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21 Abstract

22 California’s Central Valley, one of the most agriculturally productive regions, is also one of the 

23 most stressed aquifers in the world due to anthropogenic groundwater over-extraction primarily 

24 for irrigation. The groundwater depletion is further exacerbated by climate-stressed droughts. 

25 Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry has demonstrated the 

26 feasibility of quantifying global groundwater storage changes at uniform monthly sampling, 

27 though at a coarse resolution and is thus impractical for effective water resources 

28 management). Here, we employ the Random Forest machine learning algorithm to establish 

29 empirical relationships between GRACE-derived groundwater storage and in-situ groundwater 

30 level variations over the Central Valley during 2002–2016 and achieved downscaling of 

31 GRACE-observed groundwater storage changes from 666 km to 5 km. Validations of our 

32 modeled groundwater level with in situ groundwater level indicate excellent Nash-Sutcliffe 

33 Efficiency coefficients ranging from 0.94–0.97. In addition, the modeled groundwater trends 

34 have good agreements with two independent measurements of vertical land subsidence 

35 measured rates using GPS, and CryoSat-2 radar altimetry. Our estimated groundwater loss is 

36 about 30 km3 during 2002–2016, which agrees well with previous studies. We find the maximum 

37 groundwater storage losses of -5.7 ± 1.2 km3 yr-1 and -9.8 ± 1.7 km3 yr-1 occurred during the 

38 extended drought periods of January 2007-December 2009, and October 2011-September 

39 2015, respectively. We observed that Central Valley experienced groundwater recharges during 

40 abrupt winter flood episodes.  The 5-km resolution Central Valley-wide groundwater storage 

41 trends reveal that groundwater depletion occurs mostly in southern San Joaquin Valley and is 

42 collocated with sites showing severe land subsidence due to aquifer compaction from 

43 groundwater over withdrawal. 

44 Keywords: Machine Learning, Groundwater, GRACE, Remote Sensing

45 1. Introduction
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46 Groundwater is an important freshwater resource that meets agricultural, industrial, and 

47 domestic needs (Siebert et al., 2010; Wada et al., 2014; Zekster and Everett, 2004). Over the 

48 past few decades, several aquifers worldwide such as Central Valley, High Plains, Indus Plain, 

49 middle East, and others, have faced unprecedented human-induced stress due to the 

50 population growth, expansion of the irrigated areas, and other economic activities causing a 

51 drastic increase in groundwater usage (Bierkens and Wada, 2019; Famiglietti, 2014). 

52 Groundwater abstraction and outflow exceeding groundwater recharge over a long period of 

53 time and in large areas has been reported as the main cause of groundwater depletion 

54 (Konikow and Kendy, 2005; Wada et al., 2010). Groundwater depletion can lead to global water 

55 security and environmental issues (Famiglietti, 2014; Wada et al., 2010). There is an urgent 

56 need for quantifying long-term groundwater storage variations (GWS) at frequent temporal 

57 samplings that can help characterize the groundwater depletion in these stressed regions.   

58 Several approaches for quantifying GWS variations have been applied (e.g., Bierkens and 

59 Wada, 2019). Groundwater levels from in-situ ground wells provide essential information about 

60 stresses acting on the aquifers and play a key role in developing groundwater models (Taylor 

61 and Alley, 2001). Continuous groundwater level observations may further help quantify GWS 

62 and predict future trends in storage (Butler et al., 2013; Sun et al., 2013). However, it is 

63 infeasible to use only these data for quantifying regional GWS for several reasons. Firstly, 

64 monitoring wells required to accurately estimate groundwater levels are expensive to install and 

65 maintain. Therefore, several aquifers have poor coverage of such wells. Secondly, spatio-

66 temporal gaps in the coverage of ground wells might necessitate the interpolation of 

67 groundwater level data, leading to interpolation errors (Ahamed et al., 2022; Thomas et al., 

68 2017). Thirdly, uncertainties in the value of storage coefficient at well sites might translate into 

69 errors in GWS (Scanlon et al., 2012; Alam et al., 2021). Since 2002, the Gravity Recovery and 

70 Climate Experiment (GRACE) twin-satellite mission gravimetry data have enabled a continuous 
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71 global Terrestrial Water Storage (TWS) record for over a decade and a half, at a spatial 

72 resolution larger than 333 km (half-wavelength) and monthly sampling, e.g., Frappart et al., 

73 (2018). Innovative processing of GRACE data has enabled the uniform global quantification of 

74 GWS change for the first time by removing surface water storage changes using hydrologic data 

75 and model outputs (Famiglietti et al., 2011; Rodell et al., 2009), as well as data assimilation (50 

76 km resolution in Mehrnegar et al., (2021); 12.5 km resolution in Schumacher et al., (2018)). 

