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ABSTRACT 59 

Background. Cerebral amyloid angiopathy (CAA), a common cause of intracerebral haemorrhage 60 

(ICH), is diagnosed using the Boston criteria including MRI biomarkers (cerebral microbleeds [CMB] 61 

and cortical superficial siderosis [cSS]). The simplified Edinburgh criteria include CT biomarkers 62 

(subarachnoid extension [SAE] and finger-like projections [FLP]). The underlying mechanisms and 63 

diagnostic accuracy of CT compared to MRI biomarkers of CAA are unknown.  64 

Methods. We included 140 survivors of spontaneous lobar supratentorial ICH with both acute CT 65 

and MRI. We assessed associations between MRI and CT biomarkers and the diagnostic accuracy 66 

of CT- compared to MRI-based criteria.  67 

Results. FLP were more common in patients with strictly lobar CMB (44.7% vs 23.5%; p=0.014) and 68 

SAE was more common in patients with cSS (61.3% vs 31.2%; p=0.002). The high probability of the 69 

CAA category of the simplified Edinburgh criteria showed 87.2% (95%CI 78.3-93.4) specificity, 70 

29.6% (95%CI 18.0-43.6) sensitivity, 59.3% (95%CI 38.8-77.6) positive predictive value and 66.4% 71 

(95%CI 56.9-75.0), negative predictive value, 2.3 (95%CI 1.2-4.6) positive likelihood ratio and 0.8 72 

(95%CI 0.7-1.0) negative likelihood ratio for probable CAA (vs non-probable CAA), defined by the 73 

modified Boston criteria; the area under the receiver operating curve (AUROC) was 0.62 (95%CI 74 

0.54-0.71).  75 

Conclusion. In lobar ICH survivors, we found associations between putative biomarkers of 76 

parenchymal CAA (FLP and strictly lobar CMBs) and putative biomarkers of leptomeningeal CAA 77 

(SAE and cSS). CT biomarkers might help rule-in probable CAA (diagnosed using the Boston 78 

criteria), but their absence is probably not useful to rule it out, suggesting an important continued 79 

role for MRI in ICH survivors with suspected CAA. 80 

 81 
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INTRODUCTION 85 

Spontaneous lobar intracerebral haemorrhage (ICH) related to cerebral amyloid angiopathy (CAA) 86 

is associated with high risks of death, poor functional outcome, dementia [1] and intracerebral 87 

hemorrhage (ICH) recurrence [2], so it is important to identify in clinical practice. Histopathological 88 

assessment is the reference standard to identify CAA, but cerebral tissue is rarely available, so 89 

neuroimaging biomarkers are usually used to infer the presence of CAA. The modified Boston criteria 90 

for CAA [3][4] are widely used MRI-based criteria. However, MRI is not always available, tolerated, 91 

or possible due to contraindications, particularly during acute care.  92 

More recently, the acute CT-based Edinburgh criteria have been proposed [5]; a CT-only version of 93 

the criteria (the simplified Edinburgh criteria) include only subarachnoid extension (SAE) and finger-94 

like projections (FLP). The Edinburgh criteria demonstrated excellent diagnostic accuracy for 95 

autopsy-proven CAA in severe ICH (fatal events), but still require external validation. Furthermore, 96 

little is known about the underlying mechanisms of FLP or SAE. FLP might reflect CAA affecting 97 

brain parenchymal small vessels (causing blood to dissect into abnormal brain tissue), while SAE 98 

might be due to leptomeningeal arteriolar CAA (leading to acute bleeding into the subarachnoid 99 

space).  100 

We aimed to evaluate: (1) whether FLP are associated with CMBs (as a putative biomarker of 101 

parenchymal CAA); (2) whether SAE is associated with cSS (as a putative biomarker of 102 

leptomeningeal CAA); and (3) to evaluate the diagnostic accuracy and concordance of simplified 103 

Edinburgh criteria compared to modified Boston criteria.  104 

 105 

METHODS 106 

We retrospectively included consecutive adult patients with spontaneous (non-traumatic) ICH from: 107 

an observational prospective multicenter cohort study (Clinical Relevance of Microbleeds in Stroke; 108 

