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Detection of Movement-Related Brain Activity Associated with
Hand and Tongue Movements from Single-Trial Around-Ear EEG
Dávid Gulyás and Mads Jochumsen *

Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark;
dgu@hst.aau.dk
* Correspondence: mj@hst.aau.dk

Abstract: Movement intentions of motor impaired individuals can be detected in laboratory settings
via electroencephalography Brain–Computer Interfaces (EEG-BCIs) and used for motor rehabilitation
and external system control. The real-world BCI use is limited by the costly, time-consuming,
obtrusive, and uncomfortable setup of scalp EEG. Ear-EEG offers a faster, more convenient, and more
aesthetic setup for recording EEG, but previous work using expensive amplifiers detected motor
intentions at chance level. This study investigates the feasibility of a low-cost ear-EEG BCI for the
detection of tongue and hand movements for rehabilitation and control purposes. In this study, ten
able-bodied participants performed 100 right wrist extensions and 100 tongue-palate movements
while three channels of EEG were recorded around the left ear. Offline movement vs. idle activity
classification of ear-EEG was performed using temporal and spectral features classified with Random
Forest, Support Vector Machine, K-Nearest Neighbours, and Linear Discriminant Analysis in three
scenarios: Hand (rehabilitation purpose), hand (control purpose), and tongue (control purpose). The
classification accuracies reached 70%, 73%, and 83%, respectively, which was significantly higher than
chance level. These results suggest that a low-cost ear-EEG BCI can detect movement intentions for
rehabilitation and control purposes. Future studies should include online BCI use with the intended
user group in real-life settings.

Keywords: brain–computer interface; ear-EEG; movement intention; movement-related cortical
potentials; sensorimotor rhythm; hand; tongue

1. Introduction

Motor impairments limit the individuals’ ability to interact with the world and commu-
nicate with others [1–3]. Different aids and technologies exist for alleviating the impairment,
but the ability to control them depends on the severity of the impairment. For individuals
with debilitating impairments brain–computer interfaces (BCIs) may be used [4]. BCI sys-
tems allow the user to control external devices such as wheelchairs, robotic manipulators,
exoskeletons and communication aids which can be used to replace lost functions. Potential
user groups for such technology are patients with, e.g., amyotrophic lateral sclerosis (ALS)
and spinal cord injury. These individuals are able to produce control signals that can be
extracted from the electrical brain activity and used for controlling the BCI [5,6] even in the
locked-in state of ALS [7].

Some of the most common control signals for controlling BCIs are steady-state visual
evoked potentials, P300 and motor imagery. The former two are generally associated with
higher information transfer rates compared to motor imagery, and hence more sophisticated
control of the external technology, but they depend on external stimuli such that the user
is paced by the system contrary to motor imagery, which can be operated in a self-paced
manner without the need for external stimuli. Motor imagery is elicited by an imagined
movement that activates the areas in the brain associated with movement programming,
which are also activated in association with executed and attempted movements [8]. Motor
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imagery or movement-related brain activity are also used in BCIs for restorative purposes
where neuroplasticity is induced especially for stroke rehabilitation [9–11]. Neuroplasticity
is induced when the brain activity from areas associated with movement preparation is
paired with afferent inflow of somatosensory feedback [12–15].

Despite the potential of the technology to improve the user’s independence or rehabil-
itation outcome, current BCI use is mostly limited to the laboratory due to various factors.
These include the complexity and cumbersomeness of the setup [16–20], bulkiness and price
of the amplifiers [16,20–22], unstable performance due to incorrect mounting of the cap or
poor signal-to-noise ratio. Moreover, the use of caps may be impractical due to gel in the
hair and the feeling of physical discomfort when wearing them [16,18–20]. The aesthetics
of the BCI also play a role in the adoption of the technology, as users are not willing to
wear devices that identify them as patients in public or even their community [16,18,20,21].
Thus, there is a need for low-cost, lightweight, comfortable, and unobtrusive BCI systems
that do not require gel-based electrodes in the hair.

