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Abstract—The broad development and usage of edge devices
has highlighted the importance of creating resilient and computa-
tionally advanced edge-to-cloud continuum environments. When
working with edge devices these desiderata are usually achieved
through replication and offloading. This paper reports on the
design and implementation of a fault-tolerant service that enables
the offloading of jobs from devices with limited computational
power. We propose a solution that allows users to upload jobs
through a web service, which will be executed on edge nodes
within the system. The solution is designed to be fault tolerant
and scalable, with no single point of failure as well as the ability
to accommodate growth, if the service is expanded. The use of
Docker checkpointing on the worker machines ensures that jobs
can be resumed in the event of a fault. We provide a mathematical
approach to optimize the number of checkpoints that are created
along a computation, given that we can forecast the time needed
to execute a job. We present experiments that indicate in which
scenarios checkpointing benefits job execution. Our experiments
shows the benefits of using checkpointing and restore when the
completion jobs’ time rises compared with the forecast fault rate.

Index Terms—checkpointing, edge nodes, workers, orchestra-
tion, replication, totally ordered multicast

I. INTRODUCTION

Many IoT and edge devices deployed in the edge to cloud
continuum [1] [2], have limited hardware capabilities such
as processing power and memory, and some lack hardware
components such as local storage or Graphical Processing
Units. To overcome the challenges posed by the lack of
computational power and missing hardware, a widespread
solution is to outsource computational jobs to other more
powerful or more specialized machines. This concept is known
as computation offloading [3].

Platforms targeted by the computation offloading can either
prioritize cost over reliability (in the case of edge nodes)
or be not under the full control of the user in the case of
computation power provided by volunteers. One way to add
resilience to faults that can interrupt the current job, is to create
a checkpoint of the current status of the computation, move it
to another device, and use it to continue the computation from
the checkpoint in case a fault occurs.

In this work, we aims at developing an efficient and robust
offloading solution based on edge nodes, considering possible
sources of faults:

1) The worker running on an edge node can suffer a fault

2) The orchestrator that allocates jobs on workers and keeps
track of the checkpoints, can suffer faults itself

3) To identify the location (IP address, port, etc) of the com-
ponents of the architecture, it is either necessary to have
a register (e.g.: a Dynamic DNS), or have all architectural
components act like clients towards a message broker.

This paper presents a robust-by-design solution1 and ana-
lyzes it in terms of its efficiency in terms of total computation
time for the submitted jobs, and energy expenditure.

The rest of this paper is structured as follows: Section II
provides background information on the concepts and tech-
nologies employed in this work, and discusses related work;
Section III-A presents an analysis of the requirements con-
sidered for this work; Section III describes the solution we
created; Section IV reports on experimental results corrobo-
rating our approach; Section V draws conclusions on the topic
at hand and proposes future work.

II. BACKGROUND INFORMATION

A. Fault tolerant computation offloading
A computation offloading solution is inherently a distributed

system where components interact with each other by passing
messages [4].

Computation offloading can either be vertical, for example
from a mobile device to the cloud, or horizontal, with the
computational job being sent from an edge node to another
one. We focus on horizontal computation offloading, which is
especially beneficial in cases where high latency can have a
critical result in the performance of edge nodes processes [5].

One recurrent issue in computing is making the system
fault-tolerant, meaning that the system can keep running as
intended in the occasion of partial failure [6].

One of the most popular methods for dealing with fault
tolerance is replication, involving creating one or more copies
(replicas) of the system and keeping them ready to take over
if the original system fails.

Another way to provide fault tolerance is checkpointing and
recovery [7]. This involves creating a snapshot of a running
application, saving it, and then using the saved snapshot to
recover the application and continue it from that point, should
a fault occur. With regular checkpoints, it is possible to
minimize the time lost in the event of faults.

1The code of the solution is released as open source, and it is available at
https://github.com/orgs/P7-workrs/repositories

https://github.com/orgs/P7-workrs/repositories


B. Related Work

Multiple works in the last decade have been showing the
importance of computation offloading in such an environment.

In [8] Lin et al, provided an overview of the different
architectures as well as reviewed related works focused on
different key characteristics such as application partitioning,
task allocation, and resource management.

Mach et al. in [9] provided a different take on the subject
and centered on user-centric use cases in mobile edge comput-
ing. Their study examined computation offloading decisions,
allocation of computation resources, and mobility manage-
ment, comparing different works on these subjects.

