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Upper and Lower Bounds of Frequency
Interval Gramians for a Class of Perturbed

Linear Systems

Hamid Reza Shaker ∗

∗ Department of Energy Technology, Aalborg University,
Pontoppidanstrde 101, 9220 Aalborg, Denmark (e-mail: shr@et.aau.dk)

Abstract: The notions of controllability and observability play an important role in different
problems within feedback control analysis and design. To verify the controllability and ob-
servability of a system, several techniques have been introduced. However, often it is not only
important to verify if the system is controllable or observable, but also it is required to know
the degree of controllability or observability of the system. Gramian matrices were introduced
to address this issue by providing a quantitative measure for controllability and observability.
In many applications, the information on the controllability and observability properties of a
system is needed within a specific frequency interval rather than the whole frequency-domain.
The frequency interval gramians provide such information. While this concept were originally
introduced for fixed known systems, it needs to be investigated for the case of uncertain
systems. In this paper, we derive upper and lower bounds of frequency interval gramians under
perturbations of an A-matrix in the state-space form. These bounds are obtained by solving
algebraic Riccati equations. The results are further used to obtain upper and lower bounds of
the frequency interval Hankel singular values for perturbed systems.

1. INTRODUCTION

The controllability and observability are two major and
fundamental notions in modern control theory. These con-
cepts play a key role in different problems such as model
reduction, optimal control, state estimation. See Dullerud
and Paganini [2005]. Standard methods exist in the liter-
ature to verify the controllability and/or observability of
a system. However, often the quantitative information on
the level of controllability and observability are required.
In other words, it is important to know how much control-
lable or observable a system is. Gramian matrices were
introduced to address this issue by providing a quanti-
tative measure for controllability and observability. See
Antoulas [2005], Gugercin and Antoulas [2004]. These
matrices are very popular in model reduction methods
such as well-known balanced truncation. The reason is
that to apply balanced reduction, first the system needs
to be represented in a basis where the states which are
difficult to control are simultaneously difficult to observe.
This is achieved by simultaneously diagonalizing the reach-
ability and the observability gramians. See Gugercin and
Antoulas [2004] for more details. The gramians are related
to the Hankel operator and the Hankel singular values
of a dynamical system. The Hankel singular values of
dynamical systems play key roles in many fields. One of
the practically important relevant fields of application for
Hankel singular value is signal processing , in which the
Hankel singular values are called the second-order modes.
The Hankel singular values provide the optimal dynamic
range of analog filters. See e. g. Groenewold [1991]. The
optimal dynamic range is the highest ratio of the max-
imal and minimal signal levels that can be processed in
the filters. Furthermore, in digital signal processing that

the Hankel singular values shows the minimum attainable
value of roundoff noise and statistical coefficient sensitivity
of digital filters. See Mullis and Roberts [1976] and Iwat-
suki et al. [1990]. Other interesting application of gramians
and the Hankel singular values are in control configuration
selection as it is described in Khaki-Sedigh and Moaveni
[2009], Salgado and Conley [2004]. The ordinary gramians
and Hankel singular values have been extensively studied
for both fixed known systems and uncertain systems. See
Auba and Funahashi [1992], Xu et al. [1990] , Sojoudi et al.
[2009] . However,in many applications, the information on
the controllability and observability properties of a system
is needed within a specific frequency interval rather than
the whole frequency range. The frequency interval grami-
ans provide such information. See Gawronski and Juang
[1990], Antoulas [2005] , Gugercin and Antoulas [2004].
The frequency interval gramians and the frequency inter-
val Hankel singular values were introduced and studied
for fixed known systems in Gawronski and Juang [1990],
Ghafoor and Sreeram [2008], Shaker [2008]. These notions
are investigated for the case of uncertain systems in this
paper. We derive a bound of frequency interval gramians
under perturbations of an A-matrix in the state-space
representation. For a class of perturbations, both upper
and lower bounds are obtained by solving algebraic Riccati
equations.The results are further used to obtain upper and
lower bounds of the frequency interval Hankel singular
values for perturbed systems.

