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Abstract. The paper proposes a technique for estimating outdoor illumination
conditions in terms of sun and sky radiances directly from pixel values of dy-
namic shadows detected in video sequences produced by a commercial stereo
camera. The technique is applied to the rendering of virtual objects into the image
stream to achieve realistic Augmented Reality where the shading and shadowing
of virtual objects is consistent with the real scene. Other techniques require the
presence of a known object, a light probe, in the scene for estimating illumination.
The technique proposed here works in general scenes and does not require High
Dynamic Range imagery. Experiments demonstrate that sun and sky radiances
are estimated to within 7% of ground truth values.

Keywords: Stereo, Shadow, Illumination, Augmented reality, HDR, Photo-realism.

1 Introduction

For photo-realistic Augmented Reality (AR) the goal is to render virtual objects into real
images to create the visual illusion that the virtual objects are real. A crucial element
in achieving this illusion is to have a sufficiently correct model of the illumination
conditions in the scene to be able to render the virtual objects with scene consistent
shading and to render correct shadow interaction between real and virtual geometry.

This paper presents an adaptive illumination estimation technique for outdoor day-
light scenes. The technique uses color image sequences, combined with live stereo data,
to estimate the radiance of a sky dome (hemi-sphere) and the radiance of the sun. Both
radiances are estimated in three color channels. The position of the sun is computed pro-
cedurally from GPS and date/time information. Together, this illumination environment
(sky dome and sun) can be used to render virtual objects into the scene. As an additional
benefit the stereo information provides 3D scene information to cast shadows on and to
handle occlusion between real and virtual objects. Figure 1 shows an example result.

The main contribution in this work lie in the fact that the illumination is estimated
directly from the image sequence with no need for special purpose objects in the scene,
and no need for acquiring omni-directional High Dynamic Range environment maps
(light probes) prior to augmentation.

The paper is organized as follows. Section 2 describes related work, and Section 3
describes the assumptions behind the presented work. Section 4 presents the theoretical
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Fig. 1. Two different augmentations intro frame 139 of a 200 frame sequence. The statue, the dif-
fuse grey box and the three glossy spheres are rendered into the scene with illumination estimated
from the shadow cast by the walking person.

framework for our approach, both in terms of detecting shadows and in terms of esti-
mating scene illumination from detected shadows. Sections 5 and 6 present the dynamic
shadow detection and the illumination estimation, respectively. Experimental results are
presented in Section 7, followed by discussions and ideas for future research in Section
8. Finally, Section 9 presents concluding remarks.

2 Related Work

A survey of real scene illumination modelling for Augmented Reality is given in [17].
The survey indicates that there is no one preferred or most popular family of approaches.
No technology has matured to the point of outperforming other types of approaches. In
fact, any approach offers a set of possibilities at the price of a set of assumptions or
limitations, leaving the application scenario to define which approach to choose.

There are three main categories of approaches: 1) omni-directional environment
maps, 2) placing known objects/probes in the scene, and 3) manually or semi-manually
model the entire scene, including the light sources, and perform inverse rendering.

The most widely used approach is to capture the scene illumination in a High Dy-
namic Range (HDR), [9], omni-directional environment map, also called a light probe.
The technique was pioneered by Debevec in [7] and used in various forms by much
research since then, e.g., [1,8,12,21]. The technique gives excellent results if the domi-
nant illumination in the scene can be considered infinitely distant relative to the size of
the augmented objects. The drawbacks are that it is time-consuming and impractical to
acquire the environment map whenever something has changed in the scene, for exam-
ple the illumination. Illumination adaptive techniques based on the environment map
idea have been demonstrated in [14,18] but require a prototype omni-directional HDR
camera, or a reflective sphere placed in the scene, respectively.

The other popular family of approaches is based on requiring the presence of a known
object in the scene. Sato et al. analyze the shadows cast by a known object, [30,31] onto
a homogeneous Lambertian surface, or require images of the scene with and without
the shadow casting probe object. Hara et al., [13] analyze the shading of a geometrically
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known object with homogeneous (uniform albedo) Lambertian object, or require multi-
ple images with different polarizations, to estimate the illumination direction of a single
point light source. Multiple light sources can be estimated from the shading of a known
object with homogeneous Lambertian reflectance using the technique described in [32].