In-ear or around-ear electroencephalography (EEG) are potential candidates, being
compact, located outside hair and unobtrusive. While the use of ear-EEGs has been widely
investigated in a number of contexts [23], motor-task ear-EEG BCI systems remain under-
explored since the recording of motor-related activity often requires electrodes placed
over the motor cortical areas (see Table 1); previous experiments have focused on hand
movements [24–27], and motor execution [24–26,28] and only two studies attempted to
detect movement intentions among idle epochs [24,25]. On the other hand, the variety of
pre-processing and classification algorithms tested on ear-EEG motor-task data has been
high. A filter-focused approach was taken by Kim et al. [27] who used common spatial
patterns and a regularized linear discriminant analysis classifier on band-pass filtered data.
The optimal frequency band for the bandpass filter was narrowed down from the default
5–35 Hz range in a five-fold cross-validation. While the results reported in Table 1 are above
chance level, the use of a reference electrode away from the ear does not offer the practicality
of ear-EEG-only setups, as such BCI system cannot be concealed inside, e.g., headphone-
like devices. The authors compared their ear-EEG results with classification on 21-channel
scalp EEG which achieved 92.4% accuracy on BCI competition and 91.6% on the authors’
dataset. A neural network approach was proposed by Wu et al. [26]. A dataset of 160 trials
per subject (apart from one subject with only 80 trials) was used to train and evaluate
EEGNet. Both within-subject and cross-subject training yielded near-chance level results,
but when the neural network was fine-tuned on the subject being evaluated the accuracy
improved (see Table 1). It is worth noting that both increasing the electrode distance from
in-ear to near-ear setup and moving the reference from the contralateral ear to the Cz
channel had a positive effect on the classification accuracy by 5% and 2%, respectively.
Jochumsen et al. [25] constructed manual time-domain, spectral, and template features,
that were used in Random Forest (RF) with 512 trees for movement intention detection.
Ten-channel ear-EEG accuracy reached 56% and 60% on days 1 and 2, respectively, which
did not significantly differ from random chance. The authors also collected nine-channel
scalp-EEG, which could detect movement intention with an accuracy of 77% and 74% on
days 1 and day 2, respectively. In a study by Schalk et al. [24], subjects were prompted
to simultaneously close both their hands while the authors collected three-channel ear-
EEG. For each channel, movement intention was detected from spectral EEG information
between 0.3 and 40 Hz using linear discriminant analysis. The average movement intention
detection accuracy for ear-EEG channels was 54%, and for C4 and Cz channels it was
69%. Two major limitations of this study include single-channel movement intention
detection and a lack of noisy epoch removal. Kæseler et al. [28] ran an ear-EEG tongue
movement detection study. The authors have not trained a classifier on ear EEG-only data,
but they reported visible tongue-movement-related cortical potentials (MRCPs) on T7 and
T8 electrodes. Detection of tongue movements from ear-EEGs is of particular interest, as
the tongue’s representation in the primary motor cortex is located closer to the ears than
the representation of the lower and upper extremities [29]. In the existing studies, data
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collection has been performed exclusively using laboratory-grade amplifiers [24–26,28], so
the feasibility of using a light-weight low-cost amplifier is unclear.

Table 1. An overview of studies investigating the use of ear-EEGs for motor task BCIs. N designates
the number of subjects (all subjects are able-bodied). Electrode locations are reported according
to Figure 1. Reference electrode xOU refers to the contralateral OU electrode as seen in Figure 1.
Reference electrodes that are limited to ear area are bolded. Classes are reported in the manner in
which they were classified (A vs. B) using the following abbreviations: L (left hand), R (right hand), F
(foot), I (idle, no movement). * = BCI Competition III, dataset IVa [30].

