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ARTICLE

The potential of smart factories in reducing
environmental emissions: the evidence from
Chinese listed manufacturing firms
Weihua Liu 1, Jiahe Hou1, Yang Cheng2✉, Chaolun Yuan1, Rui Lan1 & Hing Kai Chan3

The nature of smart factories to help manufacturing firms reducing environmental emissions

has attracted the widespread attention of governments and industries. However, some

research also worried that if smart factories were not effectively constructed, they may

increase firms’ environmental emissions. To address this concern, we use PSM-progressive

DID model to analyze the relationships between the construction of smart factories and

environmental emissions, based on 144 Chinese listed manufacturing firms. The main find-

ings are as follow. First, the construction of smart factories can lead to the short-term

increase of 7.55% GHG emissions (1.001 tCO2e) and 4.12% air pollutants cost (1.011 $) per

$M operation cost for firms. Second, the negative impact of smart factory construction on

GHG emissions can be partially explained by physical technologies. Third, mimetic institution

(industrial maturity of environment management system) can reduce the negative impact of

smart factory construction, but coercive institution (government regulation) and normative

institution (social media attention) have no significant moderating effect. With these findings,

this study provides a clear understanding of how the construction of smart factories influ-

ences firms’ environmental sustainability and accordingly offers insights for business con-

sidering environmental objectives in smart factory development.
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Introduction

Because global manufacturing firms consume 54% of the
world’s energy and contribute to one-fifth of global GHG
emissions (World Economic Forum (WEF) 2022), devel-

oping economically and environmentally sustainable production
methods in the manufacturing sector is considered a crucial
solution to reduce firms’ environmental emissions for global
environmental challenges (US Environmental Protection Agency
2017). As an emerging production paradigm, smart factories
harness the technological potential, provided by automated data
sensing and analysis and advanced manufacturing technologies,
to enable companies tracking their environmental footprint and
optimize production processes (Meng et al. 2018). For instance,
the U.S. Clean Energy Smart Manufacturing Innovation Institute
has investigated how smart factories, through enhancing process
control, reducing waste, minimizing downtime, and improving
performance and productivity, can save energy and consequently
lower environmental emissions (Kok and Malkani 2020).
Nevertheless, the adoption of additional technologies by smart
factories also raises concerns about increased energy consump-
tion and environmental emissions due to the demand for high-
energy consuming and computationally powerful processors
(Terry et al. 2020). Unfortunately, empirical evidence regarding
how smart factories impact firms’ environmental emissions
remains lacking.

The potential for smart factories to reduce environmental
emissions primarily stems from their significant differences
compared to traditional automated factories. Drawing on the
synthesis of enterprise practices and academic research (Oster-
rieder et al. 2020), smart factories can be regarded as production
systems integrating multiple digital and physical technologies,
capable of autonomously collecting and analyzing factory data. It
is important to note that traditional automated factories have
long employed robotics and automation. However, due to the lack
of connectivity among personnel, assets, and data management
systems in traditional factories, firms must continuously coordi-
nate and integrate these resources in manual manner. Compared
to traditional automated factories, smart factories introduce fea-
tures such as data sensing, device interconnectivity, and intelli-
gent analytics (Strozzi et al. 2017; Osterrieder et al. 2020). “Data
sensing” aids manufacturing firms in capturing data on energy
consumption, emissions, equipment wear, etc. (Nitlarp and
Kiattisin 2022). “Device interconnectivity” and “intelligent ana-
lytics” optimize production processes and control machine auto-
sleep modes (Majeed et al. 2021). All these are expected to
enhance manufacturing firms’ efficiency of energy and resource
utilization, thereby offering the potential to reduce corporate
environmental emissions (Abubakr et al. 2020).

However, some qualitative studies indicate that if not effectively
implemented, smart factories may increase firms’ environmental
emissions (Ma et al. 2023). First, the development of smart factory
technology by manufacturing firms is often driven by economic
goals (Olsen and Tomlin 2020), while environmental goals often
require additional efforts. When manufacturing companies con-
sider both economic and environmental objectives, they may face
huger challenges because many firms have no sufficient capability
to achieve both objectives through implementing smart factories
(Oláh et al. 2020). Second, smart factories consume significant
energy by using advanced technologies, including facilities such as
data center to support real-time data collection and storage, and
equipment such as 3D printing. This can lead to increased
resource consumption and, consequently, higher emissions of
pollutants and greenhouse gases (Meng et al. 2018).

Thus, there is a need to investigate the relationship between the
construction of smart factories and its impact on environmental
emissions. However, existing studies that have paid notably

attention on smart factories still suffer from three inherent lim-
itations. First, while some studies have investigated operational
and financial performance affected by smart factories (Kamble
et al. 2020; Bai et al. 2022), the impact of smart factories on
environmental emissions was only discussed conceptually and
qualitatively. Due to the inconsistent argument on the impact of
smart factories on environmental emissions, an empirical study
based on firm-level data can provide insights for firms to invest in
environment-friendly smart factories. Second, some studies con-
centrated on the impact of digital technologies on environmental
emissions (Ye et al. 2023) and other environmental performance
(Li et al. 2020; Chiarini 2021; Du et al. 2023; Yang et al. 2023).
However, in addition to digital technologies as intangible
resources, smart factories also apply physical technologies as
tangible resources to represent the advanced manufacturing
capabilities (Osterrieder et al. 2020; Bai et al. 2022). There is no
evidence about whether and how smart factories affect firms’
environmental emissions by using digital technologies or physical
technologies. Third, firms construct smart factories for the pri-
mary objectives to enhance economic goals (Olsen and Tomlin
2020). However, in addition to meeting their own development
goals, they must also meet the expected goals of the institutional
environment where they operate (Tina Dacin et al. 2002). Con-
sequently, when firms face more green pressure from the insti-
tutional environment, they might consider environmental goals
more (Guo et al. 2023). Thus, institutional factors are expected to
enhance firms’ motivation to explore the potential of smart fac-
tories to improve environment due to the legality (Hanna et al.
2023). However, existing studies fail to examine the impact of
institutional factors on the construction of smart factories for
improving environmental emissions. Corresponding to these
gaps, three questions are researched in our study.

RQ1: Whether does the construction of smart factories affect
firms’ environmental emissions?

RQ2: Through which technologies (digital or physical) does the
construction of smart factories affect firms’ environmental
emissions?

RQ3: What institutional factors moderate the relationship
between the construction of smart factories and firms’ environ-
mental emissions?

We choose China as the context for this research. For 12
consecutive years, China has held the position as the world’s
largest manufacturing country, with its manufacturing value-
added accounting for nearly 30% of the global total (Yang et al.
2021; China SCIO 2024; Xu 2023). Given that the manufacturing
industry is a primary contributor to global energy consumption
and environmental emissions, studying the impact of China’s
manufacturing sector is crucial in addressing global environ-
mental challenges. Meanwhile, China has prioritized smart fac-
tories in key industrial policies, such as “Made in China 2025”
and the “14th Five-Year Intelligent Manufacturing Development
Plan”. Consequently, after 2012, Chinese firms have been driven
by the dual goals of smart factory implementation and environ-
mental protection, aligning with our research questions. Thus, we
utilize data from 144 Chinese listed manufacturing companies
from 2012 to 2021 and apply PSM-progressive DID model (Hu
et al. 2024) to analyze the environmental emissions of firms
constructing smart factories.

The main conclusions of the study are as follows. First, the
construction of smart factories increases corporate GHG emis-
sions and air pollutants cost in short term. Second, differences in
the degree of using digital and physical technologies do not
explain the effect of smart factory construction on pollutants
emissions, but higher degree of using physical technologies
increases GHG emission when firms construct smart factory.
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Third, we investigate the moderating role of three institutional
factors. The coercive institution and mimetic institution have no
moderating role, but firms with stronger normative institution
(higher maturity of environmental management systems (EMS))
have lower GHG emission when they construct smart factory.

Accordingly, this study makes several significant contributions.
First, whereas existing studies have analyzed the operational and
financial impacts of smart factory construction (e.g., Bai et al.
2022), this study identifies that smart factory construction can
increase environmental emissions in short term and hence enri-
ches the research of the impact of smart factory construction on
firm performance. Second, we identify the significant mediating
effect of physical technologies for smart factory construction to
increase GHG emissions, which provide the understanding on the
potential mechanism of smart factory construction to affect
environmental emissions. Third, we examine the moderating
effects of three institutional factors including coercive, normative,
and mimetic institution, which provides references for policy-
makers and firms’ stakeholders and facilitate them to consider
environmental goals in smart factory construction.

The structure of this paper is as follows. The first section
presents an introduction to the topic. The second section provides
a review of relevant literature. The third section introduces the
theoretical hypotheses of this study. The fourth section describes
the data collection process and the methodology used in the
study. In the fifth section, the results of the study are elaborated.
The sixth section discusses the results and provides relevant
explanations. The seventh section offers the conclusions of the
paper and managerial insights derived from the study.