The last family of approaches do not estimate illumination per se as they rely on
modelling the entire scene in full detail, including modelling the geometry and the
radiances of the light sources. The modelling process is labor intensive. Given the full
description of the scene and images of it (in HDR if needed) inverse rendering can
be performed to estimate the parameters of applicable reflectance functions of scene
surfaces. Subsequently virtual objects can be rendered into the scene with full global
illumination since all required information is known. Examples include [3,4,20,34].

A final piece of related work does not fall into the above categories, as it is the only
representative of this type of approach. Using manually identified essential points (top
and bottom point of two vertical structures and their cast shadow in outdoor sunlight
scenes) the light source direction (the direction vector to the sun) can be determined,
[5].

In summary existing methods either require pre-recorded full HDR environment
maps, require homogeneous Lambertian objects to be present in the scene, require total
modelling of the scene including the illumination, or require manual identification of
essential object and shadow points. None of the mentioned techniques offer a practical
solution to automatically adapt to the drastically changing illumination conditions of
outdoor scenes.

The approach proposed in this paper addresses all of these assumption and/or con-
straints: it does not require HDR environment maps, nor HDR image data, it does not
require objects with homogeneous reflectance (entire objects with uniform reflectance),
it does not require manual modelling of the illumination (in fact the illumination is
estimated directly) and there is no manual identification of essential points.

3 Assumptions behind Approach

Our approach rests on a few assumptions that are listed here for easy overview. It is
assumed that we have registered color and depth data on a per pixel level. High Dynamic
Range color imagery is not required; standard 8 bit per color channel images suffice if
all relevant surfaces in the scene are reasonably exposed. In this paper the image data
is acquired using a commercially available stereo camera, namely the Bumblebee XB3
from Point Grey, [26]. It is also assumed that the response curve of the color camera is
approximately linear. The Bumblebee XB3 camera is by no means a high quality color
imaging camera but has performed well enough. It is also assumed that the scene is
dominated by approximately diffuse surfaces, such as asphalt, concrete, or brick, see
Figure 1 for an example. There is no homogeneity assumption, and in Section 8 we will
briefly describe ongoing/future work to relax the diffuse surface constraint.

To be able to procedurally compute the direction vector to the sun we need to know
the Earth location in latitude/longitude (acquired from GPS), the date and time of the
image acquisition, and we assume that the camera is calibrated (extrinsic parameters
for position and orientation) to a scene coordinate system with xy-plane parallel to a
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horizontal ground plane (z-axis parallel to the direction of gravity), and x-axis pointing
North. The checkerboard in Figure 1 is used for camera calibration.

4 Illumination Model

The purpose of this section is to establish the theoretical foundation for both the shadow
detection and the illumination estimation. All expressions in this paper relating to pixel
values, radiometric concepts, and surface reflectance et cetera are color channel depen-
dent expressions and are to be evaluated separately for each color channels.

If the response curve of the camera is linear the pixel value in an image is propor-
tional to the outgoing radiance from the scene surface point imaged to that pixel, [10].
The constant of proportionality depends on things such as lens geometry, shutter time,
aperture, camera ISO setting, white balancing settings, etc. If the unknown constant of
proportionality is termed c the value P of a pixel corresponding to a point on a diffuse
surface can be formulated as:

P = c · ρ · Ei · 1
π

(1)

where ρ is the diffuse albedo of the surface point, and Ei is the incident irradiance on the
point. ρ times Ei yields the radiosity from the point, division by π gives the radiance,
and c is the camera constant mapping radiance to pixel value. For a point in sunlight
the incident irradiance, Ei, is the sum of irradiance received from the sun and from the
sky, provided that we can disregard indirect Global Illumination from other surfaces in
the scene, (for a discussion on this please refer to Section 8).

The irradiance received from the sun can be formulated as:

Esun = n · s ·E⊥
s (2)

where n is the unit surface normal at the point, s is the unit direction vector to the
sun (both relative to the scene coordinate system) and E⊥

s is the irradiance produced
by the sun on a point with a normal pointing straight into the sun. The direction vector
to the sun is computed procedurally from the GPS and date/time information using the
approach described in [2].

The irradiance from the sky can be formulated as:

Esky = Va ·E⊥
a (3)

where Va is the fraction of the sky dome which is visible from the surface point, and
E⊥

a (subscipt a for “atmosphere” or “ambient”) is the irradiance produced by the sky
dome on surface point with normal pointing straight into the sky dome and receiving
light from the entire dome. In our experiments the visibility fraction Va is computed on
a per point basis using the scene geometry provided by the stereo camera, see Section 6.