CROMIS-2 [ICH] - NCT02513316 [6]) and from the SIGNaL register (Stroke InvestiGation in North 109 

and Central London). We included patients with ICH and both CT and MRI performed after the index 110 

event. Exclusion criteria were: age < 55 years; and non-lobar, infratentorial or secondary ICH (Figure 111 

1). We reported the study in accordance with STARD reporting guidelines. [7] [8] Measurement of 112 
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ICH volume was performed on CT scans via a semi-automated approach [9] and on MRI by manual 113 

segmentation on SWI sequences. ICH location was assessed using the Cerebral Haemorrhage 114 

Anatomical RaTing inStrument (CHARTS) [10].  115 

All neuroimaging biomarkers were rated by a single trained rater, blinded to other clinical and 116 

neuroradiological data. Observers evaluated CT for FLP and SAE as previously described [5] after  117 

attending a web-based training module (www.ed.ac.uk/edinburgh-imaging/ecciting). Each patient 118 

was categorized for the probability of CAA using the simplified Edinburgh criteria (with a high 119 

probability defined by the presence of both FLP and SAE) [5] In the derivation study [5], no 120 

participants had FLP in isolation, but given the strong association between CAA and FLP [5] we 121 

classified FLP in isolation as intermediate risk of CAA. To obtain inter-rater reliability a random 122 

sample of 19 CT scans (SIGNaL cohort) was rated by a blinded experienced Stroke Neurologist 123 

(DJW). 124 

CMBs and cSS were rated on T2*-weighted gradient-recalled echo (GRE) or susceptibility-weighted 125 

imaging (SWI) using a  validated rating scale [11] and per consensus criteria [12][13], respectively. 126 

The typical appearance of cSS (“track-like” low signal in the subpial layers of cortex either side of 127 

the sulcus) and the distance in space from the symptomatic ICH were used to distinguish cSS from 128 

acute convexity subarachnoid haemorrhage (SAH). No patients with isolated convexity SAH were 129 

included. Each patient was categorized using the modified Boston criteria [3]. We compared the 130 

probable CAA category to all other lobar ICH (namely, non-probable CAA: including possible CAA 131 

and lobar ICH not meeting the criteria for CAA [i.e. patients with no additional haemorrhagic CAA 132 

markers (lobar CMBs or cortical siderosis) or ≥ 1 deep CMB]). From the CROMIS-2 cohort a random 133 

10% sample (149 scans) was rated to quantify intra-rater and inter-rater reliability for CMBs. For cSS 134 

presence the entire cohort of patients included in the SIGNaL cohort (42 scans, 30% of the entire 135 

cohort) were rated twice for intra-rater reliability.  136 

Univariate analysis was performed to evaluate association between variables and categories; the 137 

strength of associations was quantified via agreement proportion and kappa (k) values. The 138 

diagnostic accuracy of a high probability of CAA (according to the simplified Edinburgh criteria) in 139 

predicting probable CAA (according to the modified Boston criteria) was assessed by calculating the 140 
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area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, positive and 141 

negative predictive values. Positive and negative likelihood ratios (LR+ and LR-) were also 142 

calculated. Univariable and multivariable (adjusted for age and sex) linear regression analysis was 143 

performed to assess if presence of CT (SAE or FLP) and MRI (strictly lobar CMB or cSS) biomarkers 144 

of CAA were correlated with ICH volume. To test for selection bias, we compared (univariate 145 

analysis) patients with and without available MRI. Inter/intra-observer variability of ratings was 146 

calculated using the Cohen κ statistic. The significance level was set at p=0.05. Statistical analysis 147 

was performed using STATA 16 (StataCorp. 2019 Stata Statistical Software: Release 16).  148 

 149 

Standard Protocol Approvals, Registrations and patient consents. Written informed consent 150 

was obtained from all participants in CROMIS-2 (approved by UK National Health Service 151 