Mao et al. proposed a dynamic computation offloading pos-
ing particular attention in energy harvesting technologies [10],
supporting dynamic computation offloading by means of a
Lyapunov optimization-based dynamic computation offloading
(LODCO) algorithm.

As for horizontal computation offloading, a two-step dis-
tributed horizontal architecture for computation offloading
was presented in [11]. In this work, horizontal offloading is
mostly performed in the fog through directed acyclic task
graphs. This results in an optimization of resources at the
price of communication latency, which was justified in heavy
computationally-required tasks.

Checkpointing for system preservation was adopted by
Karhula et al. in [12] where the checkpoint has been used to
suspend long-running functions allowing Function as a Service
and Serverless applications.

However, compared to previous works, together with taking
into account the resource requirements for edge devices, we
also add one more level of fault tolerance by performing repli-
cation of the orchestrator and the message broker. Moreover,
we provide a mathematical definition to compute an optimal
checkpointing strategy, and we corroborate our approach by
means of experimental evaluation focused on both the execu-
tion time of computational jobs and energy consumption.

III. THE PROPOSED SOLUTION

A. Requirements

We identified the following requirements:
[R1] A user must be able to: upload a job to the solution,

download results, cancel a job in progress, see current
status of a job, see previously completed jobs, see previ-
ously canceled jobs, identify themselves by means of a
username, to see a graph visualization of orchestrators
and workers working on their jobs, see statistics and
performance information on their previous jobs

[R2] The application must distinguish between users
[R3] The application must be scalable and fault-tolerant, to the

point where there is no single point of failure
[R4] A job must be resumable from a checkpoint
[R5] The service must be secure

Since our proposed solution will be implemented as a
prototype only, security is not deemed a priority.

Fig. 1: Overview of proposed architecture

B. System Architecture

The overall solution ( Figure 1) was designed with scal-
ability and reliability in mind. The number of orchestrators,
clients, and workers can be scaled up, and all architectural
components are replicated so there is no single point of failure.

The client represents the computer utilized by the final
user of the solution. It will either communicate with a server-
rendered webserver that will act as frontend, or it will run the
frontend in a single page web application.

The frontend is stateless and it provides a way for the
client to interact with the rest of the solution. The frontend
communicates with the orchestrators through the RabbitMQ
cluster for control messages, and it can interact directly with
the FTP server of an orchestrator for data messages, i.e.: to
submit the script for job and to download the job results.

The orchestrator is responsible for handling business logic
in the solution between the frontend and workers, which
connect through RabbitMQ and using the FTP servers exposed
by each orchestrator. When requested, the orchestrator will
lookup relevant data on the client/worker association in a
distributed hash table and respond to the client/worker with
their ID in the orchestrator, which orchestrator will serve them
will be responsible for their data. This allows the client or
worker to initiate a session. When the orchestrator receives
a job from a client via FTP the orchestrator creates makes
relevant available to an available worker as a job, which will be
notified through the RabbitMQ broker and will retrieve related
data from the orchestrator’s FTP server. When the orchestrator
receives a checkpoint via FTP, it will be saved and in the event
that a worker suffer from a fault, the job will be resumed from
the latest checkpoint. When the orchestrator receives the result
of a job from a worker via FTP, it will notify the client who



owns the job via the RabbitMQ broker to provide it with a
FTP download link for the result.

The workers are responsible for executing the jobs, check-
pointing and resuming clients jobs. When a worker receives a
job, the worker starts executing it. During execution the worker
will periodically create checkpoints and upload them to the
orchestrator. The worker will also periodically send a heartbeat
to the orchestrator to let it know that it is still operational.
When a worker has finished executing a job, the result will be
uploaded to the orchestrator and the worker will once again
be ready to receive a new job.

The RabbitMQ cluster is the message broker. The de-
cision to use RabbitMQ for connecting various devices was
made due to its ability to provide Quality-of-Service, which
guarantees the delivery of sent messages between the devices.
The RabbitMQ broker provides different options for how
to communicate through the solution and for this service
is decided to use a combination of queues and exchanges
in a topic, direct and fanout configuration. By introducing
a centralized broker the amount of connections within the
solution is kept to only increase linearly when edge nodes are
joining the service thus making it scalable but creating other
issues such as introducing the possibility of bottleneck and
single points of failure. To overcome these issues RabbitMQ
can be configured to run as a cluster increasing the throughput
and having a failover strategy in case a RabbitMQ node
becomes unavailable [13].

