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Abstract: Lithium-ion batteries (LIBs) are used as energy storage systems due to their high efficiency.
28 State of charge (SOC) estimation is one of the key functions of the battery management system (BMS).
31 Accurate SOC estimation helps to determine the driving range and effective energy management of
33 electric vehicles (EVs). However, due to complex electrochemical reactions and nonlinear battery
36 characteristics, accurate SOC estimation is challenging. Therefore, this review examines the existing
methods for estimating the SOC of LIBs and analyzes their respective advantages and disadvantages.
41 Subsequently, a systematic and comprehensive analysis of the methods for constructing LIB models is
44 conducted from various aspects such as applicability and accuracy. Finally, the advantages of particle
46 filtering (PF) over the Kalman filter (KF) series algorithm for estimating SOC are summarized, and
49 various improved PF algorithms for estimating the SOC of LIBs are compared and discussed.

Additionally, this review provides corresponding suggestions for researchers in the battery field.
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1. Introduction

With the development of society, energy demand is growing, the scenarios of energy

consumption are becoming richer, and the demand for energy storage is also increasing [1].

LIBs (LIBs) have become the main component of energy storage systems (ESS) due to their

advantages of long cycle life, low self-discharge, high energy, and power densities, no memory

effect, lightweight, etc. [2]. However, due to the variety of application scenarios for energy

storage devices, such as large-scale energy storage devices and widely used electric vehicles

(EVs), their different operation modes and conditions can have peculiar effects on them.

Because the nonlinear electrochemical characteristics of LIBs are easily affected by different

factors, such as operating temperature, charge-discharge current, discharge depth, aging status,

etc. [3]. To master the current operating state of charge (SOC) value of the LIBs [4], accurately

evaluating the current state of health (SOH) [5] and remaining useful life (RUL) [6] status by

quantitatively and qualitatively analyzing and calculating the above characteristics is crucial.

Research on the SOC estimation method for LIBs has gradually become an essential topic

in battery management studies [7]. Accurately estimating the state of LIBs ensures the

economical, convenient, safe, and stable operation of equipment under several working

conditions [8], which has become the focus of the majority of researchers. Current battery state

estimation methods are mainly applied to EVs [9], consumer electronics, and power storage

systems [10]. However, they are rarely used in communication base stations to provide an

uninterrupted power supply for data centers, aviation, and military fields [11]. Several kinds of

estimation methods that are currently in use have their corresponding advantages and

https://mc04.manuscriptcentral.com/jes-ecs
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disadvantages, which need to be optimized [12]. Therefore, it is urgent to improve the state

estimation methods of LIBs and verify them under different working conditions.

SOC is a direct representation of the remaining battery capacity or energy [13]. It is provided

by the battery management system (BMS), which can reflect the instantaneous peak power state

and the SOH state [14] and timely ensure that the battery operates safely. Therefore, accurate

SOC estimation plays a key role in the BMS of EVs and has become the focus of many

researchers [15]. To obtain SOC, researchers have carried out a lot of relevant studies [16],

including the establishment of advanced battery models, SOC estimation models, and the

application of different mathematical methods in the evaluation process [17]. To obtain the

aging status of used batteries, an evaluation model of battery health status is constructed [18],

and advanced mathematical methods are proposed for the health evaluation [19]. The principle

and model are analyzed for the SOC prediction of LIBs, as well as the data-driven method that

can be used for this evaluation purpose [20, 21]. In the above research, the application and

improvement of new methods in SOC evaluation are proposed that are based on the current

research hotspots of big data and artificial intelligence.

The remaining parts of this review are organized as follows: Section 2 describes the

definition of LIBs, as well as an introduction and analysis of all major estimation methods.

Section 3 provides a detailed and comprehensive overview of modeling methods for LIBs, with

a comparison of the advantages and disadvantages of each model. Section 4 introduces

commonly used parameter identification methods. Section 5 discusses the advantages of

particle filtering, compares and summarizes the estimation results of various improved particle

https://mc04.manuscriptcentral.com/jes-ecs
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filtering algorithms, and discusses future directions from the perspective of the current situation.

The conclusion is presented in Section 6.

2. Research status of SOC estimation methods

2.1 Definition of SOC of LIBs

State of charge (SOC) refers to the remaining battery capacity. The value of SOC refers to
the ratio of the remaining battery capacity to the rated capacity under certain discharge
conditions [22]. The SOC value is a relative quantity expressed as a percentage, and the range

of SOC values is 0-100% [23].

The SOC of a LIB reflects the remaining capacity at the current moment during its operation.
The SOC value of batteries cannot be directly measured, and can only be indirectly measured
through other external parameters of the battery [24], which plays an important role in the
assessment of battery health status [25]. The SOC value is defined as the ratio of the current
remaining capacity of a LIB to its fully charged capacity at a certain moment when fully

quiescent [26], the expression is shown in Equation (1).