77 However, due to the limited spatial resolution and the associated errors in disaggregating 

78 GRACE-derived TWS (Scanlon et al., 2012), the application of GRACE data directly for 

79 groundwater assessment is not feasible at the local scale (Alley and Konikow, 2015), including 

80 in Central Valley in California which is the subject of the present study. Moreover, most GRACE-

81 based groundwater studies estimate GWS variations by removing soil moisture estimates 

82 simulated by Land Surface Models (LSMs) from GRACE observations of terrestrial water 

83 storage (Scanlon et al., 2012). However, LSMs do not simulate irrigation water use; hence soil 

84 moisture values will be particularly erroneous in the Central Valley, where groundwater irrigation 

85 is predominant (Famiglietti et al., 2011). 

86 Other methods of GWS computation include the water balance method, where several hydro-

87 meteorologic quantities, such as the difference between stream inflow and outflow, precipitation, 

88 and evapotranspiration, along with several of the storage changes (soil moisture, snow water 

89 equivalent, reservoir storage) are computed for a given aquifer (Ahamed et al., 2022; Xiao et al., 

90 2017). Several remote sensing, in-situ, and modeled datasets can be used to estimate the 

91 above quantities. However, these quantities might be subject to sources of uncertainties that 

92 creep into the water balance equation (Ahamed et al., 2022; Bierkens and Wada, 2019). 

93 Further, vertical deformation from GPS and Interferometric Synthetic Aperture Radar (InSAR) 

94 can provide regional estimates of groundwater storage changes (Ojha et al., 2018) or trends in 

95 the case of InSAR. With the availability of Sentinel-1 data since 2014, this method holds 
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96 promise for revealing aquifer dynamics and storage variations at high spatial resolutions 

97 (Castellazzi et al., 2016; Vasco et al., 2021). However, often in lieu of missing a continuous and 

98 uniform time series, InSAR land velocity or trend/subsidence estimates could potentially be 

99 biased due primarily to interannual or longer signals in the land deformation data.  

100 Machine Learning (ML) has been used for solving several non-linear complex problems in 

101 geoscience, e.g., Dramsch et al. (2020) and Sun and Scanlon (2019), as it does not require the 

102 knowledge of exact physical relationships between input and target variables. Machine Learning 

103 can also be used to estimate GWS variations at a higher resolution if GRACE-derived TWS 

104 variations can be downscaled to model in-situ groundwater level variations. A suitable 

105 combination of hydro-meteorological variables should be identified as input variables to build a 

106 robust machine-learning algorithm to model groundwater variations (Adamowski and Chan, 

107 2011). Several studies in the past have incorporated machine learning models like Artificial 

108 Neural Network (ANN) model, Random Forest, Boosted Regression Tree, and Deep Learning to 

109 downscale GRACE satellite data to produce GWS variations at high resolution (Chen et al., 

110 2019; Chen et al., 2020; Miro and Famiglietti, 2018; Rahaman et al., 2020).

111 Quantifying GWS variations is especially important for Central Valley. Here, ever-increasing 

112 irrigation demands, limited availability of surface water, and climate extremes such as prolonged 

113 and intensified droughts resulting from climate change have forced farmers to depend more on 

114 groundwater. As a result of the continuing groundwater depletion, several adverse impacts such 

115 as falling groundwater levels, decreasing groundwater yields, increase in pumping costs, 

116 degrading water quality, and damage to the aquatic ecosystems and wetlands have been 

117 observed (Faunt, 2009; Faunt and Sneed, 2015; Konikow, 2015). San Joaquin Valley, a major 

118 agricultural region in Central Valley, has witnessed the largest share of such adverse impacts, 

