorrelated
(Wang et al., 2023). The optimal state is found by solving the following (Evensen, 1994):

xa(ti) = xf (ti) + Ki(yo
i − Hixf (ti)) (2.10)

H is the observation operator mapping the observations on the model field and K is the
Kalman gain calculated as follows:

Ki = Pf (ti)HT
i (HiPf (ti)HT

i + Ri)−1 (2.11)

Where Ri is the observation error covariance matrix and Pf
i the covariance matrix of

the model ensemble error.
In this study, an adaption of the EnKF is used. The EnKF first introduced by

Evensen (1994) is a variation of the extended Kalman filter (Kalman and Bucy, 1961).
The difference between the extended Kalman filter and the EnKF is that the extended
Kalman filter integrates the error covariance matrix, while the EnKF uses a Monte
Carlo approach. Evensen (1994) showed that it is more efficient and more stable to use
a Monte Carlo approach to calculate the error covariance for large non-linear systems
such as, for example, ocean models. This approach is based on the assumption that the
error covariance of the forecast model state can be described by the mean and covariance
of an ensemble of model forecasts.

The Monte Carlo approach here is that Pf
i is not explicitly solved but calculated

from the covariance matrix of an ensemble of models, which are all run over a forecast
time t. The mean model state (x̄i) is given by the mean of the ensemble of N members:

x̄i =
1
N

N∑
h=1

xh
i (2.12)

The state error covariance matrix can be calculated from the ensemble members as
follows:

Pi =
1

N − 1
(xi − x̄i)(xi − x̄i)T (2.13)

In this setup, xi∈ R
n×N is a matrix containing the ensemble of size N of model states

of size n and Pi ∈ R
n×n is the model background error. In the EnKF, the dimensions

of the other terms in equation 2.11 are: Ri∈ R
m×m, with m being the number of

observations and Hi ∈ R
m×n.

This study assumes that the ensemble can be approximated by inter-annual vari-
ability. Pf

i consists of historical fields from a pre-run model experiment (BGrun). This
means that the assimilation in principle is not an EnKF. The background error covari-
ance matrix, though, is calculated based on the same assumptions, namely that variabil-
ity in the model reflects its error. In this case, the inter-annual variability is used instead



3. Data Assimilation 23

of perturbed forcing introduced variability (Cheng et al., 2023). The EnKF uses several
model realisations to forecast the mean state and calculates the model background error
from the variance of the different runs; likewise, the increment is applied to all model
runs in the ensemble. In the approach presented here, the model background is calcu-
lated from the inter-annual variability around the date of the forecast. Only one model
realisation is run and updated with the increment. The approach is significantly less
computationally expensive but does not reflect the time evolving error of the model.

For a model of the dimensions used in this study (n=693528, N=80, m<693528), the
full matrix of Ki would still be too large to be calculated. This is a common problem,
and it can be solved in a multitude of ways (Hunt et al., 2007; Nerger et al., 2012; Pham,
2001), the detailed description of which exceeds the scope of this work. In this study,
the Parallel Data Assimilation Framework (PDAF) Local Error Subspace Transform
Kalman Filter (LESTKF) (Nerger et al., 2012) has been used to solve equation 2.10.
PDAF is a FORTRAN-based software package including a collection of different Kalman
filter solutions for geophysical models. It has been used successfully in the past to
assimilate sea ice by, for example, Shu et al. (2021), Yang et al. (2020) and Mu et al.
(2018). The strategy for the LESTKF computational implementation is described in
Nerger and Hiller (2013). PDAF has different implementation strategies. The steps
taken to implement it are described in the following paragraph.

3.3 PDAF Implementation
Several implementation strategies are supported by PDAF. Here the parallelised offline
version was chosen. This terminology follows the PDAF implementation guide (Nerger,
2024). In the offline coupling, the model is first run and stopped, and then the SIC
and FB states are written to files, which are then read by PDAF to calculate the error
covariance matrix of the model state. To do so, the model ensemble from the BGrun is
read. The observations and associated errors are also read and have prior to this step
been interpolated onto the model grid. To calculate equations 2.10 and 2.11, the model
and files are converted into 1-D arrays.

To ensure that the model state and observations are cohesive, the observation op-
erator H was introduced. H is an array containing 1 where observations exist and 0
where no observations exist. While the observation array yi is smaller than the model
state xi, H has the same dimensions as the model state and maps yi onto xi.

To reduce computation costs, the ensemble only has one member that is updated with
the analysed field and xh

i is calculated from snapshots from the BGrun. The ensemble
used to calculate the model error covariance matrix in equation 2.13 is calculated from
an ensemble of pre run model states (xh

m). This method has been used by, for example,
Aubert and Fournier (2011). The ensemble is calculated as follows:

xh
i = xh

m − x̄m + xms (2.14)
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Fig. 2.3: RMSE between one week forecast and observations for three different ensemble compositions.
The three different ensemble compositions are listed below.

x̄m is the mean pre run model states, xh
m one single member of the pre run model states

and xms the model state from the assimilation run. From the BGrun, it was known that
the model overestimates the ice edge. This is also discussed in Sievers et al. (2022). To
take this bias into consideration when creating the ensemble, the different configurations
of the ensemble were tested. In figure 2.3, the root-mean-square error (RMSE) between
the FB forecast and observations for three different constructions of the ensemble are
shown for four different ensemble sizes. The three ensembles are constructed as follows:

• one_p_m: the members xh
m are taken from all different months throughout the

20 years of pre run.

• vary_sp: 2
3 of the ensembles are taken from the same date as the current assim-

ilation step, 1
6 from two months before and 1

6 from two months after the current
assimilation step.

• same_w: all members xh
m were taken from the same day as the current assimilation

step. For the ensembles with a larger seize than the years available, the following
and prior days were chosen.

Figure 2.3 shows the smallest errors for 60 and 80 ensemble members for the one_p_m
and vary_sp option. one_p_m and vary_sp were introduced to increase the ensemble
spread, by taking more model states into account than those that reflect the inter-annual
variability (same_w). This was done, as mentioned above, to account for known biases.
For the final assimilation setup, vary_sp was chosen to ensure that the ensemble spread
used to calculate the model error is not so large that it would lead to an overestimation
of the model error.

The filter used is the Local Error Subspace Transform Kalman Filter (LESTKF)
(Nerger et al., 2012). The localisation refers to the fact that the filter only takes obser-
vations in a certain radius into account. The impact from the observations on the model
location is weighted depending on the distance between the observation and the current
model location. In figure 2.4, the RMSE between one week forecast and observations
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Fig. 2.4: RMSE between one week forecast and observations for different localisation radii in grid
points.

for different localisation radii is shown. The radius is given in grid cells between five
and 80. The lowest error is shown for 60 grid cells, which is also the localisation radius
the with which the assimilation was run.

3.4 Assimilation Setup
The previous sections of this chapter described the individual components of the full
assimilating system. This section describes how the components are tied together, as
illustrated by figure 2.5.

Fig. 2.5: Schematic overview of the assimilation system. The smaller blue boxes (4 and 5) indicate
inputs, the larger turquoise boxes separately executed programs and the blue arrows file exchange. The
numbers are used to link the graph with the description in section 3.4.

The numbers below are references to figure 2.5. The assimilation cycles are seven
days. The run starts with one week of forecast based on the NEMO-CICE (1) setup
described in chapter 2, section 2.2. This run is initialised with restart files from the
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BGrun. At the end of the assimilation cycle, weekly means of SIC and FB are written
to file (2) as well as the ocean and sea ice restart files. Then the filtering step by
PDAF (3) is performed as described in chapter 2 section 3 and 3.3. The filter uses the
weekly means of SIC and FB as well as the ensemble files (4) and the observations (5)
as input. All input files are provided on the model grid. The ensemble (4) was created
as described in chapter 2, section 3.3 by the vary_sp method.

The observations (5) are weekly averages of SIC and FB covering the same week as
the model was run during the forecast step. The assimilated SIC data is the OSISAF
OSI-430-a SIC described in chapter 2, section 1.1. The assimilated FB data was intro-
duced at the end of chapter 2, section 1.3 and will be referred to as AWI FB in the
following chapters. The AWI FB comes in weekly averages, the OSISAF SIC is averaged
over the current week at assimilation time. PDAF is run twice, once for FB, and once
for SIC, to avoid unrealistic cross correlations. In a test with a state vector containing
both FB and SIT, unrealistic FB changes appeared in central Arctic regions. The re-
sulting increments are written to two separate files as part of the offline PDAF-model
coupling (2). The model is restarted from the ocean and ice restart files. Right after
the initialisation, the increment is read in to the model (1) and applied as described in
section 4.2. The assimilation is run November to March, whereas the model runs free
from April to October due to lack of observations. Sievers et al. (2023a) provide further
details on the assimilation routine described in this chapter and the resulting SIT.

4 Model Development and Coupling
This section describes the modifications to the original model code, which are needed
to perform the studies included in this thesis. First the coupling of the ocean model
NEMO and the sea ice model CICE is described (section 4.1), and next all subroutines
needed for the FB assimilation and their functions (section 4.2). This section is intended
to act as a reference for technical details.

4.1 Coupling CICE and NEMO
The coupling of NEMO and CICE in this thesis is based on previous coupled systems
with earlier versions of the same models. The previous system from the Environment
and Climate Change Canada (ECCC) is based on NEMO3.6-CICE4 and described in
Smith et al. (2021). The general strategy of the coupling is to compile both models in
one executable and call CICE as a submodule of NEMO.

The coupled models are parallelised. The distribution and communication are done
with the help of the FORTRAN Message Passing Interface (MPI). Each of the two model
components has its own strategy on how to distribute the domain to the processors.
Figure 2.6 shows a schematic example of the model domain with the two different MPI
distributions. At each coupling step, the fields must be communicated from one model’s
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local distribution to global fields and back to the other model’s local distribution. This
is known to be a bottleneck as this is not a parallel process.

To update the coupled system to NEMO4 and CICE6.2 two system updates had to be
considered: all Icepack modules and some variables from CICE4 to CICE6.2 had changed
names and NEMO4 included an updated MPI processor distribution strategy. Changing
the names of routines and variables from CICE4 to CICE6.2 was straightforward. To
account for the changes in the MPI routines of NEMO4, the indexing in the routines
that collect the CICE decomposition, shown in figure 2.6, to the global domain and on
to the NEMO domain, had to be adjusted.

Fig. 2.6: MPI decomposition of CICE and NEMO. The MPI decomposition of CICE is schematically
indicated by filled turquoise boxes, and the MPI decomposition of NEMO by transparent black and
orange outlined boxes.

In addition, the freeze and melt potential was updated according to changes de-
scribed in Ponsoni et al. (2023). The freezing point of the ocean and melt temperature
of ocean/ice is a function of the salinity. Seawater is typically significantly more saline
than sea ice, and therefore it has a lower freezing point than the melt point of sea ice.
The freeze and melt potential (fmpot ), which determines how much ice potentially can
freeze or melt, depends on the freezing point temperature of the ocean and the melt
point temperature of sea ice. The new formulation of the freeze and melt potential is
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defined in equation 2.15.

fmpot =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρwcpOH0w (TImelt − SST )
2Δt

, if TImelt > TOfreez and SST > TOfreez.

0, if TImelt > TOfreez and SST > TOfreez

and TImelt <= SST .
ρwcpOH0w

(TOfreez − SST )
2Δt

, else.

(2.15)

Here ρw is the water density, cpO is the ocean heat capacity, H0w is the ocean surface
layer thickness, SST is the sea surface temperature and Δt is the ocean model time
step. The only thermodynamic option where the salinity of sea ice is the mushy layer
theory option (Turner et al., 2013). In the original formulation, both the freezing point
temperature and the melt point temperature were based on the ocean salinity.

With the original calculation of fmpot, ice was melted as soon as the surface tem-
perature is above the freezing point, no matter what the melting point of the ice is.
Ponsoni et al. (2023) found that this leads to too high amount of melt in warm waters
(personal communication with M. Hvid Ribergaard).

4.2 CICE Development
This section describes the development of CICE. All subroutines added to CICE as part
of this thesis and their purpose are listed in table 2.3. In the following text, namelist
parameters are written in italics, and subroutine and module names in quotation marks.

The comparison of CICE and SI3 required an option to start CICE from initial
conditions. The added routine was used in (Sievers et al., 2022). The option to start
CICE from initial files is set in the namelist with the option ice_data_type; additionally,
the name of the file name of the initial condition is set there. The fields used are: SIC,
SIT and snow thickness. The fields need to be on the model grid and have one value per
grid cell. The values are distributed to the categories in ’ice_init’. The fields are read-in
in a new CICE routine ’isc_from_file’ which is called in the CICE routine ’ice_init’.
At each grid cell, the input variables are put into one category only, see equation 2.16.

SITcat, Hscat, SICcat =

{
SITi, Hsi, SICi, if SITi > SITb(cat − 1) and SITi < SITb(cat).
0, else.

(2.16)

Here SITi, Hsi and SICi is the SIT, snow thickness and SIC from the initial files,
SITcat, Hscat and SICcat the SIT, snow thickness and SIC in category cat and SITb

the categories upper SIT bound.
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Table 2.3: Modified and added model routines, their purpose and the studies in which they were used.

new subroutines purpose used in
’isc_from_file’ read in sea ice initial condi-

tions for snow thickness, SIT
and SIC

Sievers et al. (2022)

’read_inc’ read in routine for the FB and
SIC increment files

Sievers et al. (2023a)

’do_fb_assim’ routine determining if condi-
tions allow for FB assimila-
tion

Sievers et al. (2023a)

’ice_fb_radar’ module calculating radar FB,
ρi and SIT from radar FB

Sievers et al. (2023a,a)

’rfb_inout’ routine included in
’ice_fb_radar’ calculat-
ing radar FB

Sievers et al. (2023a)

existing subroutines purpose of addition used in
’ice_init’ An additional option for

the name list parameter
ice_data_type was added to
allow for restart from file.

Sievers et al. (2022)

’ice_relaxcon’ This routine was introduced
by Rasmussen et al. (2018) for
the DMI nudging scheme. All
routines for the FB assimila-
tion are called from here.

Sievers et al. (2023a)

The assimilation required that several new variables be introduced. These are sea
ice density, radar FB and snow density. In addition, several new routines are introduced
to perform the assimilation discussed in chapter 2, section 3.

In the following paragraphs, the separate subroutines (table 2.3) that were intro-
duced to perform the FB assimilation will be described (the yellow squares in figure
2.7). All steps necessary for the assimilation will be discussed in the order indicated by
figure 2.7 in the following paragraphs.

The subroutine called ’read_inc’ reads the increment calculated in the Kalman filter
described in chapter 2 section 3. The increment is the change of one variable that needs
to be added to the model state in order to be equal to the optimal state estimate from
the Kalman filter. To avoid chock, the increments are linearly spread over the time of
the assimilation cycle of one week. This method was introduced by Bloom et al. (1996)
and called incremental analysis updating. This means if data is assimilated each week,
the variable is read in at the first time step of assimilation period (t0) and divided by



30 Chapter 2. Method and Background

Fig. 2.7: Flow chart of assimilation implemented in CICE. Green background marks existing routines
that were extended, and yellow background marks routines subroutine calls within new (white square)
routines. The white rhombuses mark conditional statements, squares subroutines and blue hexagons
changes to the model state.

the number of time steps the model runs per week.
Since incremental increment sounds repetitive, it will be referred to as a fractal

increment in this study. The fractal increments calculated are the SIC fractal increment
IncFsic and the SIT fractal increment IncFsit. To calculate IncFsic, the SIC increment
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is divided by the number of time steps Nt, as follows:

IncFsic =
Incsic

Nt
(2.17)

To calculate Incice, the FB increment is read, and then it is subtracted from the model
radar FB. This new FB is converted into ice thickness by the subroutine ’rfb_inout’.
This ice thickness is subtracted from the ice thickness at t0 and the resulting SIT
increment is divided by the number of time steps to get the fractal increment IncFsit.
The step of converting the FB into ice thickness has to be done at t0. If it were not done
at t0, the snow thickness, sea ice density or water density might change and result in an
inconsistent calculation of SIT, when FB increments are converted to SIT increments.

The calculation of the fractal SIT increment at t0 ensures that the change in SIT
are related to the results from the Kalman filter analysis step. To calculate the SIT
increment, the ratio of the FB increment IncF B to the old FB (FB0) is calculated, and
the current SIT is multiplied by it (equation 2.18).

IncFsit = SIT
IncF B

FB0

1
Nt

(2.18)

This approach assumes that all changes in FB thickness are caused by SIT changes.
After the increments have been read and the fractal increments IncFsit and IncFsic

are calculated, the assimilation routine continues with applying IncFsic at each time
step. This is done in two different ways, depending on whether ice exists in the current
grid cell. If ice already exists, SIC in all five categories is changed according to:

SIC(cat) = SIC0(cat) − SIC0(cat)
IncFsic

SIC0
(2.19)

Here cat refers to the SIT categories from table 2.1 and SIC0 the SIC prior to the
assimilation. If there was no ice prior to the assimilation, new sea ice is created. The
new SIC is equal to IncFsic, the SIT to 0.1 m and the snow to 0.02 m, and the ice and
snow enthalpy is calculated according to Turner and Hunke (2015).

In preparation for the FB assimilation, the radar FB is calculated by combining
equation 2.1 and 2.4 to:

FBr =
SIT (ρw − ρi) − Hsρs

ρw
− Hs(

c

cs
− 1) (2.20)

The variables SIT, Hs and ρw are defined in the model, cs is defined in equation 2.2
and c is constant as defined in section 1.3. ρs and ρi are constant in the original CICE
code. Initial experiments showed that space and time dependent ρi and ρs values were
necessary to yield realistic results. To simulate the seasonal variability of ρs, Mallett
et al. (2020) was followed:

ρs = 6.5tm + 274.51 (2.21)
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with tm the time in month linearly increasing from 0 on the first of October to 6 at the
30th of April. ρi is calculated as follows:

ρi = abρb + (1. − ab)ρfresh (2.22)

Here ab is the brine content of the ice, ρb the density of the brine and ρfresh the density
of fresh ice. ρfresh was set to 882 kg/m3, which is the value typically used for MYI
in conventional CryoSat-2-derived SIT following Alexandrov et al. (2010). As an upper
bound for the sea ice density, the water density was set. The evaluation of the resulting
ice densities will be discussed in chapter 4.

The subroutine ’do_fb_assim’ consists of two options to check whether the FB
assimilation should be carried out or not. The FB increment is only applied if model
SIC is above 0.8 and SIT above 0.1 m. These thresholds were chosen to ensure stability.
However, they also have a physical motivation. The threshold of 0.1 m SIT was chosen
because CryoSat-2 was specifically designed to measure thick sea ice and is less accurate
in thin ice areas (Wingham et al., 2006). The threshold of 80% SIC was chosen because
the CryoSat-2 backscatter from open water is stronger than from sea ice, which makes
it difficult to distinguish leads from ice floes at low SIC.

The assim_type parameter was introduced to test different ways of applying the FB
increment. Currently, only one of these options runs stable and gives realistic results.
The option that runs stable and gives realistic results is assim_type == 3. This option
is based on the assumption that the correction for the increments is only caused by SIT
differences, and its results will be discussed in chapter 4. The other options tested were
one based on the assumption that the FB increment carries information about both
the SIT change and snow thickness change, and another distributing the ice into the
thickness categories following Gupta et al. (2021). Neither run stable and so were not
further developed due to a lack of time.

The ice thickness is now calculated from the IncFice, similar to equation 2.19:

SIT (cat) = SIT0(cat) − SIT0(cat)
IncFice

SIT0
(2.23)

Here SIT0 is the SIT prior to the assimilation, SIT (cat) the SIT depending on the
category (thickness categories in table 2.1) and SIT0(cat) the SIT prior to the assimi-
lation depending on the category prior to the assimilation. As a last step, the routine
’cleanup_itd’ is run to re-bin the ice into their correct thickness categories.



Chapter 3

Summary of Papers

This thesis is a collection of papers. The papers considered in this study are:

• Paper 1: Sievers, I., Rasmussen, T. A., and Stenseng, L. (2023). Assimilating
CryoSat-2 freeboard to improve arctic sea ice thickness estimates. The Cryosphere,
17(9):3721–3738.

• Paper 2: Sievers, I., Skourup, H., and Rasmussen, T. A. S. (2023b). Impact as-
sessment of snow thickness, sea ice density and water density in CryoSat-2 derived
sea ice thickness. The Cryosphere Discussions, 2023:1–25.

• Paper 3: Sievers, I., Gierisch, A. M., Rasmussen, T. A., Hordoir, R., and Stenseng,
L. (2022). Arctic sea ice and snow from different ice models: A CICE–SI3 inter-
comparison study. The Cryosphere Discussions, pages 1–34.

The overall aim of the thesis is to improve our understanding of Arctic sea ice thickness
by investigating the relationship between FB and SIT from CryoSat-2 and sea ice models.
The following section summarises the included studies and highlights their link to the
overall topic. Additional discussions are found in chapter 4.

Paper 1 is published, Paper 2 is under review and Paper 3 has been in review but
was withdrawn. The main reason to withdraw Paper 3 was that one central requirement
of the reviewers could not be met. The requirement was to set up a base model run
in which both models perform similarly. A substantial effort to tune the models to
provide similar results while avoiding downgrading their results was unsuccessful, which
motivated the withdrawal. The results of the tuning are presented in the work in section
3.1 of this chapter. The latest versions of the papers can be found in the appendix.
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1 Paper 1: Assimilating CryoSat-2 Freeboard to Im-
prove Arctic Sea Ice Thickness Estimates

Paper 1 introduces the assimilation described in section 3.4 and evaluates the results in
three steps against in-situ observations and classical-derived SIT from CryoSat-2. The
runs discussed in Paper 1 are the runs fbRun, refRun and sicRun introduced in section
2.2.

First, the fbRun’s and refRun’s FB were compared to the assimilated FB, in order
to demonstrate that the assimilation works. Comparing the AWI FB (the assimilated
FB) and the fbRun’s FB showed that the assimilated FB is closer to the AWI FB than
the refRun FB. This demonstrates that the assimilation works as expected.

Secondly, the fbRun’s and refRun’s SIT were compared to the classically-derived SIT.
The classical derived SIT from CryoSat-2 is the SIT included in the weekly AWI data
(Hendricks et al., 2021), which was introduced as one of the CryoSat-2 SIT data products
mentioned in section 1.3. This comparison showed that the fbRun’s SIT is closer to the
AWI SIT than the refRun’s SIT. The AWI SIT is, however, not independent of the
fbRun SIT, since the fbRun includes assimilated FB from the same data set as the AWI
SIT is based upon.

Third, the refRun and the fbRun SIT are compared to independent in-situ obser-
vations from the Beaufort Gyre Exploration Project (BGEP) and the Multidisciplinary
drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. BGEP are
sea ice draft measurements and the SIT measurements from MOSAiC are based on Ice
Mass Balance buoys (Lei et al., 2021). In the Beaufort Gyre, the fbRun SIT is clearly
closer to the observations than the refRun SIT. In the MOSAiC locations, however,
the refRun and the sicRun are close to the observations, while the fbRun SIT differs
significantly from the observations. Paper 1 links the overestimation of the FB, and
resulting SIT overestimation in the fbRun, to the assimilated AWI FB data. Paper 1
shows that both the AWI SIT and the fbRun SIT compare equally well to the BGEP in-
situ observations and that the fbRun SIT compares significantly better to the MOSAiC
observations.

2 Paper 2: Impact Assessment of Snow Thickness,
Sea Ice Density and Water Density in CryoSat-2
Derived Sea Ice Thickness

The assimilation method presented in Paper 1 converts the assimilated FB to SIT under
the same assumptions as the classical approach but it uses model values instead of
empirical and climatological values. The model output is from the BGrun that did
not include data assimilation. The objectives of Paper 2 are to (1) compare the snow
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thickness, sea ice density and water density from the model and those from a CryoSat-
2 SIT product to independent observations, (2) present alternative model values were
needed and (3) assess to how much SIT difference using the model values instead of the
CryoSat-2 product values leads.

The Altimetric Snow Depth (ASD) from Garnier et al. (2021) is used to evaluate the
snow thickness. Overall, the validation shows that the model snow thickness compares
better to ASD snow thickness than the AWI snow thickness compares to the ASD
snow thickness. There is a regional and seasonal variability in the comparison. In the
Canadian Arctic in early winter, the model has too thin snow compared to ASD, while
the modelled snow in late winter in all regions is thicker than the ASD snow.

The sea ice density is evaluated with airborne sea ice density measurements from
Jutila et al. (2022) and sea ice densities from ice cores from the MOSAiC expedition
(Oggier et al., 2023a,b). The model sea ice density is closer to the Jutila et al. (2022)
sea ice density than the AWI sea ice density is. For the MOSAiC sea ice density, the
AWI sea ice density compares better than the model sea ice density.

To create a meaningful SIT comparison, a new model-derived sea ice density is
presented, called C6N4J21 in the following. This density varies by FYI area, which is a
model diagnostic. The derived sea ice density is closer to observations than the original
model sea ice density, and overall closer to the observations than the AWI sea ice density
is.

The water density is validated against World Ocean Atlas (WOA) (Zweng et al.,
2019) derived water density. The water density values from the model compare better
to the WOA water density than the single value AWI water density does. The water
density leads to the smallest SIT differences of up to 0.33 m between the AWI constant
value water density and the modelled water density.

Paper 2 finds that the SIT difference resulting from exchanging the CryoSat-2 values
with model values are highest for snow thickness and sea ice density but that their effect
overall is lower when all three values are substitute together. The SIT value from the
water density is with a maximum of 0.33 m higher than expected, which is why an
additional analysis was conducted.

An additional SIT comparison between the WOA and the model and CryoSat-2
water density was conducted. This comparison shows that on average, the constant
CryoSat-2 value leads to 0.02 m and the model water density to 0.01 m SIT difference
and their maximum differences to 0.13 m and 0.16 m respectively. These differences
are small compared to the differences introduced by the snow thickness and the sea
ice density, but not negligible, as many classical-derived CryoSat-2 SIT products state
(Hendricks et al., 2021; Kurtz et al., 2013; Tilling et al., 2018).

Paper 2 traces back the origin of the water density error estimate to Wadhams et al.
(1992) and finds that the variability only account for the seasonal variability of the
water density but not for the regional variability. Paper 2 suggests a new error estimate
of 2.6 kg/m3 instead of the commonly used 0.5kg/m3. The new error estimate is based
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on the standard deviation between the AWI single value and the WOA data.

3 Work in Progress (Paper 3)
As mentioned in the introduction to this chapter, Paper 3 was withdrawn in line with
the recommendations of the editor. Based on the recommendations from the reviewers,
additional work has been carried out. This section will first summarise the original
paper and then present the additional work that was carried out in response to the
review.

3.1 Paper 3: Arctic Sea Ice and Snow from Different Ice Models:
A CICE–SI3 Intercomparison Study

Paper 3 compares two sea ice - ocean model setups based on the same grid, coupled
to the same ocean model (NEMO), forced by the same atmospheric forcing (Hersbach
et al., 2017), boundary conditions (Lellouche et al., 2021) and started from the same
initial conditions. The only difference is the sea ice model. The two sea ice models
are the NEMO default sea ice model SI3 and CICE. The aim is to evaluate how the
simulations with the two sea ice models differ with a focus on the sea ice and the snow,
and to evaluate the coupling of CICE and NEMO described in section 4.1.

The model inter comparison differences were found to be small in comparison to the
CMIP6 sea ice component model intercomparison study by Long et al. (2021). The
model differences were found to be comparable to a similar regional model intercom-
parison study comparing CICE and Budgell (Kumar et al., 2021). The main differences
in the ice extent were found in the East Greenland Sea, where CICE modelled a larger
sea ice extent. The central Arctic showed the biggest difference of snow and sea ice
thickness.

The snow thickness differences were unexpected since both models were forced by
the same snow fall data. Paper 3 further shows that the snow and sea ice thickness
differences are correlated, especially over FYI. This finding led to an analysis of which
model settings forced the differences between the two models. Paper 3 attributes the
differences in thickness, and extent, to the differences in albedo calculation and drag
formulation. Further, Paper 3 concludes that the snow thickness differences are caused
by the "blowing snow" parameterisation, which reduces the snow volume in SI3.

The study finds that the snow and ice volume differences between the models are
correlated, in particular typical thin ice areas. The model with the thicker snow layer
has the lower ice volume and vice versa. The study only investigated the correlation
but not what the correlation’s cause.

The main point of criticism from the reviewers was that the models should start
from one common reference run in which the model results are close to identical. This
comment was made based on the assumption that the models are rather similar, while



3. Work in Progress (Paper 3) 37

in reality, they are somewhat different. An effort was made to tune the models to give
similar results, without any success. This was the main reason the paper was withdrawn.
Another point of criticism from the reviewers was that the analysis of the differences in
model settings should have been tested more. This point will be addressed in the next
section.

3.2 Model Differences
The main differences of the runs from Paper 3 are listed in table 3.1. The settings that
were further investigated are discussed below. The settings which were investigated
in more detail are: the drag formulation, the blowing snow parameterisation and the
freezing point. The settings were chosen based on the possibility of unifying the model
settings. The drag formulation and the blowing snow parameterisation can be set to
the same parameterisation without substantial changes to the model code. The freezing
point was set as part of the performed model coupling. In contrast, extensive modifica-
tions to the model code would be needed to unify the parameterisation governing the
heat and salt content, the basal stress and the albedo. Since the aim of this study was
to compare the existing models and not to modify them to be the same, only the drag
formulation, the blowing snow parameterisation and the freezing point were modified.
The results of unifying these settings will be discussed in the following paragraphs.

Model Option CICE SI3

wind–ice drag following Tsamados et al. (2014) Lüpkes et al. (2012)
ocean–ice drag following Tsamados et al. (2014) constant: 5e-3
blowing snow no yes (rn_blow_s = 0.66)
freezing point Assur (1958) Commission et al. (2015)
Sea ice salinity mushy layer (Feltham et al., 2006) Vancoppenolle et al. (2005)

heat diffusion in ice mushy layer (Feltham et al., 2006) Bitz and Lipscomb (1999)
Albedo delta Eddington (Joseph et al., 1976) 0.61–0.8 (surface type)

Maximum depth of basal stress threshold_hw = 30 m ∞
Advection scheme "Remap" Lipscomb and Hunke (2004) Prather (1986)

Table 3.1: Significant CICE and SI3 model differences for the runs CICEref and SI3ref.

Blowing Snow

Paper 3 concludes that the SI3 blowing snow parameterisation is the only parameteri-
sation that modifies the snow and differs between the models. Both models are forced
by the same atmospheric forcing, including snow fall. The blowing snow setting in SI3

reduces the snow volume by "blowing" some of the snow into leads. How much snow is
blown into leads is set by a namelist parameter. The CICE version used has no compa-
rable settings. Based on this, Paper 3 suggested that the differences in snow thickness
are caused by the blowing snow parameter. This hypothesis was tested by running a
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SI3 run without blowing snow, and the results are shown in figure 3.1. The model runs
from Paper 3 are called CICEref and SI3ref, and the SI3 run without blowing snow is
called SI3nb.

Figure 3.1 shows the monthly ice volume in the upper panel the monthly snow volume
in the middle panel, and the differences between the SI3ref and SI3nb run in the bottom
panel. The upper panel demonstrates that the ice volume difference between SI3ref, and
SI3nb is small compared to the difference between the SI3 runs and CICEref. The middle
panel in figure 3.1 shows that the difference between the CICEref snow volume and the
SI3ref snow volume is significantly larger than the snow volume difference between the
SI3ref and SI3nb run. This indicates that the blowing snow parameterisation is only
responsible for a small part of the snow thickness differences between the CICEref and
SI3ref.

