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Small-Signal Modeling of Digitally Controlled
Grid-Connected Inverters with LCL Filters

Xiaotian Zhang, Student Member, IEEE, Joseph W. Spencer, and Josep M. Guerrero Senior Member, IEEE

Abstract—When LCL filters are applied to digitally controlled
grid-connected inverters, the design of controllers is usually
implemented using classic average models. The accuracy of
these models in s-domain is only guaranteed in low frequency
range. In order to predict the dynamic behaviors, new small-
signal z-domain models are deduced for digitally controlled grid-
connected inverters with converter current control scheme and
converter current plus grid current control scheme. The proposed
methods model the inverters including different delay effects
under most possible circumstances, which allows direct design for
controllers in z-domain. The stability boundaries obtained from
the root loci of the classic average models and the proposed z-
domain models and the discrete state space models are compared
to the simulation results, showing that the proposed z-domain
models are more effective in predicting instabilities. Experimental
results are presented and compared to the average models
predictions and z-domain models predictions, which shows the
proposed models are capable of predicting the values of control
variables at the true sampling instants.

Index Terms—Average models, digital control, grid-connected
inverters, z-domain models.

I. INTRODUCTION

In the last years, the use of LCL output filters to connect
PWM inverters to the grid has been studied in detail [1]–[9].
Major part of this work consists of current sources connected
to the grid that tries to export the maximum active power
given by the prime mover, e.g. photovoltaic systems or wind
turbine, by means of a maximum power point tracker (MPPT)
algorithm. Compared to L filters, LCL filters employ much
smaller size and lower cost inductors, since the capacitor
impedance is inversely proportional to frequency of current.
There is a trend that the LCL filters will be employed for
all the grid-connected inverters in the future [10]. The design
for the LCL filter has already been addressed [1]. However,
maintaining stability of the control system when using an LCL
filter is still an issue in the controller design, since those filters
can bring even undesired resonance effects and thus stability
problems, caused by zero impedance seen by some higher
order harmonics of current.

Conventional proportional plus integral (PI) controllers for
the current control loop have been commonly used for grid-
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connected LCL inverters, however the PI controller presents
a steady-state error when tracking a sinusoidal reference and
presents poor disturbance rejection capability. In order to
overcome these problems, a proportional plus resonant (PR)
controller was introduced and applied to three-phase pulse
width modulation (PWM) inverter control. The resonant term
was based on a general integrator tuned at the fundamental line
frequency. Later on, PR scheme has been completed by means
of harmonic resonant terms, which were general integrators
tuned at the harmonics of interest frequencies. This way the
total harmonic distortion (THD) of the current injected to
the grid can be further reduced. However, the modeling of
those digital controlled inverters where represented by means
of analog models, being not precise and impacting over the
closed-loop system performances.

Further, nowadays fully digital controllers are more and
more used instead of analog controllers in high power switch-
ing converters, since the price/performance ratio of digital
signal processors (DSPs) is decreasing dramatically. With
floating-point DSPs embedding high resolution, high speed
analog-to-digital converters (ADCs) and enhanced PWMs, the
application of more complicated control algorithms becomes
feasible. Moreover, although the signals measured from the
power circuits contain considerable disturbance around switch-
ing instants, sampling algorithms can be used to obtain the
average values with reduced switching ripple and noise [11],
[12]. Due to these advantages, digital controllers for switching
converters have attracted extensive interests during the last
decade. However, the modeling for complicated digitally con-
trolled systems is another issue in the controller design.

Generally, the design of digital controllers and the eval-
uation of the control performances are usually implemented
by using classic average models. For digital control of grid-
connected inverters with LCL filters, many control strategies
have been proposed [5]–[8], [13]–[15] without including the
sample and hold effect. In a more precise model, sample and
hold effect has been well modeled [16], but the analog-to-
digital conversion delay, the computation delay, the PWM
delay and the transport delay are combined as a total delay.
Since a practical digital controller using synchronous sampling
method has complicated delay effect [17], the delay effects are
different when the duty-ratio update mode varies. Therefore,
more accurate models including delay effects should be pro-
vided in respect to different duty-ratio update modes.

In order to obtain a more accurate model, this paper presents
a modeling method including the real sample and hold effect
and delay effects. The new small-signal z-domain models are
derived for two typical digitally controlled grid-connected in-
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Fig. 1. Single phase inverter. (a) Power circuit. (b) Control circuit.

verters with LCL filters. The z-domain models can be used to
predict the stability boundaries, while using s-domain models
may lead to erroneous results for stability analysis. Simulation
results are provided to verify the capability of the proposed
models in predicting gain boundaries. By using the proposed
z-domain models, the design of the digital controllers can be
directly implemented in z-domain. An experimental setup is
implemented to validate the z-domain models in predicting the
steady-state and transient responses.

This paper is organized as following. Section II presents the
structure of digitally controlled grid-connected LCL inverters.
Section III reviews the conventional average modeling for grid-
connected inverters by using Laplace transform. Section IV
presents the small-signal modeling of grid-connected digitally
controlled inverters by using the z-transform. The PWM mod-
eling is discussed and analyzed and, then, z-domain models
and stability analysis are presented. Section V provides the
discrete state space models to compare with the z-domain
models. Section VI shows the validation of the presented
models by means of simulations and experimental results.
Finally, Section VII gives the conclusion.

II. DIGITALLY CONTROLLED GRID-CONNECTED
INVERTERS

The typical circuit diagram of a digitally controlled grid-
connected inverter with an LCL filter is shown in Fig. 1. The
analog variables (usually the converter current iL, the grid
current ig and the grid voltage vg) are converted into digital
quantities via appropriate measurement circuits and ADCs.
The process of converting signals into the specified range of
ADCs can be ideally represented by scaling factors (1/IrefL ,
1/V refg and 1/Irefg ) [18]. To avoid the erroneously sampled
value in the vicinity of the switching instant, the conversion
of ADC is started when the PWM counters reach to zero
or period values [11]. The digital quantities (i∗L, i∗g and v∗g )
converted from ADCs are scaled to be numerically equivalent
to the relevant analog variables. By using a digital control
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Fig. 2. The s-domain block diagrams of grid-connected inverters. (a)
Converter current feedback scheme. (b) Converter current plus grid current
feedback scheme.

algorithm, the duty-ratio is calculated and updated into the
PWM controller as a command signal u∗. To generate the drive
signals for the switches, the symmetric-on-time modulator is
used in this paper [16].