S0C, = 9 X 100% (1)
Qo

In Equation (1), Q; is the remaining capacity of the battery at time ¢, and @ is the rated
capacity. The SOC value is between 0 and 1. When SOC is 1, it indicates that the battery is
fully charged, and when SOC is equal to 0, it indicates that the battery is completely discharged
[27]. Among them, discharge capacity can be expressed as the integral of current over time [28].
Considering that the amount of electricity that a battery can release in actual work is often lower

than its nominal value due to internal resistance [29], the Coulombic efficiency (also known as
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discharge efficiency, refers to the ratio of battery discharge capacity to the amount of charging
capacity in the same cycle [30], that is, the percentage of discharge capacity to charging

capacity) can be corrected as shown in Equation (2).

t

[ I(t)ndt

SOC, = S0C,, —-—— (2)
Qo

Among them, SOC;  is the remaining capacity of the t, LIB. From ¢, to t, the battery

discharges with current I(t), with the discharge direction as the positive direction, and I(t) is

the working current of the battery.
2.2 Analysis of various SOC estimation methods of LIBs

As a parameter to measure the current remaining capacity of the battery, the SOC estimation
is the key to ensuring battery safety and optimizing the battery life level [31]. On the other hand,
it also provides the user with the current state of the device in real time, which can improve the
users’ experience [32]. As in a typical secondary battery, the essence of the charging and
discharging processes is the de-embedding motion of lithium ions between the positive and
negative plates [33]. In addition, there are a series of side reactions between the positive and
negative plates and the electrolyte, so there are a variety of electrochemical reactions coupled
inside the battery [34]. In the LIB application process, the battery material, aging degree,
ambient temperature, overcharge and over-discharge, and other factors affect the internal
reaction process of LIBs [35], thereby greatly increasing the difficulty in SOC estimation [36].

The commonly used SOC estimation methods include the following types.

(1) Direct measurement method

https://mc04.manuscriptcentral.com/jes-ecs



oNOYTULT D WN =

Journal of The Electrochemical Society

The OCV-SOC method: in the entire life cycle of LIBs, the mapping relationship between

the SOC and OCV is approximately constant [37]. This method estimates the SOC value by

measuring the OCV situation of the battery [38], and its principle is simple with a low

calculation amount. Whereas the problem is that due to the difference in electrochemical and

concentration polarization effects, the OCV value cannot be measured until the internal state is

completely balanced [39], so this method is not suitable for conditions where there are real-

time estimation needs. In addition, along with the aging process of LIBs [40], the battery

capacity, internal resistance, and other parameters will change [41]. The mapping relationship

between OCV and SOC will also change, so the polynomial coefficient needs to be adjusted

from time to time [42].

Another commonly used direct measurement method is the AC impedance method, which

analyzes the chemical reaction process and state inside the LIB by measuring the AC impedance

spectrum of the battery at different frequencies [43], thereby calculating the SOC of the battery.

Specifically, the AC impedance method applies a small sinusoidal current to a LIB and then

measures the voltage response of the battery [44]. At different frequencies, the AC impedance

spectra of LIBs exhibit different morphologies [45], which reflect the electrochemical reactions

inside the battery and their changes with SOC. By analyzing the AC impedance spectrum, the

internal resistance, charge transfer resistance, diffusion resistance, and other parameters of the

battery can be obtained, thereby calculating the SOC of the battery.

(2) Ampere-hour integration method

The ampere-hour (Ah) integration method: this method obtains the power change value by

6
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integrating the current [46]. This method is simple and real-time, but it needs to determine the
initial SOC value at the t; moment. The accuracy of the initial value will directly affect the
estimation accuracy [47]. Also, the integral calculation in this method will cause a cumulative
effect of the estimation error [48]. If the sensor accuracy is insufficient, it will eventually lead

to an increasing deviation between the estimated result and the true value [49].

(3) Data-driven method

The data-driven method: this approach treats the LIB as a black box [50], which uses a large
amount of experimental data to establish a mapping relationship between the amount of pending
state and the input excitation as well as the output response [51]. Wang, Kai, et al [52].
elaborated on the application of neural network models in predicting the health status of LIBs.
Sun, HL, et al [53]. used neural network algorithms to accurately capture the health status of
LIBs. When using the data-driven method for SOC estimation, the calculation procedure
generally includes the following three steps: (1) The collected data is pre-processed, the datasets
are divided into training, testing, and validation sets, and it can be modified to focus on the
significance of data normalization [54]; (2) The model structure and hyperparameters are
determined using the training dataset to train the model and the testing and validation datasets
for verification of the model’s performance [55]; (3) Model testing with the test dataset is
conducted to determine whether the accuracy meets the requirements [56]. Data-driven
approaches require the collection of large amounts of experimental data [57], which is time-

consuming and not highly accurate [58]. The neural network model is shown in Figure 1.

https://mc04.manuscriptcentral.com/jes-ecs
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Figure 1. Neural network model
(4) Physical model-based method

The model-based estimation method constructs a SOC estimation framework by
establishing a battery model based on a state-space equation and applying filter or observer
algorithms for estimating the SOC value [59]. Commonly used filter and observer algorithms
include Kalman filters (KFs) based on Gaussian distributions and their improved algorithms,
Bayesian filters, PFs, Hoo observers, etc [60]. It is worth noting that some filters need to assume
that the noise is white noise, which does not correspond to reality, so this assumption will cause

some estimation errors [61].
(5) Hybrid method

The hybrid method refers to a method that combines multiple SOC estimation methods,

comprehensively considering the advantages and disadvantages of multiple methods [62], to

https://mc04.manuscriptcentral.com/jes-ecs
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improve the accuracy and reliability of estimation. Each of the above methods has its

advantages and disadvantages, and there may be errors and uncertainties when used alone [63].