Fig. 3.1: Model snow and sea ice volume differences between CICE and SI3 with and without blowing
snow over five years. The upper panel shows the Arctic total ice volume from CICEref, SI3nb and
SI3ref, the middle panel the Arctic total Snow volume from CICEref, SI3nb and SI3ref; and the lower
panel the differences between SI3ref and SI3nb in snow and ice volume. Be aware of the difference in
scale of the y-axes.

Paper 3 found that snow volume and sea ice volume differences between the models
are correlated and argues that one reason for the thinner ice in CICE could be due to
its thicker snow layer. The lower panel of figure 3.1 shows that the ice and snow volume
differences between SI3ref and SI3nb are also correlated, and that the ice volume in
SI3ref increases more over the years compared to the SI3nb run. As expected, the snow
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volume in the SI3ref run is lower than in the SI3nb run, supporting the hypothesis
of Paper 3 connecting the snow thickness difference to the ice thickness difference.
However, figure 3.1 also demonstrates that the difference in snow between CICE and
SI3 can not be explained by blowing snow parameterisation alone.

The blowing snow parameterisation leads to a sea ice volume difference of 84.8 km3
after running the model for five years. This difference is significantly lower than the ice
volume difference between SI3ref and CICEref as shown in figure 3.1’s upper panel.

Freezing Point

In Paper 3, it was assumed that CICE calculates the freezing point following the salinity
dependent calculation from Assur (1958) and SI3 calculated the freezing point following
salinity and pressure dependent calculation from Fofonoff and Millard Jr (1983). This
is based on the settings used in CICE and SI3. During the revision of Paper 3, it was
found that CICE’s actual freezing point is constantly -1.8 oC. The reason for this is that
the coupling is executed before the CICE thermodynamic routine is called, in which the
freezing point is calculated following Assur (1958). Prior to the thermodynamic routine,
the freezing point is set to its initial value given in the initialisation routine, which is
equal to -1.8 oC. The freezing point influences the freezing and melting of ice in CICE. In
the CICE-NEMO coupling, the heat transport between CICE and NEMO is calculated
as a freezing and melting potential (introduced in chapter 2 section 4.1) depending on
the freezing point of seawater and the sea surface temperature.

To evaluate how much the freezing point influences the formation of ice, CICE was
run with the freezing point calculated following Fofonoff and Millard Jr (1983), which is
the same formulation as used in SI3. This run will hereafter be called CICEtN. Figure
3.2 shows the snow and ice volume and their differences for the runs CICEref, CICEtN
and SI3ref from the initialisation in September 2007 until September 2010. The upper
panel shows the total ice volume, the middle panel shows the total snow volume, and
the lower panel shows the differences in snow and ice volume between CICEref and
CICEtN. The total sea ice volume in CICEtN is lower than in CICEref. The difference
is of the same magnitude as the SI3 sea ice volume difference caused by the blowing
snow parameterisation (comp. fig. 3.1).

The freeze and melt potential described by equation 2.15 calculates how much ice
is melted. If fmpot is negative, ice is melted. In the CICEref run, the freezing point
was rather low, at -1.8 oC. In the CICEtN run the freezing point is in most places
higher, resulting in less sea ice volume. Figure 3.2’s middle panel shows that the snow
volume differs between CICEref and CICEtN but significantly less than the snow volume
between the CICE runs and SI3ref. The lower panel shows no clear correlation between
the snow and ice volume differences, which indicates no link between the snow and ice
volume differences.

The low sea ice and snow volume differences between CICEref and CICEtN in figure
3.2 indicate that the freezing point differences between SI3ref and CICEref most likely
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Fig. 3.2: Model snow and sea ice volume differences between CICEref and SI3ref and CICEtN, with
differing freezing points in CICE. The upper panel shows the total ice volume, the middle panel the
total snow volume, and the lower panel the snow and ice volume differences between CICEref and
CICEtN. Be aware of the difference in scale of the y-axes.

do not cause the snow and ice volume differences between the models.

Ice-Ocean and Ice-Atmosphere Drag

Drag coefficients in sea ice modelling are used to parameterise the transfer of momentum
between the ocean and the ice and the atmosphere and the ice. In CICE, the ice and
ocean drag coefficients are either constant values or dependent on the shape and amount
of ice present following Tsamados et al. (2014). This parameterisation is also known as
form drag and was described in detail in chapter 2 section 2.1. SI3 also includes one
constant option and one form drag option, where the latter follows Lüpkes et al. (2012).
The form drag formulation in CICE (Tsamados et al., 2014) calculates values for both
the ocean-ice drag and the atmosphere-ice drag, while the form drag formulation in SI3

(Lüpkes et al., 2012) only calculates values for the atmospheric drag coefficient. Lüpkes
et al. (2012) atmosphere-ice form drag calculation only depends on the SIC:

Ca = Cice + Cfd (3.1)

Cice = 1.4e − 3 (3.2)

Cfd = 2.2310−03 · (1 − SIC)1.1 (3.3)
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They base their formulation of the atmosphere-ice drag coefficient (Ca) on splitting the
drag into a contribution from the sea ice skin (Cice) and one from the ice edge (Cfd).
The ocean-ice drag coefficient (Cw) is set to Cw = 5e − 3. Tsamados et al. (2014)
developed a formulation for Ca and Cw also under the assumption that Ca and Cw can
be calculated by splitting Ca and Cw into several contributions. Further, Tsamados
et al. (2014) calculate the transfer coefficients of latent and sensible heat depending on
the drag coefficient Ca and the ice bottom growth on the drag coefficient Cw. Ca and
Cw are calculated following equation 2.8 and 2.9. To calculate each of the contributions
Cf , Cr, Cs and Cmp, several new parameters were introduced and calculated, such as,
for example, the sail and keel of the ice flow. Introducing each of them here would go
beyond the scope of this thesis, for which it is sufficient to point out that the Lüpkes
et al. (2012) formulation depends on significantly fewer parameters than the Tsamados
et al. (2014) formulation, which also alters the latent and sensible heat transfer.

Both models also allow setting both the atmosphere-ice and ocean-ice drag coefficient
to constant values. To evaluate the influence of the different form drag formulations,
two additional runs were run, SI3fd and CICEfd. In these two runs, the drag coefficients
were set to Cda = 1.4e − 3 and Cdw = 5e − 3. Figure 3.3’s upper panel shows the total

Fig. 3.3: The upper panel shows the Arctic total ice volume from CICEref, CICEfd, SI3ref and SI3fd,
the middle panel the Arctic total snow volume from CICEref, CICEfd, SI3ref and SI3fd, and the lower
panel the snow and ice volume differences between CICEref and CICEfd, and SI3ref and SI3fd. Be
aware of the difference in scale of the y-axes.

sea ice volume from CICEref, CICEfd, SI3ref and SI3fd. CICEref and CICEfd differ
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more than SI3ref and SI3fd. The same is shown in the middle panel for the snow volume
difference. The CICEfd run has overall the largest ice volume, and the CICEref has over
all the largest snow volume. The snow volume of the SI3 runs is almost identical, and
the CICEfd run is closer to the SI3 runs than to the CICEref run. The Tsamados et al.
(2014) form drag formulation influences not only the momentum transfer from the wind
to the ice but also the latent and sensible heat transfer. This could be one reason why
the Tsamados et al. (2014) form drag formulation has such a strong influence on the
snow volume.

Paper 3 correlates the snow volume differences with the ice volume differences. Cal-
culating the correlation of the SI3 and CICE snow and ice volume differences in figure
3.3, gives low values in comparison to the ones found in Paper 3 (p-value CICE: 0.14,
p-value SI3 0.004). The pattern of opposing snow and ice volume differences, which mo-
tivated the calculation of the correlation in Paper 3, though is visible in figure 3.3 lower
panel, as well as in figure 3.1 lower panel. The reason for the low correlation between
the snow and ice volume differences from figure 3.3 lower panel could be the shorter
time over which the correlation was calculated, the inclusion of the spin up, as well as
the change in form drag influencing both the formation and melt of snow and ice. As
Paper 3 discusses, the snow thickness is not the only parameter in the model influencing
the sea ice volume, but it does seem to have some influence on the ice formation.

The CICE snow and sea ice volume differences in figure 3.3 lower panel are the
largest differences compared to the volume differences of SI3 in the same figure and the
CICE differences in figure 3.2 lower panel and the SI3 differences in figure 3.1 lower
panel. This shows that the form drag formulation from Tsamados et al. (2014) leads to
the largest differences in sea ice and snow volume, considering the investigated model
parametrisations.

3.3 Snow on Sea Ice and the Form Drag Formulation
Since the drag formulation in CICE leads to the largest differences in snow and ice
volume, the origins of these differences were investigated further. The origin of the
sea ice volume differences between the form drag and the constant drag formulation
in CICE were studied among other parametrisation by Tsamados et al. (2015). They
relate the thicker ice volume resulting from the constant drag parametrisation to lower
summer melt when comparing it to the form drag run. From figure 3.3, it is clear that
both the snow and the ice volume differences already build up over the first winter, and
as discussed above, there are several indicators that the snow plays an important role.
Snow is not analysed by Tsamados et al. (2015). Tsamados et al. (2015) analysed a
24-year mean growth and melt rates excluding the 10-year spin up. The annual cycles
in figures 3.1, 3.2 and 3.3 reveal that the largest difference between the snow and ice
volume already evolves during the first year. This would mean that the melt is not the
main cause for the lower SIT in runs using the form drag formulation.
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Paper 3 concludes that the snow might have a large influence on the sea ice volume.
The explanation for this is that a higher snow volume insulates the ice from the cold
atmosphere and causes lower ice growth. This conclusion is solely based on the corre-
lation, but no physical parameters were analysed. To test if the additional snow causes
the lower ice growth in CICEref, or if there are other causes for the reduced sea ice
growth in the form drag formulation, an additional run with increased snow forcing and
constant form drag parameterisation was run. This run will hereafter be called CICEs.
The snow forcing in CICEs was multiplied by 1.22, which is about the amount of March
snow difference between CICEref and CICEfd.

Fig. 3.4: Upper panel: Monthly mean snow volume for the runs CICEref, CICEs and CICEfd. Lower
panel: Monthly mean ice volume from the runs CICEref, CICEs and CICEfd. Observe the difference
scaling of the y-axes. Both graphs show the period September 2007 to September 2008.

Figure 3.4’s upper panel shows the snow volume of all three runs. It is clear that
the multiplication of the snow forcing by 1.22 is not exactly sufficient to account for
the snow volume difference between the different form drag parametrisations. However,
the remaining snow volume difference between CICEref and CICEs is small compared
to the snow volume differences between CICEfd and CICEs. The ice volume shown in
figure 3.4’s lower panel indicates that the snow volume difference has an impact on the
ice formation, but that the difference between the CICEref run and the CICEs run is
larger than the difference between the CICEs run and the CICEfd run. To evaluate the
ice growth and melt process, the different melt and growth components are plotted in
figure 3.5. The growth rates, displayed in panels a) and e), show that the snow forcing
leads to less bottom growth when comparing the two runs with constant drag (CICEs
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Fig. 3.5: Monthly mean ice melt and growth rates from the runs CICEref, CICEs and CICEfd in
cm/day for the period September 2007 to September 2008. a) shows the ice bottom growth, b) the ice
top melt, c) the ice bottom melt, d) the ice lateral melt and e) the ice lateral growth.

and CICEfd) but not to differences in lateral growth. The bottom growth rate in panel
a) is clearly the strongest contribution to the overall larger ice volume in the runs CICEs
and CICEfd. The largest differences between the melt rates are the bottom melt and
the top melt, shown in panels b) and c). Both the CICEs and CICEfd show stronger
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bottom melt from January to May than the CICEref run, indicating that the bottom
melt is influenced by the drag parameterisation, but not by snow volume differences. In
between the three runs, the top melt is only stronger in the CICEfd run, indicating that
the snow layer prevents some of the top melt. Comparing the magnitude of growth and
melt differences between the runs reveals that the growth differences are larger than the
melt differences. As mentioned above, the ocean’s drag coefficient is used to calculate
the heat exchange coefficient. When form drag is used in CICE, the Stanton number is
substituted with the neutral ocean drag coefficient. The value for the Stanton number
is a constant that is set to 0.006 in the constant drag formulation following McPhee
et al. (2008).

Tsamados et al. (2015) attribute the difference in ice volume between the runs to
differences in summer melt. The results presented in figure 3.5 suggest that the difference
in growth might be at least as important. Tsamados et al. (2015) however, analysed a
longer run than the one displayed in figure 3.5. To make a clear statement, a study with
longer model runs is needed. Further comparisons of the neutral ocean drag coefficient
and the Stanton number are needed, as well as a run where the neutral ocean drag
coefficient is set equal to the constant value of the Stanton number, to evaluate its
influence on the total ice volume.

To understand the origin of the snow volume difference between CICEref, CICEfd
and CICEs, the differences in snow melt and growth between the model runs CICEref,
CICEfd and CICEs were analysed. The snow volume growth and melt depend on snow
fall, snow melt and sublimation. Figure 3.6 shows the Arctic mean values for the three
runs CICEref, CICEs and CICEfd. Figure 3.6 a) reveals that there is most snow fall in
CICEs, which was expected since it is the run with increased snow forcing. The snow fall
rate between the runs CICEref and CICEfd also differ slightly. This volume difference
is most likely caused by the ice area differences between the model runs. Figure 3.6 c)
shows that there is more sublimation in the constant form drag runs, which is likely
caused by the form drag formulation that alters the latent and the sensible heat transfer.

The units are not given in cm/day as for the ice melt and growth, but in kg/m2s.
It should be noted that the y-axes differ and that the sublimation is negative if snow is
sublimated and positive if snow is condensed. The sublimation values in figure 3.6 c)
are about four orders above the snow fall, which is unrealistic. Evaluating single grid
cells, it was found that the sublimation seems to accumulate instead of being calculated
per second as the unit suggests. Other inconsistencies in conversion of units for the
sublimation variables were found in the CICE code too, which might be the reason
for the difference in magnitude. All inconsistencies were related only to diagnostic
variables, and the intercomparison still gives indications about the differences between
the form drag formulations. Namely, the form drag parametrisation in CICE reduces
the sublimation of snow compared to the constant form drag formulation. Further work
on the fate of snow is needed.
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Fig. 3.6: Monthly mean snow melt and growth rates from the runs CICEref, CICEs and CICEfd in
kg/m2s for the period September 2007 to September 2008. a) shows the snow fall rate, b) the snow
top melt and c) the snow sublimation rate. Be aware of different y-axes.

Implications for Assimilation

This work in progress aims to understand the origin of SIT and snow thickness differ-
ences between the constant and form drag parameterisation. The assimilation builds
upon the assumption that the model simulation is unbiased, and the uncertainties are
represented by internal variability. The sea ice volume plot in the upper panel of figure
3.3 shows that the sea ice volume in the CICEref run is systematically thinner than in
the CICEfd run. Tracing back the origin of this thin bias in CICEref as done in figure 3.6
will in future work allow comparison of model growth and melt rates with observation
studies, such as, for example, from observations taken during the MOSAiC campaign
(Nicolaus et al., 2022). Paper 2 showed that the snow is a source of uncertainty in
the FB to SIT conversion. Understanding the mechanisms behind the differences in
the parameterisation will help users choose the best parameterisation for the FB SIT
conversion in the FB assimilation scheme.



Chapter 4

Discussion

This thesis investigated different aspects of the relationship between FB and SIT, based
on simulations with sea ice models and Cryosat-2 observations. In particular, this thesis
has explored how radar FB can be modelled and assimilated to improve SIT estimates
and explored different model values needed to derive radar FB.

In section 1, the findings from Paper 2 and 3 regarding the model variables used to
derive radar FB from models are discussed. This discussion includes the snow depth,
sea ice density and water density and SIT. The snow density is not further discussed,
since it follows a spatial constant parameterisation, following Mallett et al. (2020), and
no new work was conducted as part of this thesis.

In section 2, the FB assimilation from Paper 1 and choices made in the setup are
discussed, as well as the resulting changes in FB and SIT.

1 Model Values to Derive Radar FB
The variables used to derive radar FB from model values are SIT, snow thickness, sea
ice density and water density. These are the variables discussed in this section. Here
only the model values are discussed, not the assimilation, which also influences the SIT.
The SIT resulting from the assimilation is discussed subsequently in section 2.

1.1 Snow Thickness
The snow thickness was investigated in Paper 2, 3 and in the work in progress section.
Paper 2 compared the model snow thickness against observations, and Paper 3 and
the work in progress section explored how different model settings influence the snow
volume.

47
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Paper 2 finds that BGrun snow thickness agrees well with the ASD snow thickness
product (Garnier et al., 2021) and better than the snow thickness from the AWI data.
Paper 3 compared snow thicknesses from SI3 and CICE with the ASD snow thickness
product. It was shown that the SI3 snow thickness in late winter agrees better with the
ASD snow thickness than CICE snow thickness (BGrun). BGrun used the Tsamados
et al. (2014) form drag parameterisation. In chapter 3 section 3.2, it was demonstrated
that the form drag parameterisation has a large impact on the CICE snow volume,
and that the constant neutral drag coefficient leads to snow thickness closer to the SI3

snow thickness. Taking the results from Paper 3 and figure 3.3 into account, running
CICE with the constant drag formulation would give snow thickness values closer to
the ASD product. Before concluding that this would result in more realistic snow
thickness values, two points raised in the discussion of Paper 2 have to be taken into
consideration. First, the snow in CICE is not densifying while the snow in the Arctic in
reality is (Mallett et al., 2020; Wagner et al., 2022), and second, the ASD snow product
is based on Ku-band radar measurements, which are known to have biases in the snow
penetration depth (King et al., 2018; Willatt et al., 2011).

Snow-on-sea-ice models, including densification processes, consider the effect of wind
packing to alter the snow thickness and density (Petty et al., 2018) and the temperature
and water vapour pressure (Liston et al., 2020). In this process, no snow mass is lost.
This means that the product of Hs and ρs in the hydrostatic balance equation (equation
2.4) would give the same result no matter if the model includes snow densification or not,
while altering Hs and ρs. If the model accounted for snow densification by increasing
ρs and decreasing Hs over time, the CICE snow thickness would agree better with the
thinner ASD product, but the modified snow thickness and snow density would not have
any effect on the FB to SIT conversion.

The second point raised in the discussion of the snow validation in Paper 2 was the
Ku-band radar penetration depth. Several studies have found that the CryoSat-2 Ku-
band radar reflection horizon depends on snow depth, moisture content, snow salinity,
and inhomogeneities, such as, for example, ice lenses (King et al., 2018; Kwok, 2014;
Kwok et al., 2011; Nandan et al., 2017; Willatt et al., 2011). The ASD snow product
also relies on Ku-band radar. All of these field studies, finding that Ku-band radar
does not penetrate the entire snow pack, were conducted during the months March to
May. The ASD product is calculated as the differences between the CryoSat-2 Ku-band
radar and the Ka-band radar reflecting from the snow surface. If the Ku-band radar is
reflected from within the snow pack and not from the snow-ice interface in late winter,
it follows that the ASD product could underestimate the snow thickness in late winter.
Therefore, it is plausible that, in late winter, CICE in Papers 3 and 2 might actually
not be overestimating the snow thickness, but the ASD is underestimating it.

With the discussions of the ASD product in mind, it can be concluded that the
snow thickness from the CICE form drag run agrees less with the ASD product in late
winter but might be more realistic than the constant drag runs snow thickness. The
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discussion also reveals that more Arctic-wide comprehensive snow thickness observations
are needed.

Several other snow thickness products were available for comparison. The ASD
product was chosen because it is independent of passive microwave observations and cli-
matologies. The updated snow thickness climatology from Shalina and Sandven (2018)
is not independent of the W99 snow climatology used in Hendricks et al. (2021). Fur-
ther, the passive microwave snow product of Rostosky et al. (2018) is not independent
of the Hendricks et al. (2021) snow product, which uses passive microwave snow thick-
ness in the marginal seas. The only alternative radar observation-based snow thickness
product is Lawrence et al. (2018). Its seasonal variability was found to be an outlier in
Zhou et al. (2021) a study comparing different snow thickness products. It was found
to be anomalously thick in early winter, and its seasonal cycle does not agree with any
of the other snow products. Therefore, the ASD snow thickness product was the best
suited product to independently compare model values and AWI values in Paper 2.

1.2 Sea Ice Density
Paper 2 finds that: the modelled sea ice density used in Paper 1 is generally lower than
observations, higher than AWI sea ice density in MYI areas, lower than FYI AWI sea
ice density and spacially not as variable as observations. The model sea ice density
following equation 2.22 depends only on the sea ice brine content, which is weighted by
its fraction and added to the baseline sea ice density of 882 kg/m3. This means that the
model sea ice density only varies with the brine content, while in reality sea ice density
also depends on enclosed air bubbles, which can lead to large density variations (Timco
and Frederking, 1996). Enclosed air bubbles are not simulated in CICE. MYI is lighter
than FYI due to larger amount of air pockets resulting from brine drainage (Alexandrov
et al., 2010; Shokr and Sinha, 2015; Timco and Frederking, 1996).

Therefore, Paper 2 introduces a new sea ice density parameterisation, dependent on
the FYI fraction. This new parametrisation is found to be in better agreement with the
in situ observations included in Paper 2 than the original parameterisation following
equation 2.22 and than the AWI data values. The new parameterisation is only valid
over the ice growth period. During melt season, some brine is washed out of the ice
and substituted with air bubbles (Timco and Frederking, 1996). This leads to lower ice
densities. In the updated model simulation, this is approximated by splitting ρfresh into
FYI and MYI contributions, depending on the model variable’s FYI area. FYI area is
defined as the area fraction covered by newly formed ice since the previous September.
This model parameterisation can not account for the washout of salt takes place over
the entire melt period. For this reason, Paper 2 recommends using the newly derived
sea ice density only during the sea ice growth period.

Paper 2 showed that sea ice density plays an important role in the conversion from
FB to SIT, in line with earlier studies (Ji et al., 2021; Jutila et al., 2022; Kern et al.,
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2015). The results from Paper 2, however, also contradict some of the earlier findings.
For example, both Ji et al. (2021) and Jutila et al. (2022) state that the typical sea ice
density values from Alexandrov et al. (2010) are underestimated, but the results from
the MOSAiC in situ observation comparison in Paper 2 show that the Alexandrov et al.
(2010) based CryoSat-2 values are higher than the in situ observations, contradicting
this finding. Since the MOSAiC observations only cover one year, this might be an
exception. This again highlights the need for more observations.

1.3 Water Density
Paper 2 found that the modelled water density does not reflect the World Ocean Atlas
(WOA) surface water density spatial variability; yet neither does the commonly used
signal value water density from the classical approach. Further, Paper 2 reveals that
the commonly used error margin in the classical approach is too small, since it is based
on seasonal variability and not on spatial variability. Paper 2 also found that the water
density contributes to the smallest SIT differences when evaluating the contribution
from snow thickness, sea ice density and water density. This aligns well with Kurtz
et al. (2013), although, Paper 2 found that they underestimated the contribution of
water density to the SIT error.

Similar to the snow and sea ice density observations are water density observations
in the Arctic space. The advantage of using a climatology like WOA, especially in a
10-year average comparison as conducted in Paper 2, is that it is quality controlled and
comprises major observation campaigns, such as, for example, the ice tethered profilers
from the Woods Hole Institute of oceanography (Krishfield et al., 2008), or the Global
Oceanographic Data Archaeology and Rescue (GODAR) Project (Levitus, 2012). There
are other Arctic focused climatologies, such as, for example, the Polar Science Center
Hydrographic Climatology (PHC3) (Steele et al., 2001) or the Arctic Ocean Atlas (AOA)
(by L. Timokhov and Tanis., 1997), but both of them only include observations up to
the late 1990s.

Zweng et al. (2019) investigated the WOA version 13, one prior to that used in
Paper 2, and shows that there has been a large influx of data over the early 2000s.
Since WOA18 includes data from five additional years covering the model period, it is
a given that it has an even better data coverage than WOA13. AOA is a joint effort
of US and Russia to make navel data accessible to scientists, by releasing a common
climatology consisting of both their observations. PHC3 is based on WOA98, AOA and
some additional data in the Canadian Arctic, which also are included in WOA18. Based
on the fact that both AOA and PHC3 only include data up to the late 1990s and the
period of interest in Paper 2 spans from 2010-2020, the WOA18 is a better choice for a
10-year mean comparison of the Arctic surface density than AOA or PHC3.

Paper 2 suggested a new uncertainty estimate of ± 2.6 kgm−3 for the water density,
based on the standard deviation between the constant value used in the AWI data set
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and the WOA. Ideally a variable water density should be used, reflecting the spatial,
seasonal and interannual variability of Arctic surface waters. Paper 2 suggested that the
ocean model could be used but recognises limitations in the spatial variability. These
limitations were linked to the mixed layer, in line with earlier studies that found a
too deep mixed layer depth in the Arctic (Hordoir et al., 2022). The area with the
largest differences between the WOA and the model output is the Laptev Sea. This
area is governed by high interannual variability, forced by river run off and atmospheric
circulation (Hudson et al., 2024; Janout et al., 2020). A climatology like the WOA is
not suited to evaluate the model’s ability to simulate this variability. An alternative for
future studies could be SMOS-derived sea surface salinity values, such as, for example,
those used in Hudson et al. (2024).

In chapter 3 section 3.2, it was found that the freezing point used in the CICE–
NEMO coupling was too low and that all runs included in this study were run with this
freezing point. The test runs, correcting this error, showed (figure 3.2) that the resulting
sea ice volume is slightly lower than the sea ice volume from CICEref. Comparing the
CICEref and CICEtN sea ice areas (not shown) reveals even more significant differences
in the summer months. The winter months difference is not as pronounced as the
summer months difference. This means that more sea ice is formed in the CICEtN
than in the CICEref, potentially altering the surface water conditions. The increase in
growth could alter the surface salinity. This has not been investigated yet, but will be
the topic for future work.

1.4 Sea Ice Thickness
Paper 3 found that the CICE SIT is within the expected accuracy compared to other
model studies. Compared to the CS2SMOS SIT product, the modelled SIT is thinner
during the entire winter in the central Arctic and thicker in the marginal seas in late
winter. In the region where the model is thinner than the CS2SMOS product, the
CRYOSat-2 component dominates. This thesis is investigating the uncertainties of this
product, so it is not suitable for further comparison.

Overall, finding a suitable SIT comparison product, that was not derived from
CryoSat-2 FB or did not depend on sea ice density assumptions, was challenging. The
SMOS SIT product is only reliable for SIT below 1 m (Ricker et al., 2017). Other SIT
products like the observation IceBridge SIT from Kurtz et al. (2013) or ICESat-2 SIT
from Petty et al. (2020) could be used. Unfortunately, they also rely on sea ice den-
sity. The sea ice density used in Kurtz et al. (2013) and Petty et al. (2020) is set to a
constant 915 kg/m3. Jutila et al. (2022) retrieved their sea ice density observations in
similar locations to those of the Operation IceBridge data. They showed that the sea
ice density is highly variable in this area. Paper 2 indicated that the sea ice density
has a significant impact on the SIT conversion, so using Operation IceBridge SIT for
validation was not considered.
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To validate the model with independent SIT observations, the BGEP and MOSAiC
observations were chosen. Both of them are point measurements, but they are inde-
pendent of assumptions of ice density, snow thickness and water density. One criticism
of using point observations, such as, for example, the IMBs in the MOSAiC data set,
is that they do not reflect the variability of SIT within the typical spatial coverage of
models and satellite SIT products, since they are mounted on one specific ice floe (Wever
et al., 2021). In contrast, one model grid cell, or 25 x 25 km averaged satellite obser-
vation, contains ice floes of different thicknesses, which respond differently to thermal
forcing. This shortcome was addressed by averaging values of one day from the BGEP
observation and observations from at least 9 IMBs for the MOSAiC observations. The
variability of the observations was displayed by their STD in figure 6 and 8 in Paper
1. The variability of the BGEP observations originates from the observation platform
being anchored below the ice and measuring the ice floe as it moves by the observation
platform. In the MOSAiC observations, the variability originates from IMBs being de-
ployed on different ice floes at distances spanning typical spatial scales of climate model
resolution (Nicolaus et al., 2022). This unique spatial distribution of overall 16 IMBs
in close proximity during the winter 2019/2020 makes the MOSAiC IMB data set a
valuable observation data set to validate both model- and satellite-derived SIT.

The MOSAiC SIT comparison in Paper 1 figure 8 shows that the refRun is in the
closest agreement with the observations. Still, the amount of ice growth is underes-
timated compared to the MOSAiC IMBs. According to the analysis in the work in
progress section, the bottom growth causes the largest change in ice growth, with an
increased ice growth in the CICEfd run. As mentioned in chapter 3 section 3.2, this
difference in growth is caused by the dependants of the heat exchange coefficient on the
neutral drag coefficient. For future assimilation runs, it should first be analysed if the
change to a constant drag parameter will result in growth rates closer to the MOSAiC
observations.

2 FB Assimilation

This section discusses, the Assimilation setup, the practical choices made (section 2.1)
and the validation of the assimilation (section 2.2). Finally, the resulting FB and SIT
from the assimilation are discussed and compared with observations and the AWI SIT
(section 2.3).

2.1 Assimilation Setup
The assimilation framework presented in Paper 1 is based on an EnKF approach but was
simplified to reduce computational costs and fit the timeframe of the project. The main
simplifications made in comparison to other state-of-the-art assimilation setups are:
running only one model realisation compared to running a full ensemble, and running
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a univariate assimilation instead of a multivariate assimilation, as, for example, done in
Liang et al. (2019); Lisæter et al. (2003); Mathiot et al. (2012). These simplifications will
be discussed below. Additionally, this section discusses the observation and model error
and the choices made to distribute mean grid cell SIT into the model SIT categories.

By running only one model realisation, the model error does not evolve and reduce
in time, as it does in studies running a full ensemble (Liang et al., 2019; Wu and Zheng,
2017). Instead, the work presented here uses a 10-year historical run to calculate the
model background error. The overestimation of the ice edge in the Greenland Sea and
Barents Sea informed the decision for how to construct the error covariance matrix
of the model ensemble error (see section 3) serving as the model background error in
the Kalman gain (equation 2.11). Paper 3 found that the ice edge was significantly
overestimated in the BGrun. Therefore, the different constructions of the background
error covariance matrix listed in section 3.3 were introduced. The resulting RMSE from
the different constructions of the background error covariance matrix in figure 2.3 shows
close results for the one_p_m RMSE and the vary_sp RMSE, for an ensemble size of
80 ensemble members, which is the ensemble size used in the assimilation. The vary_sp
setup was chosen because it was assumed that the one_p_m might overestimate the
model error once the assimilation has improved the result. If this is the case, it has
never been tested. Prior to a longer run, the model error should be reassessed.

In the first draft of Paper 1, the assimilation was run with a constant observation
error of 15 cm. This was changed in the final submission to account for the actual
error provided in the FB data product. Running the model with the data products
error degraded the SIT results in the BGEP comparison and the MOSAiC comparison.
The data product’s own error is significantly lower than 15 cm. Figure 4.1 shows the
mean AWI FB products error, which is particularly low in rings around the North Pole.
These rings are where the overpasses of the considered CryoSat-2 overpasses intersect.
This means that the error of the radar FB seems to depend mainly on the number of
observations. This does not align with studies discussing the uncertainty of CryoSat-2
radar retrievals. Xia and Xie (2018) compared seven airborne FB observations that were
colocated with FB derived with three different retrackers from CyroSat-2 overflights.
They found that the TFMRA has a bias of -0.04 to 0.07 m and a RMSE of 0.05 to 0.19
m compared to the airborne FB observations. Landy et al. (2020) finds that the 50%
TFMRA retracker used in the assimilated data and other retrackers tested leads to up
to 12 cm differences in the retrieved radar FB. Based on this, the constant error of 15
cm is also not ideal.