The illumination model in this work consists of a hemi-spherical sky dome of uni-
form radiance, and a sun disk. The diameter of the sun disk as viewed from earth is 0.53
degrees, [10]. The technique for estimating the irradiances (and hence the radiances) of
the sky and the sun directly from image measurements represents the main contribu-
tion of this paper. Our approach is in two steps: 1) detection of dynamic shadows (cast
by moving objects), and 2) using chromatic information from the detected shadows to
compute the radiance of the sky dome and the sun, respectively.
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Fig. 2. Textured 3D scene mesh generated from stereo disparity information from the image
shown in Figure 1. Notice how well the main surfaces in the scene are reconstructed

5 Shadow Detection

Existing work on single image shadow detection does not really handle soft shadows, or
requires manual training. Example work includes [24,11,29]. Existing work on dynamic
shadow detection from image sequences either rely on a simplistic illumination model
(the grey world assumption which is definitely not valid in outdoor scenes), or require
a high quality trained background model. Example work includes [16,15,19,6], and a
survey can be found in [27].

For this work we have developed a dynamic shadow detection technique which does
not rely on a trained background model and utilizes the available depth information.
Figure 2 shows an example of the 3D data provided by the Bumblebee camera (and the
accompanying API). In this section we briefly describe the approach. For more detail
and additional experimental results, please refer to [22].

The shadow detection technique is based on image differencing. A delayed frame
(from time t − Δt) is substracted from the current frame (from time t) both for color
images and for stereo disparity images. If, for a given pixel, the color image difference
is negative in all three color channels (less light emited from the point at time t than
at time t − Δt), and the disparity difference is zero (no change in depth), the pixel
is classified as a shadow candidate. If there is a change in depth it is not a potential
shadow candidate but rather a pixel belonging to a moving object.



38 C.B. Madsen and B.B. Lal

Choosing the length of the frame delay Δt is not critical. If set high (long delay)
we achieve better ability to detect the whole shadow since the shadows cast in the two
frames are less likely to overlap. On the other hand a long frame delay makes the system
less responsive to changes in the illumination conditions. In the experiments reported
here we have used a frame delay of 0.5 seconds (the Bumblebee camera delivers color
and disparity images at a frame rate of 10 fps in 640x480 pixel resolution).

Figure 3 shows the detected shadow candidates corresponding to the image in Figure
1. Here we have used a Δt of 10 seconds to give a better visual impression of detected
shadows. Water poured onto surfaces by the test person (to simulate rain) are also ini-
tially classified as shadow candidates.

Fig. 3. Top: shadow candidate pixels in frame 139 (compare with Figure 1 and Figure 2). Bottom:
verified shadow pixels after chromaticity analysis. Notice that water splashes are not classified as
shadow pixels demonstrating robustness to rain.

Further analysis of the shadow candidates is performed in log chromaticity space,
where the red and blue channels are normalized with respect to the green channel. In
log chromaticity space, combining with the general pixel value expression from Eq. (1),
we get two chromaticity values per pixel, r and b (using superscripts r/g/b to indicate
RGB color channel specific value):

r = log(P r/P g)

= log(P r)− log(P g)

= log(cr)− log(cg) + log(ρr)− log(ρg) + log(Er
i )− log(Eg

i ) (4)

b = log(P b/P g)

= log(cb)− log(cg) + log(ρb)− log(ρg) + log(Eb
i )− log(Eg

i ) (5)

If a pixel has been marked as shadow candidate it means we have two versions of the
same pixel, one from time t and one from time t −Δt. The color channel values have
changed for that pixel, which in turn means that the pixel’s location in log chromaticity
space has moved. Basically two things can have caused this: 1) sunlight at the sur-
face point corresponding to the pixel was blocked (shadow), or 2) the surface changed
albedo, e.g., became wet. Studying the displacements in chromaticity space forms the
basis for the final classification of shadow pixels. This approach is inspired by [23].



Estimating Outdoor Illumination Conditions 39

Fig. 4. Left: per pixel normal map encoded as RGB values for the image in Figure 1. Right: per
pixel sky dome visibility in the range 0 to 1.