The hybrid method combines multiple estimation methods and uses appropriate weights for

comprehensive calculation based on actual data and conditions in different situations, to obtain

more accurate and reliable SOC estimation results [64]. The hybrid method can adaptively

adjust according to the needs of different application scenarios, thereby further improving the

accuracy and reliability of SOC estimation [65]. However, the implementation of this method

is relatively cumbersome. Although it can improve estimation accuracy for certain data, it is

difficult to adapt to multiple data conditions [66].

2.3 Comparison and Analysis of SOC estimation methods

In summary, many studies have been carried out on the SOC estimation of LIBs. Although

the SOC estimation accuracy has been significantly improved, there are still many problems

that have not been overcome. Comparing, summarizing, and analyzing the above methods for

estimating the SOC of LIBs, as shown in Figure 2, it can be seen that each estimation method

has its advantages and disadvantages.

https://mc04.manuscriptcentral.com/jes-ecs
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Figure 2. Comparison of four SOC estimation methods

However, in practice, using physical model-based methods and a mixture of physical models

to estimate the SOC of LIBs is the most widely used method. Compared with other methods, it

can adapt to various data under various operating conditions and has high accuracy and good

real-time performance. At the same time, it can also characterize the internal mechanisms of

LIBs.

3. Analysis of various modeling methods of LIBs

3.1. Electrochemical modeling method

The electrochemical model (EM) of LIBs is based on the porous electrode theory and the

concentrated solution theory [67]. The internal reaction, electrochemical reaction,

thermodynamic, and kinetic processes are described by partial differential equations [68],

10
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according to which the internal characteristics of the LIBs are studied from the basic

mechanisms [28]. Currently, the main EM types of LIBs include the single-particle model, the

quasi-two-dimensional mathematical model, and the simplified quasi-two-dimensional model

[69]. As for modeling at the mechanism level [70], it can reflect in detail the charge capacity

change, aging degree, and heat generation of LIBs in the application process [71].

The single-particle model simplifies the positive and negative electrodes of the battery into

two spherical particles, which is the most simple EM [72]. It has the advantages of a simple

structure and fewer computational complexities, but its main disadvantage is the large deviation

under complex working conditions [73]. Consequently, the quasi-two-dimensional

mathematical model is a P2D model [74]. The positive and negative electrodes of the battery

are equivalent to countless spherical particles, which is highly accurate but complex in the

calculation process [75]. It is suitable for theoretical support research in the laboratory. The

complexity of the simplified quasi-2D model is between that of the single particle model and

the quasi-2D model [76]. However, because the EM itself uses partial differential equations to

describe the internal reaction of LIBs [77], it is difficult to apply in engineering due to the many

variables in the equations. It is generally used in the battery development of manufacturers. The

quasi-2D model is shown in Figure 3.

11
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Figure 3. Quasi-2D model

The electrochemical model is used to estimate the SOC of a LIB by considering the chemical

reactions that occur inside the battery. This model can be used to monitor the real-time status

and performance of the battery [35]. However, the electrochemical model is complex and

requires high computational power and accuracy as it involves many parameters such as

electrode materials, electrolytes, etc [78]. Moreover, it requires the acquisition and processing

of large amounts of data in real-time, which may increase energy consumption and reduce the

battery life of the system. Additionally, the accuracy of the model depends on too many factors.

Therefore, using the electrochemical model to estimate the SOC of a LIB is not a time-saving

or efficient approach.

3.2. Thermal modeling method

The thermal model of LIBs is a mathematical model used to describe the internal

12

https://mc04.manuscriptcentral.com/jes-ecs

Page 12 of 46



Page 13 of 46

oNOYTULT D WN =

Journal of The Electrochemical Society

temperature changes of LIBs [79]. It consists of two main parts: heat transfer and heat
generation. Heat transfer considers the transfer and distribution of heat within the battery, while
heat generation considers the heat generated by chemical reactions within the battery [80]. The
thermal model can accurately estimate and predict the temperature distribution and thermal
characteristics of LIBs, which is helpful to improve the performance and safety of batteries [81].
It can also help optimize the design and control strategies of battery systems and improve

battery life and performance [82]. Thermal model is shown in Figure 4.

150

100

50

Figure 4. Thermal model model

However, the establishment of a thermal model for LIBs requires a significant amount of

time and resources, involving modeling and experimental verification of various aspects such

as the battery's materials, structure, and usage [83]. The modeling complexity is high, and the

13
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accuracy of the thermal model is influenced by multiple factors, such as the battery's initial

state, environmental temperature, and usage mode, which require real-time calibration and

adjustment, adding to the complexity of software development and system integration. The

thermal model is not suitable for estimating the SOC of LIBs due to its high complexity,

difficulty in parameter identification, and limited model accuracy [84]. The parameters in the

thermal model of LIBs need to be measured through experiments, but due to the complexity of

the internal structure of the battery and the diversity of working conditions, parameter

identification is relatively difficult, requiring a large amount of experimental data and repeated

model validation [85]. Even thermal models that have been repeatedly validated have limited

accuracy in estimating SOC.

3.3. Electrochemical impedance modeling method

The electrochemical impedance model of LIBs is a mathematical model used to describe the

complex electrochemical reactions, transmission, and energy storage processes inside LIBs [86].