Literature review
Smart factory definition. In 2012, Germany introduced the
“Industry 4.0” industrial policy, centered around the concept of
the “smart factory”. Subsequently, the concept of the smart fac-
tory has been widely adopted in both corporate practices and
academic research. We analyze the definition of smart factories
from two perspectives: corporate practices reflecting the current
state of smart factory construction and academic research envi-
sioning the future form of smart factories. Regarding corporate
practices, we find the definitions and practices of smart factories
from global leading consulting firms (e.g., Accenture1, Deloitte2,
and Gartner3), service companies (e.g., Training Within Indus-
try4, IOT Analytics5, and Advanced Technology Services6), and
industrial enterprises (e.g., Oracle7, and SAP8). In these compa-
nies constructing or participating in the construction of smart
factories, a close association with “data” and “connected” is evi-
dent. In other words, smart factories require autonomous data
collection and analysis, as well as the interconnection of equip-
ment, personnel, and systems. Meanwhile, academic research,
driven by the purpose of smart factories, defines them as a fully
connected manufacturing system, mainly operating without
human intervention by generating, transferring, receiving, and
processing necessary data to perform all tasks required for pro-
ducing various goods (Strozzi et al. 2017; Osterrieder et al. 2020,
p. 1; Choi et al. 2022). It is evident that academic research still
emphasizes the key terms “data” and “connected”.

Based on the discussion on “data” and “connected”, the whole
process of smart factory construction is achieved by integrating
digital technologies and physical technologies (Bai et al. 2020).
Specifically, digital technologies refer to information and com-
munication technologies to support data analysis and intelligent
control, including big data, cloud computing, blockchain, AI
(Osterrieder et al. 2020). Physical technologies refer to facilities
and equipment to support data processing and advanced
manufacturing technologies, including facilities such as data

center and platform servers, and equipment such machines with
sensors, robotics, 3D printing, etc. (Bai et al. 2022).

Corporate environmental performance. The corporate envir-
onmental performance underscores that manufacturing compa-
nies should not only produce products in an economically viable
manner but should also minimize their negative impact on the
environment while conserving energy and natural resources (US
Environmental Protection Agency 2017). Existing research has
analyzed environmental performance indicators, including emis-
sions, resource consumption, and habitat preservation (Jaehn
2016; Mulusew and Hong 2024). Specifically, the environmental
emissions dimension includes GHG emissions and pollutants
emissions (Duanmu et al. 2018), while the resource consumption
dimension includes the use of green materials, electricity con-
sumption, water consumption, energy consumption intensity, and
energy efficiency (Akbar and Irohara 2018). This study selects
environmental emissions as the measure of environmental per-
formance, due to the following key considerations. First, envir-
onmental emissions represent the most direct means through
which companies impact the environment. Additionally, envir-
onmental emissions indirectly reflect the energy consumption
patterns of firms. Second, within the framework of Sustainable
Development Goals, a primary objective of environmental sus-
tainability for manufacturing companies is to enhance efficiency
while concurrently reducing pollution levels and minimizing
greenhouse gas emissions (Shahbaz et al. 2022). Third, from the
perspective of the production processes of greenhouse gases and
significant pollutants, the “GHG” contributing to global warming
and the “GHG” causing environmental pollution share a common
origin, primarily stemming from the combustion and consump-
tion of fossil fuels. The inclusion of both pollutant emissions and
GHG emissions comprehensively reflects the types of environ-
mental emissions produced by firms.

The impact of smart factory technologies on environmental
performance. Existing literature predominantly analyzed the
impact of specific digital technologies or digital transformations
on corporate environmental performance. However, in addition
to digital technologies as intangible resources, smart factories also
apply physical technologies as tangible resources to represent the
advanced manufacturing capabilities (Liu et al. 2023). Additional
physical technologies may lead to more environmental emissions
due to huge energy consumption from data operations facilities
and advanced manufacturing. However, there exist only a few
analyses and discussions on the relationship between the con-
struction of smart factories and environmental performance,
adopting quantitative and qualitative approaches and analyzing
digital and physical technologies.

For quantitative studies, most of researchers posited that digital
technologies or digital transformations compel enterprises to
comprehensively collect environmental data (Li et al. 2020),
optimize logistics and supply chain processes (Ye et al. 2023), and
enhance green innovation (Yang et al. 2023; Du et al. 2023),
thereby improving environmental performance. Specifically, some
scholars have conducted analyses based on questionnaire surveys
to examine the impact of digital technologies on overall
environmental performance of firms, but they have not identified
specific dimensions of environmental performance (Schnieder-
jans and Hales 2016; Li et al. 2020; Chiarini 2021). Other
researchers, using operational data from enterprises, have
analyzed the influence of digital technologies on the number of
green innovation patents (Du et al. 2023; Yang et al. 2023) and
emissions (Ye et al. 2023), but they only quantitatively analyzed
the environmental impact of digital technologies. Since smart
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factories are not limited to digital technologies (Strozzi et al. 2017;
Osterrieder et al. 2020), existing quantitative studies still lack the
understanding about whether and how smart factories affect
firms’ environmental emissions by simultaneously using both
digital and physical technologies.

For qualitative research, scholars have presented a dual
perspective on the impact of smart factory implementation on
the environmental performance of enterprises. On the one hand,
the literature suggested that smart factories, leveraging various
digital and physical technologies, can achieve automatic data
sensing and analysis (Osterrieder et al. 2020). This capability aids
manufacturing enterprises in capturing data related to energy
consumption, emissions, equipment wear, among others (Nitlarp
and Kiattisin 2022), optimizing production processes, and
controlling automatic machine shutdowns (Majeed et al. 2021;
Wei et al. 2024). On the other hand, some scholars argued that if
companies do not implement or construct smart factories
correctly, an increase of energy consumption can be expected
(Oláh et al. 2020; Masanet et al. 2020). For instance, Meng et al.
(2018) discussed that the adoption of Industry 4.0 technologies
may increase the use of data centers and cloud computing, which,
in turn, could lead to increased energy consumption, subse-
quently increasing pollutant and greenhouse gas emissions.
Masanet et al. (2020) discussed the potential environmental
impacts of smart manufacturing, including increased energy
consumption if energy-efficient technologies are not used.
Although these qualitative studies delved into the dialectical
impact of smart factories (Oláh et al. 2020; Masanet et al. 2020),
the environmental impacts of smart factories still need empirical
support from firm-level data.

Institutional environment. The institutional environment indi-
cates that “firms engage in non-profitable activities (such as
environmental measures) to enhance their legitimacy” (Hanna
et al. 2023). In other words, in addition to meeting their own
needs, firms must meet the needs of their institutional environ-
ment (DiMaggio and Powell 1983; Wu et al. 2023). Specifically,
institutional environment refers to three forms, i.e., coercive,
normative, and mimetic institution (Scott 2010). The coercive
institutional environment refers to laws, regulations, and policies
by government or agencies, to restrict firms’ behavior and provide
guidance (Clemens and Douglas 2006). The normative institu-
tional environment refers to standard or ordinance by profes-
sional organizations such as industry associations or social media
(Fehr and Schurtenberger 2018). The mimetic institutional
environment refers to industrial learning and imitation (Barreto
and Baden-Fuller 2006).

Prior studies have emphasized the correlation of institutional
environments with digital innovation or environmental practices.
For example, Hinings et al. (2018) emphasized that digital
transformation is institutional change due to complexity. Wang
et al. (2018a) pointed out that regulatory pressures and normative
pressures can facilitate firms to implement environment manage-
ment. Additionally, other studies also emphasized the moderating
role of institutional environments for the impact of digital
technologies. For example, Guo et al. (2023) pointed out that
cultural institutional environments can positively influence the
application of digital technologies to enhance environmental
innovation. However, the construction of smart factories is more
complex, as it combines both digital and physical technologies.
Consequently, the institutional environment may be more
important for smart factory construction to enhance environ-
mental performance. Nevertheless, existing studies have not
analyzed the moderating impact of institutional environment on
the relationship between smart factory construction and its

environmental impact. Besides, existing studies have also tended
to consider institutional environment as a whole, rather than
distinguishing coercive, normative, and mimetic institutional
factors. Accordingly, relevant discussions on how these three
institutional factors affect the relationship between smart factory
construction and environmental performance have been largely
ignored.

Theoretical hypotheses
Smart factory and environmental emissions. Compared to tra-
ditional automated factories, smart factories introduce three key
features: data perception, equipment interconnection, and intel-
ligent analytics (Choi et al. 2022). Based on the fundamental
principles that environmental emissions primarily stem from the
combustion of fossil fuels and industrial production processes,
smart factories leverage these features to assist enterprises in
reducing environmental emissions through both prevention and
control measures. Specifically, from a preventative perspective on
environmental emissions, smart factories facilitate a shift from
individual machine optimization to system-wide optimization
through “equipment interconnection” (Wang et al. 2018b).
Additionally, the “intelligent analysis” capabilities of smart fac-
tories aid enterprises in optimizing production processes and
controlling machine dormancy automatically (Ma et al. 2023).
Both approaches contribute to enhancing the efficiency of fossil
fuel consumption, subsequently lowering pollutants emissions
(Lin and Zhao, 2016). On the other hand, from a control per-
spective on environmental emissions, the “data perception” cap-
ability of smart factories (Abell et al. 2017) enables
comprehensive awareness of equipment usage. It automates the
collection of data on pollutant emissions (Gunasekaran et al.
2017), thereby assisting enterprises in monitoring pollutants
emission data and implementing targeted emission control
measures.