For future assimilation studies, the observation error should be revised. Several
studies show that the reflection from within the snow pack instead of at the ice-snow
interface leads to overestimated radar FB (King et al., 2018; Nab et al., 2023; Willatt
et al., 2011). Taking their findings into account, one option for an updated radar FB
error could be to consider the model’s snow depth. This could be done by for example
varying the observational error as a function of the model snow thickness. Another
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Fig. 4.1: Average AWI FB data error for March in meters. The average is calculated over the three
years the assimilation was run in Paper 1.

option could be to compare different FB products derived from different retrackers and
using their inter-product variability as observation error.

Many existing Kalman Filter assimilation setups use multivariate approaches (Liang
et al., 2019; Lisæter et al., 2003; Mathiot et al., 2012; Mu et al., 2020; Yang et al., 2014),
and studies suggest that multivariate approaches outperform univariate approaches
(Cipollone et al., 2023; Liang et al., 2019; Mu et al., 2020). In a multivariate ap-
proach, the state vector x consists of several model state variables. For example, Liang
et al. (2019) used SIC, SIT and the upper 1,000-m ocean temperature and Mathiot et al.
(2012) used the full model state vector, only excluding sea-ice temperature and heat con-
tent for stability reasons. The multivariate approach has the advantage that the model
state variables that are correlate are changed through these correlations. An example
would be the sea surface temperature and the SIC and thickness in the marginal ice
zone (Liang et al., 2019). If only the SIC is changed, as done in the work presented here,
but, for example, not the sea surface temperature, the model’s sea surface temperature
might be too low and could cause the production of new ice where the assimilation just
reduced the SIC. This artefact could be a reason for the low improvement of SIC (max
5%) shown in Paper 1 figure 3. In a multivariate approach, with a state vector contain-
ing SIC, FB and sea surface temperature, the temperature might have been adjusted
through cross-correlations of the SIC and sea surface temperature field.

The assimilation setup developed herein had the goal of showing that assimilating
FB can improve SIT, rather than developing an optimal assimilation system at the
scale of Sakov et al. (2012), Fiedler et al. (2022) or Smith et al. (2021). Therefore,
the univariate approach was a reasonable choice, also taking the time restriction into
account. With the results from Paper 1 showing that the assimilation of FB can improve
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the SIT, it could be a good next step to test the derived parameterisation of radar FB
as an observation operator in a multivariate system.

The model simulates sea ice thickness at subgrid scale by calculating its distribution
into five different thickness categories. The data assimilated, however, emerges as an
average value per grid cell and a decision needs to be taken regarding how to distribute
it into the thickness categories. In this work, each thickness category is altered by the
same amount as the average grid cell SIT is altered (comp equation 2.23). A number
of different approaches to this problem can be found in the literature. Chen et al.
(2017a) save pre-observation distribution to calculate which category has to be altered,
Gupta et al. (2021) use an approach of altering both the category SIT and SIC in an
iterative process to match the new mean grid cell SIT and Williams et al. (2023) adopt
the observation operator in the Kalman Filter to alter the category SIT and SIC by
their relation to the mean grid cell SIT. All of these approaches result in improved SIT
simulations, but no comparison between different approaches in an Arctic sea ice model
has to the authors knowledge been performed to date.

Smith et al. (2016) discusses the drawback of the method used in Paper 1 to distribute
the ice into the categories: if the model is thick or thin biased and therefore lacks ice in
a certain category, the method used in Paper 1 will further enhance this bias, since a
category in which no ice exist will not be changed. For example, if the model has a thin
bias and no SIC in the thickest category, no thicker ice will be added. Smith et al. (2016)
only assimilated SIC. Since Paper 1 also assimilated FB and the SIT is redistributed
into according thickness categories after the assimilation, this effect is assumed to be
counteracted. For the example from above, this means, the SIT in the thickest existing
category will exceed its limits after the assimilation and be redistributed into the thicker
category, which was prior to the assimilation empty.

Still, it can be assumed that the approach used in Paper 1 is suboptimal, due to an
error introduced during the assimilation implementation. Currently, the SIC and SIT
are changed independently, neglecting the fact that the change in SIC will change the
SIT. The assimilation threshold of 80% for the FB assimilation is most likely the reason
why this suboptimal update of SIC and SIT had no major impact on the simulated
SIT. Ideally, the SIC and SIT would be changed in an iterative process, as suggested by
Gupta et al. (2021). Efforts will be made to implement this approach into the model
code.

2.2 Assimilation Validation
In Paper 1, the assimilation was validated against the assimilated data sets to prove that
the runs fbRun and sicRun are closer to the respective assimilated observations, and
finally, all model runs are compared to independent SIT observations. The SIC error of
the fbRun is overall higher than the SIC error of the sicRun, but lower than the refRun
SIC error (Paper 1 figure 3). In the independent SIT observation comparison in Paper 1



56 Chapter 4. Discussion

figure 6 and 8, the fbRun is closer to the observations than sicRun and refRun compared
to the BGEP data, but not compared to the MOSAiC data. Paper 1 demonstrates that
refRun and sicRun SIT at the locations where the MOSAiC measurements were obtained
are in good agreement, and that the FB assimilation degrades the results of SIT. As
discussed above, adjustments to the observation error and the construction of the model
background error need to be tested, but the degradation could also result from biased
observations as discussed in Paper 1.

Paper 1 validated refRun, sicRun and fbRun only against the assimilated data and
against independent SIT observations. Non assimilated variables were not validated.
A validation of independent variables ensures that the assimilation does not actually
degrade the model results. To validate the assimilation system to additional indepen-
dent data, the ice surface temperature from C3S (2024) was selected. C3S is an ice
surface temperature data product available at 3h frequency, combining a multitude of
satellite-based thermal infra-red observations. The ice surface temperature was selected
for validation because a change of SIT will lead to a change of heat content in the
model. The RMSE between the model runs and the observation data (figure 4.2) shows
that all model runs have an ice surface temperature RMSE of about 5o C. This error
is most likely caused by the model’s forcing data warm bias. ERA5 is known to be
too warm in the Arctic (Tian et al., 2024; Wang et al., 2019). Another cause for the
error in the surface temperature is that the model variable considered only consists of
temperature contributions from the actual ice surface, while the satellite-based ice sur-
face temperature is derived from a surface that might contain open ocean contributions
(Nielsen-Englyst et al., 2023). The middle panel in figure 4.2 shows that the fbRun
has the largest error, but the average RMSE of 0.1o C is still within the data product’s
uncertainty of about 0.15o C. Some outliers of 0.3 to 0.7o C are visible for the refRun-
fbRun difference RMSE. These outliers occur at times when the observations coinciding
with the model values are lower for fbRun than for sicRun and refRun (compare peaks
around September of the three years in middle with lower panel of figure 4.2). Still,
overall, the RMSE of the fbRun is larger than the sicRun and refRun RMSE. This
indicates that the FB assimilation degrades the sea ice temperature, even though the
differences are low, compared to the overall bias of the model’s sea ice temperature.
A multivariate approach containing the full model state variables in the Kalman filter
state vector might ensure that the ice temperature is not degraded. The only other
existing FB assimilation study assimilating snow FB from IceSat that followed such a
multivariate approach is Mathiot et al. (2012). However, they had to exclude the sea
ice heat content and temperature due to stability issues, indicating that a multivariate
state vector containing heat content, ice temperature and FB might be difficult to set
up (Mathiot et al., 2012).
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Fig. 4.2: Sea surface temperature errors of refRun, sicRun and fbRun. Upper panel: RMSE of the
sea ice surface temperature of all runs. Observe that sicRun and refRun are almost equal and that the
blue sicRun covers the black refRun. Middle Panel: Differences of the RMSE refRun and sicRun and
fbRun, respectively. Lower panel: Number of grid points where observations were are available.

2.3 Sea Ice Thickness from Radar FB Assimilation
The SIT from the radar FB assimilation was discussed in Paper 1. Here it was compared
to three other SIT products, the AWI CryoSat-2 SIT, the sea ice draft from the BGEP
data and the sea ice thickness from an array of IMBs deployed during the MOSAiC
expedition. The uncertainties in the SIT from the AWI CryoSat-2 product (and similar
products) were the motivation to carry out the work in this thesis. So the comparison
to the AWI CryoSat-2 SIT can not be seen as a validation for the assimilation. As
discussed in section 1.4, finding independent SIT data to validate the assimilation is
a challenge. In the following, the SIT will be discussed only at the locations where
observations are available. This will not allow conclusions for the entire Arctic but at
the locations where observations are available the causes for the SIT differences can
be understood, and this understanding can lead to improvements of the assimilations
which are valid for larger areas.

Paper 1 concludes that the better agreement between refRun and MOSAiC observa-
tions compared to the agreement between fbRun and MOSAiC observations is caused by



58 Chapter 4. Discussion

the assimilation of biased AWI FB data. This possibility can not be ruled out, but the
results from Paper 2 also suggest another option: too low sea ice density. The C6N4J21
sea ice density, which compares better to observation than the one used in fbRun, is
higher than the refRun sea ice density in the Russian shelf region and eastern Arctic.
A higher sea ice density would lead to a higher sea ice thickness, which would match
the MOSAiC observations better. The first test run, running the assimilation with the
C6N4J21 sea ice density, showed promising results (blue line in figure 4.3). This run
also shows a significantly overestimated SIT from February 2020. As discussed in Paper
1 and section 2.1, this might be due to biases in the FB that is assimilated. One point
that supports this hypothesis is that the growth rate accelerates from February. This
is unrealistic, since thick ice would be expected to grow slower (Maykut, 1982), as also
shown by refRun and the observations.

Fig. 4.3: SIT from the MOSAiC observations, model runs refRun and a run similar to fbRun differing
only in sea ice density parameterisation, called "new dens fbRun". The sea ice density in this run is
based on the sea ice density parameterization developed in Paper 2.

The snow might be another explanation for the SIT difference. The MOSAiC obser-
vations in late winter are located in the region defined as Russian Arctic west in Paper
2. Paper 2 here finds that the model snow volume in late winter is higher than the ASD
snow thickness. Furthermore, this area overall is the one with the largest difference in
snow volume between the model and the ASD snow product. An overestimated snow
thickness will lead to an overestimated SIT, which might be another cause for the over-
estimated SIT in late winter for fbRun figure 4.3. The 2020 snow fall from the model
forcing is found to be in good agreement with the snow fall measured (Wagner et al.,
2022). The analysis of the work in progress section reveals that the same snow fall can
lead to different snow volumes depending on the choice of the drag parameterisation.
Which drag parameterisation is best suited to simulate the snow thickness still has to
be investigated, as discussed in section 1.1.
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Potential for new Insights into Radar FB Observation Biases

The discussion above and Paper 1 suggest that one reason for the large SIT difference
between fbRun and the MOSAiC observations could be flawed FB observations. Many
potential origins for radar FB errors exist, but two are widely discussed. These are: the
retracker used to derive the FB and potential dislocation of the reflection horizon in the
snow pack.

To evaluate if the retracker causes the SIT difference in late winter in the compari-
son with MOSAiC observations, the assimilation could be run with other FB products.
Sallila et al. (2019) compared different CryoSat-2 SIT products. Most products use
similar values for snow thickness, snow density, sea ice density and water density. Based
on this, the authors attribute the SIT differences between the products mainly to the
retrackers. From their comparison, it is clear that the AWI SIT is one of the thinner
SIT products available. In Sallila et al. (2019) comparison, the only SIT product that
is thinner in the region of the MOSAIC observations is the SIT product from Kwok and
Cunningham (2015). This product uses a waveform centroid retracker. Landy et al.
(2020) Lognormal Altimeter Retracker Model based FB would be another alternative
to the AWI FB. They find that compared to the AWI FB base on the 50% TFMRA
retracker, their retracking technique leads to thinner FB, which is closer to their vali-
dation data. This makes the FBs from Kwok and Cunningham (2015) and Landy et al.
(2020) interesting products to assimilate as an alternative to the AWI FB.

Several studies have found that the radar signal can be reflected from within the
snow pack under certain conditions. These conditions include thick, warm and wet
snow (Giles and Hvidegaard, 2006; King et al., 2018; Willatt et al., 2011). The re-
sults from Paper 1 suggest that modelled radar FB is realistic in the regions where
observations were available, and Paper 2 showed that the snow thickness is within the
range of observations. To evaluate if thickness biases in the observed radar FB exist,
the assimilated or modelled radar FB could be compared with the observed radar FB
and correlated with, for example, model snow thickness and temperature. The aim
with such a study would be to quantify the findings of (Giles and Hvidegaard, 2006;
King et al., 2018; Willatt et al., 2011) that warm and thick snow leads to overestimated
FB observation. It would allow quantifying the thickness biases found in past studies,
without large-scale observation campaigns.

To minimise false conclusions due to model errors, the findings from past studies
first would need to be verified with the model output. For example, sea ice thickness,
snow thickness and FB observations used in King et al. (2018) are available from Rösel
and King (2017). This data could be a good addition to the model verification against
MOSAiC observations, to strengthen the point that radar FB from model values are
realistic.

The results from Paper 1 suggest that the FB in the Beaufort Sea does not have
a seasonal bias as discussed for the MOSAiC observations. At the locations where
the BGEP sea ice draft observations were obtained, no pattern similar to the observed
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increase in SIT difference between fbRun and MOSAiC observations is visible in late
winter. If radar signal reflection from within the snow pack is the reason for the biases
in the MOSAiC data, the BGEP observations suggest that such a bias is not uniform
throughout the Arctic. This would be plausible, since snow fall varies greatly throughout
the Arctic basin (Zhou et al., 2021).



Chapter 5

Conclusion

Overall, this thesis aimed to improve our understanding of Arctic sea ice thickness (SIT)
and quantify and reduce the uncertainties of it by combining observations and sea ice
models. To do so, the model values for sea ice density, snow thickness and water density
were investigated and used to derive a model based radar FB. Further, these values
were compared with values from a classically derived CryoSat-2 SIT product and the
SIT differences resulting from changing the values for snow thickness, sea ice density
and water density were analysed. Finally, a CryoSat-2 FB assimilation framework was
developed consisting of the latest version of NEMO (ocean model) (Madec et al., 2017),
CICE (Hunke et al., 2021c) (ice model) and PDAF (Nerger and Hiller, 2013) (a piece
of software used to implement the Ensemble based Kalman Filters).

The main objectives of this study were to:

1. Understand the Parameterisation in the model and determine their influence on
SIT and snow thickness.

2. Prove that model-derived sea ice density, snow thickness and water density values
can substitute the values used in currently available CryoSat-2 SIT products.

3. Assess the SIT differences based on changing the snow thickness, sea ice density
and water density used in available CryoSat-2 SIT products with modelled values.

4. Demonstrate that the assimilation of radar FB can improve SIT estimates.

Parametrisations potentially influencing the SIT and snow thickness were explored
in the work in progress section (chapter 3 section 3.2). Here the blowing snow pa-
rameterisation from SI3, the ocean freezing point and the drag Parameterisation were
investigated. The parametrisation with the largest influence on snow thickness and SIT
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is the drag parameterisation following Tsamados et al. (2014), due to its influence on the
dynamics, the atmospheric boundary layer and on the ocean heat exchange coefficient.
The form drag calculation following Lüpkes et al. (2012) has a significantly lower influ-
ence on the SIT and only influences the dynamics. To truly compare the two, a study
should consider only the influence of the Tsamados et al. (2014) drag on the dynamics.
A suggestion for such a study is detailed in the outlook.

The model values for sea ice density, snow thickness and water density were compared
to observations in Paper 2. Paper 2 found that all model values are good substitutions
for values typically used in available CryoSat-2 SIT products. The snow thickness is
in agreement with the ASD snow thickness product (Garnier et al., 2021) but thicker
in February and March in most regions. Compared to the W99- and microwave-based
snow thickness used in Hendricks et al. (2021), it agrees better with the ASD snow
thickness product except for the months February and March in the Russian Arctic
West and in November in the Canadian Arctic (comp. Paper 2 table 1). The sea
ice density used to derive radar FB in Paper 1 was found to be overall too low, and
a new parameterisation was presented based on Jutila et al. (2022) sea ice density
observations and the model value of FYI area. This parametrisation was found to be
in good agreement with observations, but should only be used during ice growth season
due to the definition of FYI area in the model. Overall, the newly-derived model values
compare better to observations than the values used in Hendricks et al. (2021). Paper
2 also finds that the model water density is suited to substitute the constant value
typically used in available CryoSat-2 SIT products. The limitation of the water density
is too low spatial variability compared to the climatology used as validation data. Paper
2 suggests that this might be caused by mixing parameterisation and a too deep mixed
layer. It was also found that the commonly neglected water density uncertainty in the
error estimate of classically-derived CryoSat-2 SIT is based on inadequate assumptions.
The uncertainty of water density in products using the classical approach is solely based
on seasonal variability, but neglects spatial variability, which Paper 2 finds to add an
extra uncertainty of ± 2.1 kg/m3.

To assess the SIT difference that results from substituting the typical values used
in available CryoSat-2 SIT products, the SIT difference was calculated based on 10
year mean values. These 10-year mean values were calculated for sea ice density, snow
thickness and water density both from model and available CryoSat-2 SIT products in
Paper 2. Based on this calculation, Paper 2 finds that the largest differences result from
snow thickness and sea ice density, but that their SIT differences are of opposite signs
at many locations. On average, Paper 2 finds, when substituting all values of sea ice
density, snow thickness and water density leads to a difference of 0.12 m.

The final objective of this thesis was met in Paper 1, where the FB assimilation was
presented. Paper 1 showed that the SIT from the three years of assimilation available
(fbRun) is closer to the AWI SIT than the refRun. Since this thesis finds to several
biases in the classically CryoSat-2-derived SIT products like the AWI SIT, the resulting
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SIT also needed to be evaluated against independent observations. In the comparison to
independent observations, the refRun compared better to the MOSAiC SIT observations
and the fbRun better to the BGEP sea ice draft observations. Both refRun and fbRun
compared better to the MOSAiC SIT observations than the AWI SIT. At the BGEP
location, the AWI draft and fbRun draft compared similarly well to the observations
and the refRun worse. To make a more certain statement, a longer assimilation run
is needed. How such a run should be set up and which steps need to be taken to
incorporate the findings of Paper 2 and the work in progress section is detailed in the
outlook.

1 Outlook
From the work in progress section, it is evident that the form drag Parameterisation has
the largest impact on the SIT and snow thickness. The results from chapter 3 section 3
show that the Lüpkes et al. (2012) and Tsamados et al. (2014) form drag formulations
differ significantly. Their differences originate from the fact that Lüpkes et al. (2012)
formulation only influences the dynamics, while the neutral drag parameter in Tsamados
et al. (2014) also affects the bottom growth and snow sublimation. This means that
investigating just the dynamically forced difference between the calculation of a form
drag only depending on the SIC (Lüpkes et al., 2012) and the form drag depending on
overall shape and size of the ice flow (Tsamados et al., 2014) is currently not possible.
To conduct a study that systematically studies the differences between Lüpkes et al.
(2012) and Tsamados et al. (2014), the following seven runs should be conducted:

1. SI3base: SI3 run, everything equal to SI3ref, but constant drag coefficient equal
to Cda = 1.4e − 3 and Cdw = 5e − 3.

2. CICEbase: CICE run, everything equal to CICEref, but constant drag coefficient
equal to Cda = 1.4e − 3 and Cdw = 5e − 3.

3. CICEfdT: CICE run using Tsamados et al. (2014) form drag formulation.

4. SI3fdL: SI3 run using Lüpkes et al. (2012) form drag formulation.

5. CICEdyn: CICE run using Tsamados et al. (2014) form drag formulation, but with
the neutral drag coefficient used in the calculation of the atmospheric boundary
layer stability set to Cda = 1.4e − 3 and the Stanton number set to its original
value, following McPhee et al. (2008).

6. CICEoc: like CICEdyn, but with the Stanton number equal to the neutral ocean
drag parameter following Tsamados et al. (2014).
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7. CICEatm: like CICEdyn, but with the neutral drag coefficient used in the calcu-
lation of the atmospheric boundary layer stability set to Tsamados et al. (2014)
variable neutral drag coefficient Cda.

From the seven runs, the melt and growth rates as well as the ice transport and snow
volume should be compared, to fully understand the origin of the difference between
Lüpkes et al. (2012) and Tsamados et al. (2014) form drag parametrisations. The effect
of FYI area in CICE should also be analysed to address the too low sea ice density
in the Beaufort Sea found in Paper 2. Further, the snow volume and ice growth rates
could be compared with MOSAiC in situ observations, to find the most realistic drag
parametrisation to be used in future assimilation systems.

The three-year pilot study of FB assimilation in Paper 1 showed that FB assimilation
can improve modelled SIT, at locations where observations were available. Degradation
of the SIT at the MOSAiC locations are likely linked to biased FB observations as-
similated. The assimilation study in this thesis, being over three years, is limited. An
assimilation run spanning the entire CryoSat-2 observation period would be desirable. If
the positive results from Paper 1 are reflected in this longer run, such a long run would
allow assessing FB differences between CryoSat-2 and model, depending on snow depth
and snow temperature. Such a study could quantify a relationship between FB biases
and snow thickness and temperature, as found in observations (King et al., 2018; Kwok,
2014; Willatt et al., 2011). Prior to such a longer run, a sensitivity study tuning the
model and observation errors should be conducted. This sensitivity study should exam-
ine the effect of the settings from one_p_m, vary_sp and same_w on a longer run with
a focus on the radar FB. Further, it should be tested if the localization radius is ideal.
Localisation is applied to avoid deficient long distance correlations, but if the localiza-
tion radius is too small, it can introduce noise and even physical imbalance (Greybush
et al., 2011; Kepert, 2009). The optimal localization radius depends on the size of the
ensemble, the number of observations and state variables (Ying et al., 2018). Currently,
the optimal localization radius is only determined for ensemble size of 80 ensembles and
vary_sp ensemble construction. For the longer run, it should be determined how the
optimal localization changes when changing the construction of the ensemble and the en-
semble size. For the tuning study, the results from the above-detailed study of the form
drag parameterisation should be taken into account, the new sea ice density should be
used and the variable freezing point from chapter 3 section 3.2 should be implemented,
as well as the iterative SIC and SIT distribution suggested by Gupta et al. (2021). The
method by Gupta et al. (2021) is suggested, since it is already partly implemented. For
in situ observation comparison for independent validation, the following data sets could
be considered: the MOSAiC IMBs included in Paper 1 (Lei et al., 2021); BGEP data
available for the entire CryoSat-2 period (Belter et al., 2019); monthly mean sea ice
draft from upward-looking sonar in the Fram Strait (Sumata et al., 2021); daily sea ice
draft from upward-looking sonar in the Laptev Sea covering the years 2013-2015 with
breaks (Belter et al., 2019); SIT from drill holes from N-ICE2015 (Rösel and King, 2017)
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taken in spring 2015 north-east of Svalbard. Such a large variety of observation data
sets would allow the derived SIT to be evaluated at different locations and time scales
within the Arctic Ocean. Finally, this longer run can be used to assess the model’s skill
in predicting the ice edge, following the methods of, for example, Lemieux et al. (2016)
analysis of the model’s persistence.
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Abstract. In this study, a new method to assimilate freeboard

(FB) derived from satellite radar altimetry is presented with

the goal of improving the initial state of sea ice thickness

predictions in the Arctic. In order to quantify the improve-

ment in sea ice thickness gained by assimilating FB, we

compare three different model runs: one reference run (re-

fRun), one that assimilates only sea ice concentration (SIC)

(sicRun), and one that assimilates both SIC and FB (fbRun).

It is shown that estimates for both SIC and FB can be im-

proved by assimilation, but only fbRun improved the FB.

The resulting sea ice thickness is evaluated by comparing

sea ice draft measurements from the Beaufort Gyre Explo-

ration Project (BGEP) and sea ice thickness measurements

from 19 ice mass balance (IMB) buoys deployed during the

Multidisciplinary drifting Observatory for the Study of Arc-

tic Climate (MOSAiC) expedition. The sea ice thickness of

fbRun compares better than refRun and sicRun to the longer

BGEP observations more poorly to the shorter MOSAiC ob-

servations. Further, the three model runs are compared to

the Alfred Wegener Institute (AWI) weekly CryoSat-2 sea

ice thickness, which is based on the same FB observations

as those that were assimilated in this study. It is shown

that the FB and sea ice thickness from fbRun are closer to

the AWI CryoSat-2 values than the ones from refRun or

sicRun. Finally, comparisons of the abovementioned obser-

vations and both the fbRun sea ice thickness and the AWI

weekly CryoSat-2 sea ice thickness were performed. At the

BGEP locations, both fbRun and the AWI CryoSat-2 sea ice

thickness perform equally. The total root-mean-square error

(RMSE) at the BGEP locations equals 30 cm for both sea ice

thickness products. At the MOSAiC locations, fbRun’s sea

ice thickness performs significantly better, with a total 11 cm

lower RMSE.

1 Introduction

With declining sea ice in the Arctic, marine traffic is increas-

ing (Cao et al., 2022). This increases the demand for accu-

rate sea ice predictions to ensure safety on shipping routes.

Data assimilation is a commonly used tool to improve the ini-

tial state of sea ice predictions (Chen et al., 2017; Mu et al.,

2018; Fiedler et al., 2022). In data assimilation, models and

observations are combined using a number of approaches.

For all approaches, the variables that are assimilated need

to be observable and need to affect the model variable that

the assimilation aims to improve. Stroeve and Notz (2015)

list sea ice volume and ocean heat content as the two model

variables with the largest impact on Arctic sea ice forecast.

Ocean heat content is difficult to observe on an Arctic-wide

scale, but sea ice concentration (SIC) and sea ice thickness

can be observed from satellites (Kwok, 2010; Laxon et al.,

2013; Ivanova et al., 2014; OSI SAF, 2017; Hendricks et al.,

2021). While satellite-observed SIC has rather good accu-

racy and has been available since the late 1970s, satellite sea

ice thickness observations have only been available since the

early 2000s and come with large uncertainties (Laxon et al.,

2003; Kwok, 2010). Several studies have found that sea ice

thickness, in contrast to SIC, has a longer memory (Day

et al., 2014; Stroeve and Notz, 2015; Dirkson et al., 2017).

Longer memory here means that the change introduced by

initial sea ice thickness persists longer than the change in-
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troduced by SIC. This makes the sea ice thickness the more

suitable variable to assimilate when aiming for an improved

initial estimate of the Arctic sea ice, which also has an im-

pact on the skill of the forecast at longer timescales (Day

et al., 2014).

Arctic-wide sea ice observations can only be obtained

through remotely sensed data from satellites. However, for

sea ice thickness, it is possible to observe the portion of the

sea ice above the sea surface, which is referred to as free-

board (FB). The longest record of FB observations from a

satellite with a polar orbit can be obtained from the European

Space Agency (ESA) satellite CryoSat-2, which has been in

orbit since 2010 (Drinkwater et al., 2004). Using an advanced

radar altimeter, data from CryoSat-2 can be used to estimate

FB as the difference between the observed height of the sea

ice surface and the water level in leads between sea ice floes.

To derive sea ice thickness from FB, a number of assump-

tions need to be made, which will be discussed below. These

assumptions lead to a large uncertainty in the resulting sea

ice thickness estimate. Therefore, we propose a method that

assimilates FB directly, instead of using sea ice thickness de-

rived from FB.

Most existing sea ice thickness products use FB measure-

ments to calculate sea ice thickness assuming hydrostatic bal-

ance. The hydrostatic balance equation relates sea ice thick-

ness to FB, snow density, snow thickness, sea ice density and

seawater density. In this relation, FB is measured, and the

other parameters are derived from climatologies or empiri-

cal values derived from in situ observations (Ricker et al.,

2014; Kwok and Cunningham, 2015; Tilling et al., 2018).

The abovementioned uncertainties in satellite-derived sea ice

thickness largely originate from the uncertainty in these pa-

rameters (Alexandrov et al., 2010). According to Alexandrov

et al. (2010), sea ice density introduces the largest error when

calculating sea ice thickness from FB under the assumption

of hydrostatic balance. Sea ice density depends on the ice

age, where younger sea ice has a higher salinity due to more

brine being enclosed in it. Over time, brine is expelled into

the ocean below. During the melt season, salt is washed out

by meltwater (Cox and Weeks, 1974), making multi-year ice

(MYI) less saline and therefore less dense than first-year ice

(FYI). Enclosed gas is another parameter that makes sea ice

density estimates uncertain. FYI sea ice density uncertainty

is typically around 23.0 kg m−3, and for MYI, the uncer-

tainty is around 35.7 kg m−3 (Alexandrov et al., 2010). This

high uncertainty originates from the difficulty of measuring

sea ice density and the limited availability of density mea-

surements. The density varies within the ice column depend-

ing on whether the ice is below or above sea level. On top

of that, the harsh environment adds extra challenges to per-

forming exact measurements (Timco and Frederking, 1996).

Despite the variation in sea ice density, most products use

fixed values of 917 kg m−3 for FYI and 882 kg m−3 for MYI

(Sallila et al., 2019). The second-largest error contributor to

sea ice thickness, according to Alexandrov et al. (2010), is

FB. Uncertainties in FB originate from uncertainties in the

sea surface height, the location of the backscattering hori-

zon, speckle noise (Ricker et al., 2014), the retracking of

the radar waveform (Landy et al., 2019), and uncertainties

in snow height and density used to calculate the reduction

in radar wave propagation speed in the snowpack (Mallett

et al., 2020). The uncertainty introduced by the snow thick-

ness has been extensively discussed (Kurtz and Farrell, 2011;

Kwok et al., 2011; Laxon et al., 2013; Kern et al., 2015; Gar-

nier et al., 2021). Historically, snow thickness has been de-

rived from the Warren et al. (1999) snow climatology (W99),

which was calculated from Russian drift stations for the pe-

riod 1954–1991. Most of the included measurements were

obtained on thick MYI. However, Kurtz and Farrell (2011)

showed that W99 is less reliable over FYI compared to MYI,

and Laxon et al. (2013) proposed a method to differentiate

MYI and FYI snow thickness and snow density from W99.

This method is now more commonly used in sea ice thick-

ness products than the pure W99 climatology (Sallila et al.,

2019). Another alternative to W99 is to use a snow model to

calculate the local snow thickness, depending on precipita-

tion. For example, Fiedler et al. (2022) showed results using

snow thickness from the Forecast Ocean Assimilation Model

(FOAM; Blockley et al., 2014), which is a global coupled sea

ice–ocean model, or Landy et al. (2022) used SnowModel-

LG (Liston et al., 2020).

W99 also includes a snow density climatology, which was

commonly used in the calculation of sea ice thickness until

2020 (Sallila et al., 2019). Mallett et al. (2020) found that ap-

proximating the snow density by a linear function improves

the sea ice thickness estimate by about 10 cm. Recent sea ice

thickness products, for example in Hendricks et al. (2021),

have started to use the proposed seasonal linear approxima-

tion of snow density, with good results. Seawater density

only varies very little throughout the Arctic. Most CryoSat-2

sea ice thickness products use a single value of 1024 kg m−3,

which is the density at the freezing point of Arctic surface

water. The influence of the uncertainty in this value on the hy-

drostatic balance equation is negligible (Kurtz et al., 2013).