N Electrode Location
(Number), Reference

Task: (B) ballistic or (I)
isometric Amplifier Classes Classifier

Highest
Achieved
Accuracy

[24] 15 Around-ear (3), A2 Palmar grasp (I) g. HIamp, g.tec L + R vs. I LDA 54%

[28] 10 Near-ear (2), A2 Tongue-palate touch g. HIamp, g.tec

[25] 12 CEEGrid (10), R8 Palmar grasp (B) Mobita, TMSi R vs. I RF 60%

In-ear (8), Cz 70%

In-ear (8), xOU 68%[26] 6
Near-ear (6), Cz

Palmar grasp (I) SynAmps2 L vs. R EEGNet
75%

5 Near-ear (14), nose
tip Unspecified MI (I) Unspecified 72%

[27]
5 Near-ear (8) * Unspecified MI Unspecified

R vs. F RLDA
68%

FT9

FFT9h
T7

TTP7h

TTP7

TTP9h

TP9

E1

A1
M1L8

L7
L6

L5

L4b

L4a

L4

L3L2

L1

T9

LTr

LOU

LOD

CEEGrid

Around-ear

Near-ear

This study

Previous studies

Inside-ear

Figure 1. Overview of ear-EEG electrode locations used in the current and the previous motor-task
studies. The two electrodes (LB and LF) are located too deep inside the ear canal to be visible and are
omitted from the figure. CEEGrid electrodes are positioned behind the ear. Only left-hemisphere
ear-EEG electrodes are shown here, but some studies collected right-hemisphere ear-EEG, too.

To facilitate the adoption of BCIs by the user, this study attempts to address the
impracticality of in-hair EEG setup and the cost and bulkiness of standard EEG amplifiers.
For that purpose, the detection of movement-related brain activity collected with a low-cost
light-weight and few-channel ear-EEG BCI system was evaluated. It was evaluated in an
offline manner for three use cases: (1) using movement-related brain activity associated
with tongue movement (control applications), (2) using movement-related brain activity
associated with hand movement (control applications), and (3) using movement-related
brain activity associated with hand movement (rehabilitation applications). The difference
between use cases 2 and 3 is that only information until the movement onset was used in use
case 3 to adhere to the strict temporal timing of afferent inflow of the somatosensory feedback.
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2. Materials and Methods
2.1. Participants

Ten able-bodied participants (five women, four men, one non-binary, age: 25.9± 3.7 years,
nine right-handed and one left-handed, nine with prior BCI experience) consisting of
university students and staff participated in this study. Prior to the experiment, all subjects
provided their written informed consent. All procedures were approved by The North
Denmark Region Committee on Health Research Ethics (approval number: N-20230015).

2.2. Data Collection

Continuous EEG was collected using a Cyton Biosensing Board (OpenBCI, Brook-
lyn, NY, USA) at 250 Hz using Neuroline 720 self-adhesive wet electrodes (AMBU A/S,
Ballerup, Denmark). Three channels around the left ear were recorded; in front of the left
tragus—Front (LTr), above the left upper helix—Over (L3), and on the left mastoid Back
(TP9), as well as from the Cz location, as depicted in Figure 2B. The ground electrode
was placed in front of the right tragus, and the reference electrode was placed on the
right mastoid.

TP9

L3

LTr

Cz

25 trials break

3.5 min 1 min

25 trials break idle

3.5 min 3 min1 min

break

5 min

25 trials break 25 trials break

x3

x1

EEG

EMG

D

C

BA

Figure 2. Visualization of aspects of the study’s experimental procedure. (A) depicts electroen-
cephalography (EEG) and electromyography (EMG) signal collection from a sitting subject. (B) shows
electrode locations for EEG data collection; LTr, L3, TP9 and Cz, also referred to as Front, Over, Back
ear and scalp EEG. The ground and reference were around the right ear. (C) is a screenshot from the
interface shown to subjects during cued movements. The vertical dark bar moved continuously from
left to right during each trial, showing the trial’s progress. Participants were told to focus their gaze
on the yellow circle and initiate the movement immediately when the cursor entered the blue area.
(D) visualizes the experiment’s blocks and the breaks between them.

Continuous electromyography (EMG) was recorded using the same OpenBCI Cy-
ton Biosensing board at 250 Hz using three electrodes (Skintact (Leonhard Lang GmbH,
Innsbruck, Austria)® ECG self-adhesive electrodes); ground, reference, and EMG channel
located on the extensor muscles in the right forearm spaced approximately 1 cm apart.
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2.3. Experimental Setup