The notation used in this paper is as follows: M∗ denotes
transpose of matrix if M ∈ Rn×m and complex conjugate
transpose if M ∈ Cn×m. The λi(M) denotes the i’th eigen
value of M . The standard notation > , ≥ (< , ≤) is used



to denote the positive (negative) definite and semidefinite
ordering of matrices.

2. FREQUENCY INTERVAL CONTROLLABILITY
AND OBSERVABILITY GRAMIANS

Consider a dynamic system with minimal realization:

G(s) := (A,B,C,D) (1)

where G(s) is the transfer matrix with the state-space
representation:

ẋ(t) = Ax(t) +Bu(t), x(t) ∈ Rn

y(t) = Cx(t) +Du(t).
(2)

The ordinary gramians are given by the solutions of the
Lyapunov equations,( Antoulas [2005] , Gugercin and
Antoulas [2004]):

AP + PA∗ +BB∗ = 0
A∗Q+QA+ C∗C = 0

(3)

where P is the ordinary controllability gramian and Q is
the ordinary observability gramian. These gramians are
related to the so-called Hankel singular values ( Antoulas
[2005] , Gugercin and Antoulas [2004]):

σi =
√
λi(PQ) (4)

The controllability gramian shows how much controllable a
system is. This is based on the fact that the input energy
required for controlling the system is, roughly speaking,
proportional to the inverse of the matrix P . The dual
energy interpretion holds for the observability gramian Q.
The ordinary gramians are quantitative measures for the
controllability and observability over the whole frequency
domain. The frequency interval gramians focus on a de-
sired frequency interval and in such a way encode more
information on the controllability and the observability of
the system within the desired frequency interval.
For dynamical system (1) the controllability gramian
P (ω1, ω2) and observability gramians Q(ω1, ω2) within
frequency range [ω1, ω2] are defined as ( Gawronski and
Juang [1990] , Gugercin and Antoulas [2004]):

P (ω1, ω2) = P (ω1)− P (ω2)
Q(ω1, ω2) = Q(ω1)−Q(ω2)

(5)

where:

P (ω) =:
1

2π

+ω∫
−ω

(Ijω −A)
−1
BB∗(−Ijω −A∗)

−1
dω

Q(ω) =:
1

2π

+ω∫
−ω

(−Ijω −A∗)
−1
C∗C(Ijω −A)

−1
dω

(6)

The frequency interval gramians are the solutions to
particular Lyapunov equations. In order to show these
Lyapunov equations, more notations are introduced from
Gawronski and Juang [1990] , Gugercin and Antoulas
[2004]:

S(ω) =:
1

2π

+ω∫
−ω

(Ijω −A)
−1
dω (7)

Wc(ω) = S(ω)BB∗ +BB∗S∗(−ω)
Wo(ω) = C∗CS(ω) + S∗(−ω)C∗C

(8)

Wc(ω1, ω2) = Wc(ω2)−Wc(ω1)
Wo(ω1, ω2) = Wo(ω2)−Wo(ω1)

(9)

The frequency-interval gramians satisfy the following Lya-
punov equations (Gawronski and Juang [1990] , Gugercin
and Antoulas [2004]):

AP (ω1, ω2) + P (ω1, ω2)A∗ +Wc(ω1, ω2) = 0
A∗Q(ω1, ω2) +Q(ω1, ω2)A+Wo(ω1, ω2) = 0

(10)

The frequency interval Hankel singular values are related
to the frequency-interval gramians by:

σi(ω1, ω2) =
√
λi(P (ω1, ω2)Q(ω1, ω2)) (11)

It should be noted that when (ω1, ω2) = (−∞,+∞), we
have:

P (ω1, ω2) = P
Q(ω1, ω2) = Q
σi(ω1, ω2) = σi

(12)

This can be shown using the definitions of the frequency
interval gramians and the frequency interval Hankel sin-
gular values.