We assume that the camera constants cr/g/b did not change during Δt. If we hypoth-
esize that the surface albedos ρr/g/b did not change:

Δr = r(t) − r(t−Δt)

= log

(
Er

i (t)

Er
i (t−Δt)

)
− log

(
Eg

i (t)

Eg
i (t−Δt)

)
(6)

Δb = log

(
Eb

i (t)

Eb
i (t−Δt)

)
− log

(
Eg

i (t)

Eg
i (t−Δt)

)
(7)

Thus, log chromaticity displacements of shadow candidate pixels depend only on the
change in incident irradiances, namely the various Ei values (which are of course un-
known). This means that all shadow pixels should exhibit displacements that are parallel
in log chromaticity space. If a pixel does not displace in the same direction it must be
because the albedo changed (the constant albedo hypothesis is false and eqs. 6 and 7
do not hold), e.g., the surface point became wet, or it otherwise changed color. This
is utilized by selecting only the pixels whose displacement orientation (computed as
θ = arctan(Δb/Δr)) is within a certain threshold of +90 degrees (a displacement to-
wards blue). We have used a threshold of 20 degrees. A shift towards blue is what is
expected from a surface point transitioning from being illuminated by both the sun and
sky, to only being illuminated by the (blueish) sky. Figure 3 shows the shadow pixels
after the chromaticity analysis.

The described methods work well on outdoor imagery, but we do not need perfect
shadow detection. We just need robust, fast detection of a population of high confidence
shadow pixels to support the illumination estimation.

6 Illumination Estimation

As described in Section 4 the illumination model in this work consists of a hemi-
spherical sky dome of uniform radiance, and a sun disk of uniform radiance. The direc-
tion vector, s, is computed procedurally using the method described in [2].
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Every detected shadow pixel provides some information about the sun and sky irra-
diance in the scene. At time t −Δt the pixel was not in shadow, and at time t it is. At
time t−Δt, by combining eqs. (1) through (3):

P (t−Δt) = c · ρ ·Ei(t−Δt) · 1
π

= c · ρ · 1
π
·
(
Esun(t−Δt) + Esky(t−Δt)

)

= c · ρ · 1
π
· (n · s · E⊥

s (t−Δt) + Va(t−Δt) ·E⊥
a (t−Δt)

)
(8)

Here, sky dome visibility fraction, Va, is time dependent since moving geometry in the
scene may change the fraction, especially for points in near proximity of the shadow
casting object. At time t the pixel is in shadow and only the sky contributes to the
irradiance:

P (t) = c · ρ · 1
π
· Va(t) · E⊥

a (t) (9)

Eqs. (8) and (9) are per color channel. If we introduce a quantity C which is the ratio
of pixel value in shadow to pixel value in sunlight, and assume Δt to be small enough
that the sky and sun irradiances at time t−Δt equal those at time t:

C =
P (t)

P (t−Δt)

=
Va(t) ·E⊥

a (t)

n · s ·E⊥
s (t) + Va(t−Δt) ·E⊥

a (t)
(10)

Equation (10) is crucial. On the left hand side the ratio C is based only on image mea-
surements (pixel values from the two frames), so this quantity is known. On the right
hand side n is the surface point normal, known from the stereo data; s is the sun di-
rection vector, known from the GPS and the date and time information; Va at time t
and at time t−Δt is the sky dome visibility fraction, which can be computed from the
scene geometry data, see Section 7 and Figure 4. The only unknowns are the sun and
sky irradiances. Re-arranging Eq. (10) yields:

E⊥
s (t) = E⊥

a (t)
Va(t)− C · Va(t−Δt)

n · s · C (11)

Now the sun’s head-on irradiance is expressed in terms of the sky irradiance times quan-
tities from the images and from scene geometry. Next we introduce a constraint based
on the white-balancing of the camera. We assume that the camera is white-balanced.
This means that there must be some point in the scene where the combined irradiances
of the sun and sky is color balanced, that is, the combined irradiance has the same value,
k, in all three color channels. Let n′ be the normal of such a point and let V ′

a be its sky
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dome visibility fraction. In our experiments we have used n′ = [0 0 1 ] (so horizontal
surfaces have white-balanced illumination), and set V ′

a to the average value of Va for
all horizontal surface points in the scene. This white-balancing constraint says that the
sun and sky combined irradiance must sum to the same number k in all color channels,
expressible as:

k = n′ · s · E⊥
s (t) + V ′

a(t) · E⊥
a (t) (12)

Combining eqs. (11) and (12) yields:

E⊥
a =

k

V ′
a(t) + (n′ · s/n · s)(Va(t)/C − Va(t−Δt))