119 which have become more severe during prolonged and recurrent droughts in California.
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120 Several of the methods mentioned above have been applied to quantify the GWS in Central 

121 Valley. Famiglietti et al., (2011) used GRACE-derived TWS variations and other hydrological 

122 variables to quantify GWS variations during 2002-2011. Scanlon et al., (2012) used updated 

123 GRACE processing and in-situ groundwater level variations to compute groundwater depletion 

124 from 2002-2011. Ojha et al., (2018) used vertical deformation derived from InSAR to derive the 

125 storage changes. Alam et al., (2021) used a combination of GRACE, wells, water balance, and 

126 hydrological modeling to quantify GWS variations from 2003-2019. Ahamed et al., (2022) used 

127 remote sensing data and an ensemble of water balance methods to quantify groundwater 

128 storage variations in Central Valley during 2002-2020. Miro and Famiglietti, (2018) implemented 

129 ANN using GRACE-derived TWS variations along with hydro-meteorologic variables to model 

130 annual amplitudes of GWS variations at 4 km spatial resolution over a small portion of the San 

131 Joaquin Valley in Central Valley during 2002-2010. All the above studies have confirmed the 

132 continued loss of groundwater losses along with dramatic rates of subsidence due to 

133 groundwater overdrafts during the last two decades. 

134 All the above methods, except those utilizing in-situ wells and machine learning techniques, 

135 have limited capability to model GWS variations at high spatial resolutions at frequent temporal 

136 intervals. Groundwater levels in Central Valley can reflect complex variations due to withdrawal 

137 for irrigation, recharge due to partial infiltration of irrigation water, surface water impoundment, 

138 or precipitation. Further, climate extremes such as drought have put unprecedented stress on 

139 groundwater reserves which might be reflected in the groundwater fluctuations (Faunt, 2009). 

140 Compared to interpolation and kriging, more robust approaches are needed to fill the spatio-

141 temporal gaps in in-situ groundwater levels and possibly obtain regional storage variations 

142 (Alam et al., 2021; Thomas et al., 2017). Previous machine learning-based approaches (Miro 

143 and Famiglietti, 2018) can be further expanded to the whole of Central Valley to cover broader 
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144 spatio-temporal scales and improve the accuracy of modeled results using a suitable choice of 

145 input variables, models and better approaches for training the machine learning model. 

146 The primary objective of this study is to downscale GRACE-derived GWS variations in 

147 Central Valley, California, using the Random Forest machine learning algorithm. We chose the 

148 period from October 2002-September 2016, which covers most of the operational phase of 

149 GRACE satellite data. We use GRACE along with hydro-meteorologic/geologic data as input 

150 and in-situ groundwater level data as the target data for the model. Further, the Central Valley 

151 has a record of geodetic measurements from GPS, extensometers, and remote sensing 

152 observations, which have been used to quantify the subsidence due to groundwater overdraft 

153 (Ojha et al., 2018; Sneed and Brandt, 2015). These data can provide us with ancillary 

154 information against which we can further validate our modeled results as a part of our second 

155 objective. Primarily, we compared the modeled groundwater level with the vertical deformation 

156 obtained from GPS and altimeter and obtained an inelastic storage coefficient for a portion of 

157 Central Valley. This approach of combining multiple hydrological and geodetic data can further 

158 enhance our understanding of aquifer dynamics, which is important for regional studies such as 

159 the one presented here. A machine learning approach might help provide relevant local-scale 

160 data on groundwater depletion to Groundwater Sustainability Agencies (GSAs) to make 

161 informed management decisions required to support the goals of the Sustainable Groundwater 

162 Management Act. 

163

164 2. Study area

165 The Central Valley aquifer system in California covers an area of 52,000 km2 (Figure 1) and 

166 produces one-fourth of the food in the US (Faunt, 2009). Central Valley is primarily semi-arid 

167 and most precipitation occurs during the winter and early spring months and not in summer 
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168 when it is needed for irrigation and drinking (Jasechko et al., 2020). San Joaquin Valley is the 

169 major agricultural region and surface water quantity here depends on seasonal snowmelt from 

170 the Sierra Nevada in the East and Sacramento Valley in the North, which varies from year to 

171 year. Consequently, supplies for irrigation must be met through diverted surface water sources, 

172 and through groundwater from confined and unconfined aquifers. Groundwater is, therefore, an 

173 essential/persistent freshwater source accounting for up to 40% or more of the required water 

174 supply in Central Valley. 