The uncertainties in sea ice density, freeboard (FB), snow

density and seawater density all contribute to the overall error

in sea ice thickness calculated from FB. To account for these

errors, error estimates are used in data assimilation methods

such as Kalman filters. Kalman filters rely on knowledge of

the model uncertainties and observational uncertainties, as

well as the assumption that they are unbiased and Gaussian

distributed. Based on these assumptions, the Kalman filter

aims to derive the best estimate. The accuracy of the re-

sulting state estimate improves with better uncertainty esti-

mates. The errors in CryoSat-2-derived sea ice thickness not

only are due to the sources mentioned above, but also de-

pend on how FYI and MYI are defined. The sea ice density;

snow thickness; and, in some cases, snow density are calcu-

lated based on this ice type. The ice type is typically derived

from the Ocean and Sea Ice Satellite Application Facility
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(OSI SAF) ice type data (Sallila et al., 2019), which distin-

guish between FYI, MYI and ambiguous ice types (Aaboe

et al., 2021). Ye et al. (2023) assessed different sea ice type

products, including the OSI SAF ice type data product, and

compared them to the National Snow and Ice Data Cen-

ter (NSIDC) sea ice age data (Tschudi et al., 2020). They

found that the OSI SAF ice type data have for FYI a bias of

0.42×106 to 0.6×106 km2 and for MYI a bias of −0.54×106

to −0.35 × 106 km2. This comparison only considers FYI

and MYI areas and compares them to satellite-obtained ice

age products. Ambiguous areas are not considered. In most

CryoSat-2 sea ice thickness products, a small transitioning

area with a linear transition from MYI to FYI is assumed

(Laxon et al., 2013; Tilling et al., 2018; Hendricks et al.,

2021). However, the ice-chart-based sea ice type data product

G10033 (Fetterer and Stewart, 2020) suggests large areas of

mixed ice types. These areas are notably larger and less ho-

mogeneous than the areas suggested by the linear transition

between MYI and FYI based on the OSI SAF sea ice type.

This means that sea ice density, snow thickness and snow

density errors are systematically underestimated or overesti-

mated in these areas of ambiguous ice type.

As the FB error estimate is part of the sea ice thickness

error estimate, it is fair to conclude that the FB error is better

constrained than the sea ice thickness error. This is not to say

that FB errors are unbiased. However, by choosing to assimi-

late FB, error contributions originating from snow thickness,

snow density, sea ice density and sea ice type when convert-

ing FB to sea ice thickness are eliminated. Consequently, it

follows that the FB data would be more suitable for assimila-

tion than the derived sea ice thickness, as a lower uncertainty

will increase the weight of the observed CryoSat-2 FB.

The challenge of this approach is that FB is not a sea ice

model state variable but a diagnostic variable. Even though

FB is not a state variable, it is related to sea ice thickness,

which is a state variable and can be calculated from FB un-

der the assumptions that a change in FB is caused only by

modeled sea ice thickness and modeled snow thickness and

that snow density and ice density are realistic.

In this study, we present an approach to assimilating FB

directly into the sea ice model CICE (Hunke et al., 2021a).

We aim to answer the following questions: does FB assimi-

lation have a significant impact on the modeled sea ice thick-

ness? And how does the modeled sea ice thickness after as-

similation of FB compare to sea ice thickness (SIT) from a

conventional CryoSat-2 sea ice thickness product? To trans-

form FB into the model state variable sea ice thickness, we

use parametrization and assumptions from the model and the

forcing data. The method is implemented into CICE, but it

should be applicable to any other model. This study mainly

focuses on CryoSat-2 measurements, but the approach pre-

sented could also be applied to ICESat FB data (Martino

et al., 2019) with small adjustments. Several studies have

mentioned approaches to assimilate FB (Vernieres et al.,

2016; Kaminski et al., 2018; Fiedler et al., 2022), but none

has included a description of how the FB assimilation was

implemented. Kaminski et al. (2018) conducted a study us-

ing the quantitative network design approach to quantify how

beneficial it would be to assimilate radar FB, among other

variables. The study concludes that assimilation of radar FB

can improve sea ice volume simulations on the same order of

magnitude as sea ice thickness assimilation. The quantitative

network design approach builds upon error propagation and

the sea ice thickness errors used in the analysis, which origi-

nate from the Alfred Wegener Institute (AWI) CryoSat-2 sea

ice thickness products. As discussed above, this error esti-

mate includes no contribution from ice type data and might

be underestimated. To our knowledge, this is the first paper

presenting detailed descriptions of an assimilation method

using FB instead of sea ice thickness.

2 Methods and data

The following section presents all data sets, software and

methods used to derive the sea ice thickness data sets evalu-

ated in this study. The model setup is presented in Sect. 2.1,

the assimilation setup is presented in Sect. 2.2, the observa-

tional data are presented in Sect. 2.3 and 2.4, and Sect. 2.5

presents the observation data sets which are used for valida-

tion.

2.1 Model setup

The FB assimilation is implemented in a coupled sea ice

(CICE v6.2; Hunke et al., 2021a) and ocean model (NEMO

v4.0; Madec et al., 2017). The coupling is based on Smith

et al. (2021); however both NEMO and CICE have been up-

dated to more recent versions. NEMO is set up following

(Hordoir et al., 2022).

CICE is a multicategory sea ice model that consists of a

dynamical solver, an advection scheme and a thermodynamic

column physics model called Icepack. CICE and Icepack

(Hunke et al., 2021b) are developed independently but are

by default linked (Hunke et al., 2021b, a). The model is run

with five thickness categories with category bounds that fol-

low a World Meteorological Organization (WMO) standard

setup. The upper bounds for the five categories (n) are as fol-

lows: n = 1, 0.3 m; n = 2, 0.7 m; n = 3, 1.2 m; n = 4, 2 m;

and n = 5, 999 m. In the presented study, CICE was imple-

mented close to the default setup except that form drag cal-

culations, following Tsamados et al. (2014), were enabled.

The model domain is pan-Arctic, as shown by the red area

in Fig. 1 (large parts are covered by the blue and orange vi-

sualization). The lateral boundaries are located outside the

Arctic sea-ice-covered region such that sea ice boundary

conditions are not required. The lateral ocean boundaries

are forced with monthly GLORYS12 data, which consist

of salinity, temperature, and u and v velocities (Lellouche

et al., 2021). The ocean model includes tides, the tidal forc-
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Figure 1. The red area indicates the model domain (large parts are

covered by the blue and orange visualization) described in Sect. 2.1,

the blue area shows the OSI SAF SIC data coverage and the orange

lines give example coverage of 1 week of CryoSat-2 data (here from

3 March 2020). The zoomed-in area shows the location of the three

moorings described in Sect. 2.5, marked with corresponding letters,

and the gray and black track indicates the drift path of the ice mass

balance buoys also described in Sect. 2.5. The gray indicates the full

data set used in Fig. 8 and the black the subset used in Fig. 7.

ing at the open boundaries originates from the TPXO 7.2

harmonic tidal constituents (Egbert and Erofeeva, 2002), and

river runoff is based on a climatology from Dai and Tren-

berth (2002). The model is forced with 3-hourly ERA5 atmo-

spheric forcing data, which consist of 2 m temperature, 2 m

specific humidity, 10 m wind, incoming shortwave and long-

wave radiation, total precipitation, snowfall, and air pres-

sure at sea level (Hersbach et al., 2017). The model runs

discussed in this study are restarted from the same initial

run, which runs from 1995 to 2020 and was initialized from

ORAS5 (Zuo et al., 2019) ocean temperature and salinity

fields. The years 2010–2020 of the initial run were used to

calculate the model background error discussed in Sect. 2.2.

The three other runs discussed in the following text are re-

fRun, sicRun and fbRun: refRun consists of the initial run

from 1 January 2018 to 31 December 2020; sicRun and

fbRun are started from the same restart file as refRun on

1 January 2018 but assimilate (i) SIC and (ii) SIC and FB

respectively. They both also cover the period 1 January 2018

to 31 December 2020. All model output discussed in the fol-

lowing sections is calculated based on daily means.

In order to be able to assimilate radar FB from CryoSat-2,

a new variable for radar FB needs to be introduced in CICE.

For this we combined Eq. (4) from Alexandrov et al. (2010)

with Eq. (12) from Tilling et al. (2018) as follows:

FBr = hi(ρw − ρi ) − ρshs

ρw
− (hs(

c

cs
− 1)). (1)

Here, hi is the modeled sea ice thickness from CICE, ρw is

the modeled surface water density from NEMO, hs is the

modeled snow thickness from CICE, c is the speed of light

in vacuum (3 × 108 m s−1) and cs the speed of light in snow.

The variable cs is calculated following Eq. (2):

cs = c(1 + 0.51ρs)
−1.5. (2)

Mallett et al. (2020) compared constant ρs values to the sea-

sonal linear variation in ρs derived by Warren et al. (1999)

and concluded that a seasonally varying ρs can improve FB-

derived sea ice thickness estimates by up to 10 cm. The orig-

inal value used in CICE is constant and equals 330 kg m−3.

In this study it was substituted with the derived relation from

Mallett et al. (2020) following Eq. (3):

ρs = 6.5 × t + 274.51, (3)

where t is time counted in months since October. The relation

in Eq. (3) is only used in the radar FB calculation for the as-

similation and nowhere else in the sea ice model. CICE uses

constant ρi values, but for the radar FB calculation, a variable

sea ice density was needed, since ρi has significant impact on

Eq. (1) (Alexandrov et al., 2010; Kern et al., 2015). Sea ice

density is dependent on the air bubbles enclosed in the sea

ice and on the brine content (Timco and Frederking, 1996).

Brine content in sea ice results from the brine rejection dur-

ing freeze-up and drains over time. If the brine channels are

not filled with water, they remain as air bubbles in the ice

(Timco and Frederking, 1996). CICE calculates the salinity

content in sea ice and the density of sea ice without account-

ing for a changing number of air pockets. To calculate the sea

ice density, we divide the sea ice volume in one grid cell into

fresh ice and brine, calculate the percentage of the fresh ice

and brine, and weight a fresh ice density (ρi0) and the brine

density (ρb) with this.

ρi = aiceb × ρb + (1 − aiceb) × ρi0 (4)

Here, aiceb is the amount of brine as a percentage of the total

ice volume. The variable ρi0 was set to 882 kg m−3 following

Alexandrov et al. (2010) values for MYI sea ice density. In

the following text, FB stands for the radar FB.

2.2 Assimilation setup

Kalman-filter-based assimilation is a widely used technique

that employs an ensemble of model forecasts to estimate the

state of a system using available observations. The method

involves three main steps: a forecasting step, a filtering step

and a re-sampling step. The forecast is performed by the

model. During the filtering step, the ensemble members are

adjusted based on knowledge of the model background er-

ror, observation error, model states and observations to ob-

tain the best possible estimate of the system state. In the re-

sampling step, the best estimate from the filtering step is used

to update the ensemble members. This process is repeated it-

eratively in order to improve the accuracy of the state esti-

mate. For the filtering step, we use the Local Error Subspace
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Figure 2. General setup of the assimilation routine. The dark-blue

curve indicates the initial model run and the orange curve the assim-

ilated run, with the dashed orange arrow indicating the model state

at the assimilation time. The thick turquoise arrows indicate the 8 d

chosen around the assimilation date and the thin turquoise arrows

the 4 (or 3) d chosen ± 2 months around the assimilation date (de-

scribed in Sect. 2.2.1). The numbers in the lower corners indicate in

which section of the paper the different elements are described.

Transform Kalman Filter (LESTKF) (Nerger et al., 2012),

which is included in the Parallel Data Assimilation Frame-

work (PDAF) (Nerger and Hiller, 2013). LESTKF has, prior

to this study, successfully been used to assimilate SIC and

sea ice thickness, for example by Chen et al. (2017). In this

study, PDAF is used offline, which means that the assimi-

lation scheme runs independently of the ocean and sea ice

model. The consequence is that the ocean and sea ice model

needs to be restarted when the model and the assimilation

exchange information. PDAF was run separately for SIC and

FB. Figure 2 illustrates the data flow between the different

components. The numbers noted in the lower corner of each

component correspond to each of the following sections, de-

scribing which part of the assimilation is handled in which

program.

2.2.1 PDAF

PDAF inputs consist of the model state, model ensemble, ob-

servations and observation uncertainties in the model grid.

The spread of the ensemble is used to calculate the model

background error used in the filtering step. In this study, we

only run one model realization and calculate the model back-

ground error in the Kalman filter from a static ensemble,

similarly to the setups in BAL MFC (Nord et al., 2021) and

SAM2 (Tranchant et al., 2006). Using a static ensemble has

the advantage of lower computational cost. To calculate the

model background error based on a static ensemble, a free

model run of the model used in the assimilation is needed.

In our case the free model ran from 1995 to 2020, but only

the years 2010–2020 were used to construct the static ensem-

ble as the earlier years were considered spinup. The justifi-

cation of using a static ensemble is based on the assumption

that the model error on a certain day in a year is reflected

by the interannual model variability of this same day. Know-

ing the biases of the model allows for the correction of this

assumption. In our case, the model overestimates the ice ex-

tent, which we found when comparing the 10-year initial run

to OSI SAF (Saldo, 2022) SIC observations. Thus, the back-

ground error based on the same date in several years would

not result in a large enough spread to weight the observations

correctly. The ensemble used to calculate the model back-

ground error consists of 80 members, and it is constructed as

follows: each of the 10 years from the free run contributes

8 d.

– In 8 years, a period of 8 consecutive days is chosen,

starting from the date 3 d prior the assimilation time step

and ending 4 d past it.

– In 2 years, a period of 3 consecutive days from the date

2 months prior to the assimilation time and a period of

4 consecutive days from 2 months past the assimilation

time are chosen.

After the ensemble members were chosen, they are averaged.

This average is then subtracted from each member, and the

resulting variation is added to the model state at the assim-

ilation date. These 80 ensemble members are then used to

calculate the model error. For the observation error, we use

the error estimates provided in the data sets.

2.2.2 Integration of increments

The physical model in Sect. 2.1 utilizes the Kalman filter in-

crement, which is the correction that adjusts the model state

to the optimal state based on observations and model states.

This increment is obtained as the difference between the

model state input to PDAF and the analyzed state. The model

state is corrected towards the analyzed state by subtracting

the increment from the model state. To ensure stability, the

increment is divided by the number of time steps (number of

model time steps in one assimilation time step), which results

in the fractal increment or the amount of change needed per

model time step (following Eq. 5). This fractal increment is

hereafter subtracted at each time step from the model value.

This method is called incremental analysis updating and was

introduced by Bloom et al. (1996). For SIC, this method is

straightforward, since the observations are also what we aim

to assimilate.

inc = var0 − newice

timer

(5)

FB needs to be converted into sea ice thickness, and if this

were to be done separately at each time step, the changing

sea ice density and snow thickness could potentially influ-

ence the resulting sea ice thickness. Similarly to SIC, the FB

increment is subtracted from the model state at t0. To convert

FB to sea ice thickness, Eq. (1) was rewritten as follows:

newice = ρshs + ρw(FBnew + corr)

ρw − ρi

. (6)

The variable newice is now subtracted from the modeled sea

ice thickness and linearly spread following Eq. (5).
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At each time step, we have the fractional increment of

SIC and sea ice thickness to be subtracted from the model

state. The model used in this study is a multicategory model.

Therefore, the grid cell average increment must be spread

over the five model categories. To achieve this, Eq. (7) was

used. Here varold is the SIC at the current time step, varold(n)

is the SIC in n categories, inc is the SIC increment and n is

the thickness category.

var(n) = varold(n) − varold(n)
inc

varold
(7)

In the case where SIC and FB are negative after the assim-

ilation, they are rounded to 0. In cases where the SIC ends

up above 1, SIC is rounded to 1. FB is only assimilated if

SIC is above 80 % and if sea ice thickness is above 0.05 m.

These thresholds were chosen not only for stability, but also

because thin FB is not measured accurately (Wingham et al.,

2006; Ricker et al., 2014) and because FB is calculated from

the model’s ice volume per unit area of ice. In areas with

lower concentrations, this can lead to SIT and FB values that

are unrealistically high. To avoid overestimation of FB fol-

lowing this artifact, a high SIC threshold was chosen for the

FB assimilation.

2.3 CryoSat-2 radar altimetry freeboard and sea ice
thickness

The observed FB assimilated in this study is level-3 weekly

gridded CryoSat-2 radar FB downloaded from the Alfred

Wegener Institute (AWI) sea ice portal (version 2.4; Hen-

dricks et al., 2021). This comprises gridded, along-track data

on the EASE2-Grid with a 25 km resolution. The radar FB is

defined as the elevation of a retracked point above instan-

taneous sea surface height without snow range correction.

The data product is derived from the CryoSat-2 Baseline-E

data, the mean sea surface model DTU21 and the threshold

first-maximum retracker algorithm (TFMRA) (Ricker et al.,

2014).

With the onset of melt at the beginning of summer, melt

ponds are formed on the sea ice surface. The radar signa-

ture from melt ponds is comparable to the signature from

leads, which can result in ambiguous determination of the

sea surface height. This ambiguity results in a larger bias

in the FB measurements, and FB data are therefore only as-

similated from November to March, when we do not expect

melt ponds. The uncertainty in FB given in the AWI data set

ranges on average from 0 to 0.07 m in the chosen month. The

data set was bi-linearly interpolated to the model grid with

help of Climate Data Operators (CDO; Schulzweida, 2022).

An example of the FB data assimilated per assimilation time

step (1 week) is indicated by the orange lines in Fig. 1.

The data set also contains sea ice thickness derived by as-

suming hydrostatic balance, which is the method referred to

as the classical approach. In order to obtain sea ice thick-

ness from FB, hydrostatic balance is assumed, and sea ice

thickness is calculated as described in Eq. (6). In the AWI

CryoSat-2 data set, the snow thickness from Warren et al.

(1999) snow climatology was applied over MYI, and NSIDC

AMSR2 snow depth (Hendricks et al., 2021) was applied

over FYI. The snow density is calculated following Eq. (3)

from Mallett et al. (2020), and the sea ice density is set to

916.7 kg m−3 for FYI and to 882.0 kg m−3 for MYI. MYI

and FYI are distinguished with the help of OSI SAF ice type

data. For a more detailed description of the data set, see Hen-

dricks et al. (2021).

2.4 OSI SAF data

Ocean and Sea Ice Satellite Application Facility (OSI SAF)

SIC is assimilated in this study. It is based on passive mi-

crowave measurements of the Special Sensor Microwave Im-

ager/Sounder (SSMIS), which is onboard a polar-orbiting

satellite. The OSI SAF algorithm combines SSMIS mi-

crowave measurements with numerical weather prediction

(NWP) model output from ECMWF in order to calculate

SIC. Passive microwave measurements are independent of

visible light, which makes this sensor type especially suitable

in polar regions. The data set used is the climate data record

(CDR) OSI-430-a, which is gridded on a 25 × 25 km grid

once a day. The data can be downloaded from the Norwe-

gian Meteorological Institute FTP servers: ftp://osisaf.met.

no/reprocessed/ice/conc/v3p0 (last access: 12 January 2023).

The presented data set was chosen after examining the er-

ror estimates in the different data products. The comparison

showed that the CDR is the only data set that has no large er-

ror fluctuations over open-water areas. More details on the er-

ror estimate can be found in Saldo (2022). Studies have found

that the summer melt ponds lead to underestimated SIC in

satellite passive microwave measurements (Kern et al., 2016;

Ivanova et al., 2013; Rösel and Kaleschke, 2012). This is the

reason we decided to only assimilate SIC during the months

November to March.

For the assimilation, the data set was bi-linearly interpo-

lated onto the model grid using CDO (Schulzweida, 2022).

The resulting SIC data coverage assimilated is indicated by

the blue area in Fig. 1.

2.5 Validation data

Two in situ sea ice observation data sets are used for val-

idation. The Beaufort Gyre Exploration Project (BGEP)

upward-looking sonar (ULS) sea ice draft data set and 19 ice

mass balance (IMB) buoys deployed during the Multidisci-

plinary drifting Observatory for the Study of Arctic Climate

(MOSAiC) campaign measuring sea ice thickness. The ad-

vantage of these observations is that they are independent of

the assimilated data; however each observation has limita-

tions in terms of time and space.

The BGEP ULS sea ice draft data set can be down-

loaded from https://www2.whoi.edu/site/beaufortgyre/data/
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mooring-data/ (last access: 28 June 2023). The ULS data

are obtained from three locations named moorings A, B

and D, marked with orange, turquoise and dark-blue dots in

Fig. 1. The data cover 2 years, from October 2018 to Novem-

ber 2020. The instruments are located 50–85 m below the wa-

ter surface and measure the ice draft with a frequency of 2 s

over a 2 × 2 m area. The signal is filtered and averaged over

10 s intervals in order to correct for tilting errors. Tilting er-

ror refers to the error that results from the movement of the

ULS when ocean currents move the instrument and so influ-

ence the distance to the sea ice. The error is assumed to be

random; hence averaging the data will eliminate it. The sea

ice draft accuracy is ±5 cm.

For the comparison of BGEP observations and model and

AWI data, the model and AWI draft was calculated as sea

ice thickness minus sea ice FB. To compare the BGEP data

with the three model runs, the daily average and standard de-

viation (SD) were calculated from the differences of all 10 s

measurements and the model daily output. For the compari-

son, only the grid cell which would cover the respective buoy

was considered. Since the resulting daily mean and SD were

still too variable, they were further smoothened by a 7 d run-

ning mean. For the comparison of the fbRun, AWI and BGEP

draft, only weeks in which the AWI data cover the BGEP lo-

cations were considered. The model values are weekly means

of the respective buoy covering the grid cell.

To be able to compare sea ice in situ measurements from

more locations, the IMB buoy deployed during the MOSAiC

campaign are used (Lei et al., 2021). In contrast to the sta-

tionary measurements from the BGEP, the measurements

drift along the black trajectory in Fig. 1, from the center

of the Arctic towards Greenland. The IMB buoy includes a

thermistor string reaching from the snowpack top to the ice–

ocean interface at the bottom. A thermometer and a heating

element are located each 2 cm. The ice–snow, ice–water and

snow–air interfaces are measured by heating the thermistor

string up and measuring the thermal response. More informa-

tion on the instrument can be found in Jackson et al. (2013).

The IMB buoys measure the thickness of only one ice flow,

unlike the BGEP upward-looking sonar, and the data have a

temporal frequency of one measurement per day. To ensure

that the comparison between the buoys and the gridded AWI

sea ice thickness and model output is reliable, 19 IMB buoys

were considered. However, not all buoys were active at the

same time. All buoys were interpolated to the model grid by

the nearest-neighbor method.

For a comparison of the different model runs vs. the IMB

measurements, a minimum of eight active buoys per day

were chosen. The limit of eight buoys was chosen to account

for the spatial coverage of the active buoys and at the same

time secure a sufficient number of days in which at least eight

buoys were active.

For the IMB sea ice thickness vs. assimilated sea ice thick-

ness and the AWI sea ice thickness comparison, the IMB

buoy coverage of 1 week was projected onto the model grid,

choosing the nearest neighbor. For the model data, only grid

points covered by the AWI data and the IMB buoys were

chosen, and weekly averages were calculated for all three

products. No threshold of a minimum number of active buoys

was chosen, as this would have limited the available data too

much.

3 Results

3.1 Freeboard and sea ice concentration RMSE

To verify that the assimilation improves the modeled FB and

SIC, the root-mean-square errors (RMSEs) between the as-

similated data sets and the model variables were computed

after each assimilation time step. The calculation of RMSE

includes all observed data points of the assimilation time

step. RMSE for FB is calculated on the available satellite

tracks (marked orange in Fig. 1), which change every week,

and the co-located model values. The same approach is used

for SIC (the blue area in Fig. 1) and the corresponding model

data.

The results are shown in the upper panels of Figs. 3 and 4,

and they are based on mean weekly model output data at

the location where the corresponding observations exist. The

lower panels in both figures show the difference between re-

fRun and sicRun or fbRun. Positive values indicate that the

assimilation has improved the SIC or FB, and negative values

indicate that the variable was degraded by the assimilation.

Degradation can occur when an assimilation variable disturbs

the physical balance of the model and during a period of free

run, when it is in the process of reestablishing its physical

balance.

The results (Fig. 3, upper panel) show that the reference

run (black) had the highest RMSE of all and that the RMSE

increased the most over the assimilation period. This indi-

cates that the assimilation improved the modeled sea ice con-

centration. The RMSE for the assimilated runs (sicRun in

turquoise and fbRun in orange) also increased over the as-

similation period but to a lesser extent than for the reference

run. The lower panel in Fig. 3 shows a steady increase in

the difference between the reference run and the assimilated

runs, reflecting the degree to which assimilation improved

sea ice concentration.

The increase in RMSE over the season is a result of the

chosen area for calculating RMSE and the definition of the

metric itself. RMSE weights larger errors more heavily than

smaller errors. The FB differences are only calculated over

areas with sea ice, while the SIC data include larger areas

that are seasonally either ice-free or ice-covered. For SIC,

the area with the largest error, which is weighted most, is the

ice edge at the Atlantic side, which increases over winter, ac-

counting for the observed seasonal increase in SIC RMSE

from November to March in Fig. 3. Other assimilation stud-

ies have chosen to calculate RMSE only over ice areas with
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sea ice concentration above 15 % (Chen et al., 2017), but to

be consistent, we chose to calculate RMSE over the entire

area.

The lower panel in Fig. 3 also shows negative values in

October for the last 2 years, indicating that the assimilated

runs agree less with the assimilated data compared to the ref-

erence run at the beginning of the assimilation period. The

RMSE difference in the lower panel falls below 0 at the be-

ginning of all assimilation periods after the initial one. As

noted earlier, this can occur if the physical balance of the

model is disturbed by assimilation.

The upper panel of Fig. 4 displays the RMSE of all FB

values assimilated at the corresponding time. The black line

represents refRun, while the turquoise line represents sicRun.

Both have almost equal FB RMSE throughout the assimila-

tion period, ranging between 7 and 14 cm. The black refRun

covers the turquoise sicRun in the upper panel. On the other

hand, the FB RMSE for fbRun shows a clear drop within

the first month of the assimilation period, reducing to about

5 to 6 cm. The lower panel in Fig. 4 shows that the RMSE

differences are all above 0, even at the beginning of a new

assimilation period in November.

It is expected that the SIC RMSE in Fig. 3 and the FB

RMSE in Fig. 4 show improvements, as the observation val-

ues are used within the assimilation scheme; however this

demonstrates that the assimilation works.

3.2 CryoSat-2 AWI sea ice thickness

To demonstrate that the sea ice thickness estimated through

the FB assimilation method provides comparable results to

other sea ice thickness products derived from CryoSat-2, the

sea ice thickness of fbRun was compared to the AWI sea ice

thickness. The AWI sea ice thickness was selected because it

is derived from the same FB values as the FB data assimilated

in fbRun. Any differences between the two data sets therefore

indicate the impact of the FB assimilation introduced here in

contrast to the method of directly converting FB to sea ice

thickness.

Table 1 presents the correlation coefficients and biases for

sea ice thickness and FB in refRun and fbRun compared

to the AWI data. All spatially coinciding data points of the

model runs and the AWI data were considered over the entire

period from 1 January 2018 to 31 December 2020. In gen-

eral, the lowest correlations and highest biases are found in

October, as no data had been assimilated yet and the assimi-

lation period started in November.

The sea ice thickness biases are negative for all months and

runs, indicating that the modeled sea ice thickness and FB are

thinner than the AWI data’s FB and sea ice thickness. The sea

ice thickness biases for both runs are smallest in January, and

the FB biases are smallest in January and February. Overall,

the FB biases are thinner than the SIT biases, which is no

surprise as FB is typically on the order of about 10 % of sea

ice thickness (Alexandrov et al., 2010).

Comparing the correlation coefficients of refRun and

fbRun for both the FB and the sea ice thickness shows

that the difference between the FB correlation coefficients is

higher than the difference between the sea ice thickness cor-

relation coefficients. This indicates that the FB assimilation

brings the modeled FB closer to the assimilated FB data but

that the difference in deriving the SIT from the FB data also

impacts the resulting SIT.

Figure 5 displays bivariate and univariate kernel density

estimates (KDEs) for sea ice thickness (panels a and b) and

FB (panels c and d) for fbRun (in orange) and refRun (in

blue) compared to the AWI data. The months of October and

December were displayed as they represent the lowest and

highest sea ice thickness correlation (see Table 1).

The KDE for both variables of fbRun changes from Oc-

tober to December, indicating higher correlation coefficients

and smaller biases in December, which is a result both of

thin and thick sea ice and of FB getting thicker. However,

the thicker FB and sea ice thickness values are still thinner

than the AWI data variables, while the thin FB and sea ice

thickness values are thicker than the AWI values. This could

be a result of the assimilation discarding negative FB values

in the model, while the AWI data set includes negative FB

values.

For the month following December (not displayed), the

center of the sea ice thickness KDE (at about 1 m in Fig. 5b)

falls, month by month, further below the black regression

line, while the thick sea ice thickness compared to refRun

shows similar improvements to the December plot. This indi-

cates that the decreasing correlation and increasing bias (Ta-

ble 1) originate from fbRun’s sea ice thickness and FB be-

coming thinner compared to the AWI data sets values, while

the thick sea ice compares equally well to the AWI sea ice

thickness.

3.3 Upward-looking sonar data

The BGEP upward-looking sonar sea ice draft is independent

of the satellite-derived FB data, and it is used for the compar-

ison of the modeled sea ice draft, which is calculated as de-

scribed in Sect. 2.5. The BGEP data are not available for the

complete period from 1 January 2018 to 31 December 2020;

hence only data from October 2018 to December 2020 are

used.

The BGEP ULS data, model data and AWI sea ice draft

data are provided at different spatial and temporal coverage

levels. To compare the different data sets, we split the com-

parison into two parts in order to account for these differ-

ences. In Fig. 6 the model drafts from all three model runs

are compared to the BGEP ULS drafts based on mean daily

differences, whereas, Fig. 7 compares the AWI draft and

the fbRun draft with the BGEP ULS drafts based on mean

weekly differences only at locations covered by the AWI

data.
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Figure 3. (a) Weekly SIC RMSE calculated at the observation data location, averaged over the corresponding assimilation time step. The

orange plot shows the fbRun RMSE, the black the refRun RMSE and the turquoise the sicRun RMSE. (b) The differences in the top-panel

RMSEs of refRun − fbRun in orange and refRun − sicRun in turquoise. The date format is year-month.

Figure 4. (a) Weekly FB RMSE calculated at the observation data location, averaged over the corresponding assimilation time step. The

orange plot shows the fbRun RMSE, the black the refRun RMSE and the turquoise the sicRun RMSE. The black plot indicating refRun

covers the turquoise plot indicating sicRun most of the time. (b) The differences in the top-panel RMSEs of refRun − fbRun in orange and

refRun − sicRun in turquoise. The date format is year-month.

The differences between the BGEP upward-looking sonar

ice draft and the model sea ice draft are shown in Fig. 6.

The dashed line shows fbRun, the solid line refRun and the

solid line with circle markers sicRun. The gray-shaded areas

indicate the assimilation period.

