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Default Bayesian Estimation of the Fundamental
Frequency

Jesper Kjær Nielsen, Student Member, IEEE, Mads Græsbøll Christensen, Senior Member, IEEE, and
Søren Holdt Jensen, Senior Member, IEEE

Abstract—Joint fundamental frequency and model order esti-
mation is an important problem in several applications. In this
paper, a default estimation algorithm based on a minimum of
prior information is presented. The algorithm is developed in a
Bayesian framework, and it can be applied to both real- and
complex-valued discrete-time signals which may have missing
samples or may have been sampled at a non-uniform sampling
frequency. The observation model and prior distributions corre-
sponding to the prior information are derived in a consistent
fashion using maximum entropy and invariance arguments.
Moreover, several approximations of the posterior distributions
on the fundamental frequency and the model order are derived,
and one of the state-of-the-art joint fundamental frequency and
model order estimators is demonstrated to be a special case of one
of these approximations. The performance of the approximations
are evaluated in a small-scale simulation study on both synthetic
and real world signals. The simulations indicate that the proposed
algorithm yields more accurate results than previous algorithms.
The simulation code is available online.

Index Terms—Fundamental frequency estimation, Bayesian
model comparison, Zellner’s g-prior.

I. INTRODUCTION

AN important and basic problem in time-series analysis
is the estimation of the fundamental frequency and the

number of harmonic components of a periodic signal. The
problem is encountered in a wide range of science and
engineering applications such as music processing [1], [2],
speech processing [3], [4], sonar [5], and electrocardiography
(ECG) [6]. In particular for musical applications, fundamental
frequency estimation has been subject to extensive research for
several decades [2]. This is primarily due to that a musical note
is composed of the sum of a fundamental partial and a number
of overtone partials. For harmonic instruments, these overtone
partials are called harmonics since their frequencies {ωi}li=2

are approximately related to the fundamental frequency ω of
the fundamental partial by ωi ≈ iω for i = 2, · · · , l [1], [7].

Manuscript received September 29, 2011; revised March 04, 2012, July
04, 2012, and October 26, 2012; accepted November 01, 2012. Date of
publication November 27, 2012; date of current version February 22, 2013.
The associate editor coordinating the review of this manuscript and approving
it for publication was Prof. Engin Erzin.

Copyright (c) 2010 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

J.K. Nielsen and S.H. Jensen are with the Multimedia Information and Sig-
nal Processing Group, Department of Electronic Systems, Aalborg University,
9220 Aalborg, Denmark (e-mail: jkn@es.aau.dk; shj@es.aau.dk).

M.G. Christensen is with the Audio Analysis Lab, Department of Ar-
chitecture, Design & Media Technology, Aalborg University, 9220 Aalborg,
Denmark (e-mail: mgc@create.aau.dk).

Digital Object Identifier 10.1109/TASL.2012.2229979

Since the fundamental frequency is such an important physical
attribute to musical applications, the more elegant term pitch
is often used instead [2]. Therefore, the problem considered
in this paper is often referred to as (single-)pitch estimation
in the context of musical applications.

The problem of estimating the fundamental frequency is
typically defined in the following way. A data set {x(tn)}N−1

n=0

originating from a discrete-time signal is observed and mod-
elled as

x(tn) = s(tn) + e(tn) , n = 0, 1, · · · , N − 1 (1)

where {tn}N−1
n=0 , {s(tn)}N−1

n=0 , and {e(tn)}N−1
n=0 are the sam-

pling times, the predictable part of the signal, and the non-
predictable part of the signal, respectively. Usually, the sam-
pling period T is assumed to be constant so that tn = nT for
t0 = 0. However, in order to allow for a non-uniform sampling
scheme or missing samples, this assumption is not made here.
The predictable part consists of l harmonic components and
is at time tn given by

s(tn) =





l∑

i=1

αi exp(jiωtn), x(tn) ∈ C

l∑

i=1

ai cos(iωtn) + bi sin(iωtn), x(tn) ∈ R
(2)

where C and R denote the set of complex and real numbers,
respectively, and j =

√
−1 is the imaginary unit. For the i’th

harmonic component, the complex amplitude αi, the linear
weights ai and bi, the amplitude Ai, and the phase φi are
related by αi = ai + jbi = Ai exp(jφi). Note that a real-
valued signal of the form in (2) can be cast into the form
of a complex-valued signal in (2) by computing its down-
sampled analytic signal [8]. Provided that the frequencies of
the first and last harmonics are not too close to zero and the
Nyquist frequency (relative to N ), respectively, the parameter
estimates based on the down-sampled analytic signal are nearly
identical to the corresponding parameter estimates based on
the real-valued signal [2], [9]. In this paper, the focus is on the
complex-valued signal model since it leads to simpler notation
and faster algorithms [2], [10]. However, the results for the
real-valued signal model are also given.

Numerous fundamental frequency estimation algorithms
have been suggested in the literature. The simplest algorithms
are the non-parametric methods based on, for example, the
auto-correlation function [11], [12] or the cepstrum [13] (See
[14], [15] for other non-parametric methods). The more ad-
vanced algorithms are based on a signal model of the observed
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signal and are therefore referred to as parametric methods.
These are typically maximum likelihood-based (ML) meth-
ods [16], [17], subspace-based methods [10], [18], filtering
methods [19], [20], or Bayesian methods [7], [21], [22]. We
refer the interested reader to [2] for a review of many of the
non-Bayesian methods. Only a few of the suggested methods
assume that the number of harmonics is unknown. In order to
perform model selection, these methods typically add an order
dependent penalty term to the log-likelihood function [23]–
[25], use the eigenvalues [26] or eigenvectors [27], [28], or
compare the angle between subspaces [29]. A good overview
over these and other methods can be found in [2]. In contrast
to model comparison in which a probability for each model
is computed, these methods are typically only designed for
detecting the most likely model. On the other hand, model
comparison enables us to account for model uncertainty in the
estimation of unknown model parameters and the prediction
of missing data points by using all models instead of just
the most likely one. As demonstrated in, e.g., [30], model
averaging increases the prediction performance.

In this paper, inference about the fundamental frequency and
the number of harmonics are made in a Bayesian framework.
The Bayesian framework is used for model comparison since
it leads to consistent estimates under very mild conditions,
naturally selects the simplest model which explains the data
reasonably well (the principle of Occam’s razor [31]), takes
model uncertainty into account for estimation and prediction,
and enables a more intuitive interpretation of the results [32],
[33]. In a Bayesian framework, prior distributions on the
unknown quantities must be elicited and their hyperparameters
must be selected. In general, this is not a trivial problem since
the prior information is usually not in the form of probability
distributions, and prior information must therefore be turned
into one or several probability distributions. For model com-
parison, this prior elicitation is very important since improper
or vague priors may lead to indeterminate or bad answers [33].
Another difficulty of the Bayesian methods is that closed-
form analytical solutions seldomly exist. Various numerical
algorithms such as Markov chain Monte Carlo sampling [34]
can overcome this limitation, but the computational load of
running these algorithms is typically very high.

