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Optimal Filtering Scheme for Bilinear
Discrete-Time Systems: a Linear Matrix

Inequality Approach

Hamid Reza Shaker ∗

∗Department of Energy Technology, Aalborg University,
Pontoppidanstrde 101, 9220 Aalborg, Denmark (e-mail: shr@et.aau.dk)

Abstract: The filtering problem is among the fundamental issues in control and signal
processing. Several approaches such as H2 optimal filtering and H∞ optimal filtering have been
developed to address this issue. While the optimal H2 filtering problem has been extensively
studied in the past for linear systems, to the best of our knowledge, it has not been studied for
bilinear systems. This is indeed surprising, since bilinear systems are important class of nonlinear
systems with well-established theories and applications in the variety of fields. The problem of
H2 optimal filtering for discrete-time bilinear systems is addressed in this paper. The filter design
problem is formulated in the convex optimization framework using linear matrix inequalities.
The results are used for the optimal filtering of a bilinear model of an electro-hydraulic drive.

1. INTRODUCTION

The filtering problem is among the fundamental prob-
lems in control theory and signal processing and therefore
over the past it has received a lot of attention. Several
approaches such as H2 optimal filtering and H∞ opti-
mal filtering have been developed to address this issue
(Anderson and Moore [1979]). In general, there are two
approaches to solve the filtering problem: the Riccati-
like approaches and the linear matrix inequality (LMI)
approach. Generally,the algorithms for optimal filtering
of linear discrete-time systems which has been proposed
in the past is based the optimization of an H2 norm
(Anderson and Moore [1979]). This makes sense, because
the statistical knowledge of the input signal, particularly
a white-noise process, corrupting the measurement output
is described as the sum of the output variances which leads
to the H2 norm. The necessary and sufficient conditions
based on a Riccati filtering equation for the existence of
an estimator structure associated with the first category
were derived (Basar and Bernhard [1995], Petersen and
Mcfarlane [1994]).

The focus of this paper is on the second category of the
filtering techniques. An example of such filtering methods
is the one proposed in Palhares and Peres [1998]. In
Palhares and Peres [1998], the filtering problem has been
casted in terms of linear matrix inequalities (LMI’s). In
this framework, the global optimal solutions are attained
through convex optimization procedures, which can be
efficiently solved. The H2 optimal filtering design was
derived from the state-space definition of the H2 norm
of the transfer function which relates the noise signal to
the estimation error.

Both families of the methods have been extended for
robust filtering of linear systems (See e. g. Petersen and
McFarlane [1996],Tuan et al. [2001] ,Gao et al. [2008]) .

While the optimal H2 filtering problem has been exten-
sively studied in the past for linear systems, to the best
of our knowledge, it has not been studied for bilinear sys-
tems. This is indeed surprising, since bilinear systems are
important class of nonlinear systems with well established
theories and applications. These systems are used in the
variety of fields to describe the processes ranging from
electrical networks, hydraulic systems to heat transfer, and
chemical processes. Moreover, many highly nonlinear sys-
tems may be modeled as bilinear systems with appropriate
state feedback or can be approximated as bilinear systems
in the so-called bilinearization process. See e.g. Svoronos
et al. [1980]. The problem of H2 optimal filtering for
discrete-time bilinear systems is addressed in this paper.
The filter design problem is formulated in a the convex
optimization framework using linear matrix inequalities.
This is an extension of the optimal filtering scheme in
Palhares and Peres [1998], to support bilinear systems.
The results are used for the optimal filtering of a bilinear
model of an electro-hydraulic drive system.

The notation used in this paper is as follows: M∗ denotes
transpose of matrix if M ∈ Rn×m and complex conjugate
transpose if M ∈ Cn×m. The Tr(M) denotes the trace of
the matrix M . The ⊗ stands for the Kronecker Product.
The standard notation > , ≥ (< , ≤) is used to denote
the positive (negative) definite and semidefinite ordering
of matrices.

2. BILINEAR SYSTEMS, GRAMIANS AND H2 NORM

Let Σ be a bilinear dynamical system which is described
by:

Σ :

 x(k + 1) = Ax(k) +

m∑
j=1

Njx(k)uj(k) + Bu(k),

y(k) = Cx(k).