However, while smart factories bring benefits such as
optimized production processes and environmental data mon-
itoring, increased equipment and data center operation may
induce increased environmental emissions. On the one hand, the
“data perception” and “equipment interconnection” of smart
factories are achieved by deploying a large number of sensors and
low latency communication modules. The operations of the
necessary technical facilities and equipment may consume a
substantial amount of energy, potentially offsetting the advan-
tages brought by smart factory construction (Oláh et al. 2020). On
the other hand, massive amounts of data are collected and stored,
which requires more local computing servers as data center and
results in significant energy consumption (Meng et al. 2018).
Although many firms use cloud computing technologies and
outsource data centers to third-party firms, existing evidence
supports that adopting local computing servers is the mainstream
practice when firms building smart factories. According to
McKinsey’s cloud computing research in 2021 for Chinese firms,
the average level of cloud computing usage for manufacturing
activities is about 10%, among which 20% is used by cloud leaders
and nearly 5% by cloud laggards9. Most of these firms use a
combination of private clouds and local servers. Furthermore,
even if manufacturing firms use cloud computing, the servers
supporting cloud computing are still mainly deployed within the
enterprise. This is especially the case for smart factories, as
production data are normally viewed as one of the most
important data for manufacturing firms and it is difficult for
firms to entrust production data to third-party data centers. For
example, the Great Wall Motor Co., Ltd. has built its own cloud
platforms to provide cloud services for its sub-factories, but local
servers were deployed10. Thus, the smart factory construction can
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induce more local servers needs and higher energy consumption.
Consequently, this may lead to an increase in GHG emissions for
firms. Based on the above discussion, we propose two dialectical
hypotheses.

H1a: Smart factory construction will reduce corporate pollutants
emissions.

H1b: Smart factory construction will increase corporate GHG
emissions.

Mediating mechanism of smart factories construction affecting
environmental emissions. Referring to the definition of smart
factories, a key distinction between smart factories and traditional
automated factories lies in the automatic collection, utilization,
and analysis of data. Consequently, the construction of smart
factories involves an increased investment in digital and physical
technologies. Due to the differences between digital and physical
technologies, they may have divergent impacts on corporate
environmental emissions.

Digital technologies are regarded as intangible asset of smart
factories (Bai et al. 2022). First, smart factories employ cloud
computing technologies, including the Internet of Things (IoT),
to establish “data perception” capabilities (Abell et al. 2017). This
facilitates comprehensive awareness within enterprises of equip-
ment usage, energy, and resource consumption, as well as data on
pollutants and GHG emissions (Gunasekaran et al. 2017). This
capability is advantageous for monitoring environmental emis-
sion indicators. Second, smart factories, utilizing cloud comput-
ing technologies such as the IoT, build “device interconnection”
capabilities (Wang et al. 2018b). This transformation enables a
shift from individual machine optimization to system-wide
optimization, ultimately reducing environmental emissions
through the optimization of production processes (Majeed et al.
2021). Third, smart factories leverage big data and AI
technologies to establish “intelligent analysis” capabilities. By
employing big data technologies to analyze factory data and
utilizing AI technologies to optimize production processes and
control machine sleep cycles (Ma et al. 2023), these factories
contribute to enhanced production efficiency, subsequently
lowering overall environmental emissions for enterprises. Based
on these considerations, we propose the following hypothesis.

H2a: The construction of smart factories through applying
digital technologies can low environmental emissions.

Physical technology is defined as the tangible assets of smart
factories. In comparison to digital technology, the use of physical
technology may contribute to increased environmental emissions
for enterprises. First, smart factories employ data facilities and
equipment such as robots, sensors, 3D printing to support data
processing and advanced manufacturing (Bai et al. 2022). In
contrast to traditional automated factories, these devices often
require higher levels of computation or precision processing,
necessitating more complex maintenance and monitoring
systems. Consequently, these devices are typically energy-
intensive, leading to higher energy consumption and increased
carbon emissions (Chiarini 2021). Second, smart factories rely
heavily on electronic devices. Insufficient environmental manage-
ment of smart factories may result in an increase in electronic
waste. Electronic waste contains toxic substances that, if not
properly handled, can contribute to environmental pollution
(Chiarini 2021). Third, smart factories utilize a substantial
number of distributed data processing modules and large
centralized data centers to store and process the vast amount of
data generated during the production process. These data
modules and centers require significant electrical power to
operate and produce corresponding heat, necessitating cooling
systems for temperature control. This leads to additional energy

consumption and increased carbon emissions (Waibel et al.
2017). Therefore, we argue that the heightened use of physical
technology in smart factories contributes to increased environ-
mental emissions.

H2b: The construction of smart factories through applying
physical technologies can increase environmental emissions.

Moderating mechanisms of smart factories construction
affecting environmental emissions. Manufacturing firms con-
struct smart factories primarily for enhancing cost, efficiency,
flexibility, responsiveness, and quality (Olsen and Tomlin 2020).
Considering environmental goals in smart factories often require
additional efforts from manufacturing firms. Therefore, the
motivation for firms to construct smart factories for reducing
environmental emissions is limited. However, institutional factors
can enhance this motivation. Accordingly, we contend that three
institutional environmental factors will moderate the relationship
between smart factories and environmental emissions. First,
regarding coercive institutional factor, government regulations
typically serve as an effective legal means to enforce environ-
mental measures by businesses. They entail the government’s
oversight and enforcement of laws and regulations on businesses,
e.g., with a crucial approach being the establishment of a priority
pollution monitoring list. This list, enforced through penalties
and temporary shutdowns, encourages businesses to incorporate
environmental goals into the process of constructing smart fac-
tories (Shen and Wang 2018).

Second, for normative institutional factor, the social attention
represents stakeholders, such as media and non-governmental
organizations, using public opinion pressure to encourage
businesses to pay more attention to environmental goals (Lyu
et al. 2022). Given the critical importance of corporate reputation
in market competition and brand value, exposure of environ-
mental pollution or irresponsible behavior can lead to consumer
and investor resistance and condemnation. Hence, the social
attention prompts firms to consider environmental objectives
during the construction of smart factories.

Third, for mimetic institutional factors, the maturity of EMS
within the industry where a company operates can guide its
mimicking behavior. Firms in the same industry usually provide
more valuable references for successful operations (Yang and
Kang 2020). Thus, if the industry has a high maturity of EMS, it
has accumulated environmental management knowledge and
skills (Jeong and Lee 2022). This provides more knowledge or
skills to firms for intra-industry imitation. Consequently, these
companies find it easier and more cost-effective to consider
environmental goals during smart factory construction. Lever-
aging the technologies within smart factories, they can promote
more effective environmental management, thereby enhancing
the potential of smart factories to reduce environmental
emissions.

Based on the above discussion, we propose the following
hypotheses.

H3a: Government regulation positively moderates the potential
of smart factory construction to reduce environmental emissions.

H3b: Social attention positively moderates the potential of smart
factory construction to reduce environmental emissions.

H3c: The EMS maturity of the industry in which the firm
operates positively moderates the potential of smart factory
construction to reduce environmental emissions.

Data and methodology
Smart factory identification and data collection. We selected
the time frame from 2012 to 2021 as the sample period to
shortlist Chinese manufacturing enterprises because the latest

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03623-z ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |         (2024) 11:1105 | https://doi.org/10.1057/s41599-024-03623-z 5



environment data provided by the Trucost database were up to
2021. The rationale behind this choice is as follows: in 2012, the
“Industry 4.0” strategy was first proposed, subsequently leading to
the release of national strategic plans and industrial policies by
developed and developing countries. Influenced by global and
Chinese industrial policies, Chinese firms commenced the con-
struction of smart factories in 2012. We established the following
procedure (Fig. 1) to identify whether Chinese manufacturing
firms initiated the construction of smart factories.

As of 2022, there are 3313 listed manufacturing companies in
China. We judged whether firms have constructed smart factories
according to Steps 1–4 in Fig. 1. Data perception, equipment
connectivity, and intelligent analysis are the three key elements of
smart factories (Osterrieder et al. 2020; Olsen and Tomlin 2020;
Choi et al. 2022). Therefore, in this paper, we evaluated whether a
company’s factory fell within the category of a smart factory
based on data sensing (use of sensors, 5G, etc., to construct
industrial IoT), equipment connectivity (possessing intercon-
nected machines capable of autonomously executing system

instructions), and intelligent decision-making (utilizing technol-
ogies like artificial intelligence for intelligent analysis systems).
Through the data collection process depicted in Fig. 1, we initially
identified 297 firms out of these 3313 A-share listed manufactur-
ing firms in China that have constructed smart factories.