175 Central Valley lost approximately 113 km3 of groundwater in the 20th century and 20 percent 

176 of this depletion is estimated to be contributing to land subsidence (Faunt, 2009). Consequently, 

177 groundwater levels have been declining since the 1930s when the first in-situ measurement was 

178 made (Bertoldi, 1989; Williamson et al., 1989). Groundwater storage losses from GRACE 

179 satellite observations and Central Valley Hydrological Model for the first decade of the 21st 

180 century is 25-30 km3 (Konikow, 2013).

181 As groundwater depletion continues in Central Valley and other nearby regions, Sustainable 

182 Groundwater Management Act was passed in 2014 in California to promote better groundwater 

183 management and governance. Through this act, more emphasis is laid on the sustenance of 

184 groundwater resources for all regions by optimizing the water consumption by agricultural and 

185 other sectors. This issue is extremely critical for Central Valley as impacts of depletion here are 

186 visible from the 1920s on the local scale.

187
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188  

189 Figure 1. Location of Central Valley and two major basins, Sacramento (black) and San 

190 Joaquin (blue) Valley in north and south, respectively. The location of wells used in this study 
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191 and the number of measurements over the study period is also shown with filled red circles. 7 

192 GPS sites used in this study are shown by black triangles. The green stars represent the wells 

193 used for plotting in Figure 

194 3. Data and Methods

195 We implemented the Random Forest (RF) machine learning (ML) model and followed the data 

196 processing workflow as in Figure 2. 
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197
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198 Figure 2. The workflow used for modeling groundwater level

199 3.1. Input and target data 

200

201 3.1.1. Precipitation and temperature

202 Here monthly precipitation and temperature data is obtained from Parameter-Elevation 

203 Regression on Independent Slopes Model (PRISM) dataset at 4 km spatial resolution (Daly et 

204 al., 2008). PRISM simulates the spatial variations of the weather and climate using in-situ data. 

205 It uses a “weighted regression scheme” to account for different physiographic features and 

206 climate regimes when providing final estimates of precipitation and temperature. 

207 Since precipitation can take a few months to recharge groundwater, we use 0, 1, 2, 3, and 4-

208 month lags for precipitation labeled as PPT0, PPT1, PPT2, PPT3, and PPT4, respectively, in 

209 this study.

210

211 3.1.2. Terrestrial Water Storage and Soil Moisture Variations

212 For the computation of TWS, we used the latest GRACE data product, the Release (RL) 06 

213 Level 2 (L2) monthly gravity field solutions provided by the University of Texas at Austin Center 

214 for Space Research (CSR). This solution consists of monthly spherical harmonic coefficients 

215 (SHC) complete to degree and order 60. This truncation represents low pass filtering in the 

216 spatial domain, causing a limited spatial resolution of GRACE data due to signal dampening. 

217 Consequently, the above processing step causes GRACE signal to represent 666 km (half-

218 wavelength) resolution on the ground. The post-processing involves standard steps such as 

219 replacing the degree d the zonal degree 2 coefficients from satellite laser ranging solutions, 

220 correcting for Glacial Isostatic Adjustment (GIA) process using a forward model, destriping using 

221 the Swenson method (Swenson and Wahr, 2006), and smoothing using a Gaussian filter of 300 
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222 km half-radius. Further signal leakage correction is performed by the iterative forward modeling 

223 approach (Chen et al., 2014). More detailed descriptions for GRACE post-processing are 

224 available in supplementary section 1. We finally obtained monthly TWS anomaly grids 

225 oversampled at 0.25° resolution. 

226 We obtained the monthly soil moisture from the GLDAS Noah Land Surface Model L4 monthly 

227 0.25° x 0.25° V2.1 (GLDAS_NOAH025_M) [accessed October 2020]. We compute soil moisture 

228 anomaly (SMA) by removing the mean soil moisture over the study period. We further computed 

229 TWSA-SMA, which provides useful information on spatio-temporal groundwater storage 

230 variations continuously over the study period covering the whole Central Valley. However, it is 

231 with the coarsest resolution of 0.25° amongst the predictor variables. 