C. Replication strategy

Among the desired requirements, an essential must have was
related to the possibility of resuming a job from a checkpoint.
Resuming from a checkpoint results in a solution capable of
creating snapshots of a running job periodically. The creation
of snapshots would enable the chance of resuming a job from
the latest snapshot whenever the edge node executing the job
suffers from a fault. We decided to use the Checkpoint/Restore
In Userspace (CRIU) [14] of Docker for this aim.

As for the orchestrator, for the sake of ensuring reliability
and availability, we decided to have backup orchestrators
that can take over for the primary orchestrator if this latter
component experiences hardware or software failure. We im-
plemented with passive replication, using a primary replica
manager and one or more backup replica managers that can
act as the primary in case of a replica fault. With regards
to control messages, the primary replica will receive requests
from a frontend, relay all requests to the other replica, and
acknowledge the requests to the fronted only after the replicas
confirm them. With regards to data, i.e. the scripts to be run as
jobs and the results from the workers, the primary orchestrators
save them into a folder shared with the orchestrator replica,
to let the operating system perform the replication.

D. Consistency strategy

To maintain consistency across the primary and the backup
orchestrators when they receive novel information such as
the presence of a new checkpoint, it is important to make

sure the all the orchestrator replicas would reach the same
state when targeted by requests. It is therefore necessary to
notify the orchestrator on changes of a shared resource, and
to enxure that all the changes are applied in the same order.
It is therefore important to use a multicasting strategy that
provides total ordering, which is a communication procedure
where a message is sent to a set of receivers, with all messages
being received in the same order.

RabbitMQ provides fanout exchanges which allows for
messages targeting the exchange to be received by multiple
queues in the order in which the messages were received
by the exchange. This means that RabbitMQ fanout provides
multicasting with total ordering. Thus RabbitMQ fan out
fulfills the solution needs for multicasting.

Here the totally ordered multicast using RabbitMQ as
described above is taken advantage of. When an orchestrator
wishes to make a change to a shared resource it will notify all
known orchestrators and each one will then stop accessing the
shared resources and respond that they are ready to receive
a change. The orchestrator wishing to make the change will
then publish the change to the fan out meaning that all
orchestrators, including itself, will receive the change and once
all known changes are consumed from an orchestrator queue
and has been applied, the orchestrator will release the lock.

An orchestrator can also initiate the locking procedure for
a change of the shared resource:

1) A locking request including a Globally Unique Identifier
(GUID) is sent to the RabbitMQ multicast.

2) The RabbitMQ broker takes the request and multicasts
the request to all orchestrators.

3) When each orchestrator reaches a safe state and it is ready
to update the shared resource, it sends an accept locking
acknowledgement to RabbitMQ targeting the orchestrator
requesting to lock the shared resource.

4) The RabbitMQ broker forwards all the replies to the
requesting orchestrator.

5) When the requesting orchestrator has received acknowl-
edgement from all orchestrators, it publishes the change
to the RabbitMQ multicast along with the GUID associ-
ated with the change.

6) RabbitMQ multicast the change to all orchestrators. When
an orchestrator sees the change it validates the change
by comparing the included GUID with the GUID from
step 1 and performs the change on the locally stored
shared resource. It then checks if further changes have
been requested, otherwise it unlocks the shared resource
and resumes normal operation.

E. RabbitMQ configuration

The solution uses a RabbitMQ broker for communication.
RabbitMQ topic exchanges leverage routing keys to direct
messages to their appropriate queues, with each component
of the architecture consuming messages from its designated
queue. The broker contains three exchanges, and all messages
targeting the orchestrators are routed through the orchestrator



exchange, messages targeting clients through the client ex-
change and messages targeting workers through the worker
exchange.

a) Client connection flow: (Figure 2a )
First, the client registers for a session by sending a username

to the orchestrator exchange with the routing key ”clientRegis-
ter”, and the name of a temporary queue created by the client
itself to receive a response.

Then, the orchestrator that consumed the session registration
from the client will look up client information using the
received username. The orchestrator responds to the client in
the temporary response queue including a client ID and the
name of the orchestrator that will serve the client. The client
saves the received information, discards the temporary queue,
creates a client queue and binds it to the client exchange with
routingkey ”{clientId}”, and adds a consumer to this queue
that will receive all future messages for the client.