III. CLASSIC AVERAGE MODELS FOR GRID-CONNECTED
INVERTERS

Classic average models derive the transfer functions from
the duty-ratio to the filter input voltage and current by av-
eraging the filter input voltage in a switching cycle. The
control circuit, although implemented digitally, is represented
by a group of continuous equivalent transfer functions. In this
paper, two typical control schemes are provided for examples,
as is shown in Fig. 2. The first control scheme (see Fig. 2(a)) is
the converter current feedback control scheme [6]. The second
control scheme (see Fig. 2(b)), i.e., the converter current
plus grid current feedback control scheme [19], is a typical
controller with cascaded control loops. Although many papers
use the converter current plus capacitor current feedback
control scheme [15], [20], the control strategy is equivalent
to the converter current plus grid current feedback control
scheme from the dynamic point of view. Both controllers have
the same total delay (processing delay and PWM delay) from
the command signal to drive signals, which is expressed as
Gd(s) = e−sτd . The delay effect with three typical values for
τd can be used, i.e., with τd = Ts/2 defined as the minimum
delay, with τd = Ts defined as the medium delay and with
τd = 3Ts/2 defined as the maximum delay. The classic
PR compensator (represented by Gc(s)) and the proportional
compensator (represented by kL) are used as examples for
modeling. However, the modeling method in this paper is also
applicable if other types of controllers are used.

Define the following as fa = LLgC, fb = C(Lg(R+rL)+
L(R+ rg)), fc = L+Lg +C(rLrg +RrL +Rrg) and fd =
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TABLE I
PARAMETERS OF THE INVERTER

Symbol Quantity Value
Vdc Input voltage amplitude 200 V
Vg Grid voltage RMS value 110 V
Ts Sampling and switching period 50 µs
τd Delay time 150 µs
ω1 Fundamental angular frequency 2π·50 rad/s
L Converter side inductor 1642 µH
rL Converter side inductor parasite resistance 0.4 Ω
C Capacitor 10 µF
Lg Grid side inductor 1642 µH
rg Grid side inductor parasite resistance 0.4 Ω
R Damping resistance 0 Ω
kL Proportional gain 0.08
kp PR compensator proportional gain 0.5
kr PR compensator resonant gain 60
ξ Damping factor 0.01
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Fig. 3. Bode diagrams of closed-loop transfer functions from iref to ig
(full line: converter current feedback control scheme; dashed line: converter
current plus grid current control scheme).

rL+rg . The transfer functions describing the converter current
iL and the grid current ig as a function of the switch voltage
vs are given by

GiLvs(s) =
s2LgC + sC(R+ rg) + 1

s3fa + s2fb + sfc + fd
(1)

and

Gigvs(s) =
sCR+ 1

s3fa + s2fb + sfc + fd
(2)

respectively.
The closed-loop transfer function ig(s)

iref (s)
of the converter

current feedback scheme and of the converter current plus grid
current feedback scheme can be obtained as

Gcl1(s) =
Gc(s)kLGd(s)VdcGigvs(s)

1 +Gc(s)kLGd(s)VdcGiLvs(s)
(3)

and

Gcl2(s) =

Gc(s)kLGd(s)VdcGigvs(s)

1 + kLGd(s)VdcGiLvs(s) +Gc(s)kLGd(s)VdcGigvs(s)
(4)

respectively.

The compensators are usually represented in s-domain. In
this paper, the PR compensator is used as an example, which
transfer function is given by

Gc(s) = kp(1 + kr
2ξω1s

s2 + 2ξω1s+ ω2
1

). (5)

By using the parameters in Table I and first order Padé
approximation [21] for Gd(s) with the maximum delay, the
Bode diagrams of the closed-loop transfer functions Gcl1(s)
and Gcl2(s) are shown in Fig. 3.

The Bode diagrams of the closed-loop transfer functions
show that the converter current control scheme has an unity
closed-loop gain at the fundamental frequency. If the grid
frequency deviates slightly from the nominal fundamental
frequency, the closed-loop gain is almost constant and the
phase error is zero. When the converter current plus grid
current control scheme is applied, the closed-loop gain at the
fundamental frequency approaching unity is achieved by the
high gain of the resonant compensator. The phase error in this
control scheme is considerable when the grid frequency varies
(see Fig. 3), but this error can be limited within a tolerable
range [7]. The converter current control scheme achieves a
faster dynamic response since it has higher gain over a wide
frequency range. Both of the two control schemes are possible
solutions for practical implementation. The control perfor-
mance interested at the fundamental frequency and low order
harmonic frequencies can be studied using s-domain models
with good accuracy, but the instabilities with high oscillatory
frequencies can not be precisely predicted. The root loci of
the average models for the two control schemes are shown in
Fig. 4 and Fig. 5. These root loci give the stability boundaries
under different delay conditions. In the next section, the root
loci of z-domain models will also be obtained to predict the
stability boundaries. The z-domain models will be derived,
which allows a full comparison between the classic models
and the proposed models.

IV. SMALL-SIGNAL z-DOMAIN MODELS FOR DIGITALLY
CONTROLLED GRID-CONNECTED INVERTERS

In this section, the two typical controllers described in the
previous section are modeled in z-domain. For digitally con-
trolled grid-connected inverters, the converter current control
scheme is a commonly used control strategy in switching
converters. The z-domain model in [16] is extended for this
third-order system. The converter current plus grid current
control scheme, which is used in the control of grid-connected
inverters, is a typical structure with converter current control in
cascaded control loops. The z-domain model for the cascaded
digital control loops is derived in this paper as the modeling
method in [16] is not straightforwardly applicable. Since the
analysis is implemented with small-signal models, the transfer
functions in this section represent the behavior when signals
have small excursions to their steady-state values.

A. PWM Models with Different Delays

The processing delay of a digital controller is usually con-
sidered as one sampling cycle [2], [13]. However, in this paper
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(a) (b) (c)

Fig. 4. Root loci of the converter current feedback controlled grid-connected inverters in s-plane. (a) Minimum delay. (b) Medium delay. (c) Maximum
delay.