For all three moorings, fbRun shows the values in closest

agreement with the observations throughout the entire period

displayed. This is also reflected by the lower RMSE listed

in Table 2. The runs refRun and the sicRun are almost in

perfect agreement except for on a few days, for example in

October 2019 at BGEP moorings A and D. The RMSE be-

tween the BGEP data and fbRun is with 0.41 m, 23 cm lower

than the RMSE of refRun and sicRun. Periods in summer,

when the observation SD is 0 m, indicate periods with no ice

present in the observations. Gaps indicate periods where no

data are available. The BGEP observations are all ice-free in

summer 2019, while only fbRun at BGEP mooring A reaches

the point of being ice-free in late September continuing until

the beginning of November 2019.

Figure 7 shows the mean differences between the AWI sea

ice draft and the fbRun sea ice draft. To do so, the AWI data

set was interpolated to the model grid and only data points

covered by all three data sets (AWI CryoSat-2, fbRun and

BGEP) were considered. Instead of daily averages as shown

in Fig. 6, weekly averages were calculated, since the AWI sea

ice draft is provided in weekly time steps. The dashed lines in

Fig. 7 show the AWI data and the solid lines the fbRun data.

The gray background shows the assimilation period. Colors

are chosen per mooring according to Fig. 1. The resulting

differences between the fbRun and the AWI CryoSat-2 sea
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Table 1. Monthly mean correlation coefficient and mean bias between the weekly AWI sea ice thickness (SIT) and FB and the fbRun SIT

and FB for the entire assimilation period from 1 January 2018 to 31 December 2020. Only grid points covered by both the AWI FB data and

the model were considered.

October November December January February March April

Correlation coefficient SIT fbRun 0.56 0.81 0.83 0.81 0.78 0.75 0.72

Correlation coefficient SIT refRun 0.40 0.49 0.45 0.44 0.44 0.51 0.50

Bias SIT fbRun −0.52 −0.38 −0.17 −0.15 −0.18 −0.18 −0.22

Bias SIT refRun −0.65 −0.56 −0.38 −0.23 −0.26 −0.28 −0.34

Correlation coefficient FB fbRun 0.30 0.68 0.79 0.76 0.78 0.78 0.74

Correlation coefficient FB refRun 0.06 0.09 −0.2 0.2 0.05 0.16 0.19

Bias FB fbRun −0.03 −0.02 0.01 0.01 0 −0.01 −0.02

Bias FB refRun −0.04 −0.04 −0.02 −0.01 −0.01 −0.02 −0.03

Table 2. RMSE calculated between the BGEP ULS draft measure-

ment and the model runs fbRun, sicRun and refRun and the MO-

SAiC IMB sea ice thickness and the model runs. The RMSE and

biases were calculated for all three mooring locations together, the

assimilation period marked gray in Fig. 6 and the free-run period.

BGEP ULS total MOSAiC IMB

RMSE fbRun 0.41 m 0.20 m

RMSE sicRun 0.64 m 0.09 m

RMSE refRun 0.64 m 0.10 m

Table 3. The mean RMSE of the weekly mean differences shown in

Fig. 7. The RMSE was calculated on average for each mooring and

both the fbRun ice draft and the AWI CryoSat-2 ice draft.

BGEP moorings A, B, D MOSAiC IMB

fbRun 0.30 m 0.23 m

AWI CryoSat-2 0.30 m 0.34 m

ice draft are shown in Fig. 7. Both the AWI sea ice draft and

the fbRun sea ice draft differ by about ±50 to 90 cm from the

mooring data. There is no clear bias or seasonality in either

difference, and they do not always follow the same pattern,

except in winter 2019/20, when both data sets begin with a

negative bias and end with a positive bias with the exception

of a few weeks in the AWI CryoSat-2 draft at the end of the

assimilation period.

The RMSEs between the BGEP moorings’ sea ice draft,

the fbRun sea ice draft and AWI CryoSat-2 sea ice draft were

calculated. They are listed in Table 3. The RMSEs of the data

products compared to the mooring data are both 0.3 m.

3.4 MOSAiC IMB data

The MOSAiC data cover a different spatial area than the

BGEP observations. Data are interpolated to daily and

weekly means respectively in order to have the same fre-

quency as the data that they are being compared to. Details

are described in Sect. 2.5.

In Fig. 8, the daily sea ice thicknesses from the MO-

SAiC IMB buoys and the three model runs are plotted for

days when at least eight buoys were active. The shaded area

around each line indicates 1 SD of the respective displayed

data. The MOSAiC IMB data set has the largest SD, and all

model runs lies within this SD for most of the observation

period, with the exception of fbRun’s sea ice thickness in Oc-

tober 2019, April 2020 and June 2020. Overall, the modeled,

assimilated and observed sea ice thicknesses grow over the

same period from October 2019 to April 2020, and all four

sea ice thicknesses also start to decline at about the same time

in June 2020. The observed sea ice thickness starts to be more

variable at the beginning of June 2020, which is not reflected

in the model data. The variability in the observation data is

most likely caused by the reduced number of buoys that are

active during this time and the sea ice being more mobile

as it starts to melt. Both the refRun and the sicRun sea ice

thicknesses compare better than fbRun to the MOSAiC ob-

servation. This is also reflected in the RMSE calculated for

fbRun, sicRun and refRun in comparison to the MOSAiC sea

ice thickness in Table 3. A one-sided t test was performed,

comparing the differences between the different model runs

and the MOSAiC IMB sea ice thickness. The one-sided t test

showed that sicRun’s and refRun’s sea ice thickness RMSE

was significantly lower than fbRun’s RMSE.

Figure 9 shows the weekly mean sea ice thickness from

the MOSAiC IMB buoys and the three model runs. The av-

erage is calculated as described in Sect. 2.5. The dash-dotted

yellow line represents the AWI sea ice thickness, the dashed

turquoise line represents the fbRun sea ice thickness and the

solid black line represents the MOSAiC sea ice thickness.

The transparent shaded background in each corresponding

color indicates 1 SD. All three sea ice thicknesses increase

over the displayed period. The AWI sea ice thickness in-

creases the most from approximately 0.6 to 2.3 m with a

sharp drop in the last week of April. The MOSAiC data dis-

play less growth and start slightly thicker than both the fbRun
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Figure 5. The bivariate and univariate kernel density estimate (KDE) for sea ice thickness and FB for the model runs fbRun and refRun in

comparison to the AWI sea ice thickness and FB. Panels (a) and (b) show the sea ice thickness in October and December, and panels (c) and

(d) show the FB for October and December. The months October and December were chosen because October is the month with the lowest

sea ice thickness correlation between fbRun and AWI (as listed in Table 1). The correlation coefficients r are displayed in the lower-right

corner of each plot. The black line indicates r = 1, and the unit is meters.

and AWI sea ice thickness at around 0.8 m in October 2019

and reach around 1.8 m in April 2020.

When comparing the sea ice thickness for fbRun from

Figs. 8 and 9a, it is apparent that the fbRun sea ice thick-

ness follows a similar pattern. However, this is not the case

for the MOSAiC sea ice thickness. Comparing the sea ice

thickness for the MOSAiC IMB data from Figs. 8 and 9a, the

data in Fig. 9a appear to be more abundant. This difference is

caused by the number of buoys considered. The buoys con-

sidered in Fig. 9 depend on the sparse AWI data coverage,

while Fig. 8 considers at least eight buoys per day. This leads

to larger jumps from week to week of the MOSAiC sea ice

thickness in Fig. 9 compared to Fig. 8. This is also evident

by the low SD at the beginning of March and in mid-April

2020 in Fig. 9.

Table 3 lists the RMSE calculated between the AWI and

the MOSAiC sea ice thickness and between fbRun and MO-

SAiC sea ice thickness. The RMSE calculated for the AWI

sea ice thickness is 11 cm greater than the RMSE calculated

for the fbRun sea ice thickness. A one-sided t test was per-

formed to determine the statistical significance of the differ-

ence, which showed that the fbRun RMSE is significantly

smaller than the AWI RMSE.
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Figure 6. Daily mean sea ice draft differences and SD between BGEP observations and all three model runs. The shaded colored area shows

1 SD calculated for each day from the 10 s record. The SD appears darker where the SDs from different model runs overlap. The gray-shaded

area indicates the assimilation period. The dashed line shows observed sea ice draft minus fbRun sea ice draft, the solid line the equivalent

for refRun and the solid line with circle markers the equivalent for sicRun only. Panel (a) shows data from mooring A, panel (b) data from

mooring B and panel (c) data from mooring D. The sites are marked in the corresponding colors in Fig. 1. The date format is year-month.

Figure 7. The weekly mean difference between the BGEP upward-looking sonar sea ice draft measurements and sea ice draft calculated

from the AWI sea ice data set (dashed lines) and the fbRun sea ice data (solid lines). The color indicates the location in Fig. 1. Positive values

indicate that the BGEP draft is thicker. The date format is year-month.

In Fig. 9b, the radar FB for the refRun, fbRun and AWI

data are shown. The fbRun and AWI data FB in Fig. 9a and

the respective sea ice thicknesses in Fig. 9b do not entirely

follow the same pattern. The AWI FB starts out thinner than

fbRun’s FB, while the AWI sea ice thickness is thicker than

fbRun’s sea ice thickness throughout the entire displayed pe-

riod. This indicates that the difference is caused by the differ-

ence in snow thickness and sea ice density. The AWI data are

the FB values that were assimilated, and the fbRun FB is ap-

proximately between refRun’s and AWI data values, showing

the effect of the assimilation. It is clear from Fig. 8 that re-

fRun and sicRun are closer to MOSAiC IMB data; however

Fig. 9 shows that the fbRun follows the evolution of the ob-

served radar FB better. This shows that the assimilation acts

as expected, but in this area there is a discrepancy between

the in situ observations from MOSAiC IMB buoys and the
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Figure 8. Daily mean sea ice thickness averaged over all grid cells covered by at least eight active buoys per day. The solid black line

indicates the MOSAiC IMB-buoy-measured sea ice thickness, the dotted red line the refRun sea ice thickness, the dash-dotted blue line the

sicRun sea ice thickness and the dashed turquoise line the fbRun sea ice thickness. The shaded areas around each of the plots indicate 1 SD

of each daily averaged sea ice thickness data set. The date format is year-month.

remotely sensed AWI FB observations. The relation between

the FB from refRun and fbRun follows a similar pattern to the

sea ice thickness in Fig. 8, since the sea ice density, snowfall

and water density values are not significantly influenced by

the assimilation.

4 Discussion

To show the effect of the assimilation, the RMSE between the

assimilated SIC and FB observations and the modeled SIC

and FB was calculated for refRun, sicRun and fbRun. Fig-

ures 3 and 4 show that SIC and FB are improved as expected

in each winter season when satellite-derived FB and SIC are

assimilated. Further, the correlation coefficient between the

AWI FB data (which was assimilated) and the fbRun FB data

is higher than the correlation coefficient of the refRun and

the AWI FB data. Sea ice thickness correlations and biases

of fbRun in Table 1 also indicate a closer agreement with the

AWI data when compared to refRun’s correlations and bi-

ases. This shows that the FB assimilation has an effect on the

modeled sea ice thickness.

The RMSE between the assimilated SIC and FB observa-

tions and the modeled SIC and FB was calculated for refRun,

sicRun and fbRun, as shown in Figs. 3 and 4. The results

show that assimilation of satellite-derived sea ice concentra-

tion and freeboard data has a positive effect on the model

performance, with improved sea ice concentration and free-

board values in each winter season. The sea ice thickness,

FB correlations and biases of fbRun in Table 1 suggest closer

agreement with the AWI data than with refRun’s correlations

and biases. This again shows that the FB assimilation has an

effect on the modeled sea ice thickness.

The comparisons to independent sea ice thickness obser-

vations indicate that the fbRun sea ice thickness is improved

in the Beaufort Sea but not in the central Arctic. In contrast,

refRun and sicRun perform significantly better in the central

Arctic. Notably, the in situ observations in the Beaufort Sea

cover more than 2 years, while those in the central Arctic

only cover 9 months. The RMSE plots in Fig. 4 show that

refRun’s RMSE during the winter of 2019/20 is lower than

in the prior month. Moreover, the calculation of the mean

sea ice thickness difference between refRun and fbRun at

the location of the MOSAiC IMB data in October for other

years showed that 2019 was the year with the largest differ-

ences. This indicates that the sea ice thickness in this region

is highly variable and suggests that the better performance

of refRun and sicRun in winter 2019/20 might not be repre-

sentative of all years. The FB values in Fig. 9b could sug-

gest that the assimilated FB data cause the thinner ice for

the fbRun sea ice thickness in Fig. 8. The assimilation be-

gins in November, when fbRun’s sea ice thickness is already

thinner than refRun’s and sicRun’s sea ice thickness. Thus,

the thinner sea ice in Fig. 8 is a result of the assimilation in

the previous year. To be able to compare the year 2019 with

other years, the mean sea ice thickness differences between

refRun and fbRun were calculated at the location of the MO-

SAiC IMB data in October. The mean difference between

refRun and fbRun is 28 cm for October 2018, 50 cm for Oc-

tober 2019 and 2 cm for October 2020. The MOSAiC year is

clearly the one with the largest difference.

Considering refRun’s RMSE in other years, the interan-

nual variability in sea ice thickness in the examined region,

the fact that the observations in the Beaufort Sea span a sig-

nificantly longer time, and the fact that the BGEP ULS fbRun

RMSE is over 20 cm lower than the refRun RMSE and only

10 cm higher for the MOSAiC IMB locations, we argue that

fbRun’s sea ice thickness is overall improved in comparison

to sicRun’s and refRun’s sea ice thickness. Nevertheless, the

difference between the Beaufort Sea and the central Arctic in

the observations and the model runs underlines the need for

more long-term in situ observations.

Dirkson et al. (2017) and Day et al. (2014) show that SIC

has a shorter memory than sea ice thickness. The facts that

FB improves sea ice thickness, as shown in Fig. 6, and that

FB values are still improved after summer in all years (in
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3734 I. Sievers et al.: Assimilating CryoSat-2 freeboard

Figure 9. (a) Weekly mean sea ice thickness averaged over all grid cells covered by the CryoSat-2 flight pass considered in the AWI data

set. The mean sea ice thickness is displayed with 1 SD for sea ice thickness from MOSAiC (solid black), AWI (dash-dotted yellow), fbRun

(dashed turquoise) and refRun (dotted dark blue). (b) Same as (a) but for radar freeboard and without MOSAiC observations. The dash-

dotted yellow line shows AWI radar FB, the dashed turquoise line fbRun radar FB and the dotted dark-blue line refRun radar FB. The date

format is year-month.

contrast to SIC), as shown in the lower panel of Fig. 4, sug-

gest that FB also keeps the memory as opposed to SIC.

The AWI sea ice thickness could be a typical CryoSat-

2 product that could be assimilated in order to improve the

modeled sea ice thickness. Based on the RMSEs in Table 2,

which show that the FB assimilation gives better values com-

pared to the MOSAiC data, and similar results in the Beau-

fort Sea, the method presented in this study shows the per-

spective of assimilating FB instead.

We discussed that the thinner fbRun sea ice thickness in

October in Figs. 9 and 8 is not caused by assimilating the

also thinner AWI FB, as the assimilation starts in November.

In contrast, the significantly larger increase in fbRun’s sea

ice thickness later in the year is a direct result of assimilating

thick FB: in the second half of the 2019/20 winter season,

the AWI sea ice thickness (Fig. 9a) was clearly thicker than

the MOSAiC sea ice thickness. While it is not as clear for

fbRun’s sea ice thickness in Fig. 9a, Fig. 8 clearly shows that

fbRun’s sea ice thickness is also thicker than the MOSAiC

sea ice thickness. The increase in fbRun’s sea ice thickness

during late February to early April 2020 (Fig. 8) follows the

increase in AWI FB (yellow line in Fig. 9b) starting at the

end of January 2020. Since the AWI FB is assimilated in

fbRun, this increase is caused by the assimilation. However,

this assimilation leads to sea ice that is too thick, as seen

in Fig. 8. This overestimation of sea ice thickness is likely

due to an overestimation of FB in the AWI data, as found by

King et al. (2018) in their field campaign in April. Other stud-

ies (Giles and Hvidegaard, 2006; Willatt et al., 2011; Ricker

et al., 2015) suggest similar biases in the radar backscattering

horizon for deep snow and high moisture content. Giles and

Hvidegaard (2006) and King et al. (2018) both conducted

field studies in March and April, months when the assimi-

lated AWI FB (Fig. 7b) is highest, near the final MOSAiC

location. The resulting overestimation of sea ice thickness in

the AWI data and the comparable thinner assimilated sea ice

thickness from fbRun comprise a good example of the ad-

vantage of assimilating FB instead of sea ice thickness.

The increase in biases and the decrease in correlations

shown in Table 1 exhibit a similar pattern to the FB and

sea ice thickness at the MOSAiC IMB locations discussed

above. This similar behavior could indicate that the pattern

displayed in Fig. 7 is not restricted to the observation area

and suggests that the FB assimilation could correct the error

introduced by the wrongly located scattering horizon in the

CryoSat-2 FB retrievals to some extent. However, the thick-

ness comparison of fbRun and AWI data to the BGEP data

set (Figs. 6 and 7) does not show the same seasonal pattern in

thickness as that discussed above for the MOSAiC observa-

tion. This might indicate regional differences in the scattering

horizon or that the assimilation does not correct for the effect

everywhere in the same manner. Further studies are needed

to investigate this.

5 Conclusions

In this study, a method to assimilate FB is described, and

the results from a 3-year assimilation run are evaluated. The

presented method builds upon calculating an increment us-

ing modeled FB and then converting the changed FB into

the sea ice thickness. The method uses parameters from the

sea ice model for the sea ice density, snow density and snow

thickness instead of the prescribed values used in the AWI

sea ice thickness product, which it is compared to. First, it

was shown that the FB assimilation improves the modeled

FB (Fig. 4) and that the assimilation affects the sea ice thick-

ness (Table 1). Figure 6 shows that the sea ice thickness of
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the run assimilating FB is improved in the Beaufort Sea. The

comparison to MOSAiC IMB sea ice thickness data from

the central Arctic does not give the same results. Here re-

fRun and sicRun perform better, but we can show that the

poorer performance of the assimilation is to some extent due

to too thick FB being assimilated. CryoSat-2 FB is known

to have a thick bias in late winter due to uncertainties in the

backscattering horizon of the radar signal (Giles and Hvide-

gaard, 2006; Willatt et al., 2011; Ricker et al., 2015). The

seasonality of the biases and correlations listed in Table 1 as

well as the observation comparison in Fig. 9 indicates that

the assimilation has some skill in mitigating this bias. One of

the two main objectives was to determine if the FB assimila-

tion improves sea ice thickness. Even though fbRun is worse

compared to the MOSAiC IMB observations than refRun, it

is in closer agreement with the longer observation record at

the BGEP locations.

To compare our method to sea ice thickness data from a

more classical approach, we have chosen the weekly sea ice

thickness product from the AWI sea ice portal (Hendricks

et al., 2021). This sea ice thickness is derived from the same

FB as that assimilated in fbRun. Overall, the AWI CryoSat-

2 sea ice thickness and FB is thicker than fbRun’s sea ice

thickness and FB (Table 1). When comparing the two sea

ice thicknesses to independent sea ice measurements from

the BGEP upward-looking sonar data, we can show that the

FB-assimilated sea ice thickness and AWI sea ice thickness

result in similar RMSEs. The comparison to sea ice thickness

observations from MOSAiC IMB buoys deployed during the

MOSAiC in the central Arctic results in significantly lower

RMSE for the sea ice thickness from the FB assimilation.

5.1 Outlook

The presented method builds upon modeling the most in-

fluential variables of Eq. (6). These are the snow thickness,

the snow density and the sea ice density (Alexandrov et al.,

2010). The snow density used in this study does not differ

from the snow density used in the AWI data product. The

results in Fig. 7 show that the modeled variables result in

similar results at the BGEP locations and better results in

the central Arctic compared to the empirical values used in

the AWI sea ice thickness product. Both the snow thickness

and the sea ice density differ, and no clear conclusion can

be drawn at this point as to whether the AWI values or the

model values are more correct. As the aim of this study was

to present the method on how to assimilate FB and a valida-

tion of the resulting sea ice thickness, a detailed discussion of

the model parameters and the resulting influence on the sea

ice thickness when compared to more traditional approaches

is not included. A study with a focus on this is currently in

preparation.
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Nerger, L., Janjić, T., Schröter, J., and Hiller, W.: A regulated lo-

calization scheme for ensemble-based Kalman filters, Q. J. Roy.

Meteor. Soc., 138, 802–812, 2012.

https://doi.org/10.5194/tc-17-3721-2023 The Cryosphere, 17, 3721–3738, 2023



3738 I. Sievers et al.: Assimilating CryoSat-2 freeboard

Nord, A., Kärnä, T., Lindenthal, A., Ljungemyr, P., Maljutenko, I.,

Falahat, S., Ringgaard, I. M., Korabel, V., Kanarik, H., Verjovk-

ina, S., Jandt, S., with support of the whole BAL MFC team: New

coupled forecasting system for the baltic sea area, in: 9th Eu-

roGOOS International conference, Ifremer; EuroGOOS AISBL,

May 2021, Brest, France, 238–244, hal-03328374v2f, 2021.

OSI SAF: Global Sea Ice Concentration Climate Data Record v2.0

– Multimission, EUMETSAT SAF on Ocean and Sea Ice [data

set], https://doi.org/10.15770/EUM_SAF_OSI_0008, 2017.

OSI SAF: OSISAF: Global Sea Ice Concentration

Climate Data Record v3.0 – Multimission, EU-

METSAT SAF on Ocean and Sea Ice [data set],

https://doi.org/10.15770/EUM_SAF_OSI_0014, 2022.

Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson,

M.: Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thick-

ness on radar-waveform interpretation, The Cryosphere, 8, 1607–

1622, https://doi.org/10.5194/tc-8-1607-2014, 2014.

Ricker, R., Hendricks, S., Perovich, D. K., Helm, V., and Gerdes,

R.: Impact of snow accumulation on CryoSat-2 range retrievals

over Arctic sea ice: An observational approach with buoy data,

Geophys. Res. Lett., 42, 4447–4455, 2015.

Rösel, A. and Kaleschke, L.: Influence of melt ponds on mi-

crowave sensors’ sea ice concentration retrieval algorithms,

in: 2012 IEEE International Geoscience and Remote Sens-

ing Symposium, July 2012, Munich, Germany, 3261–3264,

https://doi.org/10.1109/IGARSS.2012.6350608, 2012.

Saldo, R.: Global Sea Ice Concentration Climate Data Records Sci-

entific Validation Report, https://osisaf-hl.met.no/sites/osisaf-hl/

files/user_manuals/osisaf_cdop3_ss2_pum_sea-ice-edge-type_

v3p1.pdf (last access: 30 August 2023), 2022.

Sallila, H., Farrell, S. L., McCurry, J., and Rinne, E.: Assessment of

contemporary satellite sea ice thickness products for Arctic sea

ice, The Cryosphere, 13, 1187–1213, https://doi.org/10.5194/tc-

13-1187-2019, 2019.

Schulzweida, U.: CDO User Guide, Zenodo,

https://doi.org/10.5281/zenodo.7112925, 2022.

Smith, G. C., Liu, Y., Benkiran, M., Chikhar, K., Surcel Colan,

D., Gauthier, A.-A., Testut, C.-E., Dupont, F., Lei, J., Roy, F.,

Lemieux, J.-F., and Davidson, F.: The Regional Ice Ocean Pre-

diction System v2: a pan-Canadian ocean analysis system using

an online tidal harmonic analysis, Geosci. Model Dev., 14, 1445–

1467, https://doi.org/10.5194/gmd-14-1445-2021, 2021.

Stroeve, J. and Notz, D.: Insights on past and future sea-ice evo-

lution from combining observations and models, Global Planet.

Change, 135, 119–132, 2015.

Tilling, R. L., Ridout, A., and Shepherd, A.: Estimating Arctic sea

ice thickness and volume using CryoSat-2 radar altimeter data,

Adv. Space Res., 62, 1203–1225, 2018.

Timco, G. and Frederking, R.: A review of sea ice density, Cold

Reg. Sci. Technol., 24, 1–6, 1996.

Tranchant, B., Testut, C.-E., Ferry, N., and Brasseur, P.: SAM2: The

second generation of Mercator assimilation system, European

Operational Oceanography: Present and Future, p. 650, ISBN 92-

894-9788-2, 2006.

Tsamados, M., Feltham, D. L., Schroeder, D., Flocco, D., Farrell,

S. L., Kurtz, N., Laxon, S. W., and Bacon, S.: Impact of variable

atmospheric and oceanic form drag on simulations of Arctic sea

ice, J. Phys. Oceanogr., 44, 1329–1353, 2014.

Tschudi, M. A., Meier, W. N., and Stewart, J. S.: An enhance-

ment to sea ice motion and age products at the National Snow

and Ice Data Center (NSIDC), The Cryosphere, 14, 1519–1536,

https://doi.org/10.5194/tc-14-1519-2020, 2020.

Vernieres, G., Zhao, B., Cullather, R. I., Akella, S., Vikhliaev, Y. V.,

Kurtz, N. T., and Kovach, R. M.: Assimilation of Cryosat 2 Arctic

Sea-Ice Freeboard in an Ensemble of Coupled GEOS5, Ameri-

can Geophysical Union, 2016, HE13A–06, 2016.

Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryaz-

gin, N. N., Aleksandrov, Y. I., and Colony, R.: Snow depth on

Arctic sea ice, J. Climate, 12, 1814–1829, 1999.

Willatt, R., Laxon, S., Giles, K., Cullen, R., Haas, C., and Helm,

V.: Ku-band radar penetration into snow cover on Arctic sea ice

using airborne data, Ann. Glaciol., 52, 197–205, 2011.

Wingham, D., Francis, C., Baker, S., Bouzinac, C., Brockley,

D., Cullen, R., de Chateau-Thierry, P., Laxon, S., Mallow, U.,

Mavrocordatos, C., Phalippou, L., Ratier, G., Rey, L., Rostan, F.,

Viau, P., and Wallis, D.: CryoSat: A mission to determine the

fluctuations in Earth’s land and marine ice fields, Adv. Space

Res., 37, 841–871, 2006.

Ye, Y., Luo, Y., Sun, Y., Shokr, M., Aaboe, S., Girard-Ardhuin, F.,

Hui, F., Cheng, X., and Chen, Z.: Inter-comparison and evalua-

tion of Arctic sea ice type products, The Cryosphere, 17, 279–

308, https://doi.org/10.5194/tc-17-279-2023, 2023.

Zuo, H., Balmaseda, M. A., Tietsche, S., Mogensen, K., and Mayer,

M.: The ECMWF operational ensemble reanalysis–analysis sys-

tem for ocean and sea ice: a description of the system and as-

sessment, Ocean Sci., 15, 779–808, https://doi.org/10.5194/os-

15-779-2019, 2019.

The Cryosphere, 17, 3721–3738, 2023 https://doi.org/10.5194/tc-17-3721-2023



Impact assessment of snow thickness, sea ice density and water
density in CryoSat-2 derived sea ice thickness
Imke Sievers1, Henriette Skourup2, and Till A. S. Rasmussen1

1Danish Meteorological Institut, Sankt Kjelds Plads 11, 2100 Copenhagen East, Denmark
2DTU Space, Danish Technical University, Elektrovej Building 327, 2800 Kongens Lyngby, Denmark

Correspondence: Imke Sievers (imksie@dmi.dk)

Abstract. Sea ice thickness is an essential climate variable, which is often derived from satellite altimetry freeboard estimates,

e.g. CryoSat-2. In order to convert freeboard to sea ice thickness, assumptions are needed for snow thickness, snow density, sea

ice density and water density. These parameters are difficult to observe co-located in time and space with the satellite derived

freeboard measurements. For this reason, most available CryoSat-2 sea ice thickness products rely on climatologies based on

outdated observations and empirical values. Model and observation based alternatives of sea ice density and snow thickness5

values have been suggested over the past years, but their combined influence on the freeboard to sea ice thickness conversion

has not been analyzed.

This study, evaluates model based spatially varying snow thickness, sea ice density and water density with in situ observa-

tions and the associated parameters used in the classical CryoSat-2 sea ice thickness production. Further, this study calculates

the mean sea ice thickness differences resulting from substituting the parameters used in a classical CryoSat-2 sea ice thickness10

product with model based values. The evaluation shows that the model derived snow thickness, sea ice density and water density

compare better to observations than the associated parameters used in the CryoSat-2 sea ice thickness product. Furthermore,

we find that the model based snow thickness and sea ice density separately lead to the largest sea ice thickness differences, but

that, to some extent, their differences cancel out when both parameters are used in combination. For the water density, we find

the average and maximum sea ice thickness difference to be small in comparison to the sea ice thickness differences introduced15

by the snow thickness and sea ice density, but not negligible as currently stated in most studies. Based on our findings, we

recommend to either use a water density climatology, or an uncertainty value of 2.6 kgm−3 instead of the commonly used

value of 0 to 0.5 kgm−3 in CryoSat-2 freeboard to sea ice thickness conversion.

1 Introduction

Observing sea ice thickness (SIT) on an Arctic wide scale has been impossible before the satellite era. Laxon et al. (2003)20

published the first study that calculated SIT from freeboard (FB) observations derived from satellite radar altimetry. They

based the derivation on an assumption of hydrostatic balance and estimates of the mass of snow and ice. Equation 1 from

Tilling et al. (2018) is currently often used to derive SIT from radar FB, following similar assumptions.

SIT =
(FBr +0.25 ∗Hs)ρw

(ρw − ρi)
+

Hsρs
(ρw − ρi)

(1)
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FBr is the radar freeboard, Hs is the snow thickness, ρs is the snow density, ρi is the ice density and ρw is the water density.25

These variables are difficult to observe co-located in time and space with satellite derived FB estimates. For this reason, most

current CryoSat-2 based SIT products use, with adaptations of snow thickness and sea ice density estimates, the approach

introduced by Laxon et al. (2003), which was based on using climatologies and empirical values.

The first of these adaptations was introduced by Alexandrov et al. (2010) for the sea ice density. While Laxon et al. (2003)

used a constant sea ice density, Alexandrov et al. (2010) allowed the sea ice density to differentiate between multi-year ice30

(MYI) and first year ice (FYI). The second adaptation was introduced to the snow thickness. Laxon et al. (2003) used values

from Warren et al. (1999), which is known as the Warren climatology, or simply W99. The W99 climatology is based on

observations in the central Arctic collected during the time period 1954–1991 on primarily MYI (Warren et al., 1999). Since

then, the Arctic sea ice cover has obtained dramatic changes towards a larger coverage of FYI (Maslanik et al., 2011). In line

with this, Kurtz and Farrell (2011) pointed out that W99 snow thickness is biased towards snow on thick ice i.e., MYI and that35

the snow thickness should be reduced on the thinner FYI. Different approaches have since then been used to modify the W99

snow thickness over FYI. For example, Tilling et al. (2018) and Guerreiro et al. (2017) reduced the snow thickness from W99

by 50% on FYI, whereas e.g. Hendricks et al. (2021) used auxiliary satellite products to estimate the snow thickness over FYI.

The approach of differentiating the snow thickness and sea ice density based on satellite derived ice types will here be referred

to as the classical approach.40

The snow thickness and sea ice density values used in the classical approach have been discussed heavily over the recent

years. According to Kern et al. (2015), these are the variables with the largest impact on the conversion from FB to SIT. Mallett

et al. (2021b) showed that inclusion of seasonal variability in the snow thickness product used in the FB to SIT conversion can

lead to up to 100% faster decline of sea ice in the marginal seas. For this analysis, they used the SnowModel-LG (Liston et al.,

2020) forced by ERA5 (Hersbach et al., 2017) to simulate the seasonal variability. Later, Landy et al. (2022) used the same45

snow model in their FB to SIT conversion and finally Fiedler et al. (2022) used the modeled snow thickness in their sea ice

thickness assimilation. However, both Landy et al. (2022) and Fiedler et al. (2022) use the bi-modal sea ice densities introduced

by Alexandrov et al. (2010).