3. BOUNDS OF FREQUENCY INTERVAL
GRAMIANS FOR A CLASS OF PERTURBED

LINEAR SYSTEMS

Let a class of perturbed linear system be described by:

ẋ(t) = (A+ ∆A)x(t) +Bu(t), x(t) ∈ Rn

y(t) = Cx(t) +Du(t).
(13)

where (A,B) is a stabilizable pair and ∆A is the uncer-
tainty which belongs to :

Ω := {∆A : ∆A = GΣH , σ̄(Σ) < 1} (14)

where G and H are the given matrices and σ̄(Σ) denotes
the largest singular value of Σ .

The frequency interval gramians for the perturbed system
are solutions to the following Lyapunov equations:

(A+ ∆A)P (ω1, ω2) + P (ω1, ω2)(A+ ∆A)∗

+Wc(ω1, ω2) = 0

(A+ ∆A)∗Q(ω1, ω2) +Q(ω1, ω2)(A+ ∆A)
+Wo(ω1, ω2) = 0

(15)

In the sequel, Theorem 1 introduces an upper bound
for the frequency interval controllability gramian of
system(13).

Theorem 1: Assume that the algebraic Riccati equation:

AP̄ + P̄A∗ +Wc(ω1, ω2) + βGG∗ +
P̄H∗HP̄

β
= 0 (16)

has nonnegative stabilizing solution P̄ for some β > 0,
then:

P (ω1, ω2) ≤ P̄ (17)

Proof: From (15) and (16), we have the following Lya-
punov equation:



(A+ ∆A)(P̄ − P (ω1, ω2)) + (P̄ − P (ω1, ω2))(A+ ∆A)∗

+

(
P̄H∗
√
β
−
√
βGΣ

)(
P̄H∗
√
β
−
√
βGΣ

)∗

+βG(I − ΣΣ∗)G∗ = 0

It can be easily shown that λi(A+ ∆A) < 0. Hence:

P̄ − P (ω1, ω2) > 0 (18)
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The equation (16) has a nonnegative definite solution iff
the following algebraic Riccati equation:

AP̂ + P̂A∗ +
Wc(ω1, ω2)

β
+GG∗ + P̂H∗HP̂ = 0 (19)

has a nonnegative definite solution. In this case: P̄ = βP̂ .

In Theorem 2, a lower bound of the frequency-interval con-
trollability gramian for the perturbed system is obtained.

Theorem 2: Assume that the algebraic Riccati equation:

AP
¯

+ P
¯
A∗ +Wc(ω1, ω2)− γGG∗ − P

¯
H∗HP

¯
γ

= 0 (20)

has nonnegative stabilizing solution P
¯

for some γ > 0,
then:

P
¯
≤ P (ω1, ω2) (21)

Proof: From (15) and (20), we have the following Lya-
punov equation:

(A+ ∆A)(P (ω1, ω2)− P
¯

) + (P (ω1, ω2)− P
¯

)(A+ ∆A)
∗

+

(
P
¯
H∗
√
γ

+
√
γGΣ

)(
P
¯
H∗
√
γ

+
√
γGΣ

)∗

= 0

Since λi(A+ ∆A) < 0. We have:

P (ω1, ω2)− P
¯
> 0 (22)
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Dually the lower and upper bound on the frequency
interval observability gramian are found through Theorem
3 and Theorem 4.