(a) (b) (c)

Fig. 5. Root loci of the converter current plus grid current feedback controlled grid-connected inverters in s-plane with kL = 0.08. (a) Minimum delay. (b)
Medium delay. (c) Maximum delay.

the total delay from sampling instants to the relevant switching
instants is analyzed. Disregarding the quantization effects,
the uniformly-sampled bipolar switched symmetric-on-time
triangle PWM including different delay effects is modeled.
The sampling of signals is synchronized with the triangle
carrier. The sampled quantities are converted to a duty-ratio
value having the associate analog-to-digital conversion delay
and computation delay. Then, the PWM compare register can
update the duty-ratio value after it is calculated. There are two
duty-ratio update modes in a practical digital signal processor,
i.e., shadow mode and immediate load mode. In shadow mode,
the duty-ratio is updated when the PWM counter reaches to
zero and/or period value. In immediate load mode, the duty-
ratio is updated directly once it is calculated. The time-domain
diagrams from sampling input to drive output in shadow
mode with double update are depicted in Fig. 6, where q∗

and d∗ represent the sampled quantities and the calculated
duty-ratio value, respectively. u∗ is the duty-ratio which is
loaded into PWM compare register. τd1 and τd2 represent
the analog-to-digital conversion delay and the computation
delay, respectively. Note that if the total processing delay
τd1 + τd2 is larger than one sampling period, the digital
controller could malfunction. Hence, two possible practical
situations are studied. Fig. 6(a) shows the first situation when a
fast processor is used (τd1+τd2 <

Ts

2 ) and the duty-ratio value
is updated twice each switching period. In contrast, Fig. 6(b)
shows the second situation when a slow processor is used
(Ts

2 < τd1 + τd2 < Ts) and the PWM has to wait until the

next sampling time to update the duty-ratio value. The output
of PWM is defined as y = vs/Vdc.

Assuming x∗ is the ideal quantity of u∗ which is synchro-
nized to the sample q∗ without delay, the input and the output
of the PWM model are x∗ and y, respectively. Therefore the
small-signal PWM model describing ŷ(s) as a function of
x̂∗(s) in shadow mode is derived as

G∗PWM (s) =
Ts
2

(e−s
(1+D)Ts

2 + e−s
(3−D)Ts

2 ) (6)

when τd1 + τd2 <
Ts

2 , and

G∗PWM (s) =
Ts
2

(e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 ) (7)

when Ts > τd1+τd2 >
Ts

2 , where D is the normalized average
duty-ratio1.

The delay is strongly dependent on the average duty-ratio
value D in immediate load mode. The time-domain diagrams
from sampling input to drive output in immediate load mode
are shown in Fig. 7, where u∗1 and u∗2 represent the duty-
ratio higher (lower) and lower (higher) than the critical value,
respectively. The small-signal PWM model with delay in
immediate load mode using a fast processor (τd1 + τd2 <

Ts

2 )

1In average models, the PWM carrier and the instantaneous duty-ratio d
are ranging within (−1, 1). For the convenience of the analysis, the PWM
carrier and the average duty-ratio D in small-signal models are scaled into
the range of (0, 1). This normalization does not alter the pulse-to-continuous
transfer functions of G∗

PWM (s) in small-signal analysis.
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(a)

 

(b)

Fig. 6. Time-domain diagrams in shadow mode with double update. (a) Fast
processor (τd1 + τd2 <

Ts
2

). (b) Slow processor (Ts
2
< τd1 + τd2 < Ts).

 

(a)

 

(b)

Fig. 7. Time-domain diagrams in immediate load mode. (a) Fast processor
(τd1 + τd2 <

Ts
2

). (b) Slow processor (Ts
2
< τd1 + τd2 < Ts).

is given by

G∗PWM (s) =
Ts
2

(e−s
(1+D)Ts

2 + e−s
(3−D)Ts

2 ) (8)

when Ts

2 > τd1 + τd2 >
(1−D)Ts

2 , and

G∗PWM (s) =
Ts
2

(e−s
(1−D)Ts

2 + e−s
(1+D)Ts

2 ) (9)

when τd1+τd2 <
(1−D)Ts

2 . On the other hand, the small-signal
PWM model with delay in immediate load mode using a slow
processor (Ts

2 < τd1 + τd2 < Ts) is expressed as

G∗PWM (s) =
Ts
2

(e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 ) (10)

when Ts > τd1 + τd2 >
(1+D)Ts

2 , and

G∗PWM (s) =
Ts
2

(e−s
(1+D)Ts

2 + e−s
(3−D)Ts

2 ) (11)

when Ts

2 < τd1 + τd2 <
(1+D)Ts

2 .

B. z-Domain Models for Grid-Connected Inverters

As the gain of the delay e−sTs is almost unity at the
fundamental frequency (e−jω1Ts ≈ 1), the continuous-time
models can be used to investigate the control performance
in low frequency range. However, in order to design digital
controllers, discrete models are required. To simplify the
analysis, the disturbances of grid voltage are removed from the
models without affecting the closed-loop transfer functions.
Hence, by modeling the digital processing delay τd1 and τd2
into the PWM, the block diagrams of the digitally controlled
grid-connected inverters can be precisely represented in Fig. 8,
where τ4 is the total time delay of the switches drive, signals
transport and measurements. Compared to the digital PWM
delay, this delay is negligible.

If a classic PR compensator is used for control, the digi-
talized compensator is represented as Gc(z) in z-domain [6].
Usually, Gc(z) is derived as the discrete equivalent of Gc(s)
in Fig. 2 by using bilinear transform. For the PR compensator
Gc(s) in s-domain, its discrete equivalent Gc(z) is written as

Gc(z) = kp(1 + kr
az1z

2 + bz1z + cz1
Az1z2 +Bz1z + Cz1

), (12)

with Az1 = 4
T 2
s

+ 4ξω1

Ts
+ ω2

1 , Bz1 = − 8
T 2
s

+ 2ω2
1 , Cz1 =

4
T 2
s
− 4ξω1

Ts
+ ω2

1 , az1 = 4ξω1

Ts
, bz1 = 0 and cz1 = − 4ξω1

Ts
.

To obtain the closed-loop discrete transfer functions of the
two control structures, the feedback paths in Fig. 8 should be
represented in z-domain. Hence, z-transform is used to obtain
discrete transfer functions of the feedback paths which contain
continuous plants followed by ideal samplers. The discrete
transfer functions describing î∗L and î∗g as a function of x̂∗ in
small signal are derived as

GiLx(z) = Z{G∗PWM (s)VdcGiLvs(s)e−sτ4} (13)

and

Gigx(z) = Z{G∗PWM (s)VdcGigvs(s)e−sτ4}, (14)

respectively. The exact expressions of transfer functions
GiLx(z) and Gigx(z) can be obtained using the method
extended from [16]. A detailed derivation of the z-transforms
is provided in the Appendix for reference.