This model is usually represented by electrochemical impedance spectroscopy. Electrochemical

impedance spectroscopy is an experimental technique for measuring the internal reaction

kinetics of LIBs [87]. It obtains the electrochemical impedance spectrum of LIBs by measuring

their electrochemical response under an AC electric field [88]. This spectrum consists of

multiple circular arcs, each representing a circuit component with specific electrochemical

significance within the LIB [89]. The electrochemical impedance model is shown in Figure 5.

14
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29 The LIB electrochemical impedance model can provide highly accurate SOC estimates, as
32 electrochemical impedance reflects the comprehensive reflection of internal chemical reactions
and charge transport within the battery, and can reflect the true internal state of the battery [89].
37 Additionally, the LIB electrochemical impedance model can estimate SOC online without
offline processing and data transmission, which is very useful for applications that require quick
42 response and accurate estimation of battery SOC [88]. However, the accuracy of the LIB
45 electrochemical impedance model is influenced by the battery operating conditions, and
therefore, it is necessary to model and calibrate the impedance of the battery under different
50 conditions [90]. Secondly, the LIB electrochemical impedance model has a large number of
parameters [91], and the determination of model parameters requires experimental testing and
55 model fitting, which requires a lot of time and effort. Additionally, with the continuous increase

58 of battery life and changes in internal chemical reactions, the LIB electrochemical impedance

15
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model needs to be constantly updated and maintained, otherwise it will affect the accuracy of

SOC estimation [92]. The latest impedance spectroscopy measurement technology and

electrochemical impedance spectroscopy based on lithium-ion battery health state estimation

technology are summarized by Zhang, M, et al [93].

As the battery's lifespan continues to increase and the internal chemical reactions of the

battery charge, the LIB electrochemical impedance model needs to be constantly updated and

maintained, otherwise it will affect the accuracy of SOC estimation [94]. This is because the

battery's impedance parameters may change over time, leading to inaccurate estimation of the

battery's SOC. Therefore, regular updating and maintenance of the electrochemical impedance

model are necessary to ensure accurate SOC estimation and optimal battery performance.

3.4. Compound EECMs modeling method

By far, Equivalent circuit model (ECM) is the most widely used battery model at present,

which has the characteristics of simple calculation and accurate description of battery

characteristics [95]. ECMs are electrical components that characterize the dynamic

characteristics of LIBs [96]. It is widely used because it clearly shows the mathematical

relationship between each element of the LIB, its current-voltage characteristics, and its SOC

value [97]. The EECM uses electrical components such as resistors, capacitors, voltage sources,

etc., to describe the charging and discharging characteristics of a LIB through different

combinations, which is a semi-empirical model [98]. Generally, an ECM consists of three

components, which include the open-circuit voltage (OCV) source, the ohmic resistor [99], and

the resistor-capacitor (RC) circuit networks. Conventional ECMs, such as the Rint, general

16
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nonlinear (GNL), partnership for new generation vehicles (PNGV), Thevenin, resistor-

capacitor (RC), etc., models [100]. The different EECM structures established for battery state

parameter estimation methods are presented in Figure 6.
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(e) Multiple order RC EECM structure

Figure 6. Different types of conventional EECM structures
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Figure 6 shows commonly used EECMs, which are used for LIBs status monitoring by
controlling and monitoring the dynamic characteristics of LIBs under different operating
conditions. Generally, [; is the load current flowing through the circuit, R is the internal ohmic
resistance, U, is the open-circuit voltage, and U}, is the terminal voltage of the battery. Ry, and
Cp1 are the electrochemical polarization resistance and capacitance. In Figure 6 (¢), Uy and Uy,
are the voltage across 1/U,. and Cpy,. Also, Rpy, Cpyn, and Up, are the nth-order polarization
resistance and capacitance, and the voltage drop across the multiple-order circuit networks,
respectively. Thevenin and RC modeling types usually consist of three main components. They
take both the ohmic resistance and electrochemical polarization of the LIBs into account [101].
The model structure is relatively simple, with less calculation, and has good practical value
[102]. They can accurately simulate the charging and discharging behavior of LIBs under
constant current and temperature conditions without significant changes in the health status of

LIBs. It conducts the diagnosis of the SOC, health status, or power status of LIBs [103].

Choosing an appropriate ECM under different conditions is crucial, it accurately monitors
the status of the LIB and improves the performance of the BMS system [104]. It has been
demonstrated to function in lead-acid, nickel-metal hydride, LIB, sodium-ion, and zinc-ion
batteries [105]. The simplest model only takes the internal ohmic resistance into account, such
as the Rint, which is not adequate to represent the battery dynamics during operation [106]. The
Rint model consists of an ideal voltage source and an internal ohmic resistor. The structure is
simple, and the parameters are easy to identify, but the dynamic process cannot be described.

When the battery flows through a large current, its simulation error increases and the simulation
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accuracy greatly decreases, so it is generally used to describe the ideal battery [107]. The GNL

model makes a detailed distinction between the internal characteristics of LIBs, especially with

the introduction of self-discharge factors [61]. The model has better accuracy and practicability,

but the establishment of the model and the identification of parameters are more complex [108].