The primary aim of this paper is to develop a default
estimation scheme for estimating the fundamental frequency
and detecting the number of harmonics. Even though the
number of harmonics might not be of interest by itself, it
is still vital to detect it in order to avoid problems with for
example pitch halving [10]. By the word default, we mean that
an almost user-parameter free algorithm is developed which
automatically follows from a minimum of prior information
and a few minor approximations. The approximations are
made so that closed-form expressions are obtained which have
a computational load comparable to the methods suggested in
[2]. Moreover, we show that a special case of the proposed
approach is identical to the algorithm proposed in [2, Sec. 2.6].
Finally, we demonstrate through simulation examples that
the proposed method is superior to the state-of-the-art ML-
based and subspace-based methods. Note that we are here not
concerned with the development of a full pitch detection and

tracking system for speech or music applications such as YIN
[11], RAPT [35], or NDF [36]. However, we believe that our
estimator may be a useful component in such systems as well
as in similar systems for other application domains.

The paper is organised as follows. We first formally define
the inference problem in a Bayesian framework in Sec. II. In
Sec. III, the prior information is turned into the observation
model and prior distributions which are used to derive the
posterior distributions on the fundamental frequency and the
model order in Sec. IV. In Sec. V, various approximations of
varying accuracy and computational load are developed, and
in Sec. VI it is demonstrated that a state-of-the-art ML-based
algorithm is a special case of one of these approximations.
In Sec. VII, the approximations are evaluated on a synthetic
signal, and the applicability of the algorithm is demonstrated
for the spectral analysis of a speech signal.

II. PROBLEM FORMULATION AND BACKGROUND

The primary aim is to make inference about the fundamental
frequency ω and the model order l given the prior information
I and the N data points collected in the vector x. That is, we
wish to find the posterior densities1

p(ω, l|x, I) = p(ω|x, l, I)p(l|x, I) (3)

and some of their statistics such as the mode, the mean, and
the variance. The model order l labels a unique model Ml

with model parameters θl ∈ Θl. For the problem at hand, ω is
one of these parameters, and the remaining model parameters
are nuisance parameters. The observation model p(x|θl, l, I)
describes the relationship between the data and the model.
When viewed as a function of the model parameters, the
observation model is referred to as the likelihood function,
and it plays an important role in statistics where it is mainly
used for parameter estimation. However, model comparison
cannot only be based on comparing the highest likelihoods of
the candidate models as more complex models can always fit
the observed data better than simpler models. In a Bayesian
framework, the model parameters and the model order are
random variables with the prior pdf p(θl|l, I) and pmf p(l|I),
respectively. The posterior pdf p(θl|x, l, I) and pmf p(l|x, I)
are connected to these priors through Bayes’ theorem

p(θl|x, l, I) =
p(x|θl, l, I)p(θl|l, I)

p(x|l, I)
(4)

p(l|x, I) =
p(x|l, I)p(l|I)

p(x|I)
(5)

where

p(x|l, I) =

∫

Θl

p(x|θl, l, I)p(θl|l, I)dθl (6)

is called the marginal likelihood or the evidence. For model
comparison, the odds of two competing model orders k and i

1In (3) and the rest of the paper, the generic notation p(·) is used to denote
both a probability density function (pdf) over a continuous parameter and a
probability mass function (pmf) over a discrete parameter.
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are often compared. In this connection, the posterior odds are
often used, and they are given by

p(k|x, I)

p(i|x, I)
= BF[k, i]

p(k|I)

p(i|I)
(7)

where the Bayes’ factor is BF[k, i] = p(x|k, I)/p(x|i, I).
Since the prior and posterior pdfs on the model order are
discrete, it is easy to find the posterior odds and the posterior
distribution once the Bayes’ factors are known. Therefore, the
main challenge in Bayesian model comparison is to compute
the Bayes’ factor for competing pairs of models. However,
before Bayes’ theorem can be used to make inference about
the fundamental frequency and the model order in Sec. IV, the
prior information I must first be turned into an observation
model and prior distributions on the model parameters.

III. A DEFAULT PROBABILITY MODEL

As alluded to previously, we are here concerned with the
development of an inference scheme which automatically
follows from a minimum of prior information I . Thus, a
fundamental problem is to specify a probability model which
reflects I about which we assume the following.

Assumption 3.1: We are given N data points {x(tn)}N−1
n=0

from a zero-mean real- or complex-valued signal which has
been sampled at the known time instances {tn}N−1

n=0 . The
signal is wide-sense stationary (WSS) and consists of a pre-
dictable part which is periodic, corrupted by additive noise,
and bandlimited to the known angular frequency interval
[ωa, ωb].
For a given application, more prior information may be
available which should be included in this assumption. For
example in a pitch tracking system, the estimates of the last
frame is known, and we might also know something about
the correlation structure of the amplitudes of the harmonics
and the noise based on, e.g., physical properties. However, we
are here concerned with a default and application independent
inference scheme so only the information I in Ass. 3.1 is
assumed and used to elicit the probability model consisting of
the observation model and the prior distributions on the model
parameters. For notational convenience, the following vectors
and matrix are defined

x ,
[
x(t0) · · · x(tN−1)

]T
(8)

e ,
[
e(t0) · · · e(tN−1)

]T
(9)

αl ,





[
α1 · · · αl

]T
, x ∈ CN

[
a1 · · · al b1 · · · bl

]T
, x ∈ RN

(10)

zi ,
[
exp(jiωt0) · · · exp(jiωtN−1)

]T
(11)

Zl ,





[
z1 · · · zl

]
, x ∈ CN[

Re(z1) · · · Re(zl) Im(z1) · · · Im(zl)
]
, x ∈ RN

(12)

where (·)T denotes matrix transposition, and Re(·) and Im(·)
take the real and imaginary part, respectively, of a complex
number.

A. The observation model

In order to deduce the observation model, a model for the
non-predictable part or the noise e given the prior information
I must be selected in (1) which in vector notation is given by

x = Zlαl + e . (13)

Obviously, the distribution must integrate to one and have
zero-mean, and the average power of the noise process must
be finite since the signal has been sampled. Thus, the noise
variance σ2 is therefore finite, and the WSS property implies
that σ2 does not change with time. As advocated in [37], [38],
the pdf which maximises the entropy under these constraints
should be selected, and this pdf is the (complex) normal
distribution with density

p(e|σ2, I) =
[
rπσ2

]−N/r
exp

(
−e

He

rσ2

)
(14)

=

{
CN (e;0, σ2IN ) , r = 1

N (e;0, σ2IN ) , r = 2
(15)

where (·)H denotes conjugate matrix transposition, IN is the
N × N identity matrix, and r is either 1 for x ∈ CN or
2 for x ∈ RN . To simplify the notation, the non-standard
notation Nr(·) is used to refer to either the complex normal
pdf CN (·) for r = 1 or the real normal pdf N (·) for r = 2.
It is important to note that the noise variance σ2 is a random
variable. As opposed to the case where it is simply a fixed
and unknown quantity, the noise distribution marginalised over
this random noise variance is able to model noise with heavy
tails and is robust towards outliers. In Sec. III-B1, the prior
distribution on the noise variance is elicited. Note that (15)
does not explicitly model any correlation structure in the noise.
If prior information about such a structure is available, it
should be included in the constraints to enable more accurate
estimation results (see, e.g., [25], [39]). However, including
these constraints lowers the entropy so if nothing is known
about a correlation structure, (15) is the least informative
distribution on the noise since it maximises the entropy [39],
[40]. If the noise is known to be coloured, the proposed method
is still useful if it is combined with a linear pre-filter which
whitens the noise.