Alternative approaches to derive sea ice density for FB to SIT conversion have been explored by e.g., Jutila et al. (2022a) and

Ji et al. (2021). Ji et al. (2021) showed that sea ice densities from a climatology derived from sea ice density observations from50

2011-2015 improved the SIT estimates in the Beaufort Sea compared to using the fixed values from Alexandrov et al. (2010).

However, the observations used in this climatology are sparse with significantly more observations close to the validation site

in the Beaufort Sea, which means that more validation is needed before relying on the derived method. Jutila et al. (2022a) uses

airborne observations to derive bulk sea ice densities and finds that sea ice in the Arctic has become denser since Alexandrov

et al. (2010). They also derive a negative exponential relationship between the bulk density and the FB, but acknowledge that55

more research is needed in order to use this relationship in FB to SIT retrievals. Based on the study by Jutila et al. (2022a),

Hendricks et al. (2021) recognizes that the Alexandrov et al. (2010) sea ice densities within their SIT product are probably

biased low, but that a change in one variable should go hand in hand with a review of other variables, which might be biased

too. Changing only one of the variables in eq. 1 could introduce a significant bias.
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A multi-variable evaluation has to our knowledge not been carried out to date. One challenge with such an approach is the60

lack of available Arctic wide sea ice density observations. Even though Jutila et al. (2022a) suggests a method to derive sea ice

density from FB, they acknowledge that the method is not mature enough to be used routinely in the FB to SIT conversion for

the entire Arctic. Sievers et al. (2023) introduced a new FB assimilation method, including a FB to SIT conversion in which

snow thickness, sea ice density and water density model values were used to derive the SIT from FB. The values from this

modeling approach allow for an Arctic wide comparison to the classically used values of snow thickness, sea ice density and65

water density, as they are available on similar temporal and spatial resolution as the typically used satellite derived FB values.

The model values from Sievers et al. (2023) include Arctic wide varying water densities, which are typically assumed to be

constant in the classical FB to SIT conversion, see Laxon et al. (2003); Alexandrov et al. (2010); Tilling et al. (2018); Guerreiro

et al. (2017); Kurtz et al. (2013). Most of these studies cite Laxon et al. (2003) or Alexandrov et al. (2010) as their water density

source. Alexandrov et al. (2010) states that the surface water density only varies with 2 kgm−3 throughout the Arctic, which70

is not reflected in our model results. Laxon et al. (2003) uses the water density from Wadhams et al. (1992) that changes with

the season but not in space. It is known that the surface salinity varies throughout the Arctic (Zweng et al., 2019) and that this

governs the density. Wadhams et al. (1992) also emphasizes that water density could have a significant influence on the FB to

SIT conversion but has since not gotten much attention, which means that it might be about time to revise the assumption that

water density can be considered constant.75

This study aims at analyzing how on average the geographical variability of sea ice density, snow thickness and water density

influences the derived SIT. First, we compare the modeled and classical approach values for sea ice density, snow thickness

and water density against in situ observations. Since we find that the model sea ice density from Sievers et al. (2023) is not

varying enough, we introduce an improved model derived sea ice density. The detailed derivation of the improved model sea

ice density is added in the appendix. Secondly, the impact of using the different snow thicknesses, sea ice density and water80

density values in the FB to SIT conversion is evaluated. For this, the SIT difference resulting from each parameter separately

is calculated, as well as their combined impact on the SIT.

The snow thickness, sea ice density and water density values from the classical approach are taken from Hendricks et al.

(2021) in this study. This data set was chosen, because it provides all variables used to derive SIT from FB. Sallila et al. (2019)

compared different CryoSat-2 derived SIT products, also listing their approach to derive sea ice density and snow thickness.85

Their analysis shows that the publicly available SIT products derived via the classical approach are using similar values for

snow thickness and sea ice density, hence it can be assumed that Hendricks et al. (2021) data set provides a good representation

of typical values used.

As mentioned above, observations on similar time and spatial scales as the CryoSat-2 observations are currently not available

for snow thickness, sea ice density and water density. Therefore, different methods for the validation of each of the parameters90

were introduced. They are presented in section 2.4. The variable with the closest temporal and spatial coverage to CryoSat-2

FB is the snow thickness. Over the past years, multiple efforts have been made to derive new Arctic winter snow thickness

products. The efforts comprise microwave based snow thickness products (Rostosky et al., 2018), radar based snow thickness

products (Garnier et al., 2021; Lawrence et al., 2018) and model based approaches (Liston et al., 2020; Petty et al., 2018). For
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the comparison in section 3.1 we decided to utilize the radar based snow product Garnier et al. (2021), due to its independence95

from the CryoSat-2 snow thickness including W99 and the microwave based Rostosky et al. (2018) snow product, and it’s more

realistic seasonal cycle compared to Lawrence et al. (2018). Since we compare 10-year averages in the SIT comparison, we

chose to compare the surface water density to the World Ocean Atlas climatology from 2018 (Zweng et al., 2019) in section 3.3.

Most in situ observations that could have been used instead are included in the climatology. The sea ice density observations

are the most sparse, which is why we included two data set for the sea ice density observation comparison in section 3.2: the100

airborne observation from Jutila et al. (2022a) and the ice core based observations from (Oggier et al., 2023a, b).

2 Data and Methods

2.1 Model setup

The model system is a coupled ocean and sea ice model, which is described in Sievers et al. (2023). The ocean model is NEMO

(v4.2, Madec et al. (2017)) and it closely follows the tuning from Hordoir et al. (2022). The sea ice component is CICE v6.2105

(Hunke et al., 2021). The model setup used in this study will be called C6N4 in the following.

In CICE snow-ice formation is applied, and melt ponds are included. The CICE surface water density is calculated from sea

surface salinity following Feltham et al. (2006). The coupling is performed every time step, and both the ocean and the ice

components are run with a 600-second time step and on a 10 km x 10 km gird. The model run analyzed ran from 2010-01-01

to 2020-12-31 and was initialized by a 15-year spin up simulation.110

The atmospheric forcing applied is ERA5 (Hersbach et al., 2017) with a frequency of 3 hours. The snow thickness is

calculated by CICE based on the snow forcing from ERA5. We found that the atmospheric boundary layer scheme and the

atmospheric drag formulation impacts the snow thickness. This study use the CICE default atmospheric boundary layer and

the form drag formulation from Tsamados et al. (2014).

The sea ice density parameterization requires temporal evolving sea ice salinity, which is only available in the mushy ther-115

modynamics (Turner et al., 2013). Two sea ice density parameterization are investigated. The sea ice density originally used in

Sievers et al. (2023) model C6N4 is shown in equation 2.

ρi = ab ∗ ρb +(1.− ab) ∗ ρfresh (2)

where ab is the fraction of brine contained in sea ice and ρb the density of the brine, following Assur (1958). ρfresh is the

sea ice density excluding brine, and is to 882kgm−3 in C6N4. The second model approach for calculating the sea ice density,120

here called C6N4J21, is achieved by letting ρfresh depend on the model variable first year ice area fraction (FY Ifrac):

ρfresh = ρmyi ∗ (1.−FY Ifrac)+ ρfyi ∗FY Ifrac (3)

where ρmyi = 890kgm−3 is the sea ice density of MYI and ρfyi = 907kgm−3 the sea ice density of FYI, in both cases

excluding brine. The values for ρmyi and ρfyi were determined by the least square fit analysis of data from Jutila et al. (2022a).
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Since the sea ice density is only a diagnostic variable, it has no impact on the snow thickness and water density, which are the125

same as in C6N4. More details on the derivation of ρmyi and ρfyi are listed in the appendix.

2.2 Snow Thickness, Sea Ice Density and Water Density from the Classical Approach

The weekly gridded along-track CryoSat-2 derived SIT data product version 2.4 developed at the Alfred Wegener Institute

(AWI) (Hendricks et al., 2021) includes all values used in equation 1 for deriving the SIT from radar FB at the corresponding

location. It also only differs on minor details from other CryoSat-2 FB derived SIT data sets (Sallila et al., 2019), which is why130

it is here used as a representation for the classical FB to SIT approach.

The sea ice density values used are 916.7 ± 35.7kgm−3 for FYI and 882.0 ± 23.0 kgm−3 for MYI following Alexandrov

et al. (2010). The ice type data is the OSISAF daily ice type product OSI-403-d (SAF, 2017). The snow thickness is a combi-

nation of the W99 snow climatology and a product that uses the Advanced Microwave Scanning Radiometer 2 (AMSR2) in the

marginal seas. The snow thickness products are weighted depending on location. In the central Arctic extending to the Russian,135

the Greenlandic and Canadian coasts the W99 climatology is dominating. In the marginal seas of the Canadian Archipelago,

the Fram Strait, the Barents Sea and the Bering Sea the AMSR2 snow thickness is dominating. Following Kurtz and Farrell

(2011) they reduce the W99 snow thickness by 50% over FYI. The value used for the water density is 1024 kgm−3, and

its uncertainties are neglected. The data comes on an Equal-Area Scalable Earth Grid version 2 (EASE2-Grid) with a 25 km

resolution. For model comparison, the data was bilinearly interpolated to the model grid. In the following text, this data set will140

be referred to as CS2AWI .

2.3 Validation data

2.3.1 Snow thickness

To validate the snow thickness, the altimeter based snow thickness product (ASD) published by Garnier et al. (2021) from

Laboratoire d’Etudes en Géophysique et Océanographie Spatiales (LEGOS) was used. The ASD product is based on the145

assumption of different penetration depth of different radar wavelengths. It is derived by subtracting the SARAL/Altika Ka-

band and CryoSat-2 Ku-band radar height measurements from one another. It is available on a monthly basis on a 12.5 km

grid.

Garnier et al. (2021) found that the ASD data product compares better to NASA Operation IceBridge airborne snow thickness

observations than both the W99 climatology and the AMSR2 based data product. The ASD data product covers the Arctic up150

to 81.5 ◦N, which sets the limit for the comparison in section 3.1.
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2.3.2 Sea ice density

Airborne observations (Jutila et al., 2022a) of sea ice bulk densities are used as the baseline for sea ice densities. The density

was calculated based on the Archimedes’ principle, following:

ρi = ρw(1− Hfs

htot −Hs
)+ (ρw − ρs)

Hs

Htot −Hs
(4)155

ρw equals 1024 kgm−3 and ρs 300 kgm−3. The values for Hs (snow thickness), Htot (total snow and ice thickness) and Hfs

(snow freeboard) are based on airborne observations in the beginning of April 2017 and April 2019. The locations of the field

campaign in 2017 are marked on figure 1 by blue dots and stars, and by red dots and stars for the 2019 campaign. Hs was

measured with a snow radar (Jutila et al., 2022b), htot was measured with an electromagnetic induction sounding instrument

also called the EM-Bird (Haas et al., 2009) and Hfs was measured with a near-infrared, line-scanning Riegl VQ-580 airborne160

laser scanner. More details about each of the measurements can be found in Jutila et al. (2022a). The resulting data includes an

error estimate, which was used to filter the data. No values with error larger than 30 kgm−3 were used.

A second sea ice density data set, used for comparison, was obtained primarily in the central Arctic (figure 1 black dots). This

data set was collected during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition,

where sea ice density from FYI and second year ice cores was obtained (Oggier et al., 2023a, b). The sea ice density values165

were calculated using the method of hydrostatic weighing. For this method, the mass of the ice core is measured both in air and

in an unspecified liquid (Oggier et al., 2023a, b). The locations of the coring sites were interpolated to the model grid using the

nearest neighbor method. The time the measurements were taken range from October 2019 to August 2020.

2.3.3 Water density

The surface water density was calculated from the salinity of the World Ocean Atlas 2018 (WOA) data set described in Zweng170

et al. (2019). The WOA consists of quality controlled observations interpolated to a standardized depth grid. It is the largest

freely available gridded data set of oceanographic observations (Boyer et al., 2018). The data set used in this study is the 0.25◦

data set spanning the years 1955 to 2017 and the averaged monthly subsets for October to March. The density was calculated

following the salt water density calculation from Feltham et al. (2006) utilizing only the surface values from WOA.

2.4 Validation methods175

Reference observations of ice conditions in the Arctic are sparsely distributed both in time and geographic coverage. The

reference measurements included in this study have different spatial and temporal resolutions, and thus different methods have

been used to validate the model and CS2AWI values of snow thickness, sea ice density and water density. Where the latter two

have been compared using conventional methods such as the root-mean-square differences (RMSD), the snow thickness and

SIT comparison methods need a more detailed description, which is included in section 2.4.1 and 2.5.180
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Figure 1. The map shows the locations of the observations from the IceBird campaign from April 2017 (turquoise stars and dots), April 2019

(red stars and dots) and the four areas considered in figure 2. The blue region is the Canadian Arctic, the orange region the Beaufort Sea, the

purple region the Russian Arctic East and the gray region the Russian Arctic West. The black dots indicate the locations of the MOSAiC sea

ice density measurement shown in figure 4

.

2.4.1 Snow thickness

The snow thickness data sets from C6N4, CS2AWI and ASD have different spatial and temporal resolutions. The C6N4 data

is provided on an Arctic wide 10x10 km grid at a weekly frequency, the CS2AWI data includes approx. 100 orbit passes per

week gridded on a 25 x 25 km EASE2 grid covering up to 88◦N, and the ASD data is provided with a monthly frequency on

a 12.5 km EASE2 grid, covering only up to 81.5◦N. To ensure a fair comparison, probability density functions (PDF) of each185

month’s snow data were calculated for each of the three data sets. The data was divided into 4 regions, covered by all three

data sets (figure 1), which enables the discussion of regional differences. The area under the PDF is always one, allowing a

direct comparison of data sets with different resolutions. To evaluate, how well the model and CS2AWI data agree with the

ASD data, a measure here called “disagreement” (Dis) is introduced,

Dis=

∫
PDFASD +

∫
PDFmodel −

∫
PDFoverlap (5)190
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Where the PDFASD is the PDF of the ASD data set, PDFmodel PDF of the model and PDFoverlap the area where the two

PDFs overlap. For the disagreement between ASD and CS2AWI , PDFmodel would be substituted by PDFCS2 in equation 5

If both curves are perfectly overlapping Dis=0 and if there is no overlap between the curves Dis=2. Dis is dimensionless.

2.5 SIT comparison

One objective of this study is to evaluate SIT differences resulting from using different sea ice density, snow thickness and water195

density in the production of the CS2AWI and the C6N4 data. To evaluate this, first the CS2AWI data was bilinearly interpolated

onto the model grid and the model data was averaged to weekly means to match the temporal resolution of the CS2AWI data.

Following this, all grid points covered by less than 50 satellite overpasses, in the CS2AWI data set from 2010-01-01 to 2020-

12-31 were discarded, and only grid points and time steps covered by both the CS2AWI data product and C6N4 were kept

for further analysis. In a second step, where gird cells fulfilled the above-mentioned criteria, the mean snow thickness, sea ice200

density and water density values for the model and CS2AWI data were calculated, followed by their differences as model –

CS2AWI resulting in Δρi, ΔHs and Δρw. Finally, the average snow thickness, sea ice density and water density for each grid

cell fulfilling the above-mentioned criteria was calculated from all model and CS2AWI values represented in the following by

ρi, Hs and ρw. The mean difference and mean values are used to determine the mean SIT difference when calculating the SIT.

For the SIT differences resulting from snow thickness (ΔSITHs ), sea ice density (ΔSITρi ) and water density (ΔSITρw ) the205

following equations were used:

ΔSITHs =

(
FBρ̄w

(ρ̄w − ρ̄i)
+

(H̄s +ΔHs)ρs
(ρ̄w − ρ̄i)

)
−
(

FBρ̄w
(ρ̄w − ρ̄i)

+
H̄sρs

(ρ̄w − ρ̄i)

)
(6)

ΔSITρi =

(
FBρ̄w

(ρ̄w − (ρ̄i +Δρi))
+

H̄sρs
(ρ̄w − (ρ̄i +Δρi))

)
−
(

FBρ̄w
(ρ̄w − ρ̄i)

+
H̄sρs

(ρ̄w − ρ̄i)

)
(7)

210

ΔSITρw =

(
FB(ρ̄w +Δρw)

((ρ̄w +Δρw)− ρ̄i)
+

H̄sρs
((ρ̄w +Δρw)− ρ̄i)

)
−
(

FBρ̄w
(ρ̄w − ρ̄i)

+
H̄sρs

(ρ̄w − ρ̄i)

)
(8)

for the combined SIT difference:

ΔSIT =

(
FB(ρ̄w +Δρw)

((ρ̄w +Δρw)− (ρ̄i +Δρi))
+

(H̄s +ΔHs)ρs
((ρ̄w +Δρw)− (ρ̄i +Δρi))

)
−
(

FBρ̄w
(ρ̄w − ρ̄i)

+
H̄sρs

(ρ̄w − ρ̄i)

)
(9)

The mean FB values are calculated from CS2AWI data only, and the ρs values are equal in both data sets.

3 Results215

The results are split into two sections. In section 3.1, 3.2 and 3.3 the snow thickness, sea ice density and water density from

C6N4 and CS2AWI data are compared to observations for validation. In section 3.4, the differences in SIT resulting from

the 10-year mean snow thickness, sea ice density and water density values of the two data sets are analyzed. First for each

parameter isolated and finally for all three combined.
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3.1 Snow thickness220

The PDF of the snow thicknesses from C6N4, CS2AWI and ASD are displayed in figure 2 for the months November to

March. Compared to the CS2AWI and ASD snow thicknesses, the C6N4 values are thinner in November and have the largest

Figure 2. Probability density functions (PDF) for snow thickness in regions defined in figure 1, where all three data sets exist.

accumulation over winter. The CS2AWI snow thickness PDFs show two or even three distinct peaks due to the thinner snow

cover over FYI and thicker over MYI. In the Canadian Arctic, three peaks are visible. This is due to the diverse snow conditions
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in the Canadian Archipelago, the northern Baffin Bay and Fram Strait that are all included within the region (figure 1). Overall,225

the PDFs in figure 2 show that the snow cover of C6N4 is in better agreement with the ASD snow thickness compared to the

agreement of the CS2AWI and the ASD. To quantify this, the disagreement between the CS2AWI and the ASD PDFs and the

disagreement between the C6N4 and the ASD PDFs were calculated and displayed in table 1.

Table 1. Overview of the disagreement between the PDFs in figure 2 using the ASD observations as reference. The disagreement is based on

equation 5, and it ranges from 0. to 2., where 0 is best.

Month Canadian Arctic Beaufort Sea Russian Arctic East Russian Arctic West

C6N4 CS2AWI C6N4 CS2AWI C6N4 CS2AWI C6N4 CS2AWI

November 0.91 0.58 0.45 0.87 0.30 0.98 0.48 0.98

December 0.54 0.71 0.42 0.84 0.24 1.11 0.22 0.86

January 0.46 0.65 0.25 0.98 0.33 1.28 0.50 0.88

February 0.22 0.78 0.26 1.18 0.61 1.38 0.87 0.62

March 0.26 0.74 0.46 1.24 0.67 1.15 0.94 0.57

Overall, the disagreement between the C6N4 and ASD is lower than the disagreement between the ASD and CS2AWI . The

C6N4 snow thickness is in best agreement with the ASD data in the Beaufort Sea and the Russian Arctic East. The large230

disagreement in the Beaufort Sea (figure 2) is caused by the presence of the large peak indicating thick MYI snow (∼ 0.3-0.4

m) in the CS2AWI data, which is not reflected in the ASD data set, nor in the C6N4 data. It is only in November in the Canadian

Arctic and in February and March in the Russian Arctic West that CS2AWI data match better with the ASD data, when it is

compared to C6N4.

3.2 Sea ice density235

The relation between the sea ice density retrievals from the IceBird measurements of Jutila et al. (2022a) and the C6N4,

C6N4J21 and CS2AWI data is displayed in figure 3. According to Jutila et al. (2022a), the observations from 2017 were only

obtained over FYI locations, while the 2019 observations cover both MYI and FYI. To distinguish the data sets from 2017

and 2019, they are here shown in two separate panels. All IceBird measurements originating from the same day and grid cell

were averaged to one value. Grid cells with less than 10 IceBird measurements were excluded (0.9 % of the data) from the240

analysis. The RMSD between the IceBird and CS2AWI , and IceBird and C6N4/C6N4J21 data are listed in table 2 for each

year separately.

In both 2017 and 2019 there appears to be clustering of the modeled data and the CS2AWI data in figure 3. The flight tracks

of the IceBird campaigns in both years (figure 1) are situated at two different locations. The clustering is a result of the different

representations of sea ice densities in C6N4 and the CS2AWI data at the different locations. The locations are marked by stars245

and dots in figure 1. The large stars and dots in figure 3 show the average values for the two regions of each year.

Comparing C6N4 and C6N4J21 with the IceBird observations in figure 3, C6N4J21 appears to be in better agreement with

the IceBird observations than C6N4. From the RMSD in table 2, it is also clear that the C6N4J21 sea ice densities are in closer
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agreement with the observations than C6N4. In 2019 both the eastern and western average values (large red stars and dots in

figure 3b) from C6N4J21 compare especially well to the IceBird values, which was to be expected, since the 2019 values were250

used to derive the C6N4J21 sea ice density. In 2017 the C6N4J21 sea ice density also compares better to the IceBird values than

the C6N4 sea ice density, but the 2017 C6N4J21 RMSD is 4 kgm−3 higher than in 2019. Especially in the western Beaufort

sea (large red star in figure 3a) the values have not improved as much as in 2019 or the 2017 eastern Beaufort Sea values

(large red dot in figure 3a). The close agreement between the averaged sea ice density from C6N4J21 and the IceBird data in

Figure 3. The IceBird sea ice density plotted against CS2AWI , C6N4 and C6N4J21 sea ice densities for 2017 and 2019 campaigns. The stars

and dots represent the averaged Western and Eastern observation sites, as defined in figure 1.

2019, and the fact that the 2019 IceBird data were used to derive the sea ice density parameterization in C6N4J21, calls for255

a comparison with independent reference observations. Such a comparison has been made between the sea ice core based sea

ice density measured from the MOSAiC expedition and the C4N6, C4N6J21 model based estimates. All the MOSAiC density

measurements and density estimates are plotted against time in figure 4 and the resulting RMSD are listed in table 3. From

figure 4 and table 3 it is clear that the C6N4J21 sea ice densities are in closer agreement with the observations than the C6N4

values, supporting the findings of the IceBird comparison. Figure 4 also shows that both model estimates result in overall lower260

sea ice density values, with a slight seasonality of decreasing density over the winter, which is not reflected in the observations.

Since this is visible in both C6N4J21 and C6N4 sea ice density, the reason for this seasonality must be linked to the sea ice

brine content, since this is the only factor varying C6N4 sea ice density. The best agreement between C6N4J21 and MOSAiC
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observations is in April, which is also the month that the observations (Jutila et al., 2022a) used to derive ρmyi and ρfyi in

equation 3 were collected.265

Table 2. RMSD between C6N4, C6N4J21, CS2AWI and the IceBird sea ice density. The values in brackets indicate the model values only

considering data points covered by all three data sets.

2017 2019

C6N4 C6N4J21 CS2AWI C6N4 C6N4J21 CS2AWI

RMSD 35 (33) 21 (17) 35 25 (20) 17 (18) 22

In the 2019 plot (figure 3b), the mean IceBird values (large stars and dots location on the y-axis) differ significantly between

the CS2AWI (yellow) and the model data (blue and red). This is due to the different number of data points covered by the

observation and CS2AWI data and the observation and C6N4 data. To compare the CS2AWI with the model values, only data

point should be taken into account which are covered by a all three datasets. This reduces the comparison data significantly.

For comparison, the CS2AWI data coincides only with ∼ 40 observation points, while the model coincides with 130-140270

observation points, depending on the year. To compare the CS2AWI data with the modeled sea ice density and the observations,

the RMSD was calculated for all data points covering all three data sets. The RMSD are listed in the brackets in table 2 and

3. Overall, the RMSD between the C6N4J21 and the IceBird data are lower than the ones between CS2AWI and IceBird data.

For the MOSAiC data, the C6N4J21 RMSD is also lower than the CS2AWI RMSD, but not as significant as in the IceBird data

comparison.

Figure 4. C6N4, C6N4J21 and CS2AWI sea ice density estimates and MOSAiC FYI and second year ice core sea ice density.

275

While the CS2AWI data was biased low in comparison to the IceBird data in figure 3, the CS2AWI data is biased high in

comparison to the MOSAiC data (figure 4). Most of the CS2AWI data points here are classified as FYI, and also many of the

observations are taken on a FYI ice flow (Oggier et al., 2023a). Jutila et al. (2022a) concludes that the sea ice densities values
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Table 3. RMSD between the MOSAiC sea ice density observations and model and CS2AWI values. The values in the brackets indicate the

results for model values in locations where only CS2AWI data exists (yellow rhombuses in figure 4).

C6N4 C6N4J21 CS2AWI

RMSD 17.3 (17.8) kgm−3 8.1 (7.7) kgm−3 8.2 kgm−3

following Alexandrov et al. (2010) are biased low for both FYI and MYI. The results displayed in figure 4 suggest that this

might not be the case for the FYI values everywhere in the Arctic.280

3.3 Water density

To evaluate the model and CS2AWI surface water densities, the model’s 10-year mean and the CS2AWI approach using a

single value of 1024 kgm−3 were compared to the WOA climatology, which is based on observations. The water 10-year

mean densities of WOA, CS2AWI and the C6N4 simulation are displayed for November to March in figure 5.

Figure 5. From left to right: Maps of the WOA, C6N4 and CS2AWI water densities (top row), and difference maps of WOA–CS2AWI ,

WOA–C6N4, and CS2AWI -C6N4 water densities (bottom row).
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Overall, the pattern of dense water in the Atlantic sector, low density water in the Russian shelf area and a negative density285

gradient from the Fram Strait towards the Beaufort Sea are present in both the model and the WOA density maps. The WOA–

C6N4 surface water density differences (figure 5e) reveal areas with the highest differences located in the Russian shelf area.

The WOA–CS2AWI surface water density differences (figure 5d) also show the largest differences here, but of opposite sign

than WOA–C6N4. The model simulated lower densities than the WOA suggests, and the CS2AWI value is higher than WOA.

In the rest of the Arctic, the WOA–C6N4 and WOA–CS2AWI differences are of similar sign, but locally of different magnitude.290

In the Beaufort Sea both WOA–C6N4 and WOA–CS2AWI differences are of about the same magnitude and in the Atlantic

sector the WOA–CS2AWI differences is larger than the WOA–C6N4 differences. In the Lincoln Sea, a strong negative anomaly

is shown in both differences. Apart from this, the WOA–CS2AWI difference is here lower than the WOA–C6N4 differences.

Overall, the C6N4 is in better agreement with the WOA, except in the Lincoln Sea. C6N4 show less variability when compared

to the WOA data. The standard deviation (STD) between the C6N4 and the WOA water densities for the entire Arctic is 1.6295

kgm−3 and the STD between the WOA and the CS2AWI water densities is 2.1 kgm−3.

3.4 Sea Ice Thickness difference analysis

The individual influence of sea ice density, snow thickness and water density on the FB to SIT conversion are displayed in

figure 6. Both the snow thickness differences between C6N4 and CS2AWI (figure 6c) and the sea ice density differences

between C6N4J21 and CS2AWI (figure 6k) result in significant SIT differences, as seen in figure 6d and figure 6l, respectively.300

The largest SIT difference results from the sea ice density differences between C6N4J21 and CS2AWI . On average, it amounts

to 0.14 m, but reaches maximum values of 1.16 m (table 4) close to the north coast of Greenland. The water density results in

the lowest SIT difference (on average 0.01 m), but the maximum value of 0.33 m is not negligible.

Table 4. Maximum (Dmax) and root-mean-square difference (RMSD) of the SIT differences calculated by the 10-year mean model and

CS2AWI differences for snow thickness, sea ice density, water density and all three combined.

C6N4–CS2AWI C6N4–CS2AWI C6N4J21–CS2AWI C6N4–CS2AWI C6N4J21–CS2AWI C6N4–CS2AWI

Snow Thickness Sea ice density Sea ice density Water density Combined Combined

Dmax 0.55 m 0.49 m 1.16 m 0.33 m 0.94 m 0.61 m

RMSD 0.17 m 0.11 m 0.21 m 0.01 m 0.12 m 0.17 m

Figure 6 also shows that the impact of the specific variables on the SIT differences are not necessarily mapped one-to-one

for all parameters. The snow thickness differences in figure 6c for example almost translate one-to-one to the resulting SIT305

differences in figure 6d. For example, both in the Lincoln Sea and north of Svalbard, does a Hs anomaly of about 0.1 m translate

to a SIT anomaly of about 0.2 m. This is not the case for the sea ice density, which is particularly visible when comparing

figure 6g and h. In this case, the sea ice density anomaly in the Lincoln Sea of about 5 kgm−3 causes the same SIT anomaly

in the Lincoln Sea as the sea ice density anomaly of about -20 kgm−3 on the East Siberian Shelf.
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Figure 6. The rows show from top to bottom; the snow thickness, the C6N4 sea ice density, the C6N4J21 sea ice density and the water

density. Each column shows from left to right; the 10-year model mean, the 10-year CS2AWI mean, their differences and the resulting SIT

differences of the respective parameters. Be aware of the different color scales of the SIT differences in p and o.

The influence of all combined differences are shown in figure 7 for the two different cases using C6N4 (figure 7a) and310

C6N4J21 (figure 7b), respectively. Both plots show up to 0.4 m differences, but of opposing signs and in different locations,

indicating that the change of sea ice density from C6N4 to C6N4J21 has a significant impact on the FB to SIT conversion. The

largest differences SIT between the C6N4 data and the CS2AWI data is located in the eastern Beaufort Sea and is mainly caused

by lower snow thickness and sea ice density in the C6N4 data (compare figure 6c and g). The largest differences between the
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Figure 7. SIT differences resulting from all variables combined differences. a) shows the SIT differences using C6N4 and b) using C6N4J21

sea ice density.

C6N4J21 data and the CS2AWI data is located north of Svalbard and mainly caused by higher snow thickness and sea ice315

density in the model (compare figure 6c and k).

3.4.1 Water density derived SIT differences

To evaluate whether the differences in water density between the WOA and the model and the WOA and the CS2AWI data,

leads to significant differences in SIT, we calculated the SIT differences using different water density differences (Δρw) as

input for equation 8. The results are presented in figure 8. For figure 8a Δρw was calculated from mean values of WOA–320

CS2AWI and for figure 8b from WOA–C6N4. Both SIT difference plots show maximum values in the Lincoln Sea. These

maxima are caused by anomalous low surface salinity in the WOA data. The observation density in this area is sparse, and the

climatology might be biased to a certain year with anomalous low salinity here. For the further analysis, this region is excluded.

The SIT difference calculated from the WOA–CS2AWI density has a more wide-spread variation than is the case for the one

calculated from WOA–C6N4, including regions with both positive and negative biases. Since the CS2AWI water density is325

constant, this was to be expected. Both the C6N4 and CS2AWI water density lead to thicker ice in the Beaufort Sea and thinner

ice in the Fram Strait and Greenland Sea, with the bias towards thinner ice being less pronounced in the C6N4 comparison. In
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the Russian shelf region, the CS2AWI data leads to thicker ice and the C6N4 data to no difference, except for a small area of

thinner ice, west of the Anzhu Islands. The RMSD between WOA–CS2AWI amounts to 0.02 m and between WOA–C6N4 to

Figure 8. SIT differences resulting from varying equation 5 by the difference between the WOA–CS2AWI (left) and WOA–C6N4 (right)

water densities.