(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rm.
The controllability gramian for this system is defined as



(Dorissen [1989],D’Alessandro et al. [1974],Zhang et al.
[2003] and Zhang and Lam [2002]):

P :=

∞∑
i=1

∞∑
ki=0

...

∞∑
k1=0

PiP
∗
i , (2)

where:
P1(k1) = Ak1B ,
Pi(k1, ..., ki) = Aki [ N1Pi−1 N2Pi−1 · · · NmPi−1 ] ,

and the observability gramian is defined as:

Q :=

∞∑
i=1

∞∑
ki=0

...

∞∑
k1=0

Q∗iQi, (3)

where:

Q1(k1) = CAk1 ,

Qi(k1, ..., ki) =


Qi−1N1

Qi−1N2

...
Qi−1Nm

Aki .

If A is stable, the gramians are given by the solutions of
the generalized Lyapunov equations (Zhang et al. [2003]
and Zhang and Lam [2002]):

APA∗ − P +

m∑
j=1

NjPN∗j + BB∗ = 0, (4)

A∗QA−Q +

m∑
j=1

N∗j QNj+ C∗C = 0. (5)

These generalized Lyapunov equation (4) has a unique
solution if and only if:

W = (A⊗A− I +

m∑
j=1

Nj ⊗Nj) (6)

is nonsingular. The dual condition can be found for (5).
See (Zhang and Lam [2002]) for more details.

The generalized Lyapunov equations can be solved itera-
tively.
The controllability gramian P is obtained by (Zhang et al.
[2003] and Zhang and Lam [2002]):

P = lim
i→∞

P̂i (7)

where:

AP̂1A
∗ − P̂1 + BB∗ = 0,

AP̂iA
∗ − P̂i +

m∑
j=1

NjP̂i−1N
∗
j + BB∗ = 0, i = 2, 3, ....

(8)

The observability gramian is dually obtained by :

Q = lim
i→∞

Q̂i (9)

where:

A∗Q̂1A− Q̂1 + C∗C = 0,

A∗Q̂iA− Q̂i +

m∑
j=1

Nj
∗Q̂i−1Nj + C∗C = 0,

i = 2, 3, ....

(10)

The controllability and observability gramians show how
difficult a system is to control and to observe. The grami-
ans for bilinear systems have an important property which
will be used for H2 filtering in the next section. For bilinear
system Σ , if A is stable and the reachability gramian P
(or observability gramian Q) exists; then its H2 norm can
be computed from (Zhang and Lam [2002]):

‖Σ‖2 =
√

Tr(CPC∗) =
√

Tr(B∗QB) (11)

3. H2 OPTIMAL FILTERING

Consider the following bilinear time-invariant discrete-
time system given by:

S :


x(k + 1) = Ax(k) +

m∑
j=1

Njx(k)uj(k) + Bw(k),

y(k) = Cx(k) + Dw(k),
z(k) = Lx(k).

(12)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rr is
the measurements output vector, w(k) ∈ Rm is the
noise signal vector (including process and measurement
noises) and z(k) ∈ Rp is the signal to be estimated.
It is assumed that (A,C) is detectable. This guarantees
that there exists an observer constant gain such that the
filter is asymptotically stable. The goal is to design an
asymptotically stable linear filter described by:

F :


x̂(k + 1) = Ax̂(k) +

m∑
j=1

Nj x̂(k)wj(k)

+K(y(k)− Cx̂(k)),
ẑ(k) = Lx̂(k)

(13)

where K ∈ Rn×r is the filter constant gain to be deter-
mined.
The state error is defined as e(k) := x(k)− x̂(k) , then the
dynamics of the estimation error is described by:

E :


e(k + 1) = Aψe(k) +

m∑
j=1

Nje(k)wj(k)

+Bψw(k),
z̃(k) = Le(k),

(14)

where z(k) := z(k)− ẑ(k) is the estimation error, and:

Aψ := A−KC,
Bψ := B −KD.