232

233 3.1.3. Saturated hydraulic conductivity (K)

234 Saturated hydraulic conductivity data is available at 1 km spatial resolution (Zhang et al., 2019).  

235 To our knowledge, this is the only publicly available global dataset at such fine resolution.

236

237 3.1.4. Texture

238 Faunt et al., (2009) compiled texture data from the lithological drill holes, which range in depth 

239 from 12 to 1200 feet below the ground level. Faunt et al., (2009) used this textural data to 

240 simulate the geological model for Central Valley Hydrologic Model.

241

242 3.1.5. Percent Slope
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243 Percent slope is derived from the National Elevation Dataset (NED) at 1/3 arc second (~10 m) 

244 resolution. 

245

246 3.1.6. Groundwater level

247 The target variable against which we train for our machine learning model is the in-situ 

248 groundwater level obtained from the California Department of Water Resources (DWR) 

249 California Statewide Groundwater Elevation Monitoring (CASGEM) database (DWR CASGEM, 

250 2021 a, b) and the United States Geological Survey (http://water.usgs.gov/ogw/data.html). 

251 Though Central Valley consists of ~10,000 wells, we chose 586 wells for the entire Central 

252 Valley with good spatio-temporal coverage over our study period. We only chose a well if it has 

253 at least biannual measurement or continuous measurement over a shorter time scale within our 

254 study period (Figure 1). 

255

256 3.1.7. Deformation data

257 The vertical deformation data from GPS and CryoSat-2 (CS2) radar altimeter was not used for 

258 ML model development but rather as independent data to validate our modeled groundwater 

259 level results. GPS data is available from 

260 https://sideshow.jpl.nasa.gov/pub/JPL_GPS_Timeseries/repro2018a/post/point/, NASA Jet 

261 Propulsion Laboratory (JPL), California Institute of Technology. We also use the CS2 low-

262 resolution mode (LRM) radar altimetry data sensing solid Earth deformation time series in an 

263 innovative method applied to Central Valley (Yang, 2020). CS2 data was waveform retracked 

264 and spatially interpolated to obtain the 2-D vertical deformation maps for the southern San 

265 Joaquin Valley (Figure S1).
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266 Finally, to overcome the problem of mismatch in the spatial resolution of various input and target 

267 variables, all the inputs except the TWSA-SMA are interpolated at the ground well locations 

268 using the ‘scatteredInterpolant’ function in MATLAB and all input variables were aggregated to 

269 monthly sampling. The variable TWSA-SMA is used without further interpolations or resampling 

270 at the 0.25° spacing interval.

271

272 3.2. Machine Learning Modeling

273

274 3.2.1. Random Forest

275 Random Forest is a robust model which has shown the capability to produce highly accurate 

276 results for several geological applications, e.g., Hengl et al., (2018) and Tyralis et al., (2019).

277 Random Forest is an ensemble of decision trees (DTs) consisting of decision-making units 

278 known as nodes arranged in the form of a tree. Each DT is trained by passing data down from 

279 the node at the top (root node) to the leaf node (the node at which splitting stops), each splitting 

280 of a node result in two child nodes. Out of all the input variables at a node, the one chosen for 

281 splitting should be such that the child nodes are “purer”, i.e., homogeneous in terms of the 

282 target variable than the parents. The metric that is commonly used in regression problems is the 

283 sum of squared error (SSE) between all the observations at a particular node, and the mean of 

284 all the observations. Thus, SSE should be lower for the child nodes compared to the parent 

285 nodes for a valid split.

286 In the algorithm described in Breiman, (2001), the observations are randomly sampled with 

287 replacement at each DT, a process known as bagging. Approximately two-thirds of observations 

288 are used for model building in each DT and are known as “in-bag” samples. The remaining one-

289 third of the samples are called “out of bag” (OOB) samples used for internal validation by the RF 



16

290 model. Each DT has a different combination of in-bag and OOB data, and by combining 

291 predictions on OOB data from each DT, we can get a secondary validation of whether our RF 

292 model is over-fitted. Randomness in an RF is further increased by only selecting a few input 

293 variables for each DT, reducing the correlation between individual DTs and preventing 

294 overfitting. 