(13)

To sum up, we could now, given the pixel values at time t and time t − Δt of only
one shadow pixel, compute the irradiance ratios Cr/g/b in the three color channel using
Eq. (10), insert into Eq. (13) to get the sky irradiance in three channels (up to a scale
factor of k), then insert into Eq. (11) to get the sun irradiance in three channels (up to
a scale factor of k). To solve this overall scale problem we have chosen the following
approach. The input image is actually measurements of scene radiances scaled by the
camera radiance-to-pixel-value proportionality constants cr/g/b (see Eq. (1)). We wish
to scale the estimated irradiances such that the reflected radiance of virtual surface in the
augmented scene is on the same brightness level as the input image. k is the irradiance
on a horizontal surface in the scene. A suitable average albedo for general surfaces is
0.3 (earth’s average albedo), so the reflected radiance from such a surface would be
Lavg = ρavg · k · 1/π. Let P g

avg be the average pixel value in the green channel of the
input image. We want the reflected radiance to equal the average image intensity which
means that we should set k to:

k = πP g
avg/ρ (14)

By computing the scale factor this way the augmented object changes brightness ac-
cording to changes to camera illumination sensitivity, e.g., if the camera aperture is
changed the luminance level of the image changes, and the luminance level of the aug-
ment object changes with the same amount. This allows us to enable the Automatic Gain
Control (AGC) of the camera so the method can be applied to very long sequences with
large variations in illumination.

This completes the theoretical background for the illumination estimation from shad-
ows. For rendering puporses we need the radiances of the sun and the sky, not the ir-
radiances. The radiance of the sky is computed as La(t) = E⊥

a (t)/π and the radiance
of the sun disk is computed as Ls(t) = E⊥

s (t)/(2π · (1 − cos(d/2))), where d = 0.53
degrees. The denominator is the solid angle subtended by a sun disk of 0.53 degree
radius.

In the subsequent Section we describe how the illumination is estimated robustly
from a whole population of detected shadow pixels, not just from a single one.
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Fig. 5. Dynamic shadow detection based on image differencing (frames 180, 520, and 1741).
These are the raw detected shadow pixels. The spurious shadow pixels in the top right of the
images are removed with morphological operations.

7 Experimental Results

We have Matlab and C++ versions of the shadow detection, and we have a Matlab
implementation of the illumination estimation.

In the C++ version shadow detection is running at approx. 8 Hz on an Intel Core
Duo 2 2.3 GHz machine running Windows XP SP2, equipped with 2 GByte RAM.
This framerate includes the stereo disparity computations, and the construction of the
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Fig. 6. Top row: sky irradiance histograms for R, G, and B color channels. Bottom row: similar
for sun irradiance. For each histogram the horizontal axis shows the irradiance value with a scale
factor k of 1, and the vertical axis is number of pixels voting for that irradiance value. The
histogram corresponds to the scene in Figure 1.

geometry mesh from the depth data. Figure 5 illustrates the shadow detection on some
random frames from a long image sequence with rapidly changing illumination condi-
tions (partly overcast and very windy).

The expressions for estimating the illumination conditions involve quantities relat-
ing to the geometry of the scene, namely the sky dome visibility fraction Va and the
surface normals. We construct triangle meshes of the scene from the live disparity data
(an example mesh is shown in Figure 2). The disparity data is in 640×480 pixel resolu-
tion, which is mean filtered with a kernel size of 5×5. A 160×120 regular vertex grid is
imposed on the disparity map and the xyz position of each vertex is found by converting
the corresponding disparity value to depth and multiplying the pixel’s unit ray direction
vector with that depth. Two triangles are formed for every group of 4 vertices, resulting
in 2× 160× 120 triangles, from which triangles with normals almost perpendicular to
the viewing direction are discarded (typically triangles that correspond to depth discon-
tinuities). We get per pixel normals by rendering the scene mesh using a normal shader.
For all renderings in this paper we have used the RADIANCE rendering package, [33].
Per pixel sky dome visibility is computed by rendering irradiance values of the mesh
(with mesh albedo set to zero to avoid global illumination inter-reflections) when il-
luminated with a sky dome of radiance 1/π. Using this approach a normal pointing
straight into the sky and having un-occluded view of the sky will receive an irradiance
of 1, so the Va values will be in the range of 0 to 1 as desired. Figure 4 shows examples.