The experiment followed a counter-balanced within-subject design, divided into
four blocks per experimental condition (tongue or hand movement), each containing
25 movement trials, with experimental condition movement changing after every 50th trial
(see Figure 2D). Before the first tongue block, subjects received instructions that they should
move the tip of their tongue from the rest position to touch their upper palate behind
their teeth and keep the position for two seconds before returning to the rest position. The
movement should be ballistic and with minimal force to avoid fatigue. One subject reported
that the target position was the tongue’s rest position, but in this case, the instruction was to
move the tongue backward on the palate instead. Before the first hand block, subjects were
instructed on how to perform fast wrist extensions. The wrist extension was ballistic with
minimal force. The wrist extension was then kept for two seconds before returning to the
rest position. While performing the tongue and hand movements, the subjects were asked
to sit as still as possible to avoid movement artifacts, blinking, and swallowing during the
preparation and movement phase (see Figure 2C). Subjects performed a single test trial
before each block, reminding them of the trial phases and the target movement, but this
test trial was omitted in the analysis. Three 3-min long idle activity blocks were recorded
too to ensure that there were enough data to extract the same number of epochs as for the
movement classes [31] (see Figure 2D), and before each of them, subjects were instructed to
sit relaxed with their eyes open.

Each movement trial consisted of three phases, which were presented to the subject
in an interface shown on a screen (see Figure 2C). In the Preparation phase (2 s), the
subjects were asked to stop moving, blinking and swallowing. In the Movement phase
(2 s), the subjects were asked to perform the movement of the block (hand or tongue) at the
cue (beginning of the phase) and hold it for the duration of the phase, while keeping all
other movements to a minimum. In the Relax phase (4 s), subjects were able to move and
readjust as they needed to. The current progress of the trial was shown in the interface as
a horizontally moving vertical line, but the subjects were instructed not to follow it with
their eyes, instead focusing their gaze on the yellow circle on the screen.

2.4. Signal Analysis
2.4.1. Pre-Processing

Initially, the EEG was filtered using a zero-phase fifth-order Butterworth band-pass
filter between 0.1 and 30 Hz, and a notch filter with quality 30 at 50 Hz was applied. The
passband was selected such that features from the MRCP, and event-related desynchroniza-
tion and synchronization could be included in the classification analyses [31]. The EMG
was filtered using a zero-phase sixth-order Butterworth band-pass filter (20–100 Hz) and
then again using a 50 Hz notch filter of quality 30 before enveloping the EMG using the
real part of a Hilbert transform.

2.4.2. EMG Onset Detection

To synchronize the wrist extensions with the continuous EEG, EMG was used. The
onset of the movement was estimated and used for the synchronization. A movement
onset was detected when the derivative of the enveloped EMG first crossed a manually set
block threshold in the time range (−1 s; 1 s) around the movement cue (see Figure 3). If no
movement onset was detected around the cue, the cue itself became the movement onset.
This was the case for eight repetitions for participant 5 and one repetition for participant 7.
All identified movement onsets were visually inspected.
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Figure 3. Epoch extraction visualized on three example epochs. Hand epochs are extracted using the
EMG recorded from wrist extension (top panel). The hand movements are not timed precisely at the
cue and the figure shows that onset detection is robust against the delay variation. The corresponding
single-trial EEG is shown on the middle panel. Tongue epochs are extracted solely from the timing of
the cues (bottom panel).

2.4.3. Epoch Extraction

The epochs were extracted with two different timings with respect to the move-
ment/cue onset. Users trying to operate BCIs for control purposes can tolerate some delay
after attempting to activate the BCI, which allows the system to use additional discrimina-
tive information that potentially can improve the BCI performance [32]. Epochs for control
tasks were extracted in the range of <−2 s; 1 s> relative to the movement onset or cue
onset of the movement phase (t = 0—Figure 2C) for hand and tongue movements. As the
induction of neuroplasticity requires immediate feedback after the movement onset [33],
the epochs for rehabilitation purposes have to end by the movement onset. The exact
timing of when the afferent somatosensory feedback should reach the cortex is not known
although it is expected to not exceed 200–300 ms [33,34]. Therefore, the epochs were ex-
tracted from <−2 s; 0 s> relative to movement onset. Moreover, for inducing neuroplasticity
the motor cortical activation needs to be specific for the rehabilitation purpose, hence only
hand movements are included in this analysis and not tongue movements. Idle epochs
were extracted for control and rehabilitation tasks using random start points from the idle
recordings, at least one second apart, so some of them possibly overlapped. Extracted
epochs that in any channel went outside the ±100 µV range were rejected from further
analysis to avoid classifying artifacts.