Lastly, the client sends a connection request to the
orchestrator that the client was told will serve it by
targeting the orchestrator exchange with routing key
”{orchestratorname}.clientConnect”. Here the client provides
its client id. Upon receiving the message the orchestrator will
set up a consumer on the queue bound to the orchestrator
exchange with routing key ”{orchestratorname}.{clientId}”,
to receive future messages from the client.

b) New job flow: (Figure 2b)
The client sends a message to the orchestrator exchange

with the routing key ”{orchestratorname}.{clientId}”, the
header ”<type,startNewTask>” and the job name.

The orchestrator then responds acknowledging the newly
created job with a link to a folder in the FTP server running
on the orchestrator. The client then uploads the script for
the job on the orchestrator’s FTP server, and then sends a
”<type.taskUploadCompleted>” message to the orchestrator.

c) Worker connection flow: (Figure 2c)
The first message from worker to orchestrator provides

a worker id rather than a username when registering for a
session, and creates a temporary queue to receive a response.
The very first time a worker connects it will provide an empty
workerId and the orchestrator will create a new id for the
new worker. If the worker has connected before it will have
already saved the id on its edge node and will provide this
when registering. When responding to the session registration,
the orchestrator will respond to the temporary queue with the
created or provided worker id and the name of the orchestrator
that should serve the worker and the worker creates a consumer
on the queue bound to the worker exchange with routing key
”{workerId}”. Lastly, the worker sends a connection request
to the orchestrator that it will server it, and the orchestrator
creates a consumer on the queue bound to the orchestrator
exchange with routing key ”{orchestratorname}.{workerId}”.

F. Optimal frequency of checkpointing

In case both the faults frequency and the total time to per-
form a computation can be forecast, it is possible to compute
the optimal frequency for the checkpoints to minimize the total

Listing 1: Optimal number of checkpoints, given that T and
C can be forecast

int optimal_checkpoints_numer(mu, T, C):

bool in_progress = true;
int best_N = 0;

double best_time = predict_time(mu, T);

do {

N = N + 1;

double exec_time = N *
predict_time(mu, T / N) + (N-1) * C;

if (exec_time > best_time) {

in_progress = false;
N --;

} else {

best_time = exec_time;

}

}

return(N);
}

double predict_time(double mu, double T) {

return (Math.Exp(mu * T) - 1) / mu;

}

execution time of the job. This section will use the following
definitions:

• T = Total time to complete a job
• µ = Probability of fault in the unit time
• p(t) = Probability density for a fault
• Execution time per part, with checkpointing
• n = Time between checkpoints
• overhead = Cost of checkpointing

We model the fault’s distribution as a Poissonian:

p(t) = µe−µt

The time to complete a job (see the extended version of
the paper [15]), given that faults can occur and they lead to
restarting the job, is given by:

Ex(µ, T ) =
eµT − 1

µ

When checkpointing is part of the picture, the process is
essentially split into a set of N ∈ {1, ...} processes of length
T/N by making use of N − 1 checkpoints, at the cost of
an overhead of size C for each checkpoint, thus the total
execution time becomes:

NEx

(
µ,

T

N

)
+ (N − 1) C (1)

Equation 1 is convex (see [15] for its proof), thus it is
possible to find the optimal number of checkpoints to be used
by means the algorithm reported in Listing 1).



(a) Overview of the client connection flow (b) Overview of the job uploading flow (c) Overview of the worker connection flow

Fig. 2: Examples of communication between frontend, orchestrator and worker

G. Frontend Implementation

IV. EXPERIMENTS

This section describes the experiments performed over the
solution, and their results.

A. Experimental Deployment

The prototype we created runs on a Local Area Network
(LAN) containing one personal computer and 8 edge nodes.

The edge nodes are Raspberry Pis 4 with 1 GB Ram and 16
GB of removable SD storage, running Ubuntu Server 20.04.5
LTS (64-bit). The containers are using Docker Engine 20.17.