The PNGV model uses a series capacitor to describe the change of open circuit voltage of

the LIB with the time integral of current, which reflects both the battery capacity and DC

response characteristics of the battery [109]. Therefore, it is possible to simultaneously estimate

the SOC, SOP, and battery usable capacity of the LIB and realize the estimation of the battery

health state [110]. The model can describe the battery ground output characteristics, but the

series capacitor will increase the cumulative error [111]. The EECM simulates the electrical

characteristics of LIB through voltage, current, resistance, capacitance, and other circuit

components. The ideal EECM should be able to simulate the actual battery voltage under any

current excitation [112]. Although adding more RC loops can more accurately characterize the

state characteristics of the battery, excessive RC loops will greatly increase the computational

complexity [113]. When modeling the EECM, the higher the order, the more accurately the

model can theoretically characterize the internal working characteristics of the battery [111].

However, the increase in the order of the model will also lead to higher complexity. The more

parameters that need to be identified, the more difficult the engineering application will be [114].

The battery ECM contains a variety of model structure frameworks [115]. The advantage of

a simple combination structure is that it allows for a fast and low-cost model, but the simulation

accuracy will also be low [116]. While the model with a more comprehensive combination
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structure will improve accuracy, it will also bring greater complexity, making the identification

parameters and calculation process more difficult [117]. Therefore, in practice, the advantages

and disadvantages of existing EECMs should be weighed, and a suitable circuit model should

be selected through comprehensive analysis [116]. For most LIBs, these models are

computationally efficient and have reasonable accuracy [118].

The equivalent circuit model can simulate the characteristics of LIBs quite accurately,

including internal resistance, electrochemical reactions, etc [119]. Therefore, it can estimate the

SOC of the battery more accurately. Additionally, it can quickly estimate the SOC in real-time

scenarios where time sensitivity is crucial, which is essential in applications such as electric

vehicles that require real-time monitoring of the battery's status.

3.5. Comparison and analysis of estimation modeling methods of LIBs

In this section, the advantages and disadvantages of the aforementioned lithium-ion models

used for estimating battery SOC are summarized. By considering multiple perspectives, we

have identified the battery model that is relatively most suitable for estimating the SOC of LIBs.

Table 1. Comparison of estimation modeling methods of LIBs

Models Advantages Disadvantages
) ) o 1. Complex model construction.
Electrochemical | 1. High reliability. _
2. High energy consumption.
model 2. Wide applicability.
3. Strong dependency.
1. High modeling complexity.
1. Internal temperature changes i
2. The model needs real-time

are considered. o )
> The i - ) calibration and adjustment.
. e 1mpact ot battery agin
Thermal model P Y oeine 3. The accuracy of battery SOC
and lifespan on Dbattery )
) ) can only be improved within
performance is considered. .
a certain range.
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1. Model accuracy depends on
1. High estimation accuracy. ) o
. battery operating conditions.
2. No measurement is required

Electrochemical inside the battery.
impedance model _ model parameters.
3. Can be wused for online

2. Difficulty in determining

o 3. It is difficult to update and
estimation. o
maintain the model

1. Real-time measurement of
1. High accuracy
Compound voltage and current is

EECMs 2. Good real-time performance

required

As can be seen in Error! Reference source not found., from the perspective of practical
engineering applications, the compound EECM method is the optimal choice, which can ensure

accuracy with a small amount of computation.

4. Parameter identification methods

The composite equivalent circuit model of a LIB is composed of basic elements such as

resistors, capacitors, and current sources. It is an important tool used to describe the internal

chemical reactions and charging and discharging characteristics of the battery. After

constructing a compliant equivalent circuit model, battery parameter identification is necessary

for better control and management of the LIB. Parameter identification methods can be broadly

divided into offline parameter identification and online parameter identification.

(1) Offline parameter identification

Offline parameter identification is the process of testing LIBs under specific test conditions
and using the test data to determine the model parameters [ 120]. These test conditions typically

include variables such as charging and discharging currents, voltage, and temperature. By
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measuring and recording these variables and using known mathematical algorithms to fit the

model, the model parameters can be calculated [121]. Offline parameter identification usually

requires a large amount of experimental data and computing resources, so careful planning and

execution of experiments and efficient algorithms for data processing and model fitting are

needed [122]. This identification method relies on testing experiments. Taking the simplest

first-order equivalent circuit as an example, model parameters are obtained through HPPC

testing experiments [123]. Based on the HPPC experiment shown in the figure below, a 10-

second discharge is conducted at time T1, and the voltage drop from T1 to T2 and the voltage

rise from T3 to T4 are caused by the internal resistance effect of the dynamic LIB. Therefore,

the battery's ohmic internal resistance R can be obtained based on the voltage change and the

discharge current I at the discharge time, as shown in Equation (3).

_ |Uy — Uy + Uy — Us|

3)
0 21
80 T
—1
40 | .
40 .
TZ T3
-80 L
0 50 100 0 50 100
t(s) t(s)
(a) One HPPC test voltage curve (b) Current curve of one HPPC test

Figure 7. One HPPC testing experiment

In the HPPC test, the voltage change from stage U2 to U3 is mainly caused by the

polarization effect. The parameters characterizing the polarization effect can be identified based
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on the voltage change from U2 to U3 and the corresponding current change at that time. Before
the pulse discharge, the dynamic LIB is stored for a long time, and the internal polarization
voltage of the battery is 0, which can obtain the zero-state response of the equivalent circuit

model. The zero-state response equation of the dynamic LIB is shown as Equation (4).

t
UL:U0C+U0+UP(1_6_?) (4)