2.5. Movement Detection

Features were extracted from the epochs, and offline movement detection was esti-
mated by classifying each movement class (hand, tongue) against the idle activity epochs
in the three use-case scenarios (using tongue for control, using hand for control, and using
hand for rehabilitation). Additionally, classification using around-ear EEG channels was
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compared to classification using the Cz channel in order to assess the loss of detection
accuracy by abandoning the traditional site for recording movement-related brain activity.

2.5.1. Feature Extraction

From the epochs, two feature types were extracted from each channel: Temporal,
and spectral features. Temporal features were built using the average of non-overlapping
half-second intervals in each channel. Also, the channel-wise cross-correlation at t = 0
was calculated between a template and each epoch. The template was subject-specific and
calculated as the mean value across all movement epochs from the training dataset. Spectral
features consisted of average power, computed using Welch’s method, in δ (0.5–4 Hz),
θ (4–8 Hz), α (8–13 Hz) and β (13–30 Hz) bands in each channel.

2.5.2. Classification

The features were classified using Random Forest (RF) with 128 trees, a linear Support
Vector Machine (SVM), Linear Discriminant Analysis (LDA), and a K-Nearest Neighbours
(KNN) algorithm with K being the square root of the number of samples in the training set.

The RF is an ensemble classifier that creates several decision trees based on a subset
of the available features, and it works well on small training sets [35]. The LDA and
SVM are two linear classifiers that are popular within BCI applications due to their low
computational requirements and generalization properties. The LDA and SVM may not
work well on non-linear data; therefore, KNN was tested as well since it is a non-linear
classifier [35]. The classification problem was movement vs. idle epochs. The classification
was performed for each subject separately, and the same number of movement and idle
epochs was used in the classification. The classification was run three times: (1) using all
available features, (2) only using the spectral features, and (3) only using the temporal
features. The reported classification accuracy is the median of five-fold cross-validation
results for each subject. The same folds were used for the feature and classifier comparisons.
Random chance classifier accuracy was determined by the upper limit of 95% confidence
interval (α = 0.05) of a balanced 2-class classifier (p = 0.5) for the median number of test
epochs per subject (n = 100) [36].

2.6. Statistical Analysis

To investigate the effect of the BCI purpose, electrode locations, feature types, and
classifiers, a four-way repeated measures ANOVA was performed. The factors were:
Purpose (three levels: Hand Rehabilitation, Hand Control, and Tongue Control), electrode
location (two levels: Around-ear EEG, and Cz), feature type (three levels: All, temporal,
and spectral), and classifier (four levels: RF, SVM, KNN, and LDA). A significant test was
followed up using a posthoc test with Bonferroni’s correction to avoid multiple comparisons.
A Greenhouse–Geisser correction was applied if the assumption of sphericity was violated.
In all tests, statistical significance was assumed when p < 0.05.

3. Results

On average 1.3 ± 2.8 hand epochs and 0.1 ± 0.3 tongue epochs were rejected from
further analysis. The results are summarized in Figures 4 and 5 and Table 2. Based on the
grand averages across subjects in Figure 4 no clear MRCPs can be seen in the channels
around the ear, contrary to the Cz channel where an increase in negativity towards the
movement onset is observed. The point of maximal negativity reaches a relative difference
of approximately 10 µV with respect to the beginning of the epoch.
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Figure 4. Grand epoch averages for each channel and condition across all subjects, centered (t = 0)
around movement onset (hand) or cue (tongue). n designates the number of averaged epochs. Ear-
EEG channels and Cz channels are scaled differently in order to showcase the morphology more
clearly. The vertical dotted lines denote the timing of negative peaks for each channel, labeled in
seconds relative to the movement onset (t = 0).

The movement detection performance varied depending on the combination of classi-
fier (RF, SVM, KNN, and LDA), feature type (temporal, spectral, and the two combined),
movement type (hand and tongue) and BCI purpose (rehabilitation and control), but all
accuracies were in the range of 53–83%.