Six of the edge nodes run one worker each. One more
edge node runs the primary orchestrator. The last edge node
runs the orchestrator replica and the RabbitMQ broker. Since
the experiments focus on corroborating the formulas from
subsection III-F and the fault-tolerant orchestrator and workers
deployment, we did not set up a clustered RabbitMQ broker,
but from its specifics, it appears that it would have not
impacted the message bandwidth, nor it would have been part
of the trade-off that we are evaluating. The replication of the
checkpoint files over the secondary orchestrator is performed
by saving the files on a folder shared via the SMB protocol
between the orchestrators, thus it happens asynchronously with
respect to the rest of the checkpointing functions and it does
not impact the performance of the solution.

We have power meters in place to measure the energy spent
by each edge node. However, in the experimental results, we
will show only the total energy spent by the two orchestrators
and two workers, one executing the job and the other one
ready to take over if any fault occurs, since the other edge
nodes were not involved in the experiments.

A desktop computer (whose energy consumption we did
not measure) runs the client and the frontend web server.
Initally, the idea was to create a Docker image with the Python
interpreter, its libraries and the script related to a job every time
a job is submitted. However, it was discovered that building
the image in the orchestrator would introduce unnecessary
overhead during job startup, since all images were identical
except for the Python script to be executed. Thus, we created
one base image containing the Python interpreter and some of
its most useful libraries, and we pre-installed it on all the edge
nodes. The worker would then download the Python script for

the particular job to be executed, it would run the base image,
and inject into it the Python script. The job startup time got
much smaller, since the download time for the Python script
is much lower than downloading the full Docker image.

B. Checkpoint time penalty

The first question we aim to answer regards the overhead
incurred by periodically creating checkpoints of the jobs and
uploading them to the primary orchestrator. To this aim, we
ran a series of jobs, each of them having a completion time
of 300 seconds, and we set a very low µ, meaning that we
expected to have no faults during the job execution.

The first set of jobs were executed without doing any
checkpoint, then more jobs were executed performing a check-
point every 18.75 seconds of job execution (meaning that we
stopped the checkpoint timer while performing the checkpoint
itself), thus performing a total of 15 checkpoints.

Figure 3 shows the time to complete the job on the x axis,
and the energy spent on the y axis. The results hint that the
cost of checkpointing is approximately 90 seconds in total, i.e.:
each checkpoint causes a delay of 6 seconds. When computing
Eq. 1 in the rest of this section, we will consider the cost of
checkpointing as 6 seconds.

C. Fault Time penalty

To assess if checkpointing is required given the experi-
ments’ parameters, we did not perform any checkpointing with
different µ. Figure 4 shows that a low µ is perfectly compatible
with not using checkpointing, while a high µ = 0.131 leads
to a very long execution time.

To understand how often to perform a checkpoint, and to
corroborate the formulas and algorithm from Section III-F,
we set a relatively high µ = 0.003. We performed experi-
ments with no checkpoint, with 15 checkpoints, and with 5
checkpoints (one checkpoint every 50 seconds), as suggested
by the algorithm in Listing 1. Figure 5 shows that the best
results correspond to a checkpoint every 50s, corroborating
our formulas.

V. CONCLUSION

The scope of this work was to create a robust distributed
system for computation offloading. By focusing on creating
a solution with high fault tolerance (see the requirements in



Fig. 3: Execution time 300s, no faults, comparison between
no checkpoints and 15 checkpoints.

subsection III-A) every architectural component was designed
with the goal of eliminating single points of failure while
remaining scalable. For the sake of focusing on the problem
at hand, the current prototype had to sacrifice other character-
istics such as system security.

In section IV the cost-benefit of checkpointing was investi-
gated and the expected total execution time for jobs of varying
lengths both with and without checkpointing with different
fault rates were compared. The results confirm experimentally
that checkpointing is more useful when the jobs’ completion
time gets larger with respect to the expected fault rate. A
limitation of the study is that in the real world, the fault rate
might be hard to forecast and dependent on the environmental
conditions the workers experience, and the completion time
for a job can be even harder to forecast.

On the positive side, the experiments were performed con-
sidering that both workers and orchestrators were run on
the same kind of edge device. In a real deployment, the
orchestrator would be deployed in a more energy-saving device
(e.g.: Raspberry pi), the node devices running workers would
be more energy hungry (e.g.: Jetson Xavier), and the ratio
worker edge nodes / orchestrator edge nodes would be much
higher than in the current work.

Fig. 4: Execution time 300s, different faults frequencies, no
checkpoints.

Fig. 5: Execution time 300s, frequent faults, different check-
pointing frequencies.
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