In Equation (4), Uy represents the open circuit voltage of a LIB, while U, represents the
voltage portion attributed to the ohmic resistance (R;) in the equivalent circuit model (ECM),
with U, = I - Ry. U, represents the polarization voltage of the RC loop in ECM, with Up =1 -
Rp. Simplifying Equation (4) yields Equation (6), which is used to fit the voltage of the battery's

zero state response.
f=a+b(l—ec) ®)

In Equation (6), a = Uy¢ + Uy, where the open-circuit voltage UOC can be obtained by
leaving the cell at rest for a long time during HPPC testing. b represents the model polarization
voltage Up, c is the time constant of the RC circuit in the Thevenin model, t is the sampling
time during voltage and current measurement, and f is the measured terminal voltage of the
dynamic LIB, which is equal to U;. Based on the zero-state response of the terminal voltage,
the values of the parameters a, b, and ¢ in Equation (6) can be obtained by fitting the terminal
voltage curve using the least squares method. This achieves parameter identification of the

equivalent circuit model, and the model parameters are shown in Equation (7).

R — (a —Upc)
0 =——"7—
1
Rp = b/I ©)
Cp =C/RP
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Then, according to the calculation Equation mentioned above and combined with

experimental data, the fitting polynomial of each parameter concerning SOC is calculated using

the fitting tool at ten points of SOC from 1 to 0.1. The offline parameter identification method

mainly identifies the model parameters through specific test experiments, which can obtain

better identification results under specific conditions of use [124]. However, the equivalent

circuit model parameters of a power LIB differ under different usage conditions and

environmental temperatures [125]. Therefore, the generalization ability of the model

parameters obtained by offline parameter identification is poor and not universal. Usually, the

offline parameter identification method needs to identify parameters under different usage

conditions and temperatures, construct an interpolation table of the obtained model parameters,

and finally obtain higher universality by looking up the table during use.

(2) Online parameter identification

The online parameter identification method is an important approach for identifying model

parameters by using real-time measured data to estimate the model parameters [126]. Compared

with the offline parameter identification method, the online method directly uses the voltage,

current, and other parameters collected by sensors at the current moment to estimate the

equivalent circuit model parameters in real time [127]. Using the online parameter

identification method can ignore the influence of some parameters of the equivalent circuit

model of dynamic LIBs, such as environmental temperature and operating conditions [128].

Therefore, the online parameter identification method is more versatile [129]. The online

parameter identification method for LIBs can be divided into two types: the neural network
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identification method and the identification method based on the least square (LS) algorithm
[127]. However, the neural network algorithm is rarely used in parameter identification because
it also requires offline parameter identification to identify parameters under different conditions
to obtain training samples. Additionally, the neural network algorithm can be directly used for
estimating battery state parameters. The Recursive Least Square (RLS) algorithm is widely
used in online parameter identification. RLS algorithm is an online parameter identification
method based on the LS algorithm [130]. The LS algorithm is a classic system identification
method that seeks the best function match by minimizing the sum of the squared errors, thereby
obtaining the solution of a system parameter. Based on the relationship between voltage and
current in the ECM of a dynamic LIB, the ECM can be transformed into a discrete system as

shown in Equation (7).

Az™YH - Y(k) =Bz Uk) +v(k) (7)

In Equation (7), Y (k) represents the output of a dynamic LIB, namely the battery terminal
voltage UL; U (k) represents the input of the dynamic LIB, it is the discharge current ;. Based
on Equation (7), the discrete equation of the battery model for Y (k) can be obtained, as shown

in Equation (8).

Y(k) = —agY(k—1) — a;Y(k — 2) — - — a,Y(k —n) + boU(k — 1) ®
+b Uk —2)+ -+ b, U(k —n) + v(k)

In Equation (8), ag to a,_1 and by to b,,_; are the coefficients of the discrete system. By
representing the discrete system of the dynamic LIB shown in Equation (8) in the form of least

squares, Equation (9) can be obtained.
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Y(k) = h(k)T0(k) + v(k)
h(k)=[-Y(k—-1) ... =Y(k—-n) Uk-1) ... Uk—-n)]" )
6(k)=[ap .- apy1 by ... bp4]"
In Equation (9), Y (k) represents the output matrix of the system to be identified, while h(k)

represents the variables of the system to be identified. The RLS online parameter identification

algorithm is shown in Equation (10), where I represents the identity matrix.

Oy =0y +7y-Pyh(N+1D[Y(N+1)—hT(N +1)0y]
y = [AT(N + 1)Pyh(N + 1) + 1]71 (10)
Pyyy=[I—y Pyh(N + DRT(N + 1)]Py
In practical applications, the RLS online parameter identification method may cause data
saturation. Therefore, a forgetting factor can be used to reduce the weight of historical data in
the parameter identification process, increase the influence of current data on the parameter

identification results, and improve the accuracy of the parameter identification results. The

forgetting factor recursive least square (FFRLS) algorithm is shown in Equation (11).

y =[RT(N + 1)Pyh(N + 1) + 2] (11)
_[I=y-Pyh(N+DR"(N + 1)]Py
k Pyi1 = 1

In Equation (11), 4 is the forgetting factor. Using the recursive algorithm mentioned above,

the equivalent circuit model parameters can be effectively identified online. However, both the