As summarized in Figure 5 and Table 2 it can be seen that the highest classification
accuracies are generally obtained when using all features compared to spectral and tempo-
ral features alone. However, the statistical analysis revealed no significant effect of feature
type on the classification accuracies (F(1.1,10.1) = 4.5; p = 0.06). The performance was very
similar when using RF, SVM, and LDA, but the performance decreased significantly for
KNN compared to the three other classifiers (F(3,27) = 46.6; p < 0.01). The classification
accuracies obtained for control purposes were approximately 5–20 percentage points higher
compared to those obtained for rehabilitation purposes with tongue movements having
higher classification accuracies compared to hand movements. The difference in classifica-
tion accuracies between the control scenarios and rehabilitation scenarios was statistically
significant (F(1.3,11.5) = 6.2; p = 0.02). The median classification accuracies were significantly
above the chance level for the vast majority of the combinations, and those that were below
the chance level were primarily associated with classification performed with KNN. It
should be noted that there is a considerable variation in the classification accuracies across
participants. The classification accuracies obtained from around-ear EEG channels were
similar to those obtained from Cz (F(1,9) = 0.1; p = 0.83). There was a significant interaction
between electrode location and purpose (F(2,18) = 6.7; p = 0.01) where Cz was associated
with higher classification accuracies in the two scenarios involving the hand (rehabilitation
and control purpose), while around-ear EEG was associated with the highest accuracies for
the control purpose using the tongue. Moreover, there was a significant interaction between
the electrode location and feature type (F(1.2,10.9) = 11.9; p < 0.01) where Cz was associated
with higher classification accuracies when using temporal features, and around-ear EEG
was associated with the highest accuracies when using spectral features.
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Table 2. Median classification accuracy across subjects when using around-ear channels and Cz.
RF: Random Forest. SVM: Support Vector Machine. KNN: K-nearest Neighbours. LDA: Linear
Discriminant Analysis.

Condition Classifier Feature Type Median Ear (%) Median Cz (%)

Hand
(Rehabilitation purpose)

RF

All 64.93 70.00

Temporal 58.21 62.50

Spectral 66.25 59.49

SVM

All 63.30 70.00

Temporal 53.21 66.25

Spectral 70.00 61.32

KNN

All 54.46 61.54

Temporal 53.75 57.92

Spectral 56.25 55.67

LDA

All 63.75 69.62

Temporal 53.75 68.37

Spectral 68.75 62.02

Hand (Control purpose)

RF

All 72.12 75.00

Temporal 62.50 66.25

Spectral 70.00 66.25

SVM

All 68.30 75.99

Temporal 55.71 72.15

Spectral 72.50 64.58

KNN

All 58.97 69.58

Temporal 61.25 69.58

Spectral 62.50 58.75

LDA

All 65.00 72.50

Temporal 55.67 72.15

Spectral 72.50 67.50

Tongue (Control purpose)

RF

All 78.75 75.00

Temporal 72.50 74.68

Spectral 77.50 63.75

SVM

All 82.50 80.00

Temporal 72.50 72.12

Spectral 72.50 67.50

KNN

All 67.50 64.55

Temporal 67.50 64.55

Spectral 68.75 57.50

LDA

All 76.25 72.50

Temporal 71.25 70.90

Spectral 71.25 66.25



Sensors 2024, 24, 6004 10 of 15

ear Cz
Channels

50.0

59.8

70.0

80.0

90.0

100.0

5-
fo

ld
 C

ro
ss

-v
al

id
at

io
n 

ac
cu

ra
cy

 (%
)

RF classifier

ear Cz
Channels

SVM classifier

ear Cz
Channels

KNN classifier

ear Cz
Channels

LDA classifier

Hand (rehabilitation purpose)
All features Spectral features Temporal features Median accuracy Median Random Chance accuracy

ear Cz
Channels

50.0

59.8

70.0

80.0

90.0

100.0

5-
fo

ld
 C

ro
ss

-v
al

id
at

io
n 

ac
cu

ra
cy

 (%
)

RF classifier

ear Cz
Channels

SVM classifier

ear Cz
Channels

KNN classifier

ear Cz
Channels

LDA classifier

Hand (control purpose)
All features Spectral features Temporal features Median accuracy Median Random Chance accuracy

ear Cz
Channels

50.0

59.8

70.0

80.0

90.0

100.0

5-
fo

ld
 C

ro
ss

-v
al

id
at

io
n 

ac
cu

ra
cy

 (%
)