6 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

 

(a)

 
(b)

Fig. 8. Block diagrams of grid-connected inverters. (a) Converter current
feedback scheme. (b) Converter current plus grid current feedback scheme.

With the discrete transfer functions of the feedback paths,
the z-domain closed-loop transfer function

î∗g(z)

î∗ref (z)
of the

converter current feedback scheme can be obtained according
to Fig. 8(a) as

Gcl1(z) =
Gc(z)kLGigx(z)

1 +Gc(z)kLGiLx(z)
. (15)

The closed-loop transfer function
î∗g(z)

î∗ref (z)
in respect to Fig. 8(b)

is written as

Gcl2(z) =
Gc(z)kLGigx(z)

1 + kLGiLx(z) +Gc(z)kLGigx(z)
. (16)

Using the same parameters listed in Table I and D = 0.5,
the Bode diagrams of Gcl1(z) and Gcl2(z) are shown in
Fig. 9. Comparing the results to the average models derived
Bode diagrams in s-domain (see Fig. 3), it can be seen that
in the low frequency range, s-domain models results and z-
domain models results are almost identical. When the control
performance is investigated in the low frequency range, s-
domain models can be used with good accuracy. However, s-
domain models fail to describe the dynamic behaviors of the
digitally controlled systems apart from low frequency range.
z-domain models are necessary for dynamic performance
analysis. When frequency response specifications are given,
controllers design can be performed according to the Bode
plots of the z-domain models.

C. Stability Analysis for Internal Current Loop

As most digital control strategies involve an internal con-
verter current control loop, the stability of the internal loop
is studied first. A pure proportional feedback control in the
internal loop is usually used to imitate the peak current control
in naturally-sampled power converters. Even if a PR controller
or a PI controller may be used in the converter current control
loop, the proportional gains are of most importance for the
stability issue [5]. Assuming that the voltage on the filter
capacitor has a much slower dynamic behavior compared to
the PWM output, the small-signal transfer function from PWM
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Fig. 9. Bode diagrams of closed-loop transfer functions from i∗ref to i∗g
with maximum delay (full line: converter current feedback control scheme;
dashed line: converter current plus grid current control scheme).

 

Fig. 10. Block diagram for the simplified converter current control loop of
a grid-connected inverter.

output to converter current can be approximated by

P (s) =
Vdc

sL+ rL
e−sτ4 . (17)

The simplified control loop for the converter current
regulator of a buck inverter is schematically represented
in Fig. 10. The PWM model has three possible expres-
sions, i.e., G∗PWM (s) = Ts

2 (e−s
(1−D)Ts

2 + e−s
(1+D)Ts

2 ),
G∗PWM (s) = Ts

2 (e−s
(1+D)Ts

2 +e−s
(3−D)Ts

2 ) and G∗PWM (s) =
Ts

2 (e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 ), corresponding to the cases of
minimum delay (average delay time Ts/2), medium delay
(average delay time Ts) and maximum delay (average delay
time 3Ts/2), respectively. In the case of the minimum delay,
the discrete transfer function from x̂∗ to î∗L is derived as

GiLx(z) =
VdcTs

2L

e
rL
L (τ4+−1−D

2 Ts) + e
rL
L (τ4+−1+D

2 Ts)

z − e−
rL
L Ts

.

(18)
Similarly, in the cases of the medium delay and the maximum
delay, GiLx(z) can be expressed as

GiLx(z) =
VdcTs

2L

e
rL
L (τ4+−1+D

2 Ts)z + e
rL
L (τ4+−1−D

2 Ts)

z2 − e−
rL
L Tsz

(19)
and

GiLx(z) =
VdcTs

2L

e
rL
L (τ4+−1−D

2 Ts) + e
rL
L (τ4+−1+D

2 Ts)

z2 − e−
rL
L Tsz

,

(20)
respectively. As rLTs

L � 1, the exponent terms in (18)–(20)
approximately equal to 1. Hence, the pole of the converter
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current control loop with the minimum PWM delay can be
obtained by solving the equation

z − 1 +
kLVdcTs

L
= 0, (21)

which gives the stable operating condition of

0 < kL <
2L

VdcTs
. (22)

Similarly, in the cases of medium delay and maximum delay,
the characteristic equations are given by

z2 + (
kLVdcTs

2L
− 1)z +

kLVdcTs
2L

= 0, (23)

and
z2 − z +

kLVdcTs
L

= 0, (24)

respectively, yielding the relevant stable operating conditions
of

0 < kL <
2L

VdcTs
, (25)

and
0 < kL <

L

VdcTs
, (26)

respectively. Note that in the case of maximum delay, the
stable operating range of the proportional gain is dramatically
reduced, resulting in a more limited achievable bandwidth.
While designing controllers, the proportional gain for the
converter current loop is usually chosen to be smaller than
L

VdcTs
. The similar result related to the gain setting in a digital

proportional current regulator can also be found in [22].

D. Discrete Root Loci Design

While designing a controller, a typical specification evaluat-
ing the robustness of a system is the gain margin in root locus.
For digitally controlled grid-connected inverters, more precise
stability boundaries can be obtained from discrete root loci.
Based on root loci, the dynamic performances in time-domain
(rise time, settling time and percent overshoot, etc.) can be
evaluated according to the conjugate pole pairs in z-plane.

Using the same parameters listed in Table I and D = 0.5
(or any other values for D between 0 and 1), the root loci2 of
the converter current feedback controlled inverter are shown
in Fig. 11. The real poles of the converter current feedback
scheme with minimum and medium delay will move across
the unit circle when the total proportional gain equals to
0.324 and 0.306 (see Fig. 11(a) and (b)), respectively. When
the maximum delay is employed, the two conjugate poles
will move across the unit circle when the proportional gain
equals to 0.139 (see Fig. 11(c)). Even when the minimum
delay is involved, a gain higher than 0.167 may result in a
ringing dynamic response. Note that 2L

VdcTs
= 0.328. As is

illustrated in the previous subsection, the internal current loop
proportional gain is usually chosen to be much smaller than

2The root loci are derived when using pure proportional compensators.
However, under the condition of kr � 1

ξω1Ts
, the root loci in z-plane do not

differ even if additional resonant compensators are used. The only difference
introduced by the resonant compensators is that a pair of conjugate poles
moving within the unit circle appears in the root loci.