Research Ethics Committee: 10/H0716/64); in case of lack of capacity written informed consent was 152 

obtained from a relative or representative. For the SIGNaL cohort, data were collected as part of 153 

routine clinical care and data analysis was approved as a service evaluation by the University 154 

College London Hospitals NHS Trust Data Governance Review Board.  155 

Data Availability Statement. All de-identified participant data requests should be submitted to the 156 

corresponding author for consideration by the CROMIS-2 and SIGNaL Steering Committees. 157 

 158 

RESULTS 159 

We included 140 adult patients with spontaneous lobar supratentorial ICH. Baseline characteristics, 160 

neuroimaging variables and classifications according to the Edinburgh and Boston criteria are 161 

reported in Table 1.  162 

Associations between CT and MRI biomarkers (with agreement proportion and k values) are 163 

reported in Table 2. FLP presence was associated with CMB presence (35.8% vs 20.3%; p=0.047), 164 

strictly lobar CMBs (44.7% vs 23.5%; p=0.014) and total CMB count (p=0.013). FLP were not 165 

significantly more common in patients with cSS (35% vs 27.5%; p=0.390) and were not associated 166 

with cSS severity (p=0.691). SAE was more common in patients with cSS (61.3% vs 31.2%; 167 
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p=0.002), and was associated with cSS severity (p=0.002). SAE was not significantly associated 168 

with CMB presence (37% vs 39%; p=0.815), strictly lobar CMB (47.4% vs 34%; p=0.157) or CMB 169 

count (p=0.787). 170 

Compared to patients without probable CAA, FLP were more common in patients with probable CAA 171 

(40.7% vs 22.1%, p = 0.018). Compared to patients without probable CAA, SAE was more common 172 

in patients with probable CAA (51.9% vs 29.1%, p = 0.007). In both cases the agreement proportion 173 

was 63.6% (95%CI 55.0 – 71.5). 174 

Adopting probable CAA based on the modified Boston criteria as the diagnostic reference, a high 175 

probability of CAA according to the simplified Edinburgh criteria showed specificity 87.2% (95%CI 176 

78.3–93.4), sensitivity 29.6% (95%CI 18.0–43.6), positive predictive value 59.3% (95%CI 38.8–177 

77.6), negative predictive value 66.4% (95%CI 56.9–75.0), LR+ 2.3 (95%CI 1.2-4.6) and LR- 0.8 178 

(95%CI 0.7-1.0). The discrimination (AUROC) of the simplified Edinburgh criteria (high probability 179 

vs intermediate or low probability), for probable CAA according to the Boston criteria (vs non-180 

probable) was 0.62 (95%CI 0.54-0.71) (Table 3).  181 

The median ICH volume was significantly higher when FLP were present (20.4 ml vs 7.7 ml; p 182 

<0.001) or SAE (16.7 vs 6.7 ml; p < 0.001); these differences remained significant after correcting 183 

for age and gender (p < 0.001). We found no differences in the presence of cSS and strictly lobar 184 

CMBs according to ICH volume. When we assessed the subgroup of patients with ICH volume 185 

greater than the median value of our cohort (12.0 mL), the sensitivity of Edinburgh criteria increased 186 

from 29.6% (95%CI 18.0–43.6) to 50.0% (95%CI 27.2 - 72.9), while specificity was slightly reduced 187 

at 77.4% (95%CI 58.9 - 90.4).  188 

Comparison between patients with and without available MRI (Table e1) and intra/inter-rater 189 

reliability for the presence of CAA biomarkers (Table e2) are reported in Supplementary material. 190 

 191 

 192 

DISCUSSION 193 

In this study of patients with spontaneous lobar ICH we found significant and specific associations 194 

between FLPs and SAE (on CT) and CMBs and cSS (on MRI), respectively. These observations 195 
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provide new insights into the mechanisms and anatomical distribution of the underlying CAA 196 

pathology: FLPs are likely to represent parenchymal-predominant CAA (indicated by strictly lobar 197 

CMBs on MRI), while SAE might reflect leptomeningeal-predominant CAA (indicated by cSS on 198 