RF classifier

ear Cz
Channels

SVM classifier

ear Cz
Channels

KNN classifier

ear Cz
Channels

LDA classifier

Tongue (control purpose)
All features Spectral features Temporal features Median accuracy Median Random Chance accuracy

Figure 5. Median classification accuracy for each of the subjects in each of the scenarios and fea-
ture subsets. Each point represents a subject’s median classification accuracy of a five-fold cross-
validation. Horizontal segments represent median accuracy across subjects and error bars depict a
non-parametric 95% confidence range. RF: Random Forest. SVM: Support Vector Machine. KNN:
K-Nearest Neighbours. LDA: Linear Discriminant Analysis.

4. Discussion

In this study, it was shown that movement-related brain activity could be detected
with accuracies significantly higher than chance level. The highest accuracies were associ-
ated with epochs containing information one second after the movement onset (for BCI
control purposes), and tongue movements had higher classification accuracies compared
to hand movements.

The highest median classification accuracies for the three scenarios using around
ear-EEG reached 70%, 73%, and 83% for hand (rehabilitation purpose), hand (control
purpose), and tongue (control purpose), respectively. These classification results were
higher than what has been reported previously where close to chance level accuracies were
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obtained [24,25]. It should be noted though that this is based on a limited sample, and that
there are differences in the methodology. Namely, Schalk et al. [24] used three ear electrodes
(same as this study) with similar positioning around the ear but only used a single channel
at a time for hand movement detection. In the current study, all around-ear channels
were used at the same time, which might have added enough information to improve the
detection accuracy above the chance level. On the contrary, ten around-ear EEG channels
did not lead to higher classification accuracies [25]. Jochumsen et al. [25] used the combined
information of ten ear-EEG channels with a similar classifier to the one used in this study
(Random Forest with manual temporal, spectral and template features) and still did not
detect hand movement significantly above chance level (60 %), while the RF classifier accu-
racy in this study was significantly higher than chance level (73%). The difference might be
explained by the authors only using MRCP information (0.05–10Hz) [25], while this study
included more information from the EEG spectrum, specifically the mu (8–13 Hz) and
beta rhythm (13–30 Hz) which contain event-related desynchronization/synchronization.
Indeed, the differentiating information might lie in higher frequency bands, as this study,
as well as the previous ear-EEG studies on movement-related brain activity decoding
report a lack of clear MRCP morphology in ear-EEG [25,37]. This is also supported by the
classification accuracies obtained for around-ear EEG using spectral features which were
higher than those obtained using temporal features in the current study.

Tongue movement has not been previously detected from around-ear EEG, but Kæseler
et al. [28] have reported visible MRCP morphology on T7 and T8, but they have not collected
channels closer to the ear, nor tried to detect tongue movement from ear-EEG only. In their
work, the authors detected any of four different tongue movements with 94% accuracy
using 64 scalp electrodes in an offline scenario with an RF classifier. In this study, a similar
RF classifier can, in an offline scenario, detect a single type of tongue movement with 83%
accuracy using only three electrodes around the ear. Generally, for BCI control purposes
based on motor imagery, imagined hand movements have been utilized since EEG caps
were used where electrodes from C3-4 and Cz were available. If around-ear EEG is used
for recording motor cortical activity for control purposes, it should be considered using
tongue movements instead since the tongue has a large cortical representation that is closer
to the around-ear EEG electrodes than the cortical representation of the hand. Specific
patient groups may benefit from using the movement-related brain activity from the tongue
instead of the hands. On the contrary to hand function, the tongue function may be
preserved in individuals with tetraplegia after, e.g., spinal cord injury or to some degree in
patients with amyotrophic lateral sclerosis with limited bulbar symptoms. In these cases,
the representation of the tongue in the primary motor cortex may be preserved and hence
control signals for a BCI can be extracted.