(15)

In the optimal H2 filtering scheme, a bilinear filter F needs
to be determined such that the estimation error variance
is minimized. The problem therefore will be:

min
K
‖E‖22 (16)

The H2 norm of estimation error dynamics according to
(11) can be computed as:

‖E‖2 =
√

Tr(B∗ψQψBψ) (17)

where Qψ is the observability gramian of the bilinear sys-
tem (14) and is the solution to the generalized Lyapunov
equation:

A∗ψQψAψ −Qψ +

m∑
j=1

N∗j QψNj+ L∗L = 0 (18)



In the following some results are stated and proved which
will be used later to reformulate our problem in LMI
framework:

Lemma 1. Let A be stable and W which is defined as:

W = (A∗ ⊗A∗ − I +
m∑
j=1

N∗j ⊗N∗j ) (19)

be nonsingular. If X satisfies:

A∗XA−X +

m∑
j=1

N∗jXNj ≤ 0, (20)

then: X ≥ 0.

Proof:

Let X satisfies (20), there exist M ≥ 0 for which:

A∗XA−X +

m∑
j=1

N∗jXNj + M = 0, (21)

On the other hand, A is stable and W which is obtained
by duality from (6) as:

W = (A∗ ⊗A∗ − I +
m∑
j=1

N∗j ⊗N∗j )

is nonsingular, The generalized Lyapunov equation (21)
has a unique solution which is obtained as:

X = lim
i→∞

X̂i (22)

where:

A∗X̂1A− X̂1 + M = 0,

A∗X̂iA− X̂i +

m∑
j=1

Nj
∗X̂i−1Nj + M = 0,

i = 2, 3, ....

(23)

Since M ≥ 0, then X̂1 =
∞∑
k=0

(Ak)MAk ≥ 0. For

i = 2, 3, ...., we have:

m∑
j=1

Nj
∗X̂i−1Nj + M ≥ 0,

consequently: X̂i ≥ 0. Therefore: X = limi→∞X̂i ≥ 0.

2

Proposition 2. Let for bilinear system (1), A be stable and
W which is defined as:

W = (A∗ ⊗A∗ − I +
m∑
j=1

N∗j ⊗N∗j ) (24)

be nonsingular. Assume that Q is the observability
gramian of (1). If Q̄ satisfies:

A∗Q̄A− Q̄ +

m∑
j=1

N∗j Q̄Nj+ C∗C ≤ 0 (25)

then: Q̄ ≥ Q.

Proof:
Subtract (25) from (5) and apply Lemma 1 with X =Q̄−
Q.

2

This proposition has an interesting consequence:

Corollary 3. Let Aψ be stable and Wψ which is defined as:

Wψ = (Aψ
∗ ⊗Aψ

∗ − I +

m∑
j=1

N∗j ⊗N∗j ) (26)

is nonsingular. Let Qψ be the observability gramian for
the bilinear system (14) and assume that there exist Q̄ψ

which satisfies:

A∗ψQ̄ψAψ − Q̄ψ +

m∑
j=1

N∗j Q̄ψNj+ L∗L ≤ 0, (27)

then:

Tr(B∗ψQ̄ψBψ) ≥ Tr(B∗ψQψBψ). (28)

In the following, the H2 optimal filtering problem for
bilinear system is cast as a convex optimization problem:

Theorem 4. Consider the following optimization problem:

min
J,Y,V

Tr(J) (29)

Subject To:[
J B∗Y −D∗V ∗

Y B − V D Y

]
≥ 0, (30)

Y

m∑
j=1

Y Nj + Y A− V C 0

m∑
j=1

N∗
j Y +A∗Y − C∗V ∗ Y L∗

0 L I

 ≥ 0,(31)

Y ≥ 0 (32)

where Y = Y ∗ ∈ Rn×n, V ∈ Rn×r and J = J∗ ∈ Rm×m.
The optimal solution is such that:

Tr(J) = min ‖E‖22 (33)

and the optimal H2 filtering gain is given by:

K = Y −1V. (34)

Proof:

Suppose that there exist Y ≥ 0 and V , satisfying (31).
Then, from Schur’s complement we have:

(
m∑
j=1

Y Nj + Y A− V C)∗Y −1(
m∑
j=1

Y Nj + Y A− V C)