0.01 m SIT difference with a maximum of 0.13 m for the CS2AWI data and 0.16 m for the C6N4 data.330

4 Discussion

4.1 Snow thickness

The snow thicknesses of C6N4, CS2AWI and ASD are compared in figure 2 and table 1. The best agreement is found between

the C6N4 and the ASD snow thicknesses, whereas the CS2AWI snow thickness is in general too thick. The CS2AWI snow

thickness consist of a combination of two snow products, i.e., the W99 climatology and the AMSR2 snow thickness product.335

The included areas in this study primarily use the W99 climatology except for the marginal seas of the Greenland Sea, Barents

Sea and the Baffin Bay. Here, the snow thickness was derived from microwave data (Hendricks et al., 2021). The snow thickness

comparison in figure 2 does not include any snow observations in the central Arctic, as the ASD snow product only covers up

to 81.5°N. Zhou et al. (2021) compares eight different snow thickness products, to W99 and finds that W99 is significantly

thicker than any of them. This is in good agreement with our results.340

The PDFs in figure 2 show that the C6N4 snow thickness, when compared to the ASD snow thickness product, overall is

thinner in the beginning of winter and thicker by the end of winter. The snow is thinner in the beginning of the winter in C6N4,
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because most of the snow in the model is melted away during the summer. There are three possible reasons for the thicker snow

by the end of winter.

First, C6N4 does not include snow densification, which is the process where wind and temperature reduces the volume over345

time without changing the mass (Liston et al., 2020). When C6N4 is run with FB assimilation, the value of 0.25 in equation 1

is substituted with a term depending on the snow density, which densifies over winter according to a linear function introduced

by Mallett et al. (2021a). This snow densification term is only used during the assimilation and does not influence the snow

thickness anywhere else in the model (Sievers et al., 2023). To avoid overestimation of the C6N4 snow thickness in late winter,

the densification used in the assimilation following Mallett et al. (2021a) could be applied to scale the snow thickness.350

The second reason for the difference in snow thickness in late winter could be that the Ku-band radar, which is used to

determine the snow-ice interface in the ASD product, does not penetrate the entire snowpack (Willatt et al., 2011; Kwok, 2014;

Ricker et al., 2015; King et al., 2018). In situ observations that can be used to evaluate the Arctic wide snow thickness products

are limited in time and space, thus a consistent validation of this will remain a challenge.

A third reason that may bias the C6N4 snow thickness is regional biases in the snowfall from ERA5, which could be355

overestimated in certain regions. Stroeve et al. (2020) compared two snow model runs forced with ERA5 and NASA’s Modern

Era Retrospective-Analysis for Research and Applications, Version 2 (MERRA-2) (Gelaro et al., 2017). They find that the

modelled snow thickness from both atmospheric forcing data sets are thicker compared to W99 in a similar region, slightly

further west. They attribute this difference to a storm that brought more snow into the region in the year they evaluated, but they

also mention that the snow fall rate might have changed over the past decades due to changes in the atmospheric circulation as360

a result of the decreased summer sea ice extent (Stroeve et al., 2011). The in situ observations from the MOSAiC expedition

can provide some insight of the evaluation of at least one winter season. Wagner et al. (2022) compared snowfall rates during

the MOSAiC expedition to ERA5 and finds good agreement between the observed and ERA5 snowfall rates. C6N4 is forced

by ERA5 snowfall. Further, (Kwok et al., 2020) finds that snow thickness estimates from combined CryoSat-2 and IceSat data

compares well with reconstructed snowfall from ERA5. However, they also use the CryoSat-2 radar measurements, which365

might lead to underestimation of snow thickness, as mentioned above. All of these studies (Stroeve et al., 2011; Zhou et al.,

2021; Wagner et al., 2022; Kwok et al., 2020) support the thicker modelled snow in the Russian Arctic west area to be more

realistic than both the ASD product and the CS2AWI snow thickness.

Overall, table 1 shows that the snow thickness from C6N4 agrees better with the ASD data product than the CS2AWI

snow thickness. A few exceptions are found in the Canadian Arctic and the Russian Arctic West for specific months, where370

the CS2AWI and the ASD snow products agrees better. In the Russian Arctic West, the C6N4 snow thickness increasingly

disagrees with the ASD snow thickness in the late winter months. As mentioned above, this could be a result of either the Ku-

band radar not penetrating the entire snowpack or the snow in C6N4 not including snow densification. The in situ measurements

on which King et al. (2018) base their findings, that the Ku-band radar does not penetrate the entire snowpack, are taken north

of Svalbard, a region included in our region called “Russian Arctic West” (figure 1). In November in the Canadian Arctic, the375

difference most likely deems from the overestimation of summer snow melt in C6N4. This region is typically covered by ice

that has survived several winters. The snow thickness from the snow model in Stroeve et al. (2020) supports the snow thickness
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of about 0.20-0.25 m from the ASD product in November in the Canadian Arctic. Overall, we conclude that there is enough

evidence that the C6N4 snow thickness is more realistic than the CS2AWI data snow thickness.

4.2 Sea ice density380

According to figure 3 the C6N4 sea ice density is too low and has too little spatial variability compared to the airborne IceBird

observations. Figure 4 also shows that the C6N4 sea ice density is also too low when compared to MOSAiC observations. The

10-year mean C6N4 sea ice density in figure 6e shows that similarly low values are calculated for the entire Arctic. In fact, all

observations are denser than the C6N4 sea ice density. The formula used to calculate the sea ice density (equation 2) accounts

for the amount of brine, but not the fact that the amount of enclosed air bubbles in the ice changes during melt season, leading385

to lower sea ice density in MYI (Timco and Frederking, 1996). The C6N4 value for ρfresh is 882 kgm−3, which reflects a

typical density for MYI (Alexandrov et al., 2010) and explains the comparable low sea ice density in the C6N4 run.

The C6N4J21 sea ice density parameterization varies ρfresh depending on the FYI area fraction in each grid cell. Based on

the RMSD, the resulting sea ice density is in better agreement with the IceBird data. This was expected as ρfyi and ρmyi from

equation 3 were fitted to the 2019 IceBird data. It is also closer to the MOSAiC observations (figure 4), which are independent390

of the IceBird data sea ice density observations. This shows that overall the C6N4J21 density parametrization performs better

than the simpler approach used in C6N4.

The 2017 averaged values (figure 3a) show that the eastern Beaufort Sea (dots) sea ice is denser than in the western Beaufort

Sea (stars). This is reflected in the C6N4 and CS2AWI data, but not in the C6N4J21 data, where the opposite is the case. Jutila

et al. (2022a) states that the 2017 data exclusively consists of FYI. C6N4J21 and CS2AWI however also include MYI data,395

just in different locations: CS2AWI mostly in the western Beaufort Sea and C6N4J21 mostly in the eastern Beaufort Sea. The

denser western Beaufort Sea values in C6N4 must be caused by the brine content, since no destination of MYI and FYI is

included in this simulation. The lower C6N4J21 densities in western Beaufort Sea (stars in figure 3a) indicate that the model

here falsely classifies ice as MYI. The 10-year mean sea ice density in figure 6i indicates that on average, the model simulates

more MYI in this region. Since the observations only cover one year, no conclusion can be drawn whether the model in general400

simulates too much MYI in the western Beaufort Sea. The wrongly classified MYI in the C6N4J21 seems to stem from too

much MYI exported into the western Beaufort gyre. Hunke (2014) found that the drag parameterization form Tsamados et al.

(2014) increases the MYI export into this region. This drag parameterization is also the one used in the presented model set up.

This means that the drag parameterization is one of the first model settings that should be examined to determine the reason for

the excessive MYI export into the western Beaufort gyre. In the CS2AWI data (figure 3a yellow stars and dots), the majority405

of the eastern Beaufort sea values were classified as MYI, but also some western Beaufort Sea values. The results in figure

3 show that both the CS2AWI and C6N4J21 assume MYI, where the observations only suggest FYI. In the CS2AWI data,

this classification is based on passive microwave based ice type data. Our results suggest that the classification is not reliable.

Another study evaluating different satellite sea ice type datasets comes to the same conclusion (Ye et al., 2023). They find that

the ice type data used in the CS2AWI FB to SIT conversion has a MYI area bias of up to -0.54 x106km2 and FYI area bias up410
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to 0.60 x106km2. More accurate classification of MYI and FYI would influence both the snow thickness and sea ice density,

which are also the parameters found to be the most important in the FB to SIT conversion.

Comparing the RMSD of the C6N4J21 and the CS2AWI sea ice densities shows that overall, the C6N4J21 densities are

in better agreement with observations than the CS2AWI densities (comp. values in brackets in table 2 and 3). As discussed

above, for 2017 the reason for the too low sea ice density values is FYI, which is classified as MYI. But other studies have also415

suggested that the Alexandrov et al. (2010) values in general are too low (Ji et al., 2021; Jutila et al., 2022a). Ji et al. (2021) does

not specify, if it is both the values for MYI and FYI that are biased low according to their results. But Jutila et al. (2022a) finds

that the both MYI and FYI values from Alexandrov et al. (2010) are biased low. Figure 4 however suggests that the CS2AWI

FYI sea ice densities are actually slightly higher than the MOSAiC observations. There are two distinct differences between the

IceBird observations and the MOSAiC observations: The location and the observation method. The physical conditions under420

which ice is formed vary throughout the Arctic. This might lead to differences in density, which is however only a speculation

and will need further investigation. Timco and Frederking (1996) reviewed sea ice density observation methods and found that

the method used to obtain the IceBird observations is the least reliable and the method used to obtain the MOSAiC observations

is the most reliable.

The sea ice density that is derived for C6N4J21 is rather simple, which impose at least three limitations. These limitations425

are:

1) the model track the FYI area as a fraction of the grid cell area. For estimating the bulk sea ice density, the volume of MYI

and FYI is needed. The calculation of volume assumes that the ice thickness is the same for FYI and MYI, which introduces a

bias towards too large a volume of FYI.

2) FYI area is defined as ice area formed since the previous September. This means that every September, all the remaining430

ice is classified as MYI, including also ice younger than one year. This results in a jump in sea ice density that is nonphysical.

The physical explanation for lower densities in summer are the inclusion of air bubbles where brine has washed out (Timco and

Frederking, 1996). This happens gradually throughout the melt season and not as a jump in September. With these limitations

in mind, we recommend using the here derived sea ice density parameterization only during ice growth season.

3) the observation method and limited time. Timco and Frederking (1996) reviewed different methods to derive sea ice435

density and found the method used in Jutila et al. (2022a) to be the least reliable. This might explain some of the variability

shown in figure 3. Another limitation of the observations is that they are only available in April, but the parameterization

was derived for the entire winter. Figure 4 shows that the C6N4J21 sea ice density indeed agrees best with the MOSAiC

observations in April. The April model values in figure 4 are though also more variable than in the winter month, and further

observation comparisons have to be carried out to come to a final conclusion.440

4.3 Water density

Following WOA (Figure 5) the general pattern of dense water on the Atlantic side of the Arctic and lighter water in the Russian

shelf area and the Beaufort Sea is replicated by C6N4, however this spatial water density gradient is less pronounced in C6N4.
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Particularly, the Beaufort Sea surface water is lighter and in the Fram Strait region denser in WOA. The CS2AWI water density

is represented by a single value with no spatial variations.445

Evaluating C6N4 mixed layer depth (MLD) we found that it is overall too deep, similar to the MLD in Hordoir et al. (2022),

who’s mixing parametrization were closely followed in our model setup. This overestimated MLD is a result of enhanced

mixing, which also explains the too high Beaufort Sea water densities, which is a result of the low density surface water getting

mixed with denser subsurface water. The largest differences in between the WOA climatology and the C6N4 data is found

in the Laptev Sea. The Laptev Sea surface salinity is highly dependent on river run-off and atmospheric forced transport of450

the river run-off to different locations each year (Janout et al., 2020). A climatology, like the WOA, will not reflect this inter-

annual variability, whereas an ocean model potentially could. In most regions of the Arctic, there are less than 50 water density

observations on a 1x1 degree grid for a period covering 150 years (Zweng et al., 2018). Even though, the WOA climatology is

compiling a large part of all existing oceanographic observations (Zweng et al., 2018), one has to keep in mind that the coverage

is extremely sparse. Keeping all limitations in mind, C6N4 compares better to the WOA data set than the constant value used455

in the CS2AWI data set. In area like the Laptev Sea, where the surface salinity is subject to large inter-annual variability due

to wind forcing, models could even be more suited than climatologies. If using modeled surface density, a thorough analysis

of the region’s fresh water distribution should be carried out.

The C6N4 water density was calculated following Feltham et al. (2006), which calculates the density only depending on

the salinity. This is currently the default in CICE. For consistency, the WOA water density was calculated following a similar460

approach by Feltham et al. (2006). The oceanographic standard would have been to use the salinity and temperature dependent

TEOS-10 (Commission et al., 2015). We tested if using TEOS-10 had any impact on the results in the SIT difference, or the

overall STD calculation between the CS2AWI and WOA data, and found this not to be the case.

4.4 Evaluation of Sea Ice Thickness differences

Currently available SIT products (Hendricks et al., 2021; Tilling et al., 2018; Guerreiro et al., 2017; Kurtz et al., 2013) use465

similar approaches as the CS2AWI data product to derive their sea ice density, snow thickness and water density. Differences

mainly accruing in the snow thickness reduction over FYI or satellite data product used to derive ice type (Sallila et al., 2019).

Since the values are similar, the CS2AWI data can in the following discussion be used as a general representation of the

classical approach for CryoSat-2 SIT data. The above discussion of C6N4, C6N4J21, CS2AWI and observations for snow

thickness, sea ice density and water density shows that all model variables compare better to observations than the values used470

in CS2AWI .

The largest SIT differences (figure 6b and table 4), result from the snow thickness differences and the C6N4J21 sea ice

density differences. The snow and the sea ice density that influences the SIT calculation has been discussed by other studies

(Zygmuntowska et al., 2014; Kern et al., 2015; Ji et al., 2021; Jutila et al., 2022a). Kern et al. (2015) finds that both snow

thickness and sea ice density contribute equally to the SIT uncertainty, while Zygmuntowska et al. (2014) finds that the snow475

contributes with 70 % and the sea ice density with 30-35 %. Even though this study does not analyze the exact contribution

from each parameter in percentage, we find that the sea ice density differences on average influence the sea ice thickness more

21



than the snow thickness (comp. RMSD table 4), when the values from the classical approach are substituted with the modelled

values. This might however depend on the snow thickness used in the comparison (Zhou et al., 2021).

The differences in SIT are compared variable by variable in figure 6d, h, l and p, and the combined SIT differences are shown480

in figure 7b. The single value SIT differences in figure 6 result in higher SIT differences than the combined ones in figure 7b.

This is due to the opposite signs in the SIT differences of snow and sea ice density (figure 6d and l) canceling each other out

in the combined SIT difference. Here, our results show that only substituting W99 snow thickness, or only Alexandrov et al.

(2010) sea ice density, introduce biases.

The effect of varying the water density on the SIT are normally neglected, see e.g. (Alexandrov et al., 2010; Kurtz et al.,485

2013; Guerreiro et al., 2017; Tilling et al., 2018; Hendricks et al., 2021). The SIT difference analysis between the C6N4

and CS2AWI suggests that the water density can lead to up to 0.33 m difference with a RMSD of 0.01 m, which is little in

comparison to the SIT differences initiated by snow thickness and sea ice density, but still not negligible in certain areas. The

SIT RMSD between WOA–CS2AWI amounts to 0.02 m and for WOA–C6N4 0.01 m. The average value shows that in general,

the C6N4 value result in lower SIT difference, which is also shown in figure 8. The maximum though is higher for the WOA–490

C6N4 difference. The higher maximum value could be due to the nature of the WOA climatology. This maximum is located

close to the Lena river delta. As discussed above, this is a region with high inter-annual sea surface salinity variability (Janout

et al., 2020; Zhuk and Kubryakov, 2021) and low observational converge (Zweng et al., 2018). As also mentioned above, an

analysis of the inter-annual variability of sea surface salinity of C6N4 in this area is needed to draw any final conclusion about

its ability to model the right location of river discharge.495

All existing SIT data products that use the hydrostatic balance equation to derive SIT are either neglecting the error contri-

bution from water density (Kurtz et al., 2013; Tilling et al., 2018; Hendricks et al., 2021) or are using values of 0.5 kgm−3

(Guerreiro et al., 2017) as the uncertainty with reference to Alexandrov et al. (2010) or Laxon et al. (2003). Alexandrov et al.

(2010) refers to three data sources (i.e: Gorshkov (1980); Pavlov and Stanovoy (1998); Timokhov and Tanis (1997)) for their

assumptions which were not accessible for us, and Laxon et al. (2003) refers to Wadhams et al. (1992). Wadhams et al. (1992)500

evaluated the seasonal variability of the Arctic surface water density and finds that it varies by about 0.5 kgm−3, but they did

not take the spatial variability into account. Figure 5 shows that the WOA water density varies by up to 10 kgm−3 in space.

Our results show that, using a climatology like the WOA or model value would give more realistic water density estimates

than the commonly used single value. If a single value is used for the water density in equation 1, the spatial variability should

be accounted for in the uncertainty estimate. We suggest, in this case, to use 2.6 kgm−3 calculated as the sum of the STD505

between the WOA and CS2AWI density of 2.1 kgm−3 and 0.5 kgm−3 to account for the seasonal variability, as suggested

by Wadhams et al. (1992). Figure 8 shows that using a variable water density can improve the SIT, which is why we suggest

that data products deriving SIT via the hydrostatic balance equation should use a data product like the WOA climatology.

As discussed above, the WOA climatology is also associated with its own uncertainties, but these are still smaller than those

related to a single value of water density.510

Even though the model values were found to be closer to the validation data, our analysis indicates that more work should

be invested in validation of the ocean component. Particularly, the migration of river discharge should be validated. Further,

22



we found that the mixing seems to be too strong, which results in a too deep mixed layer. Furthermore, the ice transport in

the Beaufort Sea should be investigated. Our results show that MYI is present where observations indicate only FYI in the

Beaufort sea. The drag parameterization seems to be a good first subject of interest to improve this.515

The analysis focused on 10-year mean values. One additional benefit of using model values would be to include the inter-

annual variability. This could lead to significantly higher SIT differences compared to the ones found in this study

5 Conclusions

The aim of this study was; 1) To evaluate whether sea ice model values, as used in Sievers et al. (2023) (C6N4) can substitute

the commonly used W99 snow thickness, the Alexandrov et al. (2010) sea ice density and the Arctic wide constant water520

density values in the classically satellite derived FB to SIT conversion. 2) Evaluating how much changing the snow thickness,

sea ice density and water density would impact the SIT difference for each variable separately and combined.

We found that the C6N4 snow thickness and water density compares better to observations than the CS2AWI values, but

that the C6N4 sea ice density does not. Therefore, this study introduced an improved sea ice density parameterization (eq. 3)

C6N4J21, which we find compares better to observations than the Alexandrov et al. (2010) sea ice type based densities used in525

the CS2AWI approach.

Analyzing the SIT differences resulting from the snow thickness, sea ice density and water density separately, we find that

the snow thickness and sea ice density differences between the CS2AWI and C6N4J21 lead to the largest SIT differences.

The areas with the largest differences for both values are located north of Greenland and Canada, and are of opposite sign.

In the combined SIT difference (figure 7b) their effects cancel out. The combined SIT differences analysis shows that only530

substituting snow thickness, or sea ice density, introduces a bias. This underlines the value of the derived C6N4J21 sea ice

density, which can be easily combined with approaches of substituting the snow thickness with model values, as done by for

example Landy et al. (2022) and Fiedler et al. (2022).

In contrast to other studies (e.g., Kurtz et al. (2013); Tilling et al. (2018); Hendricks et al. (2021)), we find that the water

density introduced uncertainty is not negligible, but on average leads to 0.02 m difference in the SIT to FB conversion and535

can in extreme cases lead to up to 0.13 m in SIT difference, comparing CS2AWI constant value and WOA values. To our

knowledge, all public available CryoSat-2 SIT products assume a water density uncertainty of 0 to 0.5 kgm−3 which is based

on assumptions only taking into account the seasonal variability of water density (Wadhams et al., 1992), but not the spatial

variability. We suggest changing the sea ice density uncertainty to 2.6 kgm−3 to account for both the seasonal and spatial

variations, or using water density values from climatologies like the WOA, or as in this study ocean model values. The value540

of 2.6 kgm−3 is derived from the STD between the CS2AWI constant value and the WOA.

23



Appendix A: Deriving Sea Ice Density C6N4J21

C6N4 sea ice density varies only by the amount of brine enclosed in the ice (equation 2). Figure ?? and ?? show that the

resulting sea ice density is not variable enough and too light. The value of ρfresh in equation 2 represents with 882 kgm−3

typical MYI values. Enclosed air bubbles are the main reason for older ice to be less dense than newly formed ice (Timco and545

Frederking, 1996). The sea ice model is not capable of simulating enclosed air bubbles, so we need an alternative method to de-

rive ρfresh, for example by using MYI and FYI volume per grid cell, following approaches used in the classical approach.Also

FYI and MYI volume is not calculated by the model. However, the model does calculate the percentage of the FYI area cov-

erage per grid cell (FY Ifrac), where FY Ifrac is defined as the area fraction of ice formed since last September. Equation

3 was introduced to substitute the constant ρfresh value of 882 kgm−3 in equation 2, with ρmyi and ρfyi values weighted550

by FY Ifrac. We here use the sea ice density observations from Jutila et al. (2022a) to minimize the root-mean-square error

(RMSE) between observation and model values for different ρmyi and ρfyi:

ρi,RMSE =

√√√√ n∑
i=1

(ρi,model − ρi,J21)2

n
(A1)

where ρi,model was calculated following:

ρimodel
= ab ∗ ρb +(1.− ab) ∗ (ρmyi ∗ (1.−FY Ifrac)+ ρfyi ∗FY Ifrac) (A2)555

similarly to the ρb in equation 2, ρb is the model calculated sea ice enclosed brine density and ab the percentage of brine of the

total volume of ice. The sea ice density values for ρmyi and ρfyi used as input to estimate the RMSE error matrix are:

ρmyi = [870,875,880,885,890,895,897] ρfyi = [900,905,907,910,914,917,919,921]

The values for ρmyi and ρfyi were chosen under the following assumptions; (a) MYI is typically less dense than FYI due

to the presence of enclosed air bubbles in MYI (Timco and Frederking, 1996), (b) taking into considerations observed values560

from the literature (Jutila et al., 2022a; Alexandrov et al., 2010; Timco and Frederking, 1996) and (c) the densities for MYI and

FYI need to lay within the observed ranges, excluding extreme outliers, because the resulting value will reflect a bulk value for

an area covering 10 km2.

The 2019 observations from Jutila et al. (2022a) were used for this calculation because they include a similar amount of FYI

and MYI value from the same source. The observations were interpolated to the model grid by the nearest neighbor method,565

and all values on the same day and the same grid cell were averaged. All observation values, with an associated error larger

than 30 kgm−3, were excluded from the analysis. The considered observations have an average error of 22.62 kgm−3.

The error matrix of the RMSE between the observations and model values, using all combinations of ρmyi and ρfyi, are

visualized in Figure A1. The lowest RMSE were found for ρmyi = 890kg/m3 and ρfyi = 907kg/m3, indicated by the darkest

blue area in figure A1. We use these densities for MYI and FYI as input for ρmyi and ρfyi in the C6N4J21 sea ice density in570

equation 3.
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Figure A1. Error matrix of the calculated sea ice density RMSE following equation A1 for all tested ρmyi and ρfyi.
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Abstract. Sea-ice models fill many purposes; they are used in global climate models or for short-term forecasts to plan shipping

routes. No matter what their output is used for, understanding the cause for their variability is crucial.

In the this study two commonly used sea-ice models, CICE and SI3 were compared after running both models with similar

boundary condition, on the same grid, with the same forcing and initialised with the same data, with the aim to understand how

the two models differ from each other when forced equally. The set-up also allows linking certain model biases observed in5

both models to the external forcing. We found that the models compare well to sea ice concentration, sea ice thickness and snow

thickness observations, with small regional differences, which could be linked to different model processes. The processes with

the highest influence are the drag formulation, the albedo, and the treatment of snow. We find that the treatment of snow has a

significant influence on the difference in sea ice thickness between the models, even though their forcing is equal.

1 Introduction10

The interest in forecasts of Arctic sea ice conditions on multiple time scales has increased. On short time scales (up to days)

forecasts are of importance for search and rescue and maritime safety (Wagner et al., 2020). As the forecast length is extended

towards seasonal the variability in the Arctic sea ice cover is of interest when planning shipping routes and other maritime

activities (Stocker et al., 2020; Stewart et al., 2020). On long time scales (decades and more) forecast of the Arctic sea ice

cover are of interest for the climate science community as it plays a central role in the global climate system as changes in15

the sea ice cover changes the albedo of the poles and thereby provides a positive feedback to the climate system (Kashiwase

et al., 2017). Validation of model systems are primarily based on remotely sensed data as in-situ data is difficult to obtain in the

Arctic. Long records of sea ice concentration (SIC) are often based on remotely sensed passive microwave data, which extends

back to the 1970s. In addition to validation, these data sets provide time series of the historical evolution of the sea ice cover.

Within this time period sea ice extend has retreated and the fraction of multi-year sea ice has reduced (Tonboe et al., 2016).20

Hindcast from sea-ice models aim to reproduce and predict these changes. One example is Collow et al. (2015), who show

1
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the same trend for sea ice volume as what is seen in the remotely sensed data records. However, two model simulations rarely

result in the exact same result.

Several studies have examined the cause of these differences. The influencing parameters can in general be grouped into

external and internal parameters. External parameters are for example atmospheric forcing, lateral boundary conditions or25

initial conditions. Atmospheric forcing for example influences sea ice by adding heat, precipitation and radiation. Wang et al.

(2018) compared the widely used atmospheric reanalysis ERA-Interim with its successor ERA5, which has on average a 2◦ C

higher warm bias. Forcing a 1-D thermodynamic model with both dataset resulted in an unexpected low difference since ERA5s

precipitation is higher and insulated the sea ice from heat loss. Another example of an external parameter for differences are

the initial conditions. They are especially interesting for short-term predictions. When cold starting a model run the initial SIC30

and thickness are often depending on the ocean and atmosphere temperature and are constant. To avoid over or underestimated

ice they are often set to a value realistic in the area of interest. Dirkson et al. (2017) and Day et al. (2014) run simulations

where observed SIC and thickness were used as initial conditions and show that the skill of the model increases significantly

when a realistic sea ice thickness (SIT) is used.

Internal parameters are for example the model grid, time steps, number of sea ice categories or the way thermodynamic and35

dynamic processes are discretized. Kiss et al. (2020) compares three global ocean-sea-ice models on three different fine grid

resolutions and finds that different resolutions favour the representation of different process. They for example find that models

run on coarser girds miss certain sea ice characteristic features as for example leads. Another example of internal cause for

resulting model differences is the dynamical solver chosen to solve the momentum equation of sea ice. Losch et al. (2010)

compares a line-successive-over-relaxation (LSOR) an a elastic-viscous-plastic (EVP) scheme finding that the resulting sea ice40

velocities differ by several cm/s resulting in a freshwater export difference of 200 km3 yr−1.

Many solutions as, for example the dynamical solver, the grid size, and the number of sea ice categories increase the com-

putational cost. Many sea-ice models, which are commonly used, come with a limited set of options for internal parameters

as for example the dynamical solver, or the way albedo is calculated from the radiative forcing. This leads to many different

sea-ice model set ups, which when compared to one another still show to have comparable skill (Long et al., 2021), however45

they still show a certain amount of variability in Arctic sea ice conditions. In order to set up an ideal sea-ice model, the external

and the internal parameters and forcing should reflect the reality, as close as possible, however it can be hard to differentiate

the sources that introduces the bias between the external and internal parameters. In order to study the internal parameters only

the external forcing can be set to be the same.

In this study, we want to investigate this variability. This is done by using two state of the art sea-ice models which are50

commonly used to simulate Arctic sea ice at different time scales such as climate models (Long et al., 2021), short term sea ice

predictions (Dupont et al., 2015) and in sea ice reanalysis (Lellouche et al., 2021). In order to focus the analysis on the sea-ice

models the two models were run on the same grid, with the same atmospheric forcing, coupled to the same ocean model, forced

by the same boundary conditions and started from the same ocean and sea ice initial conditions to eliminate sources influencing

the sea ice predictability. The models are CICE and SI3. SI3 is the default sea-ice model included in NEMO after version 4.0.55

2
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Since CICE can be run stand-alone or coupled to an ocean model, CICE was coupled to NEMO. To our knowledge this study

is the first coupling NEMO4 to CICE and this study also serves as a validation study.

Snow plays an important role in the sea ice thermodynamics as it acts as an insulating layer between the atmosphere and

the sea ice. It has a high albedo which ensures that the incoming radiation is reflected. It also plays a part in sea ice dynamic

processes as it alters the surface roughness of sea ice. During the last year snow on sea ice gained more and more attention.60

New satellite based snow observation data products were released as for example the Ka/Ku band snow product from LEOGS

(Garnier et al., 2021) or the snow depth resulting from a combination of Cryosat2 and ICESat2 sea ice freeboards by Kacimi

and Kwok (2022). The increased understanding has also reached the modelling community with the result that snow becomes

more and more important (Blanchard-Wrigglesworth et al., 2015). For these reasons we decided to include the snow volume

in this study to contribute to the understanding which role snow plays in sea ice models.65

The aim of this study is to compare the two models under as similar conditions as possible and investigate the significant

differences which may appear. In addition, if there are significant differences we want to identify and discuss their causes.

Based on this we want to make a statement about where the sea-ice modelling community might need to put a focus for further

improvement.

Section two describes the data, methods including the models used in this study. Section three describes the results and70

highligths the differences between the two ice models, whereas section four discuss the results and section five concludes this

study.

2 Data and Models

The two coupled ocean and sea ice model systems consist of the same ocean model, which is described in section 2.1, and

two different sea ice models, which are introduced in section 2.2, together with their setup and input data. In section 2.3 the75

observational data which was used for the evaluation is described.

2.1 Ocean model

The ocean model NEMO (Madec et al., 2017) is widely used in the modelling community for both regional (Le Sommer et al.,

2019) and global ocean simulations, climate prediction, hind casts (Hazeleger et al., 2012) and modelling of marginal seas

(Hordoir et al., 2019) to only name a few applications. The set up used in this paper closely follows Hordoir et al. (2022) and80

uses similar forcing and namelist settings. Changes were made to the namelist due to a version update and the atmospheric

forcing differs. The setup includes tides and runs without ocean surface restoring. The forcing consists of 3-hourly atmospheric

data from ERA5 (Hersbach et al., 2017) (2-m temperature, 2-m specific humidity, 10-m wind, incoming short/long wave

radiation, total precipitation, snowfall and sea level pressure). At the lateral boundaries it is forced monthly with GLORYS

salinity, temperature, u- and v-velocities and sea surface height fields (Lellouche et al., 2021). The tidal forcing consists of85

TPXO 7.2 harmonic tidal constituents at open boundaries (Egbert and Erofeeva, 2002). For the river runoff a climatology from
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Dai and Trenberth (2002) was used. The initial fields for salinity, temperature, SIC and SIT for ocean and ice are ORAS5

reanalysis (Zuo et al., 2019).