RLS and FFRLS algorithm assume that the system noise is Gaussian white noise [131], while

in practical applications, the noise is colored. Based on the recursive extended least squares

algorithm with a forgetting factor, the colored noise in the parameter measurement is considered

in the parameter identification process. Therefore, the FFRLS algorithm has higher precision

in parameter identification [132]. To accurately estimate the parameters of the equivalent circuit

model, the FFRLS algorithm is used for online identification of the parameters in the equivalent
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circuit model of a dynamic LIB, which can effectively perform real-time parameter

identification. Optimized particle filtering strategies for SOC estimation

5. Optimized PF strategies for SOC estimation

5.1 The advantages of estimating the SOC of LIBs by PF.

Particle filtering (PF) is a filtering technique based on Monte Carlo methods, which

approximates the posterior distribution of the state space by weighting and sampling a set of

particles [133]. Unlike the Kalman filter, PF does not require linearization of the state space

model and can handle non-linear and non-Gaussian distributions. In the estimation of SOC in

LIBs, PF can provide more accurate SOC estimation, especially in special operating conditions

such as high-power discharge, high-temperature, and low-temperature, due to the non-linear

and non-Gaussian characteristics of LIBs [134]. Kalman filtering (KF) is a filtering technique

based on Bayesian filtering, which estimates the posterior distribution of the state space by

linearizing the state space model and assuming noise in both the state space and measurement

models [135]. The accuracy of KF decreases when dealing with non-linear and non-Gaussian

distributions. The advantages of PF over KF are as follows: (1) PF can handle situations with

nonlinearity and non-Gaussian distributions, while KF requires methods such as extended or

unscented KF to handle them [136]. (2) PF does not require linearization of the state-space

model, thus it can estimate the state-space more accurately [137]. (3) PF can improve estimation

accuracy by increasing the number of particles, but the accuracy of KF is limited by

assumptions about the state space model and measurement model.
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5.2 Iterative working principle of PF method

PF uses N-weighted samples (i.e. particles) to approximate the posterior probability density
P(X¢|y1.¢t)- This method uses the distribution of samples to approximate the true distribution
of the state variable X and is widely used in systems where modeling is difficult [ 138], avoiding
the linear Gaussian assumption of KF. P(X;|y;.;) describes the distribution of state X,
including its possible values and the probability of each value. Similarly, samples also can
describe probability distributions. By treating X; as a random variable and collecting enough
sample values, the distribution of X; can be described through the values and corresponding
probabilities of the samples. The idea of PF is shown in Equation (12).

N
~ 1i=1
X = E(Xset) = N Zwixi (12)

In Equation (12), X represents the estimated value of the state, x; represents the value of the
i-th sample particle, and w; represents the weight of the i-th particle, which indicates the
probability of the particle's value. The idea of PF is to use samples to simulate the probability
distribution of the state X;. Under the same conditions, the more particles there are, the more
accurate the simulation results will be, but the corresponding computational cost will also

increase. The iterative steps of PF are shown below.

Table 2. The calculation steps of SOC estimation based on the PF algorithm

Particle set initialization, setting the number of particles, and determining
Step 1 the initial state values based on prior probabilities.
Importance sampling.
Step 2 i
{x 1&21 ?Izl
Step 3 Normalizing importance weights.
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Wi

N

i_
wy = ;
i=1 Wk

Since particles with positions far from the true mean value will have their
weights continuously reduced to near-zero during the iteration process, the
Step 4 number of particles will be greatly reduced, leading to biased estimation
results. Therefore, it is necessary to perform resampling on the particle set

and normalize the weights again.

Calculation output.

N . .
Xk = E(xlyy) = Z Xj * Wi

=1

Step 5

In PF, importance sampling is crucial to the final filtering result [139]. The principle behind

importance sampling is to make the sampled particles match the region of the maximum

likelihood function distribution as closely as possible. PF-based SOC estimation flowchart of

LIBs as shown in Figure 8.

Update
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Figure 8. PF-based SOC estimation flowchart of LIBs

5.3 Comparison and analysis of state estimation effects of different improved PF methods

In recent years, many researchers have improved particle filter algorithms in different ways

and combined them with different equivalent circuit models to improve the SOC estimation
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accuracy of LIBs, and tested and verified them under various operating conditions and

temperature conditions to improve the universality of the improved algorithm.

Hui Pang et al. [140] proposed a composite SOC estimation approach for LIBs using a back-

propagation neural network (BPNN) and extended Kalman particle filter (EKPF). The

experimental results show that the proposed method has higher accuracy and robustness

compared to the other two SOC estimation methods. Shuxian Li et al [141] proposed the

fractional-order model and adaptive dual Kalman filtering algorithm, then, to improve the

accuracy of SOC estimation considering capacity loss, the particle filter algorithm is applied to

update capacity online in real-time. The simulation results show that the accuracy of battery

capacity prediction based on particle filter is high under the condition of capacity loss.