Then, we collected environmental emission data from S&P
Trucost database (Cui et al. 2023), which provides GHG
emissions data and other environmental emission data, on an
annual basis since 2005. The database has typically covered an
average of 5046 firms/year, which represent ~99% of global
market capitalization (Cenci et al. 2023). Trucost database reports
all three scopes of GHG emissions in units of tons of CO2 emitted
in a year, and we used the data of Scope 1 and Scope 2 which
reflected the GHG emissions within firms. Scope 1 emissions are
direct emissions from owned or controlled sources, and Scope 2
emissions are indirect emissions from the generation of
purchased energy. Scope 1 and Scope 2 emissions are defined
as a firm’s emissions (Ardia et al. 2023). The database also reports
air pollutant cost and waste cost to measure other environmental

Fig. 1 The process of data collection.
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emissions. Moreover, Trucost’s GHG emissions data are a
combination of self-reported and estimated data. For the self-
reported data, the GHG emissions are measured according to the
Greenhouse Gas Protocol. For the estimated data, Trucost utilizes
a common industry methodology, which consists of three steps
(Marquis et al. 2016). First, Trucost assigns a firm’s annual
revenues to a subset of 464 standardized industries based on data
from the FactSet database, company annual reports, company
regulatory filings, and company feedback. Second, Trucost’s
model estimates a firm’s total annual GHG emissions and
resources consumed (e.g., metals, water, oil, gas, and mined
materials) based on the firm’s revenues in each industry. These
calculations are based on environmental factors derived from a
number of pollution release and transfer registries and economic
input–output models. Third, Trucost sends the calculations to
business managers for confirmation and validation.

We further collected operational and financial data from the
China Stock Market & Accounting Research (CSMAR) database
for the 297 identified companies. The CSMAR database is a
professional financial database developed with reference to well-
known international databases such as the University of
Chicago’s CRSP, Standard & Poor’s Compustat, New York Stock
Exchange TAQ, I/B/E/S, Thomson. It combines with the
economic and financial conditions of China and includes
financial, stock, industry, and other data of listed Chinese
companies. The database has been widely used in existing
literature (Lee et al. 2023; Chen et al. 2022). After excluding
companies with missing data and following matching progress,
we ended up with 144 firms with 3960 observations.

Variables
Dependent variables. Environmental emissions are normally
quantified in terms of GHG emissions per unit and pollutant-
specific emissions (including air pollutants and waste pollutants)
per unit. Accordingly, three variables were established in this
paper for the measurement of environmental emissions, with the
following rationale. First, due to the high correlation between
environmental emissions and corporate output or production, we
utilized emissions per unit of turnover rather than total emis-
sions. Second, given the significant heterogeneity in environ-
mental emissions per unit among enterprises with different
production processes, assessing the precise impact of smart fac-
tory construction on environmental emissions is challenging. We
followed the approach of Jeong and Lee (2022) by applying a
logarithmic transformation to the environmental emissions per
unit. Based on the above, we set Log GHG to measure GHG
emissions per operation cost, and Log Air and Log Waste to
measure pollutant emissions.

● Log GHG intensity is the logarithmic amount of tCO2e/
$M, which reflects GHG emissions tons per one million
operation cost.

● Log Air pollutants intensity is the logarithmic amount of air
pollutants cost per one million operation cost. Air
pollutants cost data means the cost of damage when firms
emit air pollutants.

● Log Waste intensity is the logarithmic amount of waste cost
per one million operation cost. Waste cost data means the
cost of damage when firms emit waste.

Mediating and moderating variables. For the meditating effects,
we estimated the impact of digital technologies and physical
technologies. We introduced the variables “Digital” and “Physi-
cal”. First, “Digital” was measured by the logarithm of the fre-
quency of keywords related to a specific digital technology

appearing in the annual reports of enterprises, indicating the level
of attention or usage of a particular digital technology. This
measurement method has been employed in various studies as a
proxy variable for the extent of an enterprise’s engagement with
relevant digital technologies (Li et al. 2020; Nasiri et al. 2022; Yang
et al. 2023). We focused on key digital technologies, including big
data, AI, cloud computing, and blockchain, with reference to the
keywords associated with each digital technology, as illustrated in
Zhu et al. (2023). Second, “Physical” was measured by the loga-
rithm of the frequency of keywords related to a specific physical
technology appearing in the annual reports of enterprises. Rele-
vant keywords included platform, center, sensor, facilities, equip-
ment, factory, and terminal related to smart factory.

For moderating effects, first, “Government regulation” was
measured by a dummy variable whether a firm was included in
the national priority pollution monitoring list provided by the
Ministry of Ecology and Environment’s data center (Fang et al.
2020). The variable was set as 1 if a firm was included in the list,
otherwise it was 0. Firms on the national key monitoring list are
often associated with significant environmental hazards, and the
likelihood of penalties for environmental violations is substan-
tially higher. This may incentivize companies to consider more
environmental objectives when constructing smart factories (Cai
et al. 2020). Second, the measure of “Social media attention” used
media attention as agent variable, which is represented by the
natural logarithm of the total number of news reports related to
the company in a given year (Chen and Mai 2024). Third,
“Industrial EMS maturity” in which the firm operates was
measured by the average of the EMS maturity of firms in the same
industry, whereas the maturity of EMS is defined as the number
of years since the enterprise obtained ISO 14001 certification. It
serves as a proxy for the skills and knowledge accumulated by the
enterprise after obtaining the ISO 14001 certification (Jeong and
Lee 2022).

Control variables. We considered three dimensions of company
characteristics, board characteristics, and corporate environ-
mental measures, and set eight control variables as follows.

● Leverage (LEV): the leverage is the ratio of total liabilities to
total assets at the end of the period (Clarkson et al. 2008).
Companies with lower leverage have more resources and
capabilities to invest in energy saving and emission
reduction.

● Return on assets (ROA): ROA controls for the company’s
profitability, calculated as net profit divided by total assets.
Previous research has empirically supported a positive
correlation between energy-saving performance and ROA
(Yadav et al. 2017).

● Tobin’s Q: Tobin’s Q is the ratio of a company’s market
value to the replacement cost of its assets, reflecting the
external market’s evaluation and investment in the
company’s prospects or long-term growth when consider-
ing all available information (Yiu et al. 2020). Tobin’s Q
influences a company’s environmental impact when
constructing smart factories, which aligns with the long-
term strategic planning of the enterprise.

● Board size (Board_size) and board independence (INDR):
for board characteristics, Ferrell et al. (2016) suggested that
companies with good governance incur lower agency costs,
leading to more CSR engagement and more environmental
management responsibilities. We used board size (Board_-
size) and INDR to reflect the company’s governance
structure. Board size is the natural logarithm of the
number of board members, while board independence is
the proportion of independent directors in the board.
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● ISO 14001 certification and green patents: for corporate
environmental management, we introduced a dummy
variable indicating whether the company has obtained
ISO 14001 certification (Jeong and Lee 2022). In contrast to
the independent variable measuring the maturity of the
environmental management system, this variable is set to 1
only in the year when the company obtains ISO 14001
certification. It serves to control for the unique impact
generated in the year of ISO 14001 certification. Addition-
ally, we used the natural logarithm of the number of green
patents as a proxy for the company’s level of green
technological innovation.

Descriptive statistics. Descriptive statistics results are shown in
Table 1. Log GHG, Log Air, and Log Waste have a mean value of
5.673, 9.111, and 7.363, respectively; a minimum value is 0.614,
3.977, and 2.740, respectively; a maximum value is 9.492, 12.68,
and 11.29, respectively. This shows significant variability for
environmental emissions across firms. The results of Pearson
correlations among variables are shown in Table 2.

Empirical methods. According to Hu et al.’s (2024) studies, we
applied PSM-progressive DID model to estimate the impact of
smart factory construction on corporate environmental emis-
sions. Compared with DID model, PSM-progressive DID model
can avoid sample selection bias to compromise the reliability of
results. First, the propensity score matching (PSM) was used to
identify the untreated group of firms (i.e., the firms that have not
constructed smart factories) and then match them with the
treated group of firms (i.e., the firms that have constructed smart
factories). In our study, we matched treated firms with untreated
firms based on control variables year by year as the 1:1 matching
standard. We only kept matched treated firms and excluded
unmatched firms (Wang et al. 2024). Second, parallel trend
assumption was tested to keep similarity for treated group and
untreated group. Third, according to Formula (1), we performed
progressive DID model to estimate treated effect. Additionally, if
only analyzing the environmental emission changes before and
after the establishment of smart factories, the results could be
influenced by time effects and heterogeneity among enterprises
(Jeong and Lee 2022), leading to incorrect estimates of causal
relationships. Following the study by Jeong and Lee (2022), we
considered time and individual enterprise fixed effects (Harwell
et al. 1992). Subsequent Hausman test results (p < 0.01) also

Table 1 Descriptive statistics results.