From (15), it follows that the observation model is

p(x|αl, σ2, ω, l, I) = Nr(x;Zlαl, σ
2IN ) . (16)

In most of the literature on fundamental frequency estimation,
the same observation model is used. However, the derivation
presented here facilitates a different interpretation of this
model. Namely, when nothing is known about the noise except
that it is WSS and has a finite power, the white Gaussian noise
assumption is the least informative or most conservative noise
distribution.

B. The Prior Distributions

When the parametrisation is not given by the problem, the
maximum entropy method cannot be used for the elicitation of
a default prior distribution [41, Sec. 5.6.2]. For example, the
noise variance σ2 has so far been used in the parametrisation,
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but the standard deviation σ or the precision parameter λ =
σ−2 could have been used instead. Applying the maximum en-
tropy principle to either of these three common representations
leads to the unsatisfactory situation that the prior distribution is
not invariant under the choice of parametrisations. In order to
cope with the different representations, the invariances which
the prior distribution must obey are often considered [37], [38].
That is, which transformations of the parameters do not change
the prior knowledge? Another useful question to consider is
which parameters are logically connected. That is, if the value
of one parameter is known, would that change the state of
knowledge about the other parameters? Although this is not
a necessary question to consider, selecting a representation in
which the parameters are not logically connected simplifies
the prior elicitation [42, App. A]. In our representation, the
parameters are the complex amplitudes αl, the noise variance
σ2, the fundamental frequency ω, and the model order l. The
fundamental frequency is clearly logically connected to the
model order since it must be below ωb/l. However, other
dependencies between the parameters cannot be extracted from
our prior information I , and the prior pdf is therefore factored
as

p(αl, σ
2, ω, l|I) = p(αl|I)p(σ2|I)p(ω|l, I)p(l|I) . (17)

1) The Noise Variance: Since the choice of parametrisation
is not obvious, the prior distribution on the noise variance is
selected such that it does not depend on whether the noise
variance, the precision parameter, or the standard deviation is
used. For invariance under either of these representations, it is
therefore required that

p(σ|I)dσ = p(σm|I)dσm , ∀ m 6= 0 (18)

which is satisfied for p(σ|I) ∝ σ−1. This improper prior
pdf is very famous and known as the Jeffreys’ prior [43].
It is improper since it does not integrate to one. In practice,
however, the noise variance cannot go all the way to zero due
to, for example, quantisation noise, and the noise variance is
always upper bounded so a normalised prior pdf on the noise
variance is

p(σ2|I) =

{[
ln(w/v)σ2

]−1
v < σ2 < w

0 otherwise
. (19)

The bounds on the noise variance have almost no influence on
the inference so they are often selected as v → 0 and w →∞
to simplify the analysis [42, App. A].

2) The Fundamental Frequency: For the elicitation of the
prior distribution on the fundamental frequency, the arguments
from Sec. III-B1 can be repeated. Whether the (angular)
fundamental frequency ω, the ordinary fundamental frequency
f = ω/(2π), or the fundamental period τ = f−1 is used, does
not change the prior knowledge. From the prior information
I , the signal is bandlimited to the interval [ωa, ωb], and ω
must therefore lie on the interval Ωl = [ωa, ωb/l]. Thus, the
posterior pdf on the fundamental frequency is

p(ω|l, I) =

{
(Flω)−1 ω ∈ Ωl

0 otherwise
(20)

where Fl = ln(ωb) − ln(lωa). This prior was also derived in
[42, App. A] for a single sinusoid using a more ingenious
argument.

3) The Complex Amplitudes: The sinusoidal model is typ-
ically parametrised by the Cartesian coordinates (ai, bi) or
the polar coordinates (Ai, φi). Since neither of these repre-
sentations change the state of knowledge, the prior pdf on
the complex amplitudes is required to be invariant under the
transformation between these two representations. That is,

p(ai, bi|I)daidbi = q(Ai, φi|I)AidAidφi (21)

for i = 1, · · · , l where p(ai, bi|I) and q(Ai, φi|I) are the pdfs
on the Cartesian and polar coordinates, respectively. From the
prior information I , the signal is assumed to be zero mean and
WSS. In terms of the Cartesian coordinates, this implies that ai
and bi are uncorrelated and both have zero mean and the same
expected power σ2

α/2. For the polar coordinates, it implies that
the phase is uniformly distributed on any continuous interval of
length 2π and uncorrelated with the amplitude. Finally, since
the phases {φi}li=1 are independent and uniformly distributed,
the l harmonic components are uncorrelated [44, Ch. 4]. We
note in passing that many of the same arguments are also
used for the derivation of the covariance matrix model for
a time series. The only distribution satisfying (21) and these
properties is the normal distribution with pdf [38, Ch. 7]

p(ai, bi|σ2
α, I) = N2([ai, bi]

T ;0, (σ2
α/2)I2) . (22)

Turning this bivariate real normal pdf into a univariate complex
normal pdf on the complex amplitude αi gives [45, Ch. 15]

p(αi|σ2
α, I) = N1(αi; 0, σ2

α) . (23)

The joint pdf on αl is therefore

p(αl|σ2
α, I) = Nr(αl;0, (σ2

α/r)Irl) . (24)

The derivation of the normal pdf given above is often called
the Herschel-Maxwell derivation [38]. Since σ2

α is unknown,
this hyperparameter is treated as a random variable. By using
the same arguments as for the noise variance, the following
hyperprior is obtained

p(σ2
α|I) =

{[
ln(w/v)σ2

α

]−1
v < σ2

α < w

0 otherwise
. (25)

4) The Model Order: Since the model order is a discrete
parameter, the maximum entropy principle can be applied
without worrying about the parametrisation. Under the con-
straint that the prior pmf of the model order must integrate to
one, p(l) is the uniform pmf on the set l ∈ {1, 2, · · · , L}. As
model orders larger than bωb/ωac have zero support, L should
not be chosen larger than this value. Note that the model order
l = 0 is not in the support set since the prior information I
states that a predictable part is present in the signal. However,
later on, it is discussed how the proposed algorithm can cope
with the detection of a predictable part.
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C. The g-Prior

In the previous sections, the prior information I has been
turned into a default probability model. Unfortunately, the
prior probability model renders the inference problem analyt-
ically intractable. However, if a re-parametrisation and a few
minor approximations are made, a prior on the same form
as the Zellner’s g-prior [46] is obtained, and this prior has
some tractable analytical properties [33], [47]. For the re-
parametrisation, the power of the i’th harmonic component
is written as

σ2
α

r
=
rgσ2

N
⇐⇒ g =

Nσ2
α

r2σ2
=
Nη

rl
(26)

where the signal-to-noise ratio (SNR) is defined as

η ,
E[|s(tn)|2]

E[|e(tn)|2]
=

l∑

i=1

σ2
α

rσ2
=
lσ2
α

rσ2
. (27)

Thus, g may be interpreted as N/r times the average SNR.
Note that although any prior dependency between the complex
amplitudes and the noise variance was included in the factori-
sation in (17), the dependency automatically appears through
g. As reviewed in [47], the hyperparameter g can be set to
a fixed value or treated as a random variable. When g is a
random variable, the prior pdf of g can be derived from (26),
(25), and (19) to

p(g|I) =

{
ln(w/v)−| ln(r2g/N)|

ln2(w/v)g
, g ∈

[
Nv
r2w ,

Nw
r2v

]

0 , otherwise
(28)

which in the limit of v → 0 and w →∞ reduces to the prior
p(g|I) ∝ g−1 for g > 0.