295

296 3.2.2. Development of model 

297 During the development of any machine learning model, a small portion of the dataset is 

298 isolated, known as the test dataset. The remaining dataset is then split into a training dataset, 

299 using which a model is built, and a validation dataset, against which the accuracy of the model 

300 is evaluated. This process of developing and fine-tuning the model on the training and validation 

301 dataset is iterative and repeated until the desired number of steps or accuracy is achieved. The 

302 predictive accuracy of the model is evaluated against the independent test dataset. Here we 

303 randomly select a test dataset spread throughout the study period and it constitutes 20% of the 

304 overall dataset. Previous studies have used 10-44% of the overall dataset as test data (Rajaee 

305 et al., 2019).

306

307 3.2.3. Cross-validation of model

308 Several studies (Hawkins et al., 2003; Molinaro et al., 2005) have pointed out that for smaller 

309 sample sizes, a single validation dataset does not provide an unbiased estimate of model 

310 performance. We, therefore, use the k-fold cross-validation technique wherein a training dataset 

311 is further split into multiple folds, each containing a unique combination of training and validation 

312 dataset. A separate model is then built and evaluated for each fold of the data. This way, model 

313 parameters are optimized for the entire dataset and overfitting is minimized. Finally, an 
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314 ensemble of models is formed, and their predictive accuracy is quantified with the test dataset. 

315 Since k-fold cross validation makes machine learning model development slower, we use k=5 or 

316 5-fold for model development. 

317

318 3.2.4. Hyperparameter optimization

319 Random Forest model has several hyperparameter values which need to be initialized by the 

320 user (Biau and Scornet, 2016; Probst and Boulesteix, 2017). They include the number of 

321 decision trees, the number of samples in the leaf node, and the number of variables to consider 

322 for splitting in each decision tree. While previous studies have attempted to improve machine 

323 learning predictions by increasing the complexity of model architecture (Nourani et al., 2013; 

324 Seyoum et al., 2019; Yin et al., 2022) or by optimizing the number of input variables (Rajaee et 

325 al., 2019; Tyralis and Papacharalampous, 2019), fewer studies have implemented strategies for 

326 optimizing hyperparameters. While random search and grid search algorithms for 

327 hyperparameter optimization are time-consuming and might not lead to the best 

328 hyperparameters (Feurer and Hutter, 2019; Yin et al., 2021), we fine-tune the machine learning 

329 models by implementing a Bayesian Hyperparameter Optimization (Snoek et al., 2012). This 

330 optimization algorithm first builds a probability model of the objective function (such as RMSE) 

331 during model training using different hyperparameters. It then uses the Bayesian distribution to 

332 find the most promising hyperparameter to evaluate the true (actual) objective function.  

333

334 3.2.5. Assessment of model accuracy and feature importance 

335 The modeled results are validated against selected in situ groundwater level observations 

336 located in the Central Valley using statistical estimates, correlation coefficient, root mean 

337 squared error (RMSE), Nash-Sutcliffe efficiency (NSE) coefficient, and scaled RMSE (R*). 
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338 Supplementary section contains detailed information on these quantities. Correlation quantifies 

339 the interdependence between two datasets. It ranges in value from  to +1, which represents a 

340 perfect negative and positive relationship, respectively, while a value of 0 represents no 

341 relationship. RMSE quantifies the standard deviation of residuals of the best fit line between 

342 observed and modeled values. NSE has been used to quantify the predictive power of 

343 hydrological models (Nash and Sutcliffe, 1970) and ranges from  +1. Values below 0 suggest 

344 unacceptable predictions, while above 0 are good predictions, with 1 being the perfect 

345 prediction.

346 We also compute the feature importance by permuting out of bag (OOB) observations (Breiman, 

347 2001). The underlying concept of this approach is that permuting the values of the most 

348 influential predictor should lead to the most increase in modeling error.

349 To further understand the dependence of modeling accuracy of the model on the input 

350 variables, we use the drop-column method (Jyolsna et al., 2021; Parr et al., 2020). We consider 

351 the model developed above after Bayesian Hyperparameter Optimization using all the input 

352 variables as the base model. Models are retrained without the dropped input variables and the 

353 increase in RMSE on test data compared to the base model is noted.