Variables N Mean Std. dev. Min Max

Log GHG intensity 1545 5.673 1.131 0.614 9.492
Log Air pollutants
intensity

1545 9.111 0.845 3.977 12.68

Log Waste intensity 1545 7.363 0.658 2.740 11.29
Digital 1543 1.812 1.287 0 5.768
Physical 1379 2.124 1.223 0 6.219
Government regulation 1545 0.469 0.499 0 1
Social media attention 915 3.497 0.927 1 7
Industrial EMS maturity 1545 1.670 1.028 0.0403 7.121
Size 1545 23.45 1.054 20.40 26.65
LEV 1545 2.642 1.859 0.762 23.00
ROA 1545 0.0600 0.0719 −0.635 0.655
Tobin’s Q 1545 2.025 1.487 0.743 22.15
Board_size 1545 2.140 0.203 1.609 2.890
INDR 1545 38.26 6.587 25 80
ISO 14001 certification 1545 0.619 0.486 0 1
Green patents 1545 0.730 1.009 0 4.844

T
ab

le
2
P
ea

rs
on

co
rr
el
at
io
ns

m
at
ri
x.

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

(1
1)

(1
2)

(1
3)

(1
4
)

(1
5
)

Lo
g
G
H
G

in
te
ns
ity

1
Lo
g
A
ir
po

llu
ta
nt
s

in
te
ns
ity

0
.8
22

**
*

1

Lo
g
W

as
te

in
te
ns
ity

0
.6
6
0
**
*

0
.7
16
**
*

1
D
ig
ita

l
−
0
.2
8
8
**
*

−
0
.2
74

**
*

−
0
.2
25

**
*

1
G
ov
er
nm

en
t
re
gu

la
tio

n
0
.2
0
5*
**

0
.1
9
6
**
*

0
.1
71
**
*

−
0
.1
71
**
*

1
So

ci
al

m
ed

ia
at
te
nt
io
n

0
.0
6
4
*

0
.1
26

**
*

0
.1
58

**
*

0
.0
5

0
.0
19

1
In
du

st
ri
al

EM
S
m
at
ur
ity

0
.3
6
7*
**

0
.2
79

**
*

0
.3
0
4
**
*

0
.0
27

0
.2
6
6
**
*

−
0
.0
0
7

1
Si
ze

0
.2
15
**
*

0
.0
8
6
**
*

0
.0
76

**
*

−
0
.0
23

0
.1
8
5*
**

0
.2
39

**
*

0
.2
0
3*
**

1
LE
V

−
0
.0
4
6
*

−
0
.0
0
9

0
.0
9
0
**
*

−
0
.0
29

−
0
.0
71
**
*

0
.0
15

−
0
.1
10
**
*

−
0
.3
9
3*
**

1
R
O
A

0
.1
38

**
*

0
.1
9
6
**
*

0
.2
24

**
*

0
.0
19

−
0
.0
37

0
.1
9
4
**
*

−
0
.0
38

−
0
.1
4
1*
**

0
.2
9
0
**
*

1
T
ob

in
’s
Q

−
0
.0
31

0
.0
55

**
0
.1
0
8
**
*

0
.0
6
4
**

−
0
.1
12
**
*

0
.2
73

**
*

−
0
.0
77

**
*

−
0
.3
0
8
**
*

0
.3
6
2*
**

0
.4
29

**
*

1
Bo

ar
d_
si
ze

0
.0
4
3*

0
.0
2

−
0
.0
16

−
0
.1
0
1*
**

0
.1
0
2*
**

0
.0
21

0
.0
22

0
.2
71
**
*

−
0
.1
4
2*
**

−
0
.0
31

−
0
.0
8
0
**
*

1
IN
D
R

0
.0
53

**
0
.0
58

**
0
.0
32

0
.0
52

**
−
0
.0
0
8

0
.0
70

**
0
.0
19

0
.0
4
5*

−
0
.0
15

−
0
.0
0
7

0
.0
14

−
0
.4
4
7*
**

1
IS
O

14
0
0
1
ce
rt
ifi
ca
tio

n
0
.0
52

**
0
.0
0
1

−
0
.0
0
3

0
.0
4
2*

0
.1
20

**
*

−
0
.0
4
1

0
.2
0
4
**
*

0
.0
50

**
−
0
.0
4
4
*

−
0
.0
1

−
0
.0
37

0
.0
56

**
−
0
.0
8
8
**
*

1
G
re
en

pa
te
nt
s

−
0
.0
36

−
0
.0
9
5*
**

−
0
.0
9
2*
**

0
.0
8
8
**
*

−
0
.0
8
0
**
*

−
0
.0
22

0
.0
9
8
**
*

0
.2
26

**
*

−
0
.1
8
6
**
*

−
0
.1
0
9
**
*

−
0
.0
8
3*
**

0
.1
0
6
**
*

−
0
.0
17

0
.0
52

**
1

**
*,
**
,
an
d
*
de

no
te

re
gr
es
si
on

re
su
lts

pa
ss
in
g
si
gn

ifi
ca
nc
e
te
st
s
at

1%
,5

%
,a

nd
10
%

co
nfi

de
nc
e
le
ve
ls
,r
es
pe

ct
iv
el
y.

ARTICLE HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03623-z

8 HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |         (2024) 11:1105 | https://doi.org/10.1057/s41599-024-03623-z



supported our use of a fixed effects model rather than a random
effects model.

EPit ¼ αi þ βDIDtreati ´ periodit þ ACCit þ uit þ vit þ εit ð1Þ
EPit represents the environmental emissions of firm i in year t,

including pollutants emissions per unit of revenue and GHG
emissions per unit of revenue. treati represents whether firm i is
as the treated firm. periodit represents whether firm i constructs
smart factory in year t. Cit represents the control variables matrix
of firm i in year t. βDID represents the treatment effect of smart
factory construction. uit represents the individual fixed effect, and
vit represents the time fixed effect.

Furthermore, although fixed effects models address the impacts
of time effects and enterprise heterogeneity, they remain
susceptible to issues related to serial correlation and observation
period selection (Jeong and Lee 2022). Hence, we assessed the
treatment effects for each individual year βyear, thereby mitigating
estimation biases induced by linear trends. The model is
structured as follows:

EPit ¼ α0 þ βyeartreati ´ yearit þ ACCit þ uit þ vit þ εit ð2Þ
To test the hypothesis regarding the mediating effects in H2,

i.e., whether the construction of smart factories leads to an
increase in a company’s attention and usage of digital or physical
technologies, subsequently influencing environmental emissions,
a three-step approach was employed. First, based on Formula (1),
we obtained the treatment effect of smart factory construction on
corporate environmental emissions βDID. Second, using Formula
(3), we obtained the treatment effect of smart factory construction
on the extent of a company’s application of digital or physical
technologies γDID. Third, relying on Formula (4), the coefficients
of the simultaneous impact of smart factory construction and
digital or physical technologies on a company’s environmental
performance, denoted as φDID and βtechnologies, were acquired. If
βDID ≠ φDID, and γDID, βtechnologies are all significant, the
relationship between the extent of digital or physical technologies
application and the reduction of corporate environmental
emissions due to smart factory construction is considered
mediated. The mediating effect is calculated as γDID · βdigital.

digitalit ¼ α0 þ γDIDtreati ´ periodit þ BCCit þ uit þ vit þ εit
ð3Þ

EP0 ¼ α0 þ φDIDtreati ´ periodit þ βdigitaldigitalit þ ACCit þ uit þ vit þ εit

ð4Þ
To examine the moderation effects posited in H3, namely,

whether a company’s institutional environment factors moderate

the relationship between smart factory construction and corpo-
rate environmental emissions, the moderation effects model is
presented below:

EPit ¼ α0 þ βDID ´E Managementtreati ´ periodit ´E Managementit
þβDID ´ treati ´ periodit þ βE ManagementE Managementit
þACCit þ uit þ vit þ εit

ð5Þ

Results and discussions
Results for H1
Baseline model. Based on Formula (1), Table 3 presents the results
of the relationship between smart factory construction and cor-
porate pollutants emissions. The results of Model 1.1 indicate that
smart factory construction significantly increased 8.18% GHG
emissions per operation cost (β= 0.0818***) in short term,
averaging 1.085 tCO2e/$M. The results of Model 1.2 indicate that
smart factory construction increased 4.25% air pollutants cost per
operation cost (β= 0.0425***), averaging 1.043 $/$M. The
results of Model 1.3 indicate that smart factory construction
increased 7.18% waste cost per operation cost (β= 0.0718***),
averaging 1.074 $/$M. From the above, it is possible to conclude
that smart factory construction increases corporate environ-
mental emissions. H1a is not supported, but H1b is supported.

In short, our study indicates a significant increase in
environmental emission per operation cost due to smart factory
construction. This provides a new finding that smart factory
construction can cause worse environmental performance,
including GHG emissions and air pollutants. The negative
impact may be induced by more technical facilities and
equipment (Ma et al. 2023), or higher energy consumption needs
for data center operations and intelligent algorithm training
(Meng et al. 2018).