To justify the approximations, which we introduce below,
the following assumption is made.

Assumption 3.2: The number of data points N is large
enough to justify that (N/r)(ZHl Zl)

−1 ≈ Irl.
Ass. 3.2 is often used in connection with sinusoidal frequency
estimation to lower the computational complexity of the infer-
ence algorithm significantly. It holds for a uniform sampling
scheme and for sufficiently random non-uniform sampling
schemes, and it stems from that sinusoids are asymptotically
orthogonal for any set of distinct frequencies. That is,

lim
N→∞

r

N
ZHl Zl = Irl . (29)

For a fixed N , the approximation gets progressively worse as
the frequencies become smaller and closer [2]. Under Ass. 3.2
and the re-parametrisation in (26), the prior pdf on the complex
amplitudes becomes

p(αl|σ2, ω, g, I) = Nr(αl;0, gσ2(ZHl Zl)
−1) . (30)

Another consequence of Ass. 3.2 is that the likelihood function
for the fundamental frequency is very sharply peaked around
the ML estimate of ω. Therefore, the prior distribution on ω
only has negligible effect on the posterior distribution [42,
App. A], and it is therefore approximated by a uniform pdf
on the interval Ωl. That is,

p(ω|l) = W−1
l IΩl

(ω) (31)

where Wl = ωb/l − ωa and IΩl
(ω) is the indicator function

on the interval Ωl.
As noted in Sec. III-B1, the bounds on the noise variance

have almost no influence on the inference. They are therefore
selected as v → 0 and w →∞ so that the improper Jeffreys’
prior p(σ2|I) ∝ (σ2)−1 is obtained for the noise variance.
For Bayesian comparison of models with parameter spaces
of different dimensions, proper prior distributions must be
selected on the model parameters to make the Bayes’ factor
well-defined [33]. However, since the noise variance is a
common parameter in all models, an improper prior may be
used on it [48]. Since g is also a common parameter in all
models, the prior p(g|I) ∝ g−1 may be used for g > 0. For
example, this prior has been used in [49]. Although simple,
this prior does not allow analytical marginalisation w.r.t. g in
the inference step. However, the prior is a limiting case of the
beta prime or inverted beta distribution with density

p(g|ε, δ, I) =
(δ − 1)Γ(ε+ δ)

Γ(ε+ 1)Γ(δ)
gε(1 + g)−δ−εIR+(g) (32)

which is proper for δ > 1 and ε > −1. Although this prior
pdf enables analytical inference w.r.t. g, the special case for
ε = 0 is only used in the sequel to keep the results simpler.
Moreover, this special case was also suggested in [47], and it
involves only the single hyperparameter δ. Since it is proper,
it can be used to detect if a predictable part is present. In the
limit of δ → 1, the improper and user-parameter free prior
p(g|I) ∝ (1 +g)−1 is obtained, and it has been shown in [50]
that the joint prior p(g, σ2|I) ∝ [σ2(1 + g)]−1 is the Jeffreys’
prior and the reference prior [51] for a linear regression model.
As this improper prior is a special case of the proper prior on
g, the algorithm is derived in the next section for the proper
prior. This means that the developed algorithm is able to cope
with the detection of predictable part.

IV. BAYESIAN INFERENCE

Bayes’ theorem is now used to compute the posterior distri-
butions on the quantities of interest which are the fundamental
frequency for every candidate model and the model order. In
order to cope with the detection of a predictable part in the
signal, the proper prior distribution on g in (32) with ε = 0 is
used. The joint posterior pdf on all model parameters and the
number of harmonics is2

p(αl, σ
2ω, g|x, l) ∝ p(x|αl, σ2, ω, g, l)p(αl|σ2, ω, g, l)

× p(σ2)p(ω|l)p(g)

∝ Nr(αl; cα̂l, σ2Cl)Inv-G(σ2;N/r,Nσ̂2
l /r)

× Γ(N/r)IΩl
(ω)IR+(g)

(πNσ̂2
l )N/rWl(1 + g)l+δ

(33)

2To keep the notation uncluttered, the explicit dependence on the prior
information I is omitted in the rest of the paper.
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where Inv-G is the inverse gamma pdf. Moreover, we have
defined

α̂l , (ZHl Zl)
−1ZHl x (34)

c , g(1 + g)−1 (35)

Cl , c(Z
H
l Zl)

−1 (36)

σ̂2
l ,

xH(IN − cP l)x

N
(37)

R2
l (ω) ,

xHP lx

xHx
. (38)

When the ML estimate of the fundamental frequency is used
and c = 1, σ̂2

l is the ML estimate of the noise variance. The
matrix P l is the orthogonal projection matrix onto the space
spanned by the columns of Zl, and R2

l (ω) resembles the coef-
ficient of determination from linear regression analysis where
it is used to measure the prediction performance. Integrating
(33) over the noise variance and the complex amplitudes gives

p(ω, g|x, l) ∝ m0(x)(δ − 1)fl(ω, g, δ)IΩl
(ω)IR+(g)

Wl
(39)

where

m0(x) , Γ(N/r)(πxHx)−N/r ∝ p(x|l = 0) (40)

fl(ω, g, δ) , (1 + g)N/r−l−δ[1 + g(1−R2
l (ω))]−N/r (41)

are the unnormalised marginal likelihood for the noise-only
model and a very important function in the sequel, respec-
tively. In the case where g is a known parameter, the marginal
posterior pdf on ω under model order l is proportional to this
function

p(ω|x, g, l) =
p(ω, g|x, l)

p(g)
∝ fl(ω, g, 0)IΩl

(ω) . (42)

When g is an unknown parameter and l > 1 − δ, it can be
integrated out of (39) so that the marginal posterior pdf on ω
under model order l is obtained as

p(ω|x, l) =

∫ ∞

0

p(ω, g|x, l)dg ∝
∫ ∞

0

fl(ω, g, δ)IΩl
(ω)dg

∝ 2F1(N/r, 1; l + δ;R2
l (ω))IΩl

(ω) (43)

where 2F1 is the Gaussian hypergeometric function [52,
p. 314]. The condition l > 1 − δ ensures that the integral
in (43) converges, and it is satisfied for all l when the prior
on g is proper, i.e., δ > 1, and for any l > 0 even for the
improper prior on g with δ → 1. The marginal pmf on the
model order is given by

p(l|x) =
p(x|l)p(l)
p(x)