- Y + L∗L ≤ 0

Equivalently, we have:

(
m∑
j=1

Nj + A− Y −1V C)∗Y (
m∑
j=1

Nj + A− Y −1V C)

- Y + L∗L ≤ 0

For K = Y −1V and Y = Q̄ψ:



A∗ψQ̄ψAψ − Q̄ψ +
m∑
j=1

N∗j Q̄ψNj+ L∗L ≤ 0,

Corollary 3 applies and therefore we have:

Tr(B∗ψY Bψ) ≥ Tr(B∗ψQψBψ). (35)

On the other hand, from (30) using Schur complement we
get:

J − (Y B − V D)∗Y −1(Y B − V D) ≥ 0

Therefore:

Tr(J) ≥ Tr((Y B − V D)∗Y −1(Y B − V D))
= Tr((B - Y−1V D)∗Y (B − Y −1V D))

= Tr(B∗ψY Bψ)

From this and (35), we have:

Tr(J) ≥ Tr(B∗ψQψBψ) = ‖E‖22 . (36)

Since no other constraint is imposed on the J , the mini-
mization of the linear cost ensures that:

Tr(J) = min‖E‖22 (37)

2

This theorem is used for H2 optimal filtering of a bilinear
hydraulic derive system in the next section.

4. H2 OPTIMAL FILTERING OF A BILINEAR
HYDRAULIC DERIVE SYSTEM

In general, hydraulic systems are highly nonlinear dynami-
cal systems. The linear models are not sufficiently accurate
to describe them and consequently the controllers which
are designed based on the linear models of the hydraulic
systems quite often do not end up with satisfying results.
On the other hand, due to the complexity of the highly
nonlinear hydraulic models, methods for analyzing them
, filtering and synthesizing their controllers are not well
developed and often they are difficult to apply in practice.
In between the spectrum of different models to describe
a hydraulic system from linear model to highly nonlin-
ear model, the bilinear model often offers an adequately
accurate model with a well-developed theory for the anal-
ysis and control. In the sequel, the H2 optimal filter is
designed for a bilinear model of an electro-hydraulic drive
system. This hydraulic drive has been studied in Schwartz
and Ingenbleek [1994] and Shaker and Tahavori [2011].
The model is discretized by Euler’s forward discretization
method with the sampling time 0.1. The resulting discrete-
time model is in the form:{

x(k + 1) = Ax(k) + Nx(k)u(k) + Bw(k),
y(k) = Cx(k),
z(k) = Lx(k).

(38)

where:

A =

 1 0 0 −0.00002
0.1 1 0 −0.00225
0 0.1 1 −0.06600
0 0 0.1 0.41370

 ,B =

 0.00014
0
0
0

,

C = [ 0 0 0 1 ], L = [ 0 0 0 1 ],

N =

 0 0 0 0.00003
0 0 0 0
0 0 0 0
0 0 0 0

 .

Applying Theorem 1, the solution to the optimization
problem is:

Y =

 0.00036 −0.00432 0.05733 −0.77669
−0.00432 0.08441 −1.40225 21.68466
0.05733 −1.40225 27.68576 −487.88060
−0.77669 21.68466 −487.88060 9585.27364

,

V =

 −0.58546327196
19.36260729131
−514.30992621789
11598.15417677910

, J = 7.55316291347e− 012.

The optimal H2 filtering constant gain is given by:

K =

 946.6941734529101
423.9133743225211
65.0927812342745
3.6408492106137

 .

The H2 estimation error is:

‖E‖22 = 7.55316291347e− 012.

5. CONCLUSION

Over the last few decades, several approaches such as
H2 optimal filtering and H∞ optimal filtering have been
developed for filtering. While the H2 optimal filtering
problem has been extensively studied in the past for
linear systems, to the best of our knowledge, it has not
been studied for bilinear systems. Due to the importance
of this class of nonlinear systems , the problem of H2

optimal filtering for discrete-time bilinear systems has
been addressed in this paper. The filter design problem
has been formulated in the convex optimization framework
using linear matrix inequalities. The results have been
successfully used for the optimal filtering of a bilinear
model of an electro-hydraulic drive.
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