Parallel trend test. Furthermore, to mitigate the effects of serial
correlation and observational period selection, based on Formula
(2), we computed the treatment effects for each year before and
after the implementation of smart factory construction. The
results are presented in Fig. 2. On the one hand, Fig. 2a–c pre-
sents that treated group and untreated group had no significant
difference for environmental emissions in the three periods prior
to the event, which supports the parallel trend assumption. On
the other hand, Fig. 2a indicates that GHG emissions per
operation cost significantly increased within 2 years after the
smart factory construction. Figure 2b indicates that air pollutants
cost per operation cost significantly increased within 1 year after
the smart factory construction. Figure 2c indicates that waste cost
per operation cost significantly increased within one year after the
smart factory construction. These results emphasize the negative
impact of smart factory construction is short term. However, it
does not mean that we can ignore the environmental damage of
smart factory construction, as we have not found any evidence of
positive impacts.

Placebo test. To avoid the effects of unobservable factors,
according to the study of Li et al. (2024), we performed a placebo
test with 500 random sampling for treati × periodit in Formula (1).
The kernel density of the coefficients of treati × periodit in each
sampling is shown in Fig. 3. The estimated coefficients are cen-
tered around 0 based on normal distribution, which meets the
expectation of the placebo test.

Other robustness test. First, we deleted the sample for firms in the
medical manufacturing industry because these firms were greatly
affected during the COVID-19 epidemic. The results are shown in

Table 3 Smart factory construction and corporate
environmental emissions.

Log GHG
intensity

Log Air pollutants
intensity

Log Waste
intensity

Model 1.1 Model 1.2 Model 1.3

treat*period 0.0818*** 0.0425** 0.0718**
(0.0269) (0.0192) (0.0324)

Controls Yes Yes Yes
Firm fixed Yes Yes Yes
Year fixed Yes Yes Yes
N 1545 1545 1545
R2 0.0899 0.1360 0.0993

Robust standard errors are reported in brackets in the table.
*** and ** denote regression results passing significance tests at 1% and 5% confidence levels,
respectively.

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS | https://doi.org/10.1057/s41599-024-03623-z ARTICLE

HUMANITIES AND SOCIAL SCIENCES COMMUNICATIONS |         (2024) 11:1105 | https://doi.org/10.1057/s41599-024-03623-z 9



Models 2.1–2.3 in Table 4. The results of H1 for GHG emissions
and air pollutants cost are robust.

Second, we also performed a 5% tail trimming on the sample
for avoiding the effects of outliers. The results are shown in
Models 2.4–2.6 in Table 3. The results are still robust.

Third, in addition to increased emissions from data and
equipment use, smart factories may reduce environmental
emissions due to the reduction of employee numbers. GHG
emissions related to employment are mainly induced by

electricity consumption of staff office and fossil fuel combustion
in staff canteen, which are included in Scope 1 and Scope 2 of
GHG emissions. Since the dependent variable-GHG intensity is
measured by Scope 1 and Scope 2, the change of the dependent
variable measured by GHG emissions in our study is the result
mixing the change of energy usage as well as the change of
emissions related to personnel after constructing a smart factory.
Thus, in order to control the impact of employment, we added
“number of employees” as a control variable. The results are
shown in Models 2.7–2.9 of Table 4. Findings show that the
impact of smart factory construction on environmental emissions
remains significantly positive, demonstrating robustness. Notably,
after controlling for employee numbers, the negative impact is
similar with results in Table 3, indicating that the reduction of
employee numbers may not be an important factor.

Fourth, firms can rely on renewable energy credits to offset
environmental emissions, which may bias the environmental impact
of smart factories. Based on the analysis of firms’ annual reports and
CSR reports, we used a dummy variable to represent whether firms
use renewable energy or not. Searching keywords included “renew-
able energy”, “clean energy”, “green energy”, “solar energy”, “energy
storage”, “green electricity”, “water power”, “wind power”, “solar
power”, “methane”, and “photovoltaic”. If the annual report or CSR
report of a firm involves one of these keywords, we considered this
firm use renewable energy as credits. The results are presented in
Models 2.10–2.12 in Table 4. The coefficient of treatment variable is
significant, and our models keep robustness. Notably, the coefficient
of treatment variable in Model 2.10 increases compared with that in
Model 1.1. This result indicates that after controlling renewable

Fig. 2 The parallel trends of the impact of smart factory construction period on environmental emissions. aThe environmental emission for GHG
emissions. b The environmental emission for air pollutants cost. c The environmental emission for waste cost.

Fig. 3 The placebo test.
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energy credits, the negative impact of smart factory construction on
GHG emissions is stronger. However, the coefficient of “renewable
energy use” in Models 2.10–2.12 is not significant and does not have
a significant impact on environmental emissions. This may also
indicate that the use degree of renewable energy by firms is still low
as a substitute for conventional energy.

Fifth, similarly, firms can use emission reduction credits to
offset environmental emissions, which can bias the environmental
impact of smart factories. We have already controlled for the
variables “whether the firm is ISO 14001 certified” and “the
number of green patents” to eliminate the potential impact of the
firm’s EMS and environmental innovations on emissions.
However, these two variables may not be able to cover the
impact of other emission reduction measures, so we added a new
control variable—“emission reduction credits”. Specifically,
“emission reduction credits” is a numerical variable that

calculates the logarithm of the number of adopted emission
reduction practices, and it can be gained from CSMAR database.
Specifical practices include environmental education and training,
special environmental actions, environmental emergency
response mechanisms, environmental honors or awards, air
pollution control, wastewater pollution control, dust control, solid
waste utilization and disposal, noise and light pollution control,
and clean production implementation. Results are shown in
Table 4 for Models 2.13–2.15, showing that the models remain
robust after being controlled. Also, the coefficient of treatment
variable in Model 2.13 increases compared with that in Model 1.1.
This indicates that after controlling other emission reduction
practices, the negative impact of smart factory construction on
GHG emissions is stronger.

Last, there are differences in the mix of power generation types
and the process of decarbonization of power generation in
different provinces of China, which might result in different
carbon emission factors for the electricity consumption of firms
in different provinces. It is difficult to eliminate this bias directly
through the “electricity consumption * emission factor”
approach. On the one hand, there is a lack of data on emission
factors for each province. The China Development and Reform
Commission and the Ministry of Ecology and Environment
(MOE) only released the carbon emission factors for the power
grids of each province in 2010, 2012, 2018, and 2021, respectively.
On the other hand, there is insufficient disclosure of electricity
consumption data by Chinese firms, and existing databases do
not have estimation of electricity consumption data by Chinese
firms. In this case, we addressed this bias by controlling for
province fixed effects. Specifically, we considered the interaction
term of year and province fixed effects, which controls for the
effect of provinces with different emission factors across years.
The results are presented in Models 3.1–3.3 of Table 5. The
results remain robust after controlling for year*province fixed
effects. Furthermore, Models 3.4–3.6 in Table 5 consider all
potential bias induced by emissions related to personnel,
renewable energy credits, emissions reduction credits, and the
difference in emissions factor for various provinces. The results
are still robust. Besides, they indicate that the construction of
smart factories can lead to the short-term increase of 7.55% GHG
emissions (1.001 tCO2e) and 4.12% air pollutants cost (1.011 $)
per $M operation cost for firms.

Mediating effect of digital technologies for H2. Based on
Eq. (3), we examined the mediating effects of digital or physical
technology on the relationship between smart factory construc-
tion and environmental emissions. First, Model 4.1 of Table 6 and
Model 5.1 of Table 7 indicate that smart factory construction
significantly increased the use or focus degree of physical and
digital technologies. This supports that smart factory was con-
structed based on the application of physical and digital tech-
nologies. Second, Model 4.1 and Model 4.2 of Table 6 indicate
that physical technologies played a partial mediating role in the
relationship between smart factory construction and GHG
emissions per operation cost (mediating effect= 0.1665*0.0384).
However, Model 4.3 and Model 4.4 indicate that physical tech-
nologies had no mediating role for air pollutants cost and waste
cost. Third, the results of Table 7 indicate that the use of digital
technologies did not increase corporate environmental emissions.
Thus, H2a is not supported, and H2b is supported only for GHG
emissions.

We also considered the interactive effects of physical and
digital technologies. The results are presented in Table 8.
Specifically, we compared the mediating effect of the extent of
physical technology use in the higher and lower digital technology

Table 4 The results for robustness test for environmental
emissions (Part 1).