=
BF[l, 0]p(l)

∑L
i=0 BF[i, 0]p(i)

(44)

where p(x|l, I) is the marginal likelihood and

BF[l, 0] =
p(x|l)

p(x|l = 0)
=
ml(x)

m0(x)
(45)

is the Bayes’ factor. Here, the noise-only model is used as the
base model so the prior distribution on g must be proper. When
the noise-only model is not in the set of candidate models, the
model with a single harmonic component is used as the base

model. In this case, the prior on g can be improper, and the
Bayes’ factor is given by

BF[l, 1] = lim
δ→1

BF[l, 0]

BF[1, 0]
. (46)

When g is a known parameter, the Bayes’ factor has the
following integral representation

BF[l, 0|g] =
p(l = 0)

∫
Ωl
p(ω, g|x, l)dω

p(l = 0|x)p(g)

=
1

Wl

∫

Ωl

fl(ω, g, 0)dω , (47)

and when g is an unknown parameter, the Bayes’ factor is

BF[l, 0] =
δ − 1

Wl

∫

Ωl

∫ ∞

0

fl(ω, g, δ)dgdω (48)

=
δ − 1

Wl(l + δ − 1)

∫

Ωl

2F1(N/r, 1; l + δ;R2
l (ω))dω . (49)

Unfortunately, the modes and the moments of the posterior pdf
on the fundamental frequency are not available in closed-form
due to the non-linear way that ω parametrises the pdfs in (42)
and (43). Moreover, the posterior model order probabilities
are not available in closed-form since the integrals in (47)
and (49) cannot be computed analytically. In Sec. V, various
approximate ways of finding these modes, moments, and
posterior probabilities are discussed.

A. Selecting a Value for g

In order to facilitate an easier evaluation of the posterior
pdfs for the fundamental frequency and the model order, the
parameter g is often assumed to be a deterministic parameter
rather than a random variable when it is unknown. Thus,
instead of marginalising over g, a value for g is selected
or estimated. There exist several ways of selecting the value
of g, and two popular choices are considered here. Selecting
gBIC = N approximately corresponds to the Bayesian informa-
tion criterion (BIC) [47]. Alternatively, an empirical Bayesian
method can be used in which the unknown hyperparameter
g is estimated from the data. The value of g can then be
estimated as the maximum likelihood estimate of the joint pdf
p(x,αl, σ

2, ω|g, l) integrated w.r.t. the unknown parameters.
However, since the marginalisation over the fundamental fre-
quency cannot be done in closed-form, the marginalisation is
only carried out over the complex amplitudes and the noise
variance, and the fundamental frequency is simply replaced
with its MAP estimate ω̂ which is derived in the next section.
That is,

gEB
l = arg max

g∈R+

p(x, ω̂|g, l) = arg max
g∈R+

fl(ω̂, g, 0)

= max

(
NR2

l (ω̂)− rl
(1−R2

l (ω̂))rl
, 0

)
. (50)

There are several other ways of selecting the value of g, and
the interested reader is referred to the excellent review in [47]
and the references therein.
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V. APPROXIMATIONS

In this section, several approximations of (42), (43), (47),
and (49) are derived for various choices of g . The accuracy of
these approximations is evaluated in a small-scale simulation
study in Sec. VII.

A. Numerical Integration

Since the integrals in (47) and (49) are one dimensional
integrals, they can easily be evaluated using numerical inte-
gration techniques. For example, the integrals in (47) and (49)
can be approximately evaluated by computing

BF[l, 0|g] ≈
K∑

k=1

fl(ωk, g, 0)

K
(51)

BF[l, 0] ≈
K∑

k=1

(δ − 1)2F1(N/r, 1; l + δ;R2
l (ω))

K(l + δ − 1)
, (52)

respectively, where {ωk}Kk=1 are K equidistant candidate fre-
quencies from the set Ωl with Wl/K = ωk+1−ωk, ω1 = ωa,
and ωK = ωb/l −Wl/K. However, the functions fl(ω, g, 0)
and 2F1(N/r, 1; l+δ;R2

l (ω)) are usually very sharply peaked
around their modes so the pdfs have to be evaluated over
a fine frequency grid to make the approximation accurate.
Moreover, the computation of fl(ωk, g, 0) and, in particular,
2F1(N/r, 1; l+δ;R2

l (ωk)) is quite costly since either xHP lx
or 2F1 has to be computed for all K candidate frequencies.
Even under Ass. 3.2, the limit in (29) cannot be used to justify
the approximation

xHP lx ≈
r

N
‖ZHl x‖2 (53)

since the value of fl(ω, g, δ) is very sensitive to even small
perturbations in R2

l (ω) when it is close to one and the SNR is
large. Thus, the numerical integration of (47) and (49) may
entail a too high computational load, and some analytical
approximations are therefore also considered since they can
reduce this computational load significantly.

B. The Distribution on the Fundamental Frequency

Although closed-form expressions (up to a constant of
proportionality) have been derived for the pdf of the fun-
damental frequency for a known and an unknown g in (42)
and (43), respectively, neither the moments, the modes nor the
normalisation constants can be found in closed-form. To find
approximate expressions for these, we therefore assume the
following.

Assumption 5.1: The posterior pdfs p(ω|x, g, l) and
p(ω|x, l) of the fundamental frequency for a known and an
unknown g, respectively, can be approximated by the pdf of
a normal distribution.
As we demonstrate in Sec. VII, this assumption holds for
moderate and high SNRs. Under adverse signal conditions
such as a low SNR, the pdfs p(ω|x, g, l) and p(ω|x, l) have
several significant peaks and Ass. 5.1 does therefore not hold.
In this case, the distribution on the fundamental frequency
may be approximated by a Gaussian mixture model instead

[53, Ch. 12]. However, this is not explored any further in this
paper. The normal approximation of p(ω|x, g, l) is

p(ω|x, g, l) ≈ N2(ω; ω̂, sl(ω̂|g)) (54)

where ω̂ is the mode of p(ω|x, g, l) corresponding to the MAP
estimate of the fundamental frequency, and

sl(ω̂|g) = −
[
∂2 ln p(ω|x, g, l)

∂ω2

∣∣∣∣
ω=ω̂

]−1

. (55)

The normal approximation

p(ω|x, l) ≈ N2(ω; ω̂, sl(ω̂)) (56)

has the same mean, but its variance is

sl(ω̂) = −
[
∂2 ln p(ω|x, l)

∂ω2

∣∣∣∣
ω=ω̂

]−1

. (57)

As stated above, the MAP estimate of the fundamental fre-
quency under model order l does not depend on whether the
value of g is known or not. It is given as the solution to

ω̂ = arg max
ω∈Ωl

p(ω|x, g, l) = arg max
ω∈Ωl

p(ω|x, l)

= arg max
ω∈Ωl

R2
l (ω) = arg max

ω∈Ωl

xHP lx , (58)

and it is the same as the ML estimate [44, Ch. 4]. Unfor-
tunately, it is costly from a computational point of view to
find the ML estimate since the cost-function in (58) has a
complicated multi-modal shape and is very sharply peaked
around ω̂, especially for a high SNR. Typically, the ML
estimate is found by first evaluating the cost-function on a
fine grid and then performing a local optimisation around the
maximum value of the cost-function on this grid. However,
the computational complexity of this procedure may be too
high since the projection matrix P l must be evaluated for
every candidate frequency. The computational cost can be
significantly reduced by making the approximation in (53).
This leads to the following approximate MAP-estimate

ω̂ ≈ arg max
ω∈Ωl

xHZlZ
H
l x = arg max

ω∈Ωl

‖ZHl x‖22 (59)

which under a uniform sampling frequency can be computed
efficiently using a single FFT [2]. To get the MAP estimate
in (58), the approximate MAP estimate in (59) may be used
as the starting point of a local optimisation using the exact
cost-function in (58). The local optimisation can also be
substituted for faster and approximate techniques based on,
e.g., interpolation [54].