Wu, Tiezhou et al. [134] aiming at the particle degradation problem of the traditional

sequential importance sampling in the standard particle filter algorithm, the improved firefly

algorithm is used to replace the re-sampling of the traditional particle filter to suppress the

particle depletion during the execution of the standard particle filter algorithm. Zhang, Ming,

et al. [142] present a particle filter-based hybrid filtering method, particularly for SOC

estimation of Li-ion cells in EVs. A sampling importance resampling particle filter is used in

combination with a standard Kalman filter and an unscented Kalman filter as a proposal

distribution for the particle filter to be made much faster and more accurate. Xu, Wei, et al. [143]

proposed a multi-timescale adaptive dual particle filter to identify the battery parameters and

estimate the battery SOC with online measured data for satisfying the fast-varying behavior of

SOC and slow-varying behavior of battery parameters.
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Duan et al. [144] made data statistics on the same LIB, then applied the extended Kalman

filter (EKF) for comparative analysis. It is observed that the key to PF accuracy lies in the

resampling stage. Finally, the life estimation is carried out with the help of MATLAB simulation

software. The experiment shows that the PF algorithm is better, and the error in life estimation

is less than 5%. In addition, Bartlett et al. [ 145] also successfully applied the PF method to the

ESP model and predicted and verified the surface and average SOC values of composite

electrodes. It is worth mentioning that the observability of the nonlinear battery system is

deduced and proved in detail, which provides a theoretical reference for the application of the

filtering algorithm in EM. However, due to the increase in computing burden and the absence

of new observation information in the algorithm, the practical application of the PF method in

EM will still be further improved and perfected in the next few years.

In contrast to the EKF series algorithms, PF chooses sample points using a Bayesian model.

Its benefit is that by increasing the number of particles, it can arbitrarily and precisely

approximate the posterior density. Currently, the PF method has made pleasing advancements

in the application of state estimation and life estimation of EVs with power batteries ECM,

which serves as a good benchmark for research on the use of PF and EM in combination to

estimate battery SOC value.

The key criteria are introduced to compare different models in the literature to find the best

method for battery SOC estimation. The predicted effects were obtained and compared using

RMSE, and MaxE as evaluation criteria, as shown in Table 3.

Table 3. States estimation effects of different improved PF methods
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Parame
Modelin Operatin ter tempera
Years | Methods 8 P .. 8 identific P RMSE MaxE
methods conditions . ture
ation
methods
BPNN- Second-
2022 EKPF order CCDéUDD FFRLS 25°C <0.28% -
[146] EECM
ADKF- | Fractional- . o 0
2019 PF [141] | order ECM FUDS Offline 5°C - <2%
UPF Thevenin . -10- o
2020 [147] EECM Dst Offline 45°C - <4.13%
Second-
2020 ?ﬁg? order FUDTS/DS RLS | 0-50°C | <2.7% | <3.2%
EECM
Second- .
2022 H[:‘g'f]F order DST FFRLS U“fpg‘“f ; <2%
EECM ¢
Second-
2022 1}1?’[]135?;] order HP]};%BB FFRLS | 25°C | <0.6% |<1.39%
EECM
Second- )
2020 S[Iﬁg]F order UDDS | Offline Unisé’g“f <0.8% -
EECM
Second-
2021 P(;P[Slg)g‘] order DVCT | Offline | 25°C - | <0.89%
EECM
Second-
2021 IG[ESI;PF order HPI]’)CS/UD Offline | 25°C | <131% | <2.23%
EECM
LSSVM- Unspecif
2020 UPF - DST - ié”d <2% ;
[150]

From the table above, it can be seen that different improved PF algorithms are very effective

in estimating the remaining capacity of LIBs. For different operating conditions of batteries,

the appropriate circuit model can be selected from the composite equivalent circuit, among

which the second-order equivalent circuit model is widely applicable and can be used in various

types of operating conditions.

6. Conclusion and Policy Implications

Accurate estimation of battery status is the key to the difficulty of monitoring the status of

32

https://mc04.manuscriptcentral.com/jes-ecs

Page 32 of 46



Page 33 of 46

oNOYTULT D WN =

Journal of The Electrochemical Society

LIBs, and various improved PF algorithms improve the estimation accuracy and robustness.

This article reviews different methods for estimating the state of charge (SOC) of LIBs,

summarizes the advantages and disadvantages of each method, and rigorously analyzes,

compares, and reviews the improvement directions of different estimation methods based on

various factors. The analysis results show that model-based methods and hybrid methods that

include model-based methods have smaller computational requirements and greater

universality. Subsequently, this article analyzes different types of models for LIBs,

systematically summarizes the advantages and disadvantages of various models when used to

estimate the SOC of LIBs, and through comprehensive comparative analysis, the composite

equivalent model is used to estimate the SOC of LIBs without requiring high data requirements,

and can quickly characterize battery characteristics while ensuring accuracy.

At the same time, this article also reviews commonly used parameter identification methods

and compares the advantages and disadvantages of online and offline parameter identification.

Finally, this article summarizes the advantages of PF over Kalman filtering and briefly

introduces its iterative principle. Then, it compares the accuracy and universality of various

improved PF algorithms for estimating the state of charge (SOC) of LIBs under different

operating conditions. The results show that the improved PF algorithm based on a composite

equivalent circuit model can ensure the accuracy of SOC estimation, and this estimation method

can be applied to various operating conditions. Therefore, future research can focus on using

improved methods of PF and hybrid methods containing PF for estimating the SOC of LIBs. In

summary, this review has made a significant contribution to the accurate estimation of SOC and
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helps expand the use of LIBs. The widespread use of LIBs can promote energy conservation,

reduce carbon dioxide emissions, and protect the environment, helping to achieve peak

emission and carbon neutrality goals.

This review can also provide valuable overviews and suggestions for researchers in the

battery field. Future work will examine state estimation methods for LIBs packs as well as other

status estimation or prediction methods for real-time effective BMS applications.
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