L
VdcTs

. When kL = 0.08 and kp = 0.5 with the maximum
delay, it can be seen from Fig. 11(c) that the closed-loop
system still has a gain margin of 3.46. The longest settling
time and the highest overshoot in percentage of the conjugate
pole pairs are 3.1 ms and 68%, respectively.

The root loci of converter current plus grid current feedback
controlled inverter are shown in Fig. 12. The conjugate poles
in the cases of minimum delay, medium delay and maximum
delay will move across the unit circle when the proportional
gain kp equals to 1.04, 1.04 and 1.02, respectively. These
results are strongly related to the damping of the LCL reso-
nance, for which an analytical expression is difficult to obtain.
However, the PWM delay can reduce the stable operating
range dramatically when the damping resistance increases.
In this paper where the maximum PWM delay is achieved
in experiment, the proportional gain is chosen as kp = 0.5.
Hence, a stable gain margin of 2 is guaranteed3.

V. DISCRETE STATE-SPACE MODELS FOR
GRID-CONNECTED INVERTERS

To compare with the proposed z-domain models, the dis-
crete state-space models are also provided. These models can
precisely represent the dynamic behaviors of the systems, but
they are not commonly used for the following reasons [23].
The first reason is that a discrete state-space model depends
on the type of modulator. If the modulator is changed, re-
modeling procedure is required. The second reason is that the
state transition matrix computation brings relative complex
work, and linearization of exponential matrices sometimes
is necessary and inaccurate. The last reason is that the size
of the state-space matrices will significantly increase if the
controller is complicated or the delay is long. Hence, this
section provides an example of using discrete state-space
models to predict the maximum proportional gains of the
controllers.

A. Switching States with Delays

The switching states are dependent of duty-ratios. For ex-
ample, in the nth sampling period, the proportional controllers
give the discrete duty-ratios dn as

dn = kpkL(iref (n)− iL(n)) (27)

for converter current control scheme and

dn = kL(kp(iref (n)− ig(n))− iL(n)) (28)

for converter current plus grid current control scheme. Note
that −1 < dn < 1. As we prefer to use the normalized duty-
ratio 0 < Dn < 1, the normalized discrete duty-ratios can be
represented by

Dn =
kpkL + 1

2
(iref (n)− iL(n)) (29)

3Though the discrete closed-loop transfer functions are average duty-ratio
D dependent, the root loci are derived with duty-ratio fixed as D = 0.5.
These results have very little difference when D is changing within (0, 1).
This conclusion is only valid when the symmetric triangle carriers are used
for PWM generation.
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(a) (b) (c)

Fig. 11. Root loci of the converter current feedback controlled grid-connected inverters in z-plane. (a) Minimum delay. (b) Medium delay. (c) Maximum
delay.
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Fig. 12. Root loci of the converter current plus grid current feedback controlled grid-connected inverters in z-plane with kL = 0.08. (a) Minimum delay.
(b) Medium delay. (c) Maximum delay.

for converter current control scheme and

Dn =
kL + 1

2
(kp(iref (n)− ig(n))− iL(n)) (30)

for converter current plus grid current control scheme.
There are three switching states in each sampling period

for bipolar PWM. Fig. 13 shows the time-domain waveforms
of the switching states with medium delay. In the first and
last states, the switch voltage is given by vs = −Vdc. In the
second state, the switch voltage is represented as vs = Vdc. To
simplify the expression, the time intervals of the three states
are represented by t1n, t2n and t3n instead of t1(n), t2(n)
and t3(n), respectively. According to Fig. 13, one can obtain
that t1n = (1 − Dn−1)Ts/2, t2n = (Dn−1 + Dn)Ts/2 and
t3n = (1−Dn)Ts/2 with medium delay applied. Moreover, for
minimum delay and maximum delay, the expressions of t1n,
t2n and t3n can be directly derived. For minimum delay, one
can obtain that t1n = (1−Dn)Ts/2, t2n = DnTs and t3n =
(1−Dn)Ts/2; For maximum delay, t1n = (1−Dn−1)Ts/2,
t2n = Dn−1Ts and t3n = (1−Dn−1)Ts/2.

B. Discrete Maps for Grid-Connected Inverters

To obtain the discrete maps of the grid-connected inverter,
the state vector x is defined as x = [iL ig vC ]T [24]. No

 

Fig. 13. Switching states of the bipolar PWM with medium delay.

matter what switching state the converter is in, the state-space
model can be described as

ẋ = Ax+ e (31)

with A =

− rL+R
L

R
L − 1

L
R
Lg

− rg+RLg

1
Lg

1
C − 1

C 0

 and e =

 vs
L
− vg
Lg

0

 .
If nTs < t < nTs+t1n and (n+1)Ts−t3n < t < (n+1)Ts,

e = e1 = [−Vdc/L − vg/Lg 0]T. If nTs + t1n < t < (n +
1)Ts − t3n, e = e2 = [Vdc/L − vg/Lg 0]T. The state-space
vector can be solved using the linearization method in [25],
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[26], which is written as

xn+1 = eATsxn + (eATs − eA(t2n+t3n) + eAt3n − I)A−1e1

+ (eA(t2n+t3n) − eAt3n)A−1e2 (32)

with xn and xn+1 representing x(nTs) and x((n + 1)Ts),
respectively. Using first order linearization, (32) can be finally
approximated by

xn+1 = Φxn + Γ1e1 + Γ2e2. (33)

with Φ = eATs , Γ1 = Ts − t2n and Γ2 = t2n.

C. Jacobian Matrix with Delays

The small-signal stability of a discrete model can be
predicted by the eigenvalues of the Jacobian matrix. The
Jacobian matrix of (33) with minimum delay can be derived
without augmentation of the matrices. However, in the cases
of medium delay and maximum delay, augmentation of the
matrices are required as t2n is a function of Dn−1. Therefore,
the derivation of the Jacobian matrix becomes quite complex.
So far, discrete state-space modeling of power converters with
more than one cycle delay can hardly be found in the existing
literature. Here we provide an example of derivation when
medium delay is involved, where t2n is a function of both
Dn−1 and Dn.