In order to find the variances sl(ω̂|g) and sl(ω̂), the second
order derivatives of ln p(ω|x, g, l) and ln p(ω|x, l) must be
found and evaluated at the mode ω̂. The first order derivatives
are given by

∂ ln p(ω|x, g, l)
∂ω

=
c

rσ̂2
l

∂Cl(ω)

∂ω
(60)

∂ ln p(ω|x, l)
∂ω

=
2F1(N/r + 1, 2; l + δ + 1;R2

l (ω))

rσ̂2
0(l + δ)2F1(N/r, 1; l + δ;R2

l (ω))

× ∂Cl(ω)

∂ω
(61)
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where
Cl(ω) , xHP lx . (62)

Note that for l = 1, Cl(ω) is the periodogram. Evaluated at
the mode ω̂, the second-order derivatives are

∂2 ln p(ω|x, g, l)
∂ω2

∣∣∣∣
ω=ω̂

=
c

rσ̂2
l

d2 (63)

∂2 ln p(ω|x, l)
∂ω2

∣∣∣∣
ω=ω̂

=
2F1(N/r + 1, 2; l + δ + 1;R2

l (ω̂))

rσ̂2
0(l + δ)2F1(N/r, 1; l + δ;R2

l (ω̂))

× d2 . (64)

where
d2 ,

∂2Cl(ω)

∂ω2

∣∣∣∣
ω=ω̂

. (65)

Both of these second order derivatives consist of the second-
order derivative of Cl(ω). It is given by

d2 = 2Re
[
êHD2α̂l − 2êHD1(ZHl Zl)

−1ZHl D1α̂l

]

+ 2êHD1(ZHl Zl)
−1DH

1 ê− 2α̂Hl D
H
1 P

⊥
l D1α̂l (66)

where P⊥l = IN − P l and

ê , x−Zlα̂l (67)

D1 ,
∂Zl
∂ω

∣∣∣∣
ω=ω̂

= jr(1Tr ⊗ tlT )�Zl(Jr ⊗ I l) (68)

1r ,





1 , r = 1[
1 −1

]T
, r = 2

(69)

D2 ,
∂2Zl
∂ω2

∣∣∣∣
ω=ω̂

= −(1Tr ⊗ tlT )� (1Tr ⊗ tlT )�Zl (70)

t ,
[
t0 t1 · · · tN−1

]T
(71)

l ,
[
1 2 · · · l

]T
. (72)

The operators ⊗ and � are the Kronecker and Hadamard
products, respectively, and Jr is the r × r exchange matrix.
In order to decrease the computational cost of finding the
variances sl(ω̂|g) and sl(ω̂), a simpler, but only approximate,
expression for the second-order derivative of Cl(ω) is also
derived. Under Ass. 5.1 and at the mode ω̂, it follows that
‖α̂l‖2 � ‖ê‖2. Thus, the second order derivative of Cl(ω)
can be approximated by only the last term in (66). That is,

d2 ≈ −2α̂Hl D
H
1 P

⊥
l D1α̂l . (73)

If the limit in (29) is used as an approximation, d2 reduces to

d2 ≈ − 2α̂Hl D
H
1 D1α̂l +

2r

N
α̂Hl D

H
1 ZlZ

H
l D1α̂l

≈ − 2

r
α̂Hl diag(1r ⊗ l)2α̂l

N−1∑

n=0

t2n

+
2

rN
α̂Hl diag(1r ⊗ l)2α̂l

[
N−1∑

n=0

tn

]2

=
2

r

l∑

i=1

Â2
i i

2


 1

N

[
N−1∑

n=0

tn

]2

−
N−1∑

n=0

t2n


 (74)

where diag(·) transforms a vector into a diagonal matrix. The
second approximation follows from the limits

lim
N→∞

rDH
1 Zl

[
N−1∑

n=0

tn

]−1

= (−j)rdiag(1r ⊗ l)(Jr ⊗ I l)

(75)

lim
N→∞

rDH
1 D1

[
N−1∑

n=0

t2n

]−1

= diag(1r ⊗ l)2 . (76)

Under a uniform sampling frequency with no missing samples,
tn = nT and the second-order derivative of Cl(ω) at ω̂ can
be simplified even further since [45, p. 42]

N−1∑

n=0

tn = T

N−1∑

n=0

n =
TN(N − 1)

2
(77)

N−1∑

n=0

t2n = T 2
N−1∑

n=0

n2 =
T 2N(N − 1)(2N − 1)

6
. (78)

Inserting this into (74) leads to the approximation

d2 ≈ −
T 2N(N2 − 1)

6r

l∑

i=1

Â2
i i

2 . (79)

For a known g, this result has an interesting interpretation
since the variance of the fundamental frequency under this
approximation is

sl(ω̂|g) ≈ 6r2σ̂2
l

cT 2N(N2 − 1)
∑l
i=1 Â

2
i i

2
(80)

which for c = 1 is the same as the asymptotic Cramér-Rao
lower bound of the fundamental frequency with the true values
of the complex amplitudes and the noise variance replaced by
their maximum likelihood estimates [10]. For a single real-
valued sinusoidal signal, the approximate variance in (80) was
also derived in [40] using a different approach.

In summary, an exact expression in (66) and an approximate
expression in (74) have been derived for the second-order
derivative of Cl(ω) at ω̂. These expressions are used for
computing the variances sl(ω̂|g) in (55) and sl(ω̂) in (57)
of the normal approximation to the pdfs p(ω|x, g, l) and
p(ω|x, l), respectively.

C. Model Comparison

By approximating p(ω|x, g, l) and p(ω|x, l) by the normal
pdfs derived in the previous section, the integrals in (47)
and (49) can be evaluated analytically. An approximation of
this form is known as the Laplace approximation. Under the
Laplace approximation, the Bayes’ factors in (47) and (49) are

BF[l, 0|g] ≈W−1
l f(ω̂, g, 0)

√
2πsl(ω̂|g) (81)

BF[l, 0] ≈ (δ − 1)2F1(N/r, 1; l + δ;R2
l (ω̂))

√
2πsl(ω̂)

Wl(l + δ − 1)
.