With per pixel geometry quantities, and with irradiance ratios C computed per de-
tected shadow pixels using Eq. (10) we have a whole population of pixels voting for
the irradiances of the sky and the sun. Each pixel, through Eq. (13), contributes three
channel values for the sky irradiance, and through Eq. (11) for the sun irradiance. This
is computed for all shadow pixels and histograms are formed of sky and sun irradiances
for each color channel, see Figure 6.
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From each of these histograms the most voted for irradiance value is selected (his-
togram peak). Future work includes either fitting a Gaussian distribution, employ a
mean shift algorithm, or to use Random Sample Consencus (RANSAC), to find the
mean more robustly than just taking peak value. In the example in Figure 6 the elected
and finally scaled radiance values are:

Sky radiance =
[
0.6548 0.6662 0.7446

]
Sun radiance =

[
60197 57295 51740

]
These numbers indicate primarily that the radiance of the sun is 5 orders of magnitude
higher than that of the sky, which is consistent with the fact that the sun’s subtended
solid angle is 5 orders of magnitude smaller than a hemi-spherical sky dome, but as
a rule of thumb provides roughly the same irradiance as the sky dome. Futhermore it
can be noticed that the sky’s color balance clearly is much more blue than that of the
sun. Figure 7 show more examples of objects rendered into scenes with illumination
estimated using the technique proposed in this paper.

Fig. 7. Two examples of scenes with augmentations using the proposed technique for estimating
illumination from automatically detected shadows

Qualitatively, judging from Figures 1 and 7 the generated results are encouraging
and the estimated illumination conditions visually match the real scene conditions suf-
ficiently well to be convincing. Subsequently we present some more controlled experi-
ments.

Synthetic Geometry, Synthetic Illumination. To test the technique’s performance on a
scene for which ground truth is available for the illumination a synthetic scene has been
rendered at two time instances with a shadow casting pole moving from one frame to
another, see Figure 8.

The ground truth sky radiance used for rendering the scene in Figure 8 is
[0.0700 0.1230 0.1740] and the sun radiance is [ 72693 57178 42247]. The esti-
mated sky radiance is [ 0.0740 0.1297 0.1804 ] and the estimated sun radiance is
[ 71687 55488 40622], i.e., estimations are within 5% of ground truth. A large propor-
tion of the deviation between ground truth and estimation result is believed to be due
to influence from indirect illumination (light reflecting from one surface on to others),
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Fig. 8. Top: Two frames of a synthetic scene. Bottom: detected dynamic shadow pixel population
to be used for illumination estimation.

a phenomenon which is not taken intro account by the applied two part illumination
model (sun and sky are assumed to be the only illuminants in the scene).

Real Geometry, Synthetic Illumination. To test the performance under more realistic
conditions a pair of images were produced where the dynamic objects are synthetic, but
they are casting shadow on real mesh geometry obtained from the stereo camera. Figure
9 illustrates how these images were generated.

The two frame image sequence thus generated shows synthetically generated dy-
namic shadows on real stereo geometry, using real camera images as scene albedo, and
yet we still have perfect ground truth for the illumination, since the shadows are ren-
dered into the image.

The ground truth sky radiance used for rendering the scene in Figure 9 is
[1.0109 1.1644 1.2085] and the sun radiance is [ 83082 81599 73854]. The esti-
mated sky radiance is [ 1.0658 1.2212 1.2614 ] and the estimated sun radiance is
[ 88299 82764 79772], i.e., estimations are within roughly 5% of ground truth, except
for the red channel of the sun, which shows an error of around 8%. Figure 10 shows an
augmentation into this semi-synthetic scene with the estimated illumination.

As in the previous all synthetic data example the discrepancy is believed to be due
to not explicitly taking indirect illumination into account. For example the sun’s red
channel is somewhat over-estimated, since in the shadow a lot of red-toned illumina-
tion from the brick-walled building in the background of Figure 9 vanishes, and the
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Fig. 9. First row: frames 25 and 30 from real stereo image sequence. Second row: detected shadow
pixels from trees moving in the wind. Third row: frame 30 augmented with moving synthethic
objects, using the illumination estimated from the shadow pixels in row two. Notice the reflection
of the sky in the artificial chrome ball to the left.

assumed simplified illumination model can only “explain” this by estimating the sun’s
red channel higher than it actually is.
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Fig. 10. Augmentation into the scene were the illumination was estimated from the shadows of
moving augmentations, which in turn were rendered into the original scene with illumination
estimated from the shadows of trees moving in the wind

Real Geometry, Real Illumination. As a final example of the performance of the pre-
sented technique we return to the scene from Figure 1, this time to another frame in the
same sequence, approximately 6 seconds earlier, see Figure 11.