Define yn = xn+1, (33) can be re-written as[
yn
xn

]
=

[
Φ 0
I 0

] [
yn−1
xn−1

]
+ Γ1

[
e1
0v

]
+ Γ2

[
e2
0v

]
(34)

with I =

1 0 0
0 1 0
0 0 1

, 0 =

0 0 0
0 0 0
0 0 0

 and 0v =

0
0
0

 .
The Jacobian matrix for the inverter with medium delay can
be derived by

J =

[
Φ 0
I 0

]
+

[
e1
0v

]
∂Γ1

∂

[
yn−1
xn−1

] +

[
e2
0v

]
∂Γ2

∂

[
yn−1
xn−1

]
=

[
Φ 0
I 0

]
+

[
e1
0v

]
(
∂Γ1

∂Dn

∂Dn

∂

[
yn−1
xn−1

] +
∂Γ1

∂Dn−1

∂Dn−1

∂

[
yn−1
xn−1

] )

+

[
e2
0v

]
(
∂Γ2

∂Dn

∂Dn

∂

[
yn−1
xn−1

] +
∂Γ2

∂Dn−1

∂Dn−1

∂

[
yn−1
xn−1

] ). (35)

For the converter current control scheme, one can obtain
that ∂Dn/∂[yTn−1, x

T
n−1]T = [−kpkL/2, 0, 0, 0, 0, 0]

and ∂Dn−1/∂[yTn−1, x
T
n−1]T = [0, 0, 0,−kpkL/2, 0, 0];

For the converter current plus grid current control scheme,
∂Dn/∂[yTn−1, x

T
n−1]T = [−kL/2,−kpkL/2, 0, 0, 0, 0] and

∂Dn−1/∂[yTn−1, x
T
n−1]T = [0, 0, 0,−kL/2,−kpkL/2, 0].

With the parameters in Table I, for the converter cur-
rent control scheme, it can be calculated that the eigenval-
ues of J will move across the unit circle when kpkL =
0.300 (eigenvalues of [0, 0, 0.8467 + 0.3455i, 0.8467 −
0.3455i, 0.0361+0.9996i, 0.0361−0.9996i]T). On the other
hand, for the converter current plus grid current control scheme
with kL = 0.08, it can be calculated that the eigenvalues will

move across the unit circle when kp = 1.05 (eigenvalues
of [0, 0.8511 + 0.5252i, 0.8511 − 0.5252i, 0, 0.3671 +
0.3271i, 0.3671− 0.3271i]T). Comparing the eigenvalues on
the gain boundaries to the roots on the gain boundaries of
Fig. 11(b) and Fig. 12(b), it can be conclude that the results
of z-domain models are almost the same as the results of
discrete state-space models. This is because of the natural that
the two modeling methods are the same in theory.

Moreover, using the similar method, the gain boundaries of
the discrete space state models with minimum delay and with
maximum delay can be obtained. Due to space limitations,
the derivation is not shown here. However, with minimum
delay, the calculated gain boundaries for the converter current
control scheme and the converter current plus grid current
control scheme are kpkL = 0.326 and kp = 1.07, respectively.
With maximum delay, the calculated gain boundaries for the
converter current control scheme and the converter current plus
grid current control scheme are kpkL = 0.131 and kp = 1.04,
respectively.

VI. MODELS VALIDATION

A. Simulation Results

For safety issue reasons, computer simulations were used
to verify the capability of the small-signal z-domain models
in predicting stability boundaries. The s-domain models pre-
dictions are also used for comparison to show the advantage
of proposed models. The predicted maximum proportional
gains of the two control schemes with different delay effects
are summarized from Fig. 4, Fig. 5, Fig. 11 and Fig. 12.
The maximum proportional gains predicted by discrete state-
space models are also compared. These predicted results are
shown in Table II. For the converter current feedback control
scheme, the actual proportional gain is equal to kpkL. For the
converter current plus grid current feedback control scheme,
the proportional gain kp in the grid current control loop is
investigated with kL = 0.08.

Using the parameters in Table I, Fig. 14 shows the simula-
tion results of the converter current controlled grid-connected
inverter when the actual proportional gain steps over the
stability boundaries. Under the condition of the minimum
delay, the root locus in Fig. 11(a) shows that a real pole
will move out of the unit circle when the proportional gain
increases. As π

Ts
represents half of the sampling frequency,

the oscillation frequency is 1
2Ts

and period-2 bifurcation may
appear. This phenomenon is named as fast-scale instability
[27]. After the bifurcated converter current passes through
the CL filter, the bifurcation on the grid current becomes
not obvious. To give a clear view of the bifurcation, the
simulated converter current iL is shown in Fig. 14(a), where
period-2 bifurcation can be seen after kpkL steps higher than
0.32. In contrast, with the medium delay and the maximum
delay (see Fig. 11(b) and (c)), conjugate pole pairs will move
out of the unit circle when kpkL is higher than 0.29 and
0.13, respectively. Hence, oscillations with lower frequencies
may occur. The root loci move across the unit circle by
angular frequencies of π

2Ts
and π

3Ts
for medium delay and
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TABLE II
PREDICTED MAXIMUM PROPORTIONAL GAINS

Control loop Minimum delay Medium delay Maximum delay
Average models Converter current loop 0.651 0.315 0.201
predictions Grid current loop 1.09 1.05 1.04
Proposed models Converter current loop 0.324 0.306 0.139
predictions Grid current loop 1.04 1.04 1.02
Discrete models Converter current loop 0.326 0.300 0.131
predictions Grid current loop 1.07 1.05 1.04
Simulation Converter current loop 0.32 0.29 0.13
results Grid current loop 1.0 1.0 1.0

 
(a) (b) (c)

Fig. 14. Simulated waveforms of the converter current controlled grid-connected inverter (X–axis: Time, 5 ms/div; Y–axis: Magnitude of converter current:
5 A/div; and grid voltage: 50 V/div). (a) Minimum delay. (b) Medium delay. (c) Maximum delay.

the maximum delay, respectively. Hence, period-4 and period-
6 bifurcations may occur, respectively. The relevant simulation
results obviously show that the converter current becomes
unstable with lower oscillatory frequencies after the steps
(see Fig. 14(b) and (c)). Comparing the simulated stability
boundaries to the predicted boundaries of the average model,
the proposed model and the discrete state-space model, it
can be seen in Table II that the accuracy of the proposed
model is much better than that of the average model. Both
the proposed model and the discrete state-space model for the
converter current control loop are capable of predicting the
fast-scale instabilities while the classic average model is not.
The z-domain model and the discrete state-space model are
naturally equivalent. However, the z-domain modeling is more
convenient and practical for frequency domain design than the
discrete state-space modeling.