This study attempted to investigate the practical concerns of a BCI that is operated
using movement-related brain activity, but a number of concerns and limitations still
remain unaddressed. One of the practical concerns is the use of concealed ear-EEGs. While
the electrodes in the study were kept mostly outside hair, the electrodes were manually
attached to the subjects and were connected via cables to an amplifier lying on a table,
thereby not being concealed. For an inconspicuous and comfortable use, EEG electrodes
and the amplifier would need to be contained and concealed in a device like headphones.
However, the electrode setup itself of around-ear EEG has previously been rated high
in terms of aesthetics and comfort by stroke patients, therapists and relatives [19]. The
electrodes used in the study are wet self-adhesives, a currently non-viable option for
use in a headphone-like device with fast equipping and removal. The development of
novel devices with easily attachable and detachable self-adhesives is, therefore, needed.
Alternatively, the validation of the classification results on dry electrodes is needed for
real-world use, as dry electrodes have higher impedance and using them can result in
lower classification accuracy [38]. Additionally, dry electrodes can cause discomfort [38],
which should be evaluated against the convenience of the dry setup. An alternative could
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be to use water-based electrodes that have been rated much higher in comfort compared to
dry electrodes [19].

Another practical limitation is testing on able-bodied subjects that executed the move-
ment. BCI use for both control and rehabilitation tasks involves individuals who have
motor impairments. The detection accuracy of the classifiers in this study has possibly been
improved by information from motor artifacts such as glossokinetic potentials occurring
after the movement onset in tongue trials (see Figure 4). Epochs of motor-impaired patients
may not contain the movement artifacts related to the attempted movement (although
they may contain artifacts pertaining to unrelated movements) and the detection accuracy
would, therefore, be affected. Additionally, when performing motor imagery, spinal-cord
injury subjects have been found to reach lower MRCP and Event-related Desynchronisa-
tion/Synchronisation amplitudes [39] and reach lower detection accuracy than able-bodied
individuals [40]. However, no significant detection accuracy differences have been found
between stroke patients and able-bodied people [41]. Moreover, the BCI users would
operate the BCI by attempting to perform the movement although no movement may occur
on the contrary to performing motor imagery where the execution is voluntarily inhibited.
There is a need to test around-ear EEG for decoding movement-related brain activity with
the intended BCI users.

Also, BCIs can only be practically used in an online scenario, but currently, all studies
including this one, perform offline analysis only. Offline analysis suffers from inflated
accuracies, as results are reported on discrete epochs of either target movement or no
movement. It is expected that the BCI performance will decrease, but it is not known by
how much. It has been reported that a true positive rate of 67% is sufficient for inducing
plasticity [12], which is lower than the 70% that was obtained in the current study. Moreover,
it is expected that the 83% obtained in the current study, and possibly lower accuracies,
can be used to control external technology by, e.g., using a binary brain switch based on
MRCP detection to select different control commands in a cyclic menu that has been shown
in able-bodied participants [42]. It has previously been shown that completely paralyzed
patients can control a spelling device with a similar detection performance [7], and that
amyotrophic lateral sclerosis patients could control an assistive active glove [5]. In patients
with amyotrophic lateral sclerosis [5] and stroke [43,44] it has been reported that a similar
BCI performance is obtained when using MRCPs as control signals. Despite the possibility
of converting modest classification accuracies into relevant control commands using state
machines, the BCI control will be slow, i.e., the information transfer rate will be low. This
will be a bottleneck for adopting the technology by the end-user. Therefore, possibilities
for improving the information transfer rate should be explored. For control purposes,
steady-state visual evoked potentials can be recorded using ear-EEGs [45], or the motor
cortical activity can be paired with the evoked potentials in a hybrid approach to increase
the number of classes or improve the classification accuracies [46], which ultimately will
improve the information transfer rate. Another approach for improving the classification
accuracies could be to use additional signal processing techniques for pre-processing such
as a blind source separation if enough electrodes are available [47] or investigate other
classification techniques. Data-driven approaches such as deep learning could potentially
improve the performance if there are enough data to train the classifier which could be
obtained after multiple sessions of BCI use, or a pre-existing network could be used and
adapted to the individual user.

5. Conclusions

This study has demonstrated the possibility of detecting tongue and hand movements
solely from around-ear EEG using a low-cost amplifier. The best performance was obtained
when using information from two seconds prior to one second after the movement onset.
Tongue movements were associated with the best performance. Additional research is
required to develop a practical ear-EEG BCI concealment and to validate the results in an
online scenario with the intended BCI user group.
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