(82)
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D. The Gaussian Hypergeometric Function

Unfortunately, the Gaussian hypergeometric function is slow
to evaluate so from a computational point of view it might not
be advantageous to marginalise g analytically in (43) and (49).
Moreover, the use of other priors over g than the hyper-g prior
may prohibit analytical marginalisation. Using the Laplace
approximation, an approximate way of marginalising (43) and
(49) w.r.t. g is therefore derived. Since the marginal posterior
pdf over g is not symmetric and in order to avoid edge effect
near g = 0, the re-parametrisation τ = ln g with the Jacobian
dg/dτ = exp(τ) is first made [47]. This re-parametrisation
suggest that the posterior distribution over g is approximately
a log-normal distribution. With this re-parametrisation, the
Laplace approximation of the integral in (48) is
∫

Ωl

∫ ∞

0

f(ω, g, δ)dgdω

=

∫

Ωl

∫ ∞

−∞
exp(τ)f(ω, exp(τ), δ)dτdω (83)

= 2π exp(τ̂)f(ω̂, exp(τ̂), δ)
√
sl(ω̂| exp(τ̂))γl(τ̂ |ω̂) (84)

where the mode τ̂ and the variance γl(τ̂ |ω̂) are given by

τ̂ = ln

[√
β2
τ − 4ατ + βτ
−2ατ

]
(85)

γl(τ̂ |ω̂) =
r

ĝ

[
N(1−R2

l (ω̂))

[1 + ĝ(1−R2
l (ω̂))]2

− (N − rl − rδ)
(1 + ĝ)2

]−1

(86)

where ĝ , exp(τ̂) and

ατ , (1−R2
l (ω̂))(1− l − δ) (87)

βτ , (N/r − 1)R2
l (ω̂)− l − δ + 2 . (88)

Thus, the Bayes’ factor in (49) is approximately

BF[l, 0] ≈ 2π(δ − 1)ĝf(ω̂, ĝ, δ)
√
sl(ω̂|ĝ)γl(τ̂ |ω̂)

Wl
, (89)

and the normal approximation of the pdf of the fundamental
frequency in (43) is approximately

p(ω|x, l) ≈ N2(ω; ω̂, sl(ω̂|ĝ)) . (90)

VI. COMPARISON TO AN ML ESTIMATOR

Before evaluating the proposed inference scheme, it is
compared to the joint fundamental frequency and model order
estimators [2, Sec. 2.6] which is based on the asymptotic MAP
rule in [55], [56] and is similar to the rules in, e.g, [24], [25].
Although derived in a ML framework, the method can also be
interpreted as an optimal filtering method [20]. Moreover, the
same algorithm can be obtained as a special case of one of our
approximations based on the BIC-like model selection rule. As
stated earlier, the MAP estimate of the fundamental frequency
coincides with the ML estimate of the fundamental frequency.
Thus, the proposed point estimator of the fundamental fre-
quency is the same as the suggested point estimate in [2].
However, as we treat the fundamental frequency as a random
variable, we have also been able to calculate an approximate

variance of the fundamental frequency. For model comparison,
[2] does not explicitly work with a Bayes’ factor. However,
it is easy to rewrite their model order estimator as a Bayes’
factor. In our notation, it is given by

BF[l, 0] ≈ (σ̂2
0)N

(σ̂2
l |c=1)N

√
N3N l

. (91)

where σ̂2
0 = xHx/N . This Bayes’ factor has been derived for

complex-valued data using the asymptotic MAP rule proposed
in [55], [56]. For a fixed g, a uniform sampling frequency, a
complex-valued signal, T = 1, and the expression for the
variance sl(ω̂) in (80), our expression for the Bayes’ factor
may be written as

BF[l, 0|g] ≈ (σ̂2
0)N
√

2π

(1 + g)lWl(σ̂2
l )N

√
(1 + g)6σ̂2

l

gN(N2 − 1)
∑l
i=1 Â

2
i i

2
.

(92)

For gBIC = N and N � 1, BF[l, 0|g] is

BF[l, 0|g] ≈
√

12π

W 2
l

∑l
i=1 Â

2
i i

2

(σ̂2
0)N

(σ̂2
l |c=1)N

√
N3N l

. (93)

Comparing this with (91), we see that the model order esti-
mator in [2] implicitly assumes that gBIC = N , N � 1, and

√
12π

W 2
l

∑l
i=1 Â

2
i i

2
≈ 1 . (94)

VII. SIMULATIONS

In this section, the accuracy of the various approximations
introduced in Sec. V is first evaluated on a synthetic signal. All
possible combinations of the approximations are not evaluated,
but only the most important ones. These are the various
approximations of the posterior pdfs on the fundamental
frequency and model order, respectively, for an unknown value
of g. Second, the proposed inference scheme is evaluated on
a female speech signal3.

A. Synthetic Signal

To evaluate the accuracy of the various approximations
introduced in Sec. V, Monte Carlo simulations was used
for various SNRs. Every Monte Carlo realisation consisted
of N = 100 data points and was sampled uniformly from
a complex-valued, periodic, and synthetic signal. The SNR
of the signal was varied in steps of 1 dB from -10 dB to
10 dB, and 500 realisations were generated for every SNR.
The fundamental frequency ω was assumed to be smaller
than ωb = π(lT )−1 so that the frequency of the highest
harmonic component was below the Nyquist frequency. For
numerical reasons, ω was also assumed to be larger than
ωa = 2π(NT )−1.

An overview over the various approximations are given in
Table I. In the rows marked with �, an estimate of g is used
whereas g is treated as a random variable in the rows marked

3The Matlab code used to generate the simulation results are available
at http://kom.aau.dk/~jkn/publications/publications.php. Moreover, a real-time
Python implementation of the algorithm is also available.

http://kom.aau.dk/~jkn/publications/publications.php
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Fig. 2. The accuracy of the various approximation of the posterior pdf on the model order under the variance calculations in (66) and (74), respectively, for
various SNRs and choices of g. Note that the curve labelled ’UNI’ and the curves labelled ’ML’ and ’SUB’ are only in the plots in the top and bottom row,
respectively.

with •. The rows marked with N are used for reference and
comparison to other algorithms. For the first five rows, either
the exact or the approximate expressions can be used for
the second order derivative of Cl(ω) given by (66) and (74),
respectively.