Fig. 15 shows the simulation results of the converter current
plus grid current controlled grid-connected inverter when the
proportional gain of the external control loop steps over the
stability boundaries. It can be clearly observed that the grid
current ig becomes unstable after each step. Slow-scale insta-
bilities appear on the grid current. The oscillation frequencies
observed in the simulation are around 1.7 kHz, which are
very low compared to the sampling frequency of 20 kHz. All
the conjugated pole pairs in the s-plane root loci (see Fig. 5)
and z-plane root loci (see Fig. 12) move across the stability
boundary with oscillation frequencies around 1.77 kHz. It
can be seen from Table II that the simulation results are
in good agreement with all the stability predictions for the
grid current control loop. The reason is that the slow-scale
instabilities in the external control loop are mainly caused by
the LCL resonance. When the damping resistance increases,
the difference between s-domain results and z-domain results

becomes bigger, since the sample and hold effect will play
a more important role. However, the high accuracy of z-
plane root loci predictions for the two control schemes verified
in Table II shows that the proposed models are capable of
evaluating robustness of controllers.

B. Experimental Results

To show the capability of predicting time-domain wave-
forms, both the classic s-domain models and small-signal z-
domain models predicted steady-state responses and transient
responses were compared to the relevant experimental results.
The s-domain models and the z-domain models with the
maximum PWM delay and the parameters listed in Table I
are used for predictions. Although the z-domain models are
dependent of the average duty-ratio D, the predictions are
retrieved with a time-variant D.

According to the proposed modeling methods, the single
loop controller and the cascaded loops controller were experi-
mentally implemented on an 110 V grid connected inverter, as
is shown in Fig. 16. A phase-locked loop (PLL) is used for the
grid synchronization. The current reference is generated from
the PLL. The experimental grid current and grid voltage are
retrieved from the shunt and the left side of the transformer
in Fig. 16, respectively. To compare the experimental results
with the models predicted results, the same compensators
and the same parameters listed in Table I are used in the
tests. The digital controller is performed in TMS320F28335, a
floating-point DSP. The ADCs are with a resolution of 12 bits.
The H bridge of the inverter is implemented by Mitsubishi
Intelligent Power Modules (IPM). The inverter is bipolar
switched with the deadband time of 2.67 µs. The uniformly-
sampled symmetric-on-time triangle PWM is applied. The
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(a) (b) (c)

Fig. 15. Simulated waveforms of the converter current plus grid current controlled grid-connected inverter (X–axis: Time, 5 ms/div; Y–axis: Magnitude of
grid current: 5 A/div; and grid voltage: 50 V/div). (a) Minimum delay. (b) Medium delay. (c) Maximum delay.

 
Fig. 16. Experimental grid connected inverter.

duty-ratio value is loaded to the PWM compare register at
each sampling instant, therefore the processing delay is one
switching period and the maximum delay is achieved.

The steady-state responses were performed using a sinu-
soidal current reference with an RMS value of 4.6 A. The clas-
sic average models, z-domain models and experimental tests
retrieved waveforms of the converter current controlled and
converter current plus grid current controlled grid-connected
inverters are shown in Fig. 17 and Fig. 18, respectively.
The classic average model and the z-domain model retrieved
steady-state responses of the converter current controlled grid-
connected inverter are almost identical (see Fig. 17(a) and
Fig. 17(b)). The predicted current amplitudes (Ig) and phase
angles (∆φ) are 4.6 A and 1.1◦, respectively. However, it is
shown in Fig. 17(c) that under the practical condition of a
weak grid, a larger phase lag exists in the current with a
phase angle of ∆φ = 8.1◦. When the grid voltage contains
considerable harmonic components (THD ≈ 2.0%), the grid
current THD is about 2.6%. The performance of this control
scheme is severely affected by the quality of the grid voltage.

The steady-state responses of the converter current plus
grid current controlled grid-connected inverter show that the
predictions of the classic average model and the z-domain
model are almost the same (see Fig. 18(a) and Fig. 18(b)). The
current amplitudes and phase angles in models predictions are
4.5 A and 0.23◦, respectively. However, in the experimental
results (see Fig. 18(c)), the current amplitude is 4.6 A and
the phase angle is 5.4◦. The current distortion remains low
(THD ≈ 2.1%) in this control scheme.

Since the converter current control scheme achieves a higher
closed-loop gain, the amplitude of grid current in Fig. 17 is
higher than that in Fig. 18. It can be seen from Fig. 17 that
when the converter current feedback scheme is used, the grid
current has a larger lagging phase error. In contrast, when the

converter current plus grid current feedback scheme is used, a
smaller grid current phase error is achieved (see Fig. 18). In
the environment when a distorted grid voltage appears, exact
predictions for experimental waveforms are not guaranteed.
However, it is concluded that both the classic average models
and z-domain models can be used with good accuracy.

Fig. 19 shows the transient response of the converter current
controlled grid-connected inverter when the reference current
steps at its peak. The grid current achieves steady-state op-
eration within two line cycles after the step. The dynamic
response time of this control scheme is short. The average
model and z-domain model predicted waveforms after the
step are slightly different. The predicted results are similar
to the experimental results. However, in this control scheme,
the grid voltage adds significant harmonic components to the
experimental data. When the amplitude of the grid current is
small, this disturbance from the grid is more obvious. To a
first approximation, the agreement between predicted results
and experimental result is good.

The transient response of the converter current plus grid
current controlled grid-connected inverter is shown in Fig. 20,
where the disturbance from the grid in this control scheme is
quite small. Hence, the z-domain model predicted transition
(see Fig. 20(b)) is more similar to the experimentally retrieved
result (see Fig. 20(c)). After the step, the grid current achieves
steady-state in more line cycles. During this time, both of
the average model and the z-domain model predicted results
are very close to the experimental result. A longer transition
exists in the converter current plus grid current control scheme
since the closed-loop gain on the Bode plot is always lower
than that of the converter current control scheme. For the
cascaded control scheme, it is verified that the z-domain
model is capable of predicting the transient response with good
accuracy. The difference between the predicted waveforms of
the s-domain model and that of the z-domain model is not
significant. This is because the difference of the two models
is mainly focused on the high frequency range. When the high
frequency signals pass through an LCL filter and appear on
the grid side, it may be even smaller than the high frequency
signals from the disturbance of the grid. Therefore, it is
reasonable that the z-domain models do not show significant
advantage in predicting the experimental waveforms.