MRI).  We also found that the prevalence of CT biomarkers increased with the degree of diagnostic 199 

certainty regarding CAA defined by the modified Boston criteria and with the volume of ICH. CT 200 

diagnostic biomarkers for CAA could be useful in everyday clinical practice, but have only been 201 

validated in patients who suffered fatal ICH [5]. Our study in ICH survivors showed that the Edinburgh 202 

CT-only criteria [5] do increase the likelihood of CAA (defined by the Boston MRI-based criteria), but 203 

to a modest extent (LR+ 2.3 [95%CI 1.2-4.6]; a LR+ of more than 3 is considered to be a good test 204 

to rule in a disease). Nevertheless, when a diagnosis of CAA is suspected and MRI is not available 205 

(i.e. very unwell or claustrophobic patients, non-MRI compatible implanted devices), the presence 206 

of both SAE and FLP on CT might help to rule-in CAA but their absence is probably not useful to 207 

rule it out (LR- 0.8 [95%CI 0.7-1.0]; a LR- of less than 0.33 is considered a good test to rule out a 208 

disease).  209 

 210 

The original Edinburgh criteria validation study [5] found that all cases with high or intermediate 211 

probability of having moderate or severe CAA were classified as probable CAA by the Boston criteria, 212 

but this analysis was available for only 7 patients (with both CT and MRI available). A recent study 213 

[14] found that FLP presence (on CT) was significantly more frequent in probable than in possible 214 

CAA, but did not specifically examine associations between CT and MRI biomarkers. Our findings 215 

are consistent with these previous observations, but also provide new evidence regarding the 216 

underlying mechanisms and diagnostic accuracy of the simplified Edinburgh acute CT criteria. 217 

Another recent study [15] on Dutch-type hereditary CAA patients documented that the presence of 218 

FLP and SAE correlate with ICH volume with higher sensitivity of simplified Edinburgh criteria in 219 

large ICH volumes. Our results are in line with this finding: when simplified Edinburgh criteria were 220 

applied in patients with ICH volume greater than 12 mL (the median volume), sensitivity increased 221 

with only slightly lower specificity. Further studies may be helpful to determine whether a minimum 222 
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ICH volume cutoff point should be considered to maximize the diagnostic accuracy of the Edinburgh 223 

criteria.  224 

CAA is not a uniform disease, having a complex range of clinical, imaging and neuropathological 225 

subtypes [16]. An autopsy-based study described two CAA phenotypes [17]: in CAA type 1, amyloid 226 

beta-protein (A-beta) is primarily found in cortical capillaries, while in CAA type 2 A-beta is primarily 227 

deposited in leptomeningeal and cortical vessel, sparing cortical capillaries. These phenotypes are 228 

hypothesized to be partially driven by APOE genotype: APOE e4 is associated with type 1 229 

(parenchymal-predominant) CAA, while APOE e2 is associated with type 2 (leptomeningeal-230 

predominant) CAA [17]. In line with these recent histopathological observations, two recent meta-231 

analyses found that strictly lobar CMB are related to APOE e4 [18] and that cSS is most strongly 232 

associated with APOE e2 genotype [19]. We found strong association between cSS and SAE 233 

presence, and between CMBs (especially strictly lobar CMBs) and FLP presence. Our results 234 

suggest that FLP and SAE might be related to different anatomical distributions of CAA pathology, 235 

which may in part be related to underlying APOE genotype.  236 

Our study has strengths. We included a consecutive sample of participants with lobar ICH. CT and 237 

MRI were assessed by trained blinded experienced raters with standardized rating instruments and 238 

consensus criteria with substantial or excellent intra-rater and inter-rater agreement. Moreover, MRI 239 

scans were performed soon after CT; for patients included in the SIGNaL cohort the median was 2 240 

days (IQR 1-3).  241 

We also acknowledge limitations. The requirement of an MRI scan and of signed informed consent 242 

could have created a selection bias towards non-severe, clinically stable ICH patients. The patients 243 

with MRI available were significantly younger, but there was not a major difference in clinical severity. 244 