Log GHG
intensity

Log Air
pollutants
intensity

Log Waste
intensity

Sample without medical firms
Model 2.1 Model 2.2 Model 2.3

treat*period 0.0675** 0.0420** 0.0502
(0.0286) (0.0206) (0.0336)

N 1386 1386 1386
R2 0.0796 0.1260 0.1070

Sample with a 5% tail trimming
Model 2.4 Model 2.5 Model 2.6

treat*period 0.0873*** 0.0419** 0.0760***
(0.0238) (0.0178) (0.0222)

N 1545 1545 1545
R2 0.1080 0.1370 0.1230

Controls including employee
Model 2.7 Model 2.8 Model 2.9

treat*period 0.0812*** 0.0414** 0.0727***
(0.0270) (0.0192) (0.0325)

Employee 0.0242 0.0477 −0.0415
(0.0477) (0.0340) (0.0575)

N 1545 1545 1545
R2 0.0901 0.1380 0.0999

Controls including renewable energy credits
Model 2.10 Model 2.11 Model 2.12

treat*period 0.0824*** 0.0422** 0.0705**
(0.0270) (0.0193) (0.0325)

Renewable
energy credits

−0.0109 0.0053 0.0212

(0.0251) (0.0180) (0.0303)
N 1545 1545 1545
R2 0.0901 0.1360 0.0998

Controls including other emission reduction
practices
Model 2.13 Model 2.14 Model 2.15

treat*period 0.0821*** 0.0426** 0.0715**
(0.0269) (0.0192) (0.0324)

Emission
reduction credits

−0.0157 −0.0033 0.0126

(0.0166) (0.0119) (0.0200)
N 1545 1545 1545
R2 0.0909 0.1360 0.0997
Controls Yes Yes Yes
Firm fixed Yes Yes Yes
Year fixed Yes Yes Yes

Robust standard errors are reported in brackets in the table.
*** and ** denote regression results passing significance tests at 1% and 5% confidence levels,
respectively.
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use groups. The results show that the mediating effect of the
degree of physical technology use is greater in the lower digital
technology use group. This suggests that higher levels of digital
technology use can attenuate the increase in environmental
emissions in association with physical technology use.

In sum, the negative impact of smart factory construction on
GHG emissions can be partially explained by physical technol-
ogies. This indicates that more physical technologies induce
higher GHG emissions per operation cost. Related reasons can be
that smart factory construction applies more data facilities and
electronic devices to support operations of digital technologies
(Waibel et al. 2017; Chiarini 2021), and energy insensitive
equipment to support advanced manufacturing. Additionally,
compared with existing studies arguing that digital technologies
can improve environmental performance (Yang et al. 2023; Du
et al. 2023), we have not found any evidence to support the
positive effect of digital technologies of smart factories. The
reason may be that digital technologies cannot directly reduce

Table 5 The results for robustness test for environmental emissions (Part 2).

Log GHG
intensity

Log Air pollutants
intensity

Log Waste
intensity

Log GHG
intensity

Log Air pollutants
intensity

Log Waste
intensity

Model 3.1 Model 3.2 Model 3.3 Model 3.4 Model 3.5 Model 3.6

treat*period 0.0745** 0.0411** 0.0831** 0.0755** 0.0412** 0.0816**
(0.0302) (0.0202) (0.0343) (0.0304) (0.0203) (0.0344)

Employee 0.0316 0.0078 −0.0270
(0.0552) (0.0369) (0.0626)

Renewable energy use −0.0265 −0.0023 0.0349
(0.0292) (0.0195) (0.0330)

Emission reduction −0.0001 −0.0090 −0.0085
(0.0199) (0.0133) (0.0226)

Controls Yes Yes Yes Yes Yes Yes
Firm fixed Yes Yes Yes Yes Yes Yes
Year*province fixed Yes Yes Yes Yes Yes Yes
N 1545 1545 1545 1545 1545 1545
R2 0.2840 0.4070 0.3730 0.286 0.408 0.374

Robust standard errors are reported in brackets in the table.
** denote regression results passing significance tests at 5% confidence levels.

Table 6 The mediating effect of physical technologies for
smart factory construction and GHG emissions.

Model 4.1 Model 4.2 Model 4.3 Model 4.4

Physical
technologies

Log GHG
intensity

Log Air
pollutants
intensity

Log
Waste
intensity

treat*period 0.1665*** 0.0758*** 0.0399** 0.0691**
(0.0523) (0.0271) (0.0203) (0.0327)

Physical 0.0384** 0.0209 0.0159
(0.0176) (0.0126) (0.0213)

Controls Yes Yes Yes Yes
Firm fixed Yes Yes Yes Yes
Year fixed Yes Yes Yes Yes
N 1543 1543 1543 1543
R2 −0.4160 −0.0947 −0.1380 −0.0993

Robust standard errors are reported in brackets in the table.
*** and ** denote regression results passing significance tests at 1% and 5% confidence levels,
respectively.

Table 7 The mediating effect of digital technologies for
smart factory construction and GHG emissions.

Model 5.1 Model 5.2 Model 5.3 Model 5.4

Digital
technologies

Log GHG
intensity

Log Air
pollutants
intensity

Log Waste
intensity

treat*period 0.180*** 0.0841*** 0.0444** 0.0698**
(0.0611) (0.0271) (0.0194) (0.0327)

Digital −0.0104 −0.00535 0.0113
(0.0151) (0.0108) (0.0182)

Controls Yes Yes Yes Yes
Firm fixed Yes Yes Yes Yes
Year fixed Yes Yes Yes Yes
N 1543 1543 1543 1543
R2 −0.2830 −0.0901 −0.1350 −0.0991

Robust standard errors are reported in brackets in the table.
*** and ** denote regression results passing significance tests at 1% and 5% confidence levels,
respectively.

Table 8 The inter-effect of physical technologies and digital
technologies.

High degree of digital
technology use

Low degree of digital
technology use

Model 6.1 Model 6.2 Model 6.3 Model 6.4

Physical
technologies

GHG/
Operation
cost

Physical
technologies

GHG/
Operation
cost

treat*period 0.221*** 0.0612** 0.245*** 0.0644**
(0.0660) (0.0292) (0.0660) (0.0292)

Physical 0.0301** 0.0342**
(0.0160) (0.0160)

Controls Yes Yes Yes Yes
Firm fixed Yes Yes Yes Yes
Year fixed Yes Yes Yes Yes
N 781 781 887 887
R2 0.2370 0.0811 0.2370 0.0811

Robust standard errors are reported in brackets in the table.
*** and ** denote regression results passing significance tests at 1% and 5% confidence levels,
respectively.
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environmental emission; and the smart factory construction
increases GHG emission by applying more physical facilities and
equipment.

Moderating effect of corporate institutional environment.
According to Eq. (5), we further examined the moderating effect
of institutional factors on the relationship between smart factory
construction and environmental emissions. First, Models 7.1 and
7.2 of Table 9 indicate that government regulation and social
media attention had no significant moderating effect. Second,
Model 7.3 of Table 9 indicates that industrial EMS maturity
generated a negative moderating effect on the relationship
between smart factory construction and GHG emissions
(β=−0.0482***). This result reflects that firms in the industry
with higher EMS maturity can reduce the negative effect of GHG
emission by smart factory construction. Figure 4 also shows
higher industrial EMS maturity can make the line smoother.
Thus, H3a and H3b are not supported, and H3c is supported but
only for GHG emissions.

From the above, the moderating roles of three institutional factors
are mixed. On the one hand, governmental regulation and social
media attention did not play significant moderating role for smart
factory construction and environmental emissions. The reason may
be that government and social media have not paid enough attention
to the environmental impact of smart factories. On the other hand,
industrial EMS maturity negatively moderated the relationship. This
means that firms in the industry with high maturity of EMS can
reduce the negative impact of smart factory construction by
accumulating environmental management knowledge and skills
(Jeong and Lee 2022) or stronger environmental awareness.

Post-hoc analysis. On the one hand, some firms outsource their
servers to third-party data centers, which results in energy con-
sumption not being counted in the emissions data of the sample
firms. Thus, we also analyzed the difference in environmental
emissions between firms for “using third-party data centers” and
“using local servers”. Specifically, we searched for the keywords of
“firm name+ cloud manufacturing/server/data center” based on
multiple information sources such as annual reports and news
reports. If the search results mentioned that the firm cooperated with
third-party firms and used cloud computing services of third-party
firms, the firm was classified as firms for “using third-party data
centers”. If the search results indicated that the firm used cloud
computing technology but did not cooperate with third-party firms
or mentioned that the firm built its own data center, the firm was
classified as “using local servers”. Then, we analyzed these two groups
of sample firms and presented the results in Table 10. Models 8.1, 8.3,
and 8.5 show the environmental emission results for the sample firms
“using local servers” and Models 8.2, 8.4, and 8.6 show the envir-
onmental emission results for the sample firms “using third-party
data centers”. The results suggest that GHG emission intensity and
waste intensity of the sample firms “using local servers” are sig-
nificant and stronger. This supports that a “third-party data center”
can shift the increased environmental emissions from the smart
factory outside of the firm’s boundaries.

On the other hand, firms can construct smart factory in two ways,
i.e., retrofitting existing factory and building new factory. Based on
the annual reports, we considered a firm with a “new smart factory”
if it described the construction of new facilities like factories or
production lines. If a firm mentioned adding equipment or
technology to make existing factories smarter, we considered it to
be a firm with a “retrofitting factory”. We then analyzed the
environmental emissions of the two groups. The results, as shown in
Table 11, indicate that the “new smart factory” sample firms have a
greater impact on environmental emissions. This suggests that
managers should focus on retrofitting existing factories and reduces
investment in building new factories.