An obvious disadvantage existing in the z-domain models
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(a) (b) (c)

Fig. 17. Steady-state response of the converter current controlled grid-connected inverter (X–axis: Time, 5 ms/div; Y–axis: Magnitude of grid current: 5
A/div; and grid voltage: 50 V/div). (a) Average model prediction. (b) z-domain model prediction. (c) Experimental result.

 
(a) (b) (c)

Fig. 18. Steady-state response of the converter current plus grid current controlled grid-connected inverter (X–axis: Time, 5 ms/div; Y–axis: Magnitude of
grid current: 5 A/div; and grid voltage: 50 V/div). (a) Average model prediction. (b) z-domain model prediction. (c) Experimental result.

 
(a) (b) (c)

Fig. 19. Transient response of the converter current controlled grid-connected inverter with a step in the commanded current peak value from 2 A to
4 A (X–axis: Time, 5 ms/div; Y–axis: Magnitude of grid current: 2 A/div; and grid voltage: 50 V/div). (a) Average model prediction. (b) z-domain model
prediction. (c) Experimental result.

 
(a) (b) (c)

Fig. 20. Transient response of the converter current plus grid current controlled grid-connected inverter with a step in the commanded current peak value
from 2 A to 4 A (X–axis: Time, 5 ms/div; Y–axis: Magnitude of grid current: 2 A/div; and grid voltage: 50 V/div). (a) Average model prediction. (b) z-domain
model prediction. (c) Experimental result.
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is the duty-ratio dependent instinct. When triangle carriers
are used, the PWM delay is approximately equivalent to
an averaged delay with half switching period [28]. The er-
ror of this approximation is negligible when the duty-ratio
varies. This error is only unacceptable if sawtooth carriers are
used. However, in sampled-data systems with ac references,
sawtooth PWMs which cannot guarantee an average current
sampling are rarely used.

VII. CONCLUSION

In this paper, digitally controlled grid-connected inverters
with converter current control scheme and converter current
plus grid current control scheme have been studied. The
classic average models for the two control schemes have
been described in s-domain. In contrast, new small-signal z-
domain models have been derived with precisely modeled
delay effects. This permits a direct design of the digital
compensators in z-domain. The discrete state-space models
are also provided. The gain boundaries obtained from root
loci of both average models and proposed models and the
gain boundary obtained from discrete state-space models have
been compared with the simulation results, which demon-
strates that the proposed models are more accurate than the
average models in predicting fast- and slow-scale instabilities.
Furthermore, the proposed models are capable of predicting
the steady-state and dynamic responses of the control variables
at the true sampling instants. The experimental prototype has
been implemented according to the proposed models. The
comparison between the predictions of the models and the
experimental results with the two control schemes confirms
the validity of the proposed models.

APPENDIX
DERIVATIONS OF THE z-DOMAIN TRANSFER FUNCTIONS

Let fQ =
√

(2f3b − 9fafbfc + 27f2afd)
2 − 4(f2b − 3fafc)3,

fC = 3

√
1
2 (fQ + 2f3b − 9fafbfc + 27f2afd), a = fb

3fa
+ fC

3fa
+

(f2
b−3fafc)
3fafC

, b = fb
3fa
− (1+j

√
3)fC

6fa
− (1−j

√
3)(f2

b−3fafc)
6fafC

and

c = fb
3fa
− (1−j

√
3)fC

6fa
− (1+j

√
3)(f2

b−3fafc)
6fafC

. The transfer
function GiLvs(s) can be split to

GiLvs(s) =
AL
s+ a

+
BL
s+ b

+
CL
s+ c

(36)

with AL =
a2LgC−aC(R+rg)+1

(a−b)(a−c)LLgC
, BL =

b2LgC−bC(R+rg)+1
(b−a)(b−c)LLgC

and CL =
c2LgC−cC(R+rg)+1

(c−b)(c−a)LLgC
. For the PWM model with max-

imum delay, i.e., G∗PWM (s) = Ts

2 (e−s
(3−D)Ts

2 + e−s
(3+D)Ts

2 ),
the z-transform of GiLx(z) can be deduced using the method
as

Z{G∗PWM (s)Vdc
AL
s+ a

e−sτ4}

=
VdcTsAL

2

ea(τ4−
1+D

2 Ts) + ea(τ4−
1−D

2 Ts)

z2 − e−aTsz
. (37)

Defining ea = 1
2 (ea(τ4−

1+D
2 Ts) + ea(τ4−

1−D
2 Ts)), eb =

1
2 (eb(τ4−

1+D
2 Ts) + eb(τ4−

1−D
2 Ts)), ec = 1

2 (ec(τ4−
1+D

2 Ts) +

ec(τ4−
1−D

2 Ts)), D2 = −e−aTs − e−bTs − e−cTs , D1 =

e−(a+b)Ts + e−(b+c)Ts + e−(a+c)Ts and D0 = −e−(a+b+c)Ts ,
the discrete transfer function GiLx(z) can be written as

GiLx(z) =
NL2z

2 +NL1z +NL0
z4 +D2z3 +D1z2 +D0z

(38)

with NL2 = VdcTs(ALea + BLeb + CLec), NL1 =
−VdcTs(ALea(e−bTs + e−cTs) + BLeb(e

−aTs + e−cTs) +
CLec(e

−aTs + e−bTs)) and NL0 = VdcTs(ALeae
−(b+c)Ts +

BLebe
−(a+c)Ts + CLece

−(a+b)Ts).
Similarly, the transfer function Gigvs(s) can be split to

Gigvs(s) =
Ag
s+ a

+
Bg
s+ b

+
Cg
s+ c

(39)

with Ag = 1−aCR
(a−b)(a−c)LLgC

, Bg = 1−bCR
(b−a)(b−c)LLgC

and Cg =
1−cCR

(c−b)(c−a)LLgC
. Then the discrete transfer function Gigx(z)

can be written as

Gigx(z) =
Ng2z

2 +Ng1z +Ng0
z4 +D2z3 +D1z2 +D0z

(40)

with Ng2 = VdcTs(Agea + Bgeb + Cgec), Ng1 =
−VdcTs(Agea(e−bTs + e−cTs) + Bgeb(e

−aTs + e−cTs) +
Cgec(e

−aTs + e−bTs)) and Ng0 = VdcTs(Ageae
−(b+c)Ts +

Bgebe
−(a+c)Ts + Cgece

−(a+b)Ts).
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