1) The Distribution on the Fundamental Frequency: In
order to measure the distance between p(ω|x, l) and its normal
approximation, the relative entropy or Kullback-Leibler (KL)
divergence was used. It is given by [57]

KL(p‖q) =

∫

Ωl

p(ω|x, l) log2

[
p(ω|x, l)
q(ω|x, l)

]
dω (95)

where q(ω|x, l) is an approximation of p(ω|x, l). The KL
divergence is finite only if the support of p(ω|x, l) is contained
in Ωl. Moreover, the KL divergence satisfies that KL(p‖q) ≥ 0
with equality if and only if p(ω|x, l) = q(ω|x, l). For the
true pdf, (49) was used, and the KL divergence was evaluated
using numerical integration on a fine uniform grid consisting

ID type p(ω|x, l) BF[l, 1] g

c = 1 � (54) ∞
BIC � (54) (81), (46) N
EB � (54) (81), (46) (50)

FL • (54) (89), (46) (85)
GHF • (56) (82), (46)
NI • (52), (46)

UNI N W−1
l L−1

ML N (91), (46)
SUB N [2, Sec. 4.6]

TABLE I
OVERVIEW OVER THE VARIOUS APPROXIMATIONS.

of 10,000 points. Fig. 1 shows the average KL divergence
between p(ω|x, l) and q(ω|x, l) for a known model order
of l = 4. For low SNRs, the KL divergence is large since
q(ω|x, l) consists of multiple significant peaks which cannot
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Fig. 3. The estimation of the fundamental frequency and the model order for a speech signal. Plot (a) and (b) show the estimated fundamental frequency f̂
and its standard deviation, respectively, for the estimated model order l̂ which is shown in plot (c). Plot (d) shows the spectrogram of the speech signal. The
spectrogram has been overlaid with the estimated frequencies for the fundamental and largest harmonic components, respectively.

be approximated accurately by the normal approximation
assumed in Ass. 5.1. As the SNR increases, however, only
a single peak remains significant, and the KL divergence
therefore decreases, meaning that Ass. 5.1 does approximately
hold for an SNR larger than approximately -4 dB (in this
simulation example). Below an SNR of approximately -4
dB, the KL divergence is insensitive to the choice of the
variance for the normal approximation. However, above -4
dB, the choice matters. For the approximate variance, the KL
divergence seems to exhibit a thresholding effect caused by
the use of the approximations in (53), (75), and (76). This
threshold will be lowered if N is increased.

2) Model Comparison: In order to evaluate the accuracy
of the posterior pmf on the model order, we used the same
procedure as in the previous section. Moreover, the model
selection properties of the proposed inference scheme was
also evaluated and compared to the ML-based algorithm in [2,
Sec. 2.6] and the subspace-based algorithm in [2, Sec. 4.6].
The discrete version of the KL divergence is given by [57]

KL(p‖q) =

L∑

l=1

p(l|x) ln

[
p(l|x)

q(l|x)

]
, (96)

and it is used to assess the accuracy of the posterior pmf
q(l|x) on the model order for the various approximations
in Table I. For the true pmf p(l|x), the ’NI’ approximation
based on the numerical integration on a very fine frequency
grid was used. For the prior pmf p(l) over the model order,
a uniform prior was used so that the posterior pmf on the
model order is proportional to the Bayes’ factor. The same
Monte Carlo simulation setup as above was used but with
an unknown model order. Specifically, for each Monte Carlo

run, the model order was generated from its prior with the
minimum and maximum model order being 1 and L = 10,
respectively. Since the all-noise model was not in the set of
candidate models, the improper prior was used on g, and it
is obtained by letting δ = 1. The top row of Fig. 2 shows
the results of measuring the average KL divergence between
p(l|x) and q(l|x). For all SNRs, the full Laplace ’FL’ and
the ’GHF’ approximations performs slightly better than the
approximation based on the emperical bayes ’EB’ estimate
of g. All of these three approximations perform much better
than the ’ML’ and the ’BIC’ approximations. As shown in
Sec. VI, the ’ML’ approximations is a special case of the
’BIC’ approximation which explains why the ’ML’ and the
’BIC’ approximations seem to have the same accuracy. In
each Monte Carlo run, the most probable model was selected
and compared to the true model, and the bottom row of
Fig. 2 shows the proportion of correctly selected model orders
for the various SNRs. For SNRs below -2 dB, the ’FL’,
’GHF’, and ’NI’ approximations were better than the other
approximations. However, from -2 dB to approximately 3 dB,
the ’ML’ and ’BIC’ approximations were slightly better at
finding the true model order. For an SNR above 3 dB, all of
the models performed equally well.

Thus, for model selection purposes, there is no best method
for all SNRs. However, for problems such as model averaging
and estimation in which all models are used, the approxi-
mations based on a random g seem to outperform the other
approximations for all SNRs.
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B. Speech Signal

In the last simulation, the applicability of the proposed
algorithm was demonstrated to the problem of estimating the
fundamental frequency and model order of a speech signal.
The speech signal originates from a female voice uttering
"Why were you away a year, Roy?" which has been sampled
at a uniform sampling frequency of 8 kHz. Since the signal
is real, the down-sampled analytic signal was first computed
as described in the introduction. Subsequently, the signal was
partitioned into consecutive frames of 20 ms corresponding
to N = 80 samples. The minimum and maximum candi-
date model order were set to 1 and L = 20, respectively,
and the bandwidth of the signal was set to the interval
[85 Hz, 4000 Hz] where the lower limit is the typical lower
limit of human voiced speech [58, Ch. 6]. For the estimation
of the fundamental frequency, the approximate MAP estimate
was first estimated using (59). Second, a refined estimate
was found using a Dichotomous search with the exact cost-
function in (58). The posterior pmf for the model order was
estimated using the ’FL’ approximation (see Table I) with the
approximate variance in (80). We have found that the above al-
gorithm provides a good balance between computational load
and estimation accuracy. The results of running the algorithm
is shown in Fig. 3. Plot (a) and (b) show the MAP estimate
and the standard deviation, respectively, of the fundamental
frequency for the estimated model order which is shown in
plot (c). In plot (a), the estimated fundamental frequency is
also shown for a fixed model order of l = 5. We clearly see
that the estimator based on a fixed model order suffers from
pitch halving, and this illustrates why model order selection
is important even if only the estimate of the fundamental
frequency is interesting. In plot (d), the frequencies of the
fundamental and largest harmonic components are shown on
top of the spectrogram of the speech signal. We clearly see that
the algorithm provided accurate estimates of the fundamental
frequency and the model order even though the signal is not
perfectly periodic.

VIII. CONCLUSION

In the first part of this paper, we have argued for and derived
a default probability model for both a real- and complex-
valued periodic signal in additive noise. Using Jaynes’ princi-
ples of maximum entropy and transformation groups, the prior
information in Ass. 3.1 was turned into an observation model
and prior distributions on the model parameters. Subsequently,
the prior distributions were turned into a more convenient
prior of the same form as the g-prior using a few minor
approximations on the signal-to-noise-ratio (SNR) and the
number of observations. The g-prior is parametrised by the
parameter g which is very important for performing model
comparison. Several ways of estimating a value for it was
given, and it was also treated as a random variable.

In the second part, the posterior distribution was derived
for the fundamental frequency. Moreover, an integral repre-
sentation of the posterior distributions on the model order
was derived for both a known and an unknown value of g.
Several approximations to these posterior distributions was

also suggested, and it was shown that the state-of-the-art ML
estimator is a special case of the approximation based on the
Bayesian information criterion.

In the last part of this paper, the various approximations
were compared in the simulation section on a synthetic signal.
The simulations indicated that the value of g is not important
for the posterior distribution on the fundamental frequency. For
model comparison, however, the value of g was very impor-
tant, and the most accurate approximations was obtained when
g was treated as a random variable. The BIC approximation is
worse than the other approximations. It was also demonstrated
that one of the approximations was able to accurately estimate
the fundamental frequency and model order of a voiced speech
segment which was not perfectly periodic.
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