Theorem 3:Let Q̄ for some β̃ > 0 be the nonnegative
stabilizing solution to the algebraic Riccati equation:

A∗Q̄+ Q̄A+Wo(ω1, ω2) + β̃H∗H +
Q̄GG∗Q̄

β̃
= 0 (23)

, then:

Q(ω1, ω2) ≤ Q̄. (24)

Theorem 4: Assume that the algebraic Riccati equation:

A∗Q
¯

+ Q
¯
A+Wo(ω1, ω2)− γ̃H∗H −

Q
¯
GG∗Q

¯
γ̃

= 0 (25)

has nonnegative stabilizing solution Q
¯

for some γ̃ > 0,
then:

Q
¯
≤ Q(ω1, ω2). (26)

In the sequel using the results which have been presented
earlier in this section, a lower and upper bound on the
frequency interval Hankel singular values are derived:

Theorem 5: Assume that (16),(20),(23) and (25) have

nonnegative definite solutions for some β > 0,γ > 0, β̃ > 0,
γ̃ > 0 respectively. Then:√

λi(P
¯

Q
¯

) ≤ σi(ω1, ω2) ≤
√
λi(P̄ Q̄) (27)

Proof:
we have:

σi
2(ω1, ω2) = λi(P (ω1, ω2)Q(ω1, ω2)) =

λi(Q
1/2(ω1, ω2)P (ω1, ω2)Q1/2(ω1, ω2))

(28)

On the other hand, from Theorem (1) and Theorem (3):

P (ω1, ω2) ≤ P̄ (29)

Q(ω1, ω2) ≤ Q̄. (30)

Hence:
σi

2(ω1, ω2) = λi(P (ω1, ω2)Q(ω1, ω2)) =

λi(Q
1/2(ω1, ω2)P (ω1, ω2)Q1/2(ω1, ω2))

≤ λi(Q1/2(ω1, ω2)P̄Q1/2(ω1, ω2))

= λi(P̄
1/2Q(ω1, ω2)P̄ 1/2) ≤ λi(P̄ 1/2Q̄P̄ 1/2)

≤ λi(P̄ Q̄)

(31)

The proof for the lower bound is similar.
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4. ILLUSTRATIVE EXAMPLE

In this section the lower and upper bound for the frequency
interval gramian and the frequency interval Hankel sin-
gular values are computed for a numerical example. The
numerical example is the same as the one in Auba and
Funahashi [1992] and Xu et al. [1990].
Let a linear system be described by:

A =

[−6.5000 1 0
0 −4.8333 0.6667
0 0.3333 −5.1667

]
, C = I,

B =

[
0.0148 0.2892 0.7524
−0.2132 −0.9320 0.2294
1.4303 −0.1419 0.0264

]
, and the perturbation is given by: G = 0.1A,H = I. For

β= 0.26, γ= 0.22, β̃= 0.06, γ̃= 0.05 and [ω1, ω2] =
[10, 100], the bounds are:

P̄ =

[
3.3741 −0.2158 0.0099
−0.2158 2.4707 −0.2577
0.0099 −0.2577 2.6156

]
,

P
¯

=

[
0.0090 −0.0016 −0.0001
−0.0016 0.0200 −0.0031
−0.0001 −0.0031 0.0474

]
,

Q̄ =

[
1.8171 0.1611 0.0153
0.1611 2.4935 0.2452
0.0153 0.2452 2.3347

]
,

Q
¯

=

[
0.0061 0 0

0 0.0059 −0.0002
0 −0.0002 0.006

]

The bounds on the frequency interval Hankel singular
values are:

0.0073 ≤ σ1(ω1, ω2) ≤ 2.4704
0.0108 ≤ σ2(ω1, ω2) ≤ 2.4572
0.0169 ≤ σ3(ω1, ω2) ≤ 2.4622



5. CONCLUSION

The frequency interval gramians were introduced in the
literature inspired by many applications in which the in-
formation on the controllability and observability prop-
erties of a system is needed within a specific frequency
interval rather than the whole frequency domain. This
notion is investigated for the case of uncertain systems
in this paper. We derive a bound of frequency interval
gramians under perturbations of an A-matrix in the state-
space representation. For a class of perturbations, both
upper and lower bounds are obtained by solving algebraic
Riccati equations.The results are further used to obtain
upper and lower bounds of the frequency interval Hankel
singular values for perturbed systems.
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