We could not evaluate the accuracy of Edinburgh criteria against histopathological assessment, 245 

which is the reference standard for a diagnosis of CAA. However, histopathological analysis of brain 246 

tissue is rarely performed in clinical practice, while in clinical practice the diagnosis of CAA is often 247 

made based on the modified Boston criteria, which show good diagnostic accuracy for 248 

pathologically-proven CAA in ICH (specificity 81.2% [95% CI 61.5–92.7], sensitivity 94.7% [95% CI 249 

82.7–98.5]) [3]. While our findings need to be validated against histopathological assessment, they 250 
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remain relevant to guide clinicians in every day clinical practice, especially where MRI is not 251 

available.  252 

CONCLUSION 253 

We have shown associations between putative biomarkers of parenchymal CAA (FLP and CMB), 254 

and between putative biomarkers of leptomeningeal CAA (SAE and cSS). Our findings indicate that, 255 

in lobar ICH survivors where CAA is suspected, CT biomarkers suggesting a high probability of CAA 256 

might help rule-in MRI-defined probable CAA. However, the absence of FLP and SAE on CT are 257 

probably not useful to rule-out the presence of CAA, suggesting an important continued role for MRI 258 

in the investigation of ICH survivors with suspected CAA.  259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 
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Table 1. General characteristics of the cohort 

Clinical variables N (%) 

Age (median; IQR) 72.5 (65-78) 

Female gender 81 (57.9) 

Hypertension 82 (58.6) 

Oral anticoagulant drug at index ICH 28 (20.0) 

Prior ICH 14 (10.0) 

Glasgow Coma Scale at admission (median; IQR) 15 (1) 

ICH volume (median [IQR]) # 12.0 (4.5-20.0) 

MRI-based variables and criteria N (%) 

Cerebral microbleed  

Absent 59 (42.1) 

Present 81 (57.9) 

1-5 

6-10 

11-20 

>20 

37 (26.4) 

14 (10.0) 

14 (10.0) 

16 (11.4) 

 

Lobar CMB presence 63 (45.0) 

Strictly lobar CMB presence 38 (27.1) 

Deep CMB presence 31 (22.1) 

Brainstem CMB presence 16 (11.4) 

Infratentorial CMB presence 39 (27.9) 

Cortical superficial siderosis  

Absent 109 (77.9) 

Present 31 (22.1) 

Focal 17 (12.1)  

Disseminated 14 (10.0)  

Modified Boston criteria  

Non-probable CAA 86 (61.4) 

Probable CAA 54 (38.6) 

CT-based variables and criteria  

Finger-like projection presence 41 (29.3) 

Subarachnoid extension presence 53 (37.9) 

Simplified Edinburgh criteria  

Low probability of CAA 73 (52.1) 

Intermediate probability of CAA 40 (28.6) 

High probability of CAA 27 (19.3) 

IQR, Interquartile range; ICH, intracerebral haemorrhage; CMB, cerebral microbleeds; CAA, cerebral 
amyloid angiopathy 
# Volume in mL; data available for 101 patients (72% of the entire cohort). 
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Table 2. 

Association between FLP and MRI biomarkers  

 

 Finger-like projections P value Agreement %  

(95% CI) 

κ value  

(95%CI) 

 Absent Present    

CMB   0.047* 54.3 (45.7 – 62.7) 0.142 (0.006 – 

0.277) 

Absence 47 (79.7) 12 (20.3)    

Presence 52 (64.2) 29 (35.8)    

Strictly Lobar CMB   0.014* 67.9 (59.4 - 75.5)  0.207 (0.034 – 

0.380) 

No 78 (76.5) 24 (23.5)    

Yes 21 (55.3) 17 (44.7)    

CMB count   0.013§ -  - 

0 47 (79.7) 12 (20.3)    

0-5 28 (75.7) 9 (24.3)    

6-10 5 (35.7) 9 (64.3)    

11-20 11 (78.6) 3 (21.4)    