Table 9 The moderating effect of institutional environment
on the potential of smart factory construction to affect GHG
emissions.

Model 7.1 Model 7.2 Model 7.3

Log GHG
intensity

Log GHG
intensity

Log GHG
intensity

treat*period 0.0711** 0.137 0.174***
(0.0328) (0.1657) (0.0511)

treat*period *KeyPollMonUnit 0.0226
(0.0396)

KeyPollMonUnit −0.0198
(0.0273)

treat*period *Media_attention −0.0307
(0.0446)

Media_attention 0.0209
(0.0252)

treat*period
*Industry_EMS_maturity

−0.0482**

(0.0229)
Industry_EMS_maturity 0.0483

(0.0410)
Controls Yes Yes Yes
Firm fixed effect Yes Yes Yes
Year fixed effect Yes Yes Yes
N 1545 915 1545
R2 −0.0905 −0.0906 −0.0947

Robust standard errors are reported in brackets in the table.
*** and ** denote regression results passing significance tests at 1% and 5% confidence levels,
respectively.

Fig. 4 The moderating effect of industrial EMS maturity for smart factory
construction and GHG emissions.
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Conclusion and implications
Study summary. This study, based on all listed manufacturing
enterprises in China, identified 144 firms that have implemented
smart factory initiatives. Data on GHG emissions and pollution
emissions were collected from these firms to analyze the rela-
tionship between smart factory construction and corporate
environmental emissions. The research further explored the
mediating effects of digital or physical technologies and the
moderating role of corporate institutional environment. Several
key findings emerged. First, the study provided empirical evi-
dence supporting the potential of smart factories construction to
increase environmental emissions in short term. Second, the
research highlighted the mediating role of physical technology in
smart factories construction to increase GHG emissions. Third,
the study identified the industry with higher maturity of EMS can
alleviate the negative impact of smart factory construction on
GHG emissions.

Theoretical implications. This study makes several theoretical
contributions. First, in contrast to existing qualitative research
(e.g., Meng et al. 2018), this paper provides empirical evidence
based on firm-level data from Chinese enterprises regarding the
dialectical relationship between smart factories and corporate
environmental emissions. Second, this study comprehensively
measures the impact of smart factories on corporate environ-
mental performance across various dimensions of environmental
emissions. We identify variations in the value of digital or phy-
sical technologies in affecting corporate environmental emissions.
We also provide insights for researchers to understand the
mechanisms behind smart factory construction to affect envir-
onmental emissions. Third, while smart factories and environ-
mental emissions are two critical themes in modern
manufacturing, existing literature has not adequately addressed

the impact mechanism between these two themes (Meng et al.
2018). Our results emphasize the importance of mimetic insti-
tution (industrial EMS maturity) on stimulating firm to influence
environmental emissions by smart factory construction. This
provides insights for researchers to adopt mimetic institutional
force to study the relationship between smart manufacturing and
environmental emissions.

Practical implications. This study offers practical insights for
business managers. First, managers have been increasingly
recognizing the close relationship between smart factories and
environmental emissions. This study provides empirical evidence
to support the idea that the construction of smart factories can
damage environmental sustainability in short term. Managers
need to be cautious as facilities of data management and sig-
nificant use of physical robots or sensors are major energy con-
sumers. Apart from focusing on efficiency gains from smart
factories, managers should also prioritize GHG emission control
as a primary goal of smart factory construction.

Second, the negative impact of smart factories on environ-
mental emissions can be explained by increased adoption of
physical technologies. Although such negative effect is only
observed in the short term because most firms construed smart
factories in recent years, managers are still suggested to focus on
the potential long-term environmental impact of smart factories.
Particularly, managers should not underestimate the additional
negative impact of increasing physical foundations.

Third, managers need to be aware that an organization’s
environmental management and the maturity of its environ-
mental systems favor the consideration of more environmental
objectives in smart factory construction. Managers should realize
that learning knowledge about EMS from the industry can benefit
the environment when constructing smart factories. Meanwhile,

Table 10 The results of environmental emissions for group using third-party data center or local data center.

Log GHG intensity Log Air pollutants intensity Log Waste intensity

Model 8.1
Third part

Model 8.2
Local

Model 8.3
Third part

Model 8.4
Local

Model 8.5
Third part

Model 8.6
Local

treat*period 0.0457 0.1160*** 0.0743** 0.0535** 0.0662 0.0741**
(0.0591) (0.0293) (0.0364) (0.0225) (0.0728) (0.0362)

N 547 1269 547 1269 547 1269
R2 0.1010 0.1330 0.1080 0.1860 0.1080 0.0981
Controls Yes Yes Yes Yes Yes Yes
Firm fixed Yes Yes Yes Yes Yes Yes
Year fixed Yes Yes Yes Yes Yes Yes

Robust standard errors are reported in brackets in the table.
*** and ** denote regression results passing significance tests at 1% and 5% confidence levels, respectively.

Table 11 The results of environmental emissions for retrofitting existing factories and building new factories.

Log GHG intensity Log Air pollutants intensity Log Waste intensity

Model 9.1
Retrofitting

Model 9.2
New

Model 9.3
Retrofitting

Model 9.4
New

Model 9.5
Retrofitting

Model 9.6
New

treat*period 0.0865*** 0.1290*** 0.0646** 0.0736** 0.1270*** 0.1310***
(0.0362) (0.0392) (0.0278) (0.0308) (0.0456) (0.0464)

N 1055 722 1055 722 1055 722
R2 0.0780 0.1520 0.1010 0.1330 0.0693 0.1170
Controls Yes Yes Yes Yes Yes Yes
Firm fixed Yes Yes Yes Yes Yes Yes
Year fixed Yes Yes Yes Yes Yes Yes

Robust standard errors are reported in brackets in the table.
*** and ** denote regression results passing significance tests at 1% and 5% confidence levels, respectively.
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governmental regulation and social media attention have no
significant moderating effect on the relationship between smart
factory construction and environmental emissions. This implies
that the current policymakers may not realize the potential
negative impact, but they should actively consider the negative
impact and make relevant policy in the future.

Limitations and future research. This study also has certain lim-
itations. First, constrained by the disclosure of corporate data, this
study relied on pollution emission data and GHG emissions reported
in annual reports. This may be subject to the influence and inter-
ference of GHG emissions from sources other than production (such
as offices) and emission reduction measures. Although the study
controlled for the effect of other environmental practices such as ISO
certification and green innovation patents, it unavoidably remains
susceptible to interference from other factors such as energy-saving
and emission reduction initiatives. Future research should conduct
factory-level studies based on more refined data. Second, since most
firms constructed smart factory in recent years, we cannot observe
the long-term effect of smart factory construction on corporate
environmental performance. Future research can explore whether
smart factories induce a positive impact on corporate environment
performance in the long term as well as the potential mechanisms
behind. Third, this study was based on Chinese smart factories and
the context of carbon neutrality in China, focusing on listed manu-
facturing companies. Future research should extend the scope to a
broader range of countries, allowing for the analysis of regional
differences.

Data availability
Data from Trucost can be accessed directly from the data pro-
viders with a fee. Other data analyzed can be made available upon
reasonable request to the authors.
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Notes
1 https://www.accenture.com/content/dam/accenture/final/a-com-migration/r3-3/pdf/
Accenture-Centre-Sheffield-External-Digital-701.pdf#zoom=40

2 https://www2.deloitte.com/content/dam/insights/us/articles/4051_The-smart-
factory/DUP_The-smart-factory.pdf

3 https://emt.gartnerweb.com/ngw/globalassets/en/supply-chain/documents/trends/
smart-factory.pdf?_gl=1*1gj1968*_ga*MTM3MDEyNzc1Mi4xNjk0NjEwNjQz*_
ga_
R1W5CE5FEV*MTcwMTY3MTk5OC41LjEuMTcwMTY3MjM3MC41Ny4wLjA.

4 https://www.twi-global.com/technical-knowledge/faqs/what-is-a-smart-factory#
TheFourLevelsofSmartFactories

5 https://iot-analytics.com/what-are-smart-factories/
6 https://www.advancedtech.com/blog/step-by-step-guide-to-building-a-smart-factory/
7 https://www.oracle.com/industrial-manufacturing/smart-factory-and-smart-
manufacturing/

8 https://www.sap.cn/products/scm/what-is-a-smart-factory.html
9 Cloud China, Vision 2025. https://www.mckinsey.com.cn/wp-content/uploads/2022/
08/Cloud-in-China-The-outlook-for-2025-vFF.pdf.

10 From “manufacturing” to “smart Manufacturing”, Xinhua San Helps Great Wall
Motor Address Data Challenges. https://www.h3c.com/cn/d_202206/1620026_
30008_0.htm.
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