In Figure 1 the sky radiance is estimated to [ 0.6548 0.6662 0.7446] and the sun
radiance to [ 60197 57295 51740]. From the frame in Figure 11 the same values are
estimated at [ 0.6106 0.5874 0.6746] and [ 68927 69784 62741], respectively.

A significant change in the estimated illumination is noted on the quantitative level,
although visually the augmentation in the two cases is equally convincing. The rela-
tively large quantitative differences are, in addition to the fact that this scene in particu-
lar involves substantial indirect illumination contributions, due to a lot of the pixels for
the sunlit brick wall are saturated in the red channel, i.e., exceed 255 in pixel value. Nat-
urally, such imperfect image exposure makes it difficult for the technique to estimate
proper results.

Real Geometry, Real Illumination, High Quality Color Information. The color im-
ages produced by the Bumblebee stereo camera are not of high quality, and it is ques-
tionable to what extent the camera actually has a linear response curve. Linearity is
something that still has to be tested. To demonstrate the proposed technique on color
image material of much higher quality we have photographed a scene with a Canon
400D SLR camera set to acquire in raw format, which results in a very linear response.
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Fig. 11. Even with the shadow falling on completely different materials and with completely
different geometric properties the estimation illumination is comparable to that of Figure 1

The scene was images with the Bumblebee camera for acquiring the geometry, and
simultaneously with the Canon camera for acquiring color. The two cameras were cali-
brated to the same coordinate system, and thus the geometry information (the 3D scene
mesh) could be used alongside with the color information from the Canon camera. Fig-
ure 12 shows the result of estimating the illumination and rendering a few virtual objects
into the image.

8 Discussions and Future Work

The work described here is intended for sequences of limited length (up to minutes).
Futhermore it requires the presence of dynamic objects to cast shadows. We are de-
veloping additional techniques which will be bootstrapped by the technique presented
here, but afterwards will be able to handle illumination estimation also in the absence
of dynamic shadows, and over very long image sequences.

The described technique is based on an assumptions that surfaces in the scene are
predominantly diffuse. While this is a fair assumption for much outdoor material it is far
from satisfactory to have this constraint. We are presently pursuing analysis of very long
time sequences (full day, several days) and are developing techniques to classify pixels
that do not agree with the majority on how the illumination in the scene changes. Those
pixels are either glossy/specular, a leaf has fallen on the surface, or even snow. Our
ambition is to develop techniques that are robust enough to handle seasonal changes.
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Fig. 12. Scene captured with high quality Canon SLR camera and used for the proposed illumi-
nation estimation technique. The 3D scene information was provided by the Bumblebee camera
as in the other experiments. The reflection of the sky in the virtual chrome ball is in good corre-
spondence with the directly captured part of the sky in the top right part of the image.

In the illumination estimation approach presented in Section 6 the illumination model
does not take into account the indirect global illumination contribution from other sur-
faces in the scene. We are presently rephrasing this work into a framework that does
take this into account. Moreover, we are investigating how to employ a more realistic
sky model than the uniform radiance sky dome used here. A more realistic, non-uniform
sky dome could be the Perez model, [25], or the Preetham model, [28].

The shadow detection is presently running at 8 Hz including the stereo disparity
computation. The illumination estimation process itself poses no real computational
load, but the required ambient occlusion map is not straight forward to obtain as this
requires some form of ray casting. Real-time global illumination methods are beginning
to appear in the litterature, and for the use in conjunction with the work in this paper we
only need ambient occlusion factors for the detected shadow pixels, not for the entire
image.

9 Conclusions

We have presented a technique for adaptively estimating outdoor daylight conditions
directly from video imagery, and the technique has a potential for real-time operation.
The main scientific contribution is a theoretically well-founded technique for estimation
of the radiances of sky and sun for a full outdoor illumination model directly from Low
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Dynamic Range image sequences. The main contribution from a systems point of view
is a demonstration that automatic detection of dynamic shadows can feed information
to the illumination estimation.

The presented work an be used for rendering virtual objects in Augmented Reality,
but we conjecture that illumination estimation can also make many classical computer
vision techniques more robust to illumination changes.
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