Figure 1. The model domain of the coupled NEMO-CICE and NEMO-SI3 models (area in blue and red). The red area refers to the thick ice

mask used in figure 9 and the blue area to the thin ice mask used in figure 9. The thin ice mask also includes open water and its southern

borders mark the end of the model domain. The numbers indicate different areas discussed in section 4. Number 1 indicates the Lincoln Sea

and Canadian Archipelago, 2 the Atlantic ice edge, 3 the Russian shelf, 4 the Chukchi Sea and 5 the Beaufort sea.

2.2 Sea ice models

Both sea-ice models are coupled to NEMO. The sea-ice models CICE (Hunke et al., 2021a) and SI3 (NEMO-Sea-Ice-Working-90

Group, 2022) both are eulerian multi category sea-ice models solving dynamics, and thermodynamics of sea ice numerically.

Both models use Elastic-Viscous-Plastic (EVP) rheology run with the same time step, and are coupled and forced at the same

frequency. The models were run from 2008 to 2020 starting from the same initial conditions. The model output analysed in

the following sections includes data from 2010-2020, excluding a 2 year spin up phase. The albedo was tuned in both models.

Since the calculation of the albedo differs in both models this could not be made coherently. The tuned parameters are attached95

in the supplementary material along with their models namelists.

2.2.1 SI3

SI3 (Sea-Ice Integrated Initiative) is the NEMO default sea-ice model from version 4.0. It was developed to unify the former

three main sea-ice models used in combination with NEMO in the past: CICE, GELATO and LIM (Madec et al., 2017). SI3 uses

constant drag coefficients for ocean ice and atmosphere ice drag. The parameters can be found in the namelist in the appendix.100

The albedo calculation follows (Shine and Henderson-Sellers, 1985) and distinguishes in between five different surface types

which which all can be tuned via namelist parameters, which can be found in the appendix. The albedo parameters were tuned
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to fit the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) (Schweiger et al., 2011a) total sea ice volume.

For this study we use NEMO-SI3 version 4.0.4 revision r13658.

2.2.2 CICE105

CICE is a portable sea-ice model, which can be used standalone, however it is recommended to run as part of a coupled system

either global or regional. The model consists of one dynamical part solving advection of sea ice and changes in thickness and a

thermodynamic model solving the changes in thickness due to thermodynamic processes. The code for both parts is frequently

updated and maintained by the CICE consortium and can be found on github (Hunke et al., 2021a).

In this set up we use form drag formulation which calculates the drag coefficients depending on SIC, flow size, melt pond,110

ridges and freeboard as described by Tsamados et al. (2015). The albedo is calculated depending on the suns incident angle

and sea ice surface type following Briegleb and Light (2007). The different surfaces types are snow, ice and melt ponds. For

the calculation of the surface albedo different process are taken into account. For a more detailed description we refer to Hunke

et al. (2021b). The albedo parameters were tuned to fit PIOMAS (Schweiger et al., 2011a) total sea ice volume.

CICE is coupled to NEMO based on a set up used in Smith et al. (2021). Changes made from Smith et al. (2021) to the115

present setup are the update of the model versions from NEMOv3.6 to NEMOv4 and CICEv4 to CICEv6.2. As a difference to

the standard setting the freezing and the melt temperature has been differentiated in order to account for salinity difference of

sea ice and the ocean.

2.3 Observations

The model simulations are compared with remote sensing observations of SIC, SIT and snow depth on sea ice. Therefore120

monthly averages of model output were interpolated to the observation grids. All averages were calculated over the period

2010-2020.

2.3.1 OSISAF Sea ice concentration

The Ocean and Sea Ice Satellite Application Facility (OSISAF) SIC is based on passive microwave data from satellite measure-

ments. Brightness temperature measurements retrieved by SSMIS instruments are processed with help of ECMWF atmospheric125

reanalyses on a daily basis by DMI and MET Norway. The advantage of using brightness temperatures to retrieve SIC is the

independence of cloud cover and daylight in the Arctic, resulting in a year round data product. The data is gridded in a resolu-

tion of 10x10km covering the entire Arctic. It has an accuracy of ± 10% in the Arctic with the largest bias in summer due to

meltponds (OSISAF, 2017).

2.3.2 CS2SMOS Sea Ice Thickness130

The CS2SMOS SIT product is an optimal interpolated sea ice product combining weekly averaged CryoSat2 SIT with daily

SMOS SIT developed by the Alfred Wegener Institue (AWI). The combination of these two products utilise their combined
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strength; the thick sea ice from Cryosat and the thin sea ice from SMOS (Mu et al., 2018b). Data comes on a 25x25km EASE2

grid with a time step of one week. More information about the data set can be found in Ricker et al. (2017).

2.3.3 Ka/Ku Snow Thickness135

The Ka/Ku snow depth product combines altimeter data from SARAL and from CryoSat2. It uses the difference in penetration

depths from Ka-band and Ku-band altimeters to determine how much snow lays on top of sea ice. This is possible because the

Ku-band radar is reflected at the snow–ice interface, while the Ka-band radar is reflected at the snow surface. The data product

comes in monthly time steps covering the time period November to April 2013-2019. The data is distributed on a 12.5km x

12.5km EASE2 grid and covers the Arctic up to 81.5N (Garnier et al., 2021).140

3 Results

This section will describe comparisons of the two model systems and SIC, SIT and snow thickness with each other and with

observations.

3.1 Sea Ice Concentration

Figure 2 shows the 10 year mean OSISAF SIC compared to 10 year mean modelled SIC for March and September. In general,145

the differences are slightly larger in CICE compared to SI3, but this difference is small in comparison to the model-observation

differences. In March, the largest differences are found in the North Atlantic and Barent Sea. In September, both models show

a higher SIC in the Beaufort Sea and a lower SIC in the central Arctic close to the Russian shelf. The negative bias of the

models in the Beaufort Sea is stronger pronounced in CICE. The positive bias in SI3 in the Central Arctic/Russian shelf region

is stronger pronounced in SI3.150

Figure 3 shows the difference between SI3 and CICE and the SIC for the respective month September and March. In March,

the differences are mainly in the Atlantic sector with more SIC in CICE. At the maximum CICE exceeds SI3 SIC by 60% just

north of Iceland. In average CICEs SIC exceeds SI3s by about 25% in the region where the models differ from each other. In

September, CICEs SIC is larger than SI3s close to the ice edge. Here the maximum of this difference lies with 50% more SIC

in CICE compared to SI3 in the northern Laptev Sea. The central Arctic and the area north of Greenland SI3 has up to 20%155

higher SIC than CICE.

3.2 Sea Ice Thickness

To compare the models with the CS2SMOS all the monthly SIT model data was interpolated onto the CS2SMOS grid. Only data

points covered by CS2SMOS were considered for the comparison and all data above 88◦ N was excluded, since CS2SMOS is

an optimal interpolation and not CryoSat2 nor SMOS covers latitudes above 88◦ N. Data from each month in which CS2SMOS160

is available was summed up over the total covered area and is shown for both models and CS2SMOS in figure 4.
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Figure 2. Monthly SIC climatology and differences for the period 2010-2020. March is shown in the upper row and September in the lower

row. Left panel displays OSISAF observation, the middle the difference of OSISAF and CICE and on the right OSISAF minus SI3. The

black line shows the 15% SIC contour from OSISAF, the red line from SI3 and the purple line from CICE for the respective month.

3.2.1 Model Satellite Comparison

Figure 4 shows that in most years CS2SMOS starts the winter season with a larger sea ice volume compared to the models. In

most years, when the freeze up begins CICE models the sea ice cover to be thinner than the ice cover from SI3. Throughout

the rest of the winter season, the modeled sea ice volume grows faster compared to the CS2SMOS sea ice volume. While165

CS2SOMS stop increasing the sea ice volume in April, both models keep on producing sea ice until the end of the season.

CICE slows down the sea ice production slightly earlier than SI3. This is especially true from 2012 to 2016.

To get a better understanding of the regional differences between models and observations monthly difference maps of 10

year averages for October and March are plotted along with a reference CS2SMOS SIT in figure 5. The figure shows that the

overall lower sea ice volume in October, also shown in figure 4 originates from a difference in the central Arctic. Overall,170

this difference is stronger between CICE and CS2SMOS than between SI3 and CS2SMOS. In March, both models show a

thicker ice cover than CS2SMOS in coastal areas (Canadian Archipelago, Hudson Bay, Russian shelf seas) and at the ice

margins around western Greenland. The SIT differences in the central Arctic is approximately the same as in October. In the

Beaufort Sea region, both models display more ice than CS2SMOS for all months. This difference is strongest pronounced
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Figure 3. Monthly SIC climatology and differences for the period 2010-2020. First column shows the difference in SIC between the two

model setups in March (top) and September (bottom) and the respective SIC for CICE and SI3 (second and third column) in 10 year monthly

mean for March (upper row) and September (lower row).

Figure 4. Sea ice volume variation of CICE (light blue), SI3 (dark blue) and CS2SMOS (red) for October - April 2010 to 2019

in SI3 compared to CICE. SI3 shows a thicker ice cover just north of Greenland for all months. In CICE, this area is in both175

March and October close to C2SMOS SIT. Both models display a more homogeneous SIT throughout the Arctic compared to
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Figure 5. Monthly SIT climatology and differences for the period 2010-2020 for March and October. The left column shows CR2SMOS SIT

the middle CICE-CR2SMOS and the right SI3-CR2SMOS.

observations with less thick ice in the central Arctic and thicker sea ice towards the margins. In general, the locations in which

the models differ from CS2SMOS are similar.

Figure 6 compares the ice thickness of the two model systems. CICE SIT is in general thinner than the SI3 SIT in the regions

north of Greenland and in the Beaufort Sea. In March, CICE SIT is over all thinner than SI3s SIT in most regions. This is180

shown in 6 upper left panel. Only close to the ice edge, in the Atlantic sector and in the Laptev Sea CICE sea ice is up to

0.7m thicker than SI3. SI3 is up 1m thicker than CICE in Chucki Sea, north of Greenland and the Canadian archipelago. In

September SI3 SIT (lower left panel 6) is thicker in the region north of Greenland, the Canadian archipelago and the Beaufort

sea and CICE is thicker than SI3 on the Russian shelf break.

3.3 Snow185

Modeled and observed snow thickness distributions are shown in figure 7. The Ka/Ku data product only covers the Arctic up

until 81.5◦ N, which excludes a larger part of the multiyear sea ice, see figure 1. To compare data sets, monthly model data

was interpolated onto the Ka/Ku grid and all data points not covered by the satellite observations were excluded. The resulting

monthly thickness distribution for the period 2013-2019 is shown in figure 7 as a probability density function (PDF). Both
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Figure 6. Arctic wide CICE and SI3 SIT comparisons for March (upper row) and September (lower row). The left panels show CICE-SI3

SIT, the middle CICE and the right SI3 SIT.

Figure 7. Pdfs of the snow thickness distribution for CICE (turquoise), SI3 (blue) and Ka/Ku (red) snow thicknesses. a) The pdf for the entire

area covered by the Ka/Ku data product , b) for the Canadian Arctic marked as yellow in fig 1 and c) for the Russian Arctic marked as green

in fig 1 for the month November, December, January, February, March and April. Note the different x-axis for a).

models have a limited snow cover which is only a few cm thick in November, whereas the snow thickness in the observations190

is around 10cm. The dominant snow thickness increases over the winter season in the models. In April, the dominant snow

thickness in CICE is about 22cm and 18cm in SI3. The dominant snow thickness in the observations (red line) moves from

approximately 8cm in November to about 15cm in April. CICE agrees more with the observed snow thickness distribution in
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the beginning of the season, whereas SI3 agrees more with observations in the end of the season. Especially in March and April

SI3 shows good agreement with observations. Overall, the models show a more noisy distribution than the observations.195

Figure 8. March (lower panel) and September (upper panel) monthly Arctic wide snow thickness climatologies calculated over the period

2010-2020. The left column shows the difference CICE-SI3 snow thickness the middle CICE and the right SI3 total snow thickness.

Figure 8 shows the snow cover of both models (CICE: middle, SI3: right) in March and September and their differences

(left). In September, CICE has a 5cm snow cover in most of the central Arctic while SI3 only shows a few cm in small patches

in the central Arctic and off the coast of north Greenland and the Canadian Archipelago. In March CICE and SI3 build up a

snow cover of up to 40cm. In CICE, this maximum is located between Iceland, Greenland, and north of Svalbard. In SI3 the

maximum is located south west of Svalbard and along the ice edge southeast of Greenland. The difference map for March200

shows that overall CICE has a 8-10cm thicker snow cover than SI3 in almost the entire Arctic. Only close to the ice edge, SI3

has up to 15cm more ice than CICE.

3.4 Regional sea ice and snow volume comparison

Analyses of the modelled total sea ice volume and total snow volume development throughout the year show a seasonal and

regional difference between the models. This seasonality is shown in 9. The curves in 9 were calculated by subtracting CICE205

total Arctic sea ice and snow volume from SI3. Figure 9 upper panel shows the total Arctic snow volume and sea ice volume
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Figure 9. The modelled total sea ice volume difference and snow difference. The turquoise line indicates the ice volume difference calculated

as SI3-CICE the blue line snow volume. The upper panel shows the total Arctic ice and snow volume, the middle panel the ice and snow

volume difference from thick ice dominated areas (blue mask in figure 1) and the lower panel from thin ice dominated areas (red mask in

figure 1).

differences in between the models (Snow blue, Ice turquoise). Both curves display a certain seasonality. Overall, SI3 has a

higher sea ice volume than CICE and CICE has a higher snow volume than SI3. The sea ice volume difference peaks each year

in the beginning of the freeze-up in September and in the end of the freeze-up in April. The snow volume difference curve has

its maximum (higher snow volume in SI3) in June and a minimum (higher snow volume in CICE) in April. The minimum in210

snow volume difference coincides with the end of freeze-up maximum difference in ice thickness. The correlation between the

two volumes differences is -0.5, which means that the snow and ice differences are anticorrelated.

Since the SIT differences in figure 6 left column are differing more in areas covered by thin ice and stays about the same in

areas covered by thick multiyear ice (the region north of Greenland and the Canadian Archipelago), the data was divided into

thin ice volume and thick ice volume, to be analysed separately. The thin ice areas is indicated by the blue region and the thick215

ice region by the red region in figure 1. The middle panel in figure 9 shows the snow and ice volume differences for the thick

ice covered regions and the lower one the thin ice dominated regions sea ice and snow volume differences.
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The thick ice region difference (middle panel figure 9) shows clearly that SI3 has a thicker ice cover in this region overall

as found in figure 6. The snow difference is minimal, but there is a clear peak in June (more snow in SI3) as in both other

graphs and a slight decrease (towards more snow in CICE) of the snow volume difference throughout the winter season. The220

sea ice volume also shows a slight seasonality, but by far not as clear as in the upper panel. The correlation was calculated to

-0.13. The bottom panel shows the thin ice dominated areas sea ice and snow volume difference. There is a clear seasonality in

both sea ice and snow volume difference as already seen in the total area differences in the upper panel. The minimum in sea

ice differences (more ice in CICE) occurs each June together with the maximum snow difference (more snow in SI3). The ice

volume peaks twice during a year. Once in October and once in April. The peak in April coincides with a minimum in snow225

volume (more snow in CICE) and the peak in October with the end of the melting season when there is almost no snow in

either of the models. The correlation was calculated to -0.56.

3.5 Ice-Ocean and Atmosphere-Ocean drag

The models use different drag formulations to calculate the ocean and atmosphere forcing on sea ice. CICE uses a formulation

which computes the drag depending on on SIC, flow size, melt pond, ridges and freeboard, while SI3 uses the same drag230

coefficient Arctic wide. This drag coefficients are 0.0014 for the atmospheric drag and 0.005 for the ocean drag. Figure 10

shows the difference between CICE and SI3 mean 10 year ocean and atmosphere drag for March and September. In September

the atmospheric drag in SI3 is higher in the central Arctic. At the margins and in the coastal regions around Greenland as well

as in the Kara Sea CICE drag coefficients exceed SI3s constant value. The September ocean drag is everywhere higher in CICE

than in SI3, with maximal values of up to 0.008 in the coastal regions around Greenland and Canada, on the East Siberian shelf235

and in the Kara and Barents Sea. In March the both the atmosphere and ocean drag in SI3 exceeds CICE drag coefficient in

most regions. Only close to the ice edge and close to the coast CICEs drag coefficient is higher than SI3s. The variable ice drag

formulation in CICE is higher in the marginal ice zones and the ridged areas north of Greenland and Canada, which means that

the ice is more vulnerable to the external forcing.

4 Discussion240

Overall, the models compare better to each other than to observations. The models were forced by the same data only the

models numerical formulation differ. This links the model observation differences to external forcing and input data and the

model differences to the model internal biases.

The differences between the model output and the observational data sets are in good agreement with other model comparison

studies. Long et al. (2021) compared NSIDC SIC climatologies from 1979-2014 with the SIC climatologies from all CMIP6245

participating models sea ice components. The bias that was found by Long et al. (2021) (figure 1 in Long et al. (2021)) are in

many cases bigger than the biases displayed in figure 2. This is expected as the resolution is generally lower within the CMIP6

runs. The models sea ice extent is higher than OSISAF sea ice extent both in March and September. In March the area where

the models exceed OSISAF observations at the Atlantic ice edge is over estimated in several ice models (Long et al., 2021) and
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Figure 10. 10 year mean ocean and atmosphere drag difference (CICE-SI3) for March and September.

will further be discussed in section 4.1. In summer OSISAF is known to under estimate the ice edge due to melt ponds on ice250

(Kern et al., 2016). This might lead to some of the September ice edge differences we see in figure 3.

Comparisons of CS2SMOS data with PIOMAS show similar variability as we find (Wang et al., 2016; Parrinello et al., 2018;

Mu et al., 2018a). Mu et al. (2018a) finds that PIOMAS mean SIT in March over a period of 5 years differs by 23cm. Similar

calculations for our data sets (averaged over the same region, but over 10 years) show that the SI3 average SIT differs about

12cm from CS2SMOS mean March SIT and CICE by only 7cm. This could indicate that the variability and/or trend is smaller255

in the models compared to PIOMAS. However, PIOMAS should be seen as a point of reference and not the truth as it is also

based on a model run, assimilating SIC and sea surface temperature (Zhang and Rothrock, 2003). In general the ice volume

from CS2SOMS is not an exact metric either as it also has its uncertainties (Ricker et al., 2017).

Differences between models and observations were not only found in spacial distribution (figures 2 and 5), but also in the

seasonal ice growth as shown in figure 4, which shows the over all sea ice volume per month. The winter growth of CICE and260

SI3 continues until April, while CS2SMOS sea ice growth slows down in March. Figure 4 also shows that the models over all

produce more sea ice than observed. The data shown in figure 4 was masked to only cover the area included in the CS2SMOS
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data set. As figure 2 shows the models overestimate the ice edge, which means that there is a significant amount of data not

included in figure 4, which is thinner than the included data and melts off first. Hence the apparent sea ice growth from March

to April in figure 4 is likely caused by the chosen data points not reflecting the entire ice volume and exclude data point where265

the models lose ice from March to April. Figure 4 also shows that the models overestimate the total seasonal ice volume growth

and melt. Most years the models start into the winter season with less ice than observed and end with more ice than observed.

One reason for too much ice loss over the summer season could be the melt of almost all snow in the models. As Figure 7

shows, the Ka/Ku snow product in November has a significant thicker snow layer than SI3 and a slightly thicker snow layer

than CICE.270

The negative correlation of snow and ice volume differences shown in figure 9 underlines how important the snow layer is

for correct sea ice simulation. A large amount of the differences between the models is as figure 9 shows, caused by different

treatment of snow, specially in the thin ice region marked blue in figure 1. In the thick ice region the ice-snow difference

anticorrelation is with -0.13 significantly lower than the thin ice-snow difference anticorrelation of -0.56. This lower anticor-

relation is probably due to the inter-annual variability in the ice differences, which is dominating the variability of the curve.275

For the snow the main variability still originates from the seasonal cycle. Even though the models are in good agreement with

oneanother compared to the differences they show to observations, there are differences between the model. SI3 agrees better

with observations in regards to sea ice extent, snow thickness distribution as well as sea ice volume, to a certain extent. CICE

performs slightly better according to observations in regards to early winter snow thickness distribution and March sea ice

volume.280

4.1 Regional differences

In the following section we take a closer look at the differences in the areas (1) Lincoln Sea and Canadian Archipelago, (2)

the Atlantic ice edge, (3) Laptev Sea and Siberian shelf, (4) the Chukchi Sea an (5) the Beaufort Sea and where they might

originate from. The areas are indicated by their numbers in figure 1. Finally, the parameters, which were found to have the

largest effects on the differences in between the models, are discussed.285

In area 1, the region north of Greenland and the Canadian Archipelago both models have too little sea ice compared to

observations (figure 5) in both March and September. CICE SIT is here about 1 m thinner than SI3 throughout the year (figure

6). CICE agrees better with the CS2SMOS product just off the north coast of Greenland in the Lincoln sea. Moore et al.

(2019) Links the sea ice accumulation in region 1 to wind driven ice transport into this region. The sea ice velocities and drag

coefficients in winter are lower in CICE than in SI3 (monthly averaged plots of total speed are added in the appendix). This290

links the difference in drag formulation to the over all thinner ice in CICE compared to SI3. In the Lincoln (region just north

off the cost of Greenland) sea SI3 overestimates sea ice, CICE shows realistic values in all seasons. In figure 10 CICE displays

a higher drag coefficient in both month and for both atmospheric drag and ocean drag. Tsamados et al. (2015) finds that form

drag improves the SIT in this region. Our results agree with this.

The overall pattern with larger ice extend in the Barents sea and east of Greenland is known from other models (Long295

et al., 2021). The overestimation in the Barents sea sea ice extent is according to Li et al. (2017) forced by a lack of oceanic
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heat. Since both models show the same pattern in this area and are forced by the same ocean model this is a plausible cause

for the model-observation differences. Long et al. (2021) explains the overestimation in East Greenland sea ice extent with

the simplicity of the sea-ice model SIS in comparison to CICE. In our study SI3 is the simpler formulated sea-ice model,

but performs slightly better than CICE. The general over estimation of the west Greenlandic ice edge is also found in both300

models which suggests that the formulation of the sea-ice model might not play that big of a role here. Since both models are

forced by the same ocean this could hint that the overestimation in this area is also caused by oceanic biases, as mentioned

above as a reason for the Barents sea overestimation. The strength of the East Greenlandic current and the front between this

and the Atlantic ocean could also cause the bias. This is however only speculation and needs to be investigated further. As

mentioned above there is some difference in between CICE and SI3 sea ice extent west of Greenland. As figure 10 shows the305

drag coefficients of CICEs exceeds the values of SI3. The regions with more SIC in March in figure 3 coincides well with the

regions with a significantly higher drag coefficient in CICE located at the ice edge (see figure 10).

SI3 sea ice extent is further north in the Russian shelf region (region 3 in figure 1) than OSISAF and CICE. In the summer

month, when little new sea ice is formed SI3 displays stronger north west directed ice velocities (figures in appendix) in this

region, which could explain the difference in sea ice extent in between the models. This would also explain the thicker ice310

during this month in CICE shown in figure 6. Since both models are forced by the same wind fields this difference originates

most likely from the difference in drag formulation. Figure 10 shows that the atmospheric drag coefficient in this region are

higher in SI3 in September. The ocean drag coefficients are however larger in this region in CICE. Atmospheric circulation

is expected to govern the ice drift (Uotila, 2001; Hakkinen et al., 2008), explaining the higher sea ice velocities even though

SI3 ocean drag exceeds CICE. The Russian shelf region is shallow and both models calculate grounded ice differently. This315

could be another reason leading to the differences here. Both modelled SIT in the shelf region differ in lager areas compared to

CS2SMOS (Figure 5) than compared to one another. Watts et al. (2021) finds that the ocean heat transport could be the reason

that grows and melt is not properly resolved in most models. The remaining difference between the models could be explained

by differing formulations for grounded and land fast ice.

In March SI3 has up to a meter more ice in the Chukchi sea (region 4 in figure 1) than CICE. Comparing the models320

to the CS2SMOS product CICE agrees better with observations than SI3 in this region. Petty et al. (2016) describe how a

faster spinning Beaufort gyre accumulates more ice in the Chukchi Sea. Comparing average sea ice velocities in the Beaufort

Sea shows that SI3 sea ice velocities (figures in appendix) in this region are higher than CICEs in most month. CICE drag

coefficients in March (lower row in figure 10) are also higher than SI3s. Since both models are force by the same ocean and

atmosphere data this is a strong evidence that the difference in drag formulation in the models lead to thicker ice in the Chukchi325

Sea in SI3.

In the Beaufort Sea CICEs SIT is over all thinner than SI3s. Both models have thicker sea ice in the Beaufort Sea (region 5

in figure 1) than observed (figure 4), with a better agreement between CICE and CS2SMOS. The mean sea ice velocities in the

Beaufort gyre are during all month higher in SI3 than in CICE. The drag coefficients in figure 10 however are only higher SI3

in March. The resulting higher sea ice velocities in summer are most likely resulting from the lower SIC in SI3 (3). The SIC330

differences in summer are most likely caused by the albedo differences. The spin of the Beaufort gyre highly depends on the
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sea ice motion forced by winds. This relation is known as the Ice-Ocean Governor (Meneghello et al., 2018) and is known to

control the sea surface height in the Beaufort sea. In our results, a faster spinning ice field in the Beaufort Sea also leads to a

thicker sea ice cover. How this influences the underlying ocean out of the scope of this study.

Overall the drag coefficient plays an important role in the differences in between the models. In many region (Lincoln Sea,335

Russian shelf area, Chukchi Sea and Beaufort Sea) the from drag formulation most likely leads to a model result closer to

the observations. Over all CICE, which is the model using the formdrag has a thinner ice layer than SI3 which as Castellani

et al. (2018) points out might be caused by the form drag. Comparing the albedo values of the two models shows that CICE

calculates in general lower albedo values in summer than SI3. This is most likely an other reason for the generally lower sea

ice volume in CICE.340

Another reason for the lower sea ice volume in CICE is the different treatment of snow. Especially in late winter, the overall

snow cover is thinner in SI3 than in CICE (figure 7, 9, 8). Figure 7 shows how the snow grows faster and thicker over the winter

month in CICE than in SI3. The blue curve in figure 9 shows that CICE total snow volume in March exceeds SI3 snow volume

by about 0.8 Mkm2. The March snow climatology in figure 8 shows the special distribution of the differences. SI3 agrees better

with observations in the last month as figure 7 shows. SI3s snow scheme included a reduction of the snow cover due to blowing345

snow and ridging and rafting. In the presented set up this means that the snow over ridges and rafts is reduced by 50% and

a blowing snow parameter of 0.66 for a blowing snow parametrisation following Ledley (1985). Over all this parametrisation

leads to a better agreement with observations.

5 Conclusions

We compared the sea-ice models CICE and SI3 under equal forcing, grid set up and coupled to the same ocean model. By350

this we aim to get a better understanding of how much variability is cased by the choice of sea-ice models and identify model

processes that drive differences in resulting sea ice predictions, which could help better interpret there results in general. This

study also presents a new sea ice ocean model set up with NEMO4 coupled to the sea-ice model CICE version 6.2. The results

show that the set up performs comparable to other sea-ice models.

Overall the models compare well to observations and their differences are in a range similar to other model comparisons355

(Wang et al., 2016; Parrinello et al., 2018; Mu et al., 2018a; Long et al., 2021). The biggest differences between the models

were found in the total sea ice volume. SI3 produces thicker sea ice than CICE. CICE on the other hand shows a larger sea

ice extent in any season. OSISAF sea ice observations agree better with SI3. Both models differ significantly from CR2SOMS

SIT retrievals and produce more ice throughout the winter season. Both models differ in snow thickness from observations and

from each other. The differences in between the models are not as significant as the difference both models show in respect to360

the Ka/Ku snow product.

Several processes could be link to the discussed model differences. These are the drag formulation, the albedo calculation

and the treatment of snow. The formdrag formulation in CICE results in better sea ice simulations locally in the Chukchi sea,

Beaufort Sea as well as in the Russian shelf region, but might cause an overestimation of the ice edge and an overall thinner SIT
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as also found by Castellani et al. (2018). The tuning in this study was done by comparing models total Arctic sea ice volume365

to PIOMAS (Schweiger et al., 2011b) total sea ice volume. The resulting albedo differs significantly with SI3 reflecting a large

amount of the short wave radiation, which was linked to the overall thicker sea ice cover. The tuning in the models was done

manually testing varying each of the albedo parameters one by one and comparing the result to total sea ice volume. With the

snow and ice layer changing through out the seasons and several parameters at play which have different effect in different

regions depending on the season it would be advisable to use a more sophisticated tuning method as for example Panteleev370

et al. (2020) or Massonnet et al. (2014).

The third and most significant differences is resulting from different treatment of snow. Both models are forced by the same

atmospheric forcing what means that the same amount of snow arrives at the ice surface. As figure 9 shows the development

of the snow through out the year is significantly different and correlates negatively with the differences in SIT especially over

newly formed ice. The negative correlation in between the differences is significant and differences in both SIT and SIC in the375

models output can be linked to the snow thickness differences. The comparison to the Ka/Ku snow thickness observations shows

that the snow thickness is differing more from observations than from each other. Our results show that better representation

of the snow layer in models will also improve the sea ice prediction.

Data availability. sea-ice model output data can be provided upon request.

Appendix A: Sea Ice velocity380
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Figure A1. 10 year mean sea ice velocities for January from model output. Left panel: CICE-SI3 differences, middle panel: CICE total

velocities, right panel: SI3 total velocities.
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Figure A2. 10 year mean sea ice velocities for February from model output. Left panel: CICE-SI3 differences, middle panel: CICE total

velocities, right panel: SI3 total velocities.
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Figure A3. 10 year mean sea ice velocities for March from model output. Left panel: CICE-SI3 differences, middle panel: CICE total

velocities, right panel: SI3 total velocities.
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Figure A4. 10 year mean sea ice velocities for April from model output. Left panel: CICE-SI3 differences, middle panel: CICE total

velocities, right panel: SI3 total velocities.
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Figure A5. 10 year mean sea ice velocities for May from model output. Left panel: CICE-SI3 differences, middle panel: CICE total velocities,

right panel: SI3 total velocities.
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Figure A6. 10 year mean sea ice velocities for June from model output. Left panel: CICE-SI3 differences, middle panel: CICE total velocities,

right panel: SI3 total velocities.
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Figure A7. 10 year mean sea ice velocities for July from model output. Left panel: CICE-SI3 differences, middle panel: CICE total velocities,

right panel: SI3 total velocities.
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Figure A8. 10 year mean sea ice velocities for August from model output. Left panel: CICE-SI3 differences, middle panel: CICE total

velocities, right panel: SI3 total velocities.
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Figure A9. 10 year mean sea ice velocities for September from model output. Left panel: CICE-SI3 differences, middle panel: CICE total

velocities, right panel: SI3 total velocities.
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Figure A10. 10 year mean sea ice velocities for October from model output. Left panel: CICE-SI3 differences, middle panel: CICE total

velocities, right panel: SI3 total velocities.
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Figure A11. 10 year mean sea ice velocities for November from model output. Left panel: CICE-SI3 differences, middle panel: CICE total

velocities, right panel: SI3 total velocities.
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Figure A12. 10 year mean sea ice velocities for December from model output. Left panel: CICE-SI3 differences, middle panel: CICE total

velocities, right panel: SI3 total velocities.
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