>20 8 (50.0) 8 (50.0)    

cSS   0.390* 64.3 (55.8 – 72.2) 0.071 (-0.097 – 

0.240) 

Absent 79 (72.5) 30 (27.5)    

Present 20 (64.5) 11 (35.5)    

cSS severity   0.691* - - 

Absent 79 (72.5) 30 (27.5)    

Focal 11 (64.7) 6 (35.3)    

Disseminated 9 (64.3) 5 (35.7)    

      

Association between SAE and MRI biomarkers  

 Subarachnoid extension P value Agreement % (95% 

CI) 

k values  

(95%CI) 

 Absent Present    

CMB   0.815* 47.1 (38.7 – 55.8) -0.018 (-0.0171 – 

0.135) 

Absence 36 (61.0) 23 (39.0)    

Presence 51 (63.0) 29 (37.0)    

Strictly Lobar CMB   0.157* 60.7 (52.1 – 68.9) 0.116 (-0.048 – 

0.280) 

No 67 (65.7) 35 (34.3)    

Yes 20 (52.6) 18 (47.4)    

CMB count   0.787§ - - 

0 36 (61.0) 23 (39.0)    

0-5 23 (62.2) 14 (37.8)    

6-10 7 (50.0) 7 (50.0)    

11-20 10 (71.4) 4 (28.6)    

>20 11 (68.8) 5 (31.2)    

cSS presence   0.002* 67.1 (58.7 – 74.8) 0.240 (0.081 – 

0.399) 

Absent 75 (68.8) 34 (31.2)    

Present 12 (38.7) 19 (61.3)    

cSS severity   0.002* - - 

Absent 75 (68.8) 34 (31.2)    
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Focal 9 (52.9) 8 (47.1)    

Disseminated 3 (21.4) 11 (78.6)    

FLP, finger-like projections; cSS, cortical superficial siderosis; CI, confidence interval CMB, cerebral 

microbleeds; SAE, subarachnoid extension; * χ2 test; §Wilkoxon rank sum test 
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Table 3. Comparison between simplified Edinburgh criteria and modified Boston criteria and discrimination 
of simplified Edinburgh criteria for Probable CAA (per MRI-based modified Boston criteria) 

 
Classification per simplified Edinburgh criteria and modified Boston criteria: AUC = 0.62 (95%CI 0.54-0.71) 

 Modified Boston criteria  

 Probable CAA Non-probable CAA  

Simplified Edinburgh criteria    

High probability of CAA 16 (59.3) 11 (40.7) 27 (100) 

Intermediate probability of CAA 18 (45.0) 22 (55.0) 40 (100) 

Low probability of CAA 20 (27.4) 53 (72.6) 73 (100) 

 
 

Discrimination, sensitivity, specificity, PPV and NPV of high probability of CAA (vs Intermediate/low 
probability) for probable CAA (per MRI-based modified Boston criteria) 

  Modified Boston criteria   

  Probable 

CAA 

Non-probable 

CAA 

  

Simplified-Edinburgh criteria 
  

TOTAL 

High Probability of CAA 16 11 27 

Intermediate/low probability of CAA 38 75 113 

 TOTAL 54 86 140 

    

Sensitivity  29.6% (95%CI 18.0-43.6) 

Specificity  87.2% (95%CI 78.3-93.4) 

PPV 59.3% (95%CI 38.8-77.6) 

NPV 66.4% (95%CI 56.9-75.0) 

LR+ 2.3 (95%CI 1.2-4.6) 

LR- 0.8 (95%CI 0.7-1.0) 

  

CAA, cerebral amyloid angiopathy; PPV, positive predictive value; NPV, negative predictive value. LR+, 
positive likelihood ratio; LR-, negative likelihood ratio. 

 344 

Accepted author manuscript of the article: 
Schwarz G, Banerjee G, Hostettler IC, et al. MRI and CT imaging biomarkers of cerebral amyloid angiopathy in lobar intracerebral hemorrhage. 

International Journal of Stroke. 2023;18(1):85-94. Copyright © 2022 World Stroke Organization. doi:10.1177/17474930211062478