354

355 3.3. Computation of inelastic storage coefficient and groundwater storage

356 We use the modeled monthly groundwater level variations obtained above and the vertical 

357 deformation data from GPS and CS-2 altimeter to obtain the inelastic storage coefficient Skv. 

358 The formula for computing Skv is mentioned in Supplementary section 3. Since GPS measures 

359 daily vertical deformation, we averaged them to monthly values when correlating them with 

360 monthly groundwater level.  
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361  For unconfined aquifers, the storage coefficient is the specific yield (Sy)—the volume of water 

362 released due to drainage from an unconfined aquifer per unit decline in groundwater level. In 

363 the Central Valley, typical values range from 0.06 to 0.3 (Faunt, 2009). We obtained the 

364 groundwater storage in terms of equivalent water height (EWH) for the whole of Central Valley 

365 by multiplying groundwater level changes with the specific yield of 0.1 for the unconfined wells 

366 (<60 m deep) (Faunt, 2009). The groundwater storage, when multiplied by the area of Central 

367 Valley (~52,000 km2), gives the volumetric GWS estimate of Central Valley.

368

369 4. RESULTS

370

371 4.1 Overall results

372 Modeled results show a high accuracy for both San Joaquin and the Sacramento Valley (Figure 

373 3a). For San Joaquin Valley, correlation, root mean square error, NSE, and R* for training (test) 

374 data are 0.99(0.97), 1.35 (2.72), 0.99 (0.95), and 0.12(0.21), respectively. For Sacramento 

375 valley, correlation, root mean square error, Nash Sutcliffe efficiency, and normalized RMSE for 

376 training (test) data is 0.99(0.95), 1.21(2.12), 0.98(0.94), and 0.14(0.26), respectively. Additional 

377 validations of modeled results with respect to the out-of-bag data are provided in Supplementary 

378 file (Figure S2, Table S1).

379 For the computation of feature importance in Figure 3b, we summed the contributions from 

380 different lags of precipitation, i.e., PPT0, PPT1, PPT2, PPT3 and PPT4, in terms of one 

381 variable, PPT, to make it easier for analysis (Figure S3, we show feature importance 

382 considering all lag components for precipitation). For San Joaquin Valley, texture, hydraulic 

383 conductivity, slope, GWS (TWSA-SMA), temperature and precipitation are the most important 

384 features in decreasing order. For Sacramento Valley, precipitation is the most important, 
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385 followed by hydraulic conductivity and temperature. Texture, slope and groundwater storage 

386 (TWSA-SMA) show almost similar importance. 

387 Using the drop-column method, we find that groundwater storage causes the most increase in 

388 RMSE compared to the base model for both Sacramento and San Joaquin valley (Table S2). 

389 Removal of geological factors, texture and hydraulic conductivity, along with topographic slope, 

390 also significantly increases the RMSE of the models.

391
392 Figure 3. The accuracy assessment for machine learning modeling. Correlation plots 



21

393 between the modeled results and in-situ groundwater level variations for training and test 

394 data for (a) San Joaquin and (b) Sacramento Valley respectively. Feature importance plots 

395 for (c) San Joaquin and (d) Sacramento Valley.

396

397 The modeled results also compare well with the in-situ groundwater level from several 

398 ground wells (Figure 1, Figure S3) as they show similar seasonality and trends, and the 

399 largest groundwater level declines can be seen during the drought periods (Figure 4, Figure 

400 S4). Some mismatches can be seen, and they indicate that the modeled results are not 

401 perfect. These reflect remaining unmitigated errors or noise in in-situ data which cannot be 

402 modeled. Wells in San Joaquin valley generally show higher declines than those in 

403 Sacramento valley. We can also effectively fill the data gaps in in-situ groundwater levels 

404 through machine learning modeling.

405
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406 Figure 4. Modeled and in-situ groundwater level time series for wells in San Joaquin (left) 

407 and Sacramento valley (right). The location of the wells can be seen in Figure 1. Table S3 

408 shows the statistic).

409

410 4.2 Comparison of modeled results with vertical deformation data

411 Inelastic storage coefficients from vertical deformation measured at GPS sites and modeled 

412 groundwater level varies from 0.15-4.02×10-2 for GPS sites P544 and P303, respectively 

413 (Figure 5a-b; Table 1). In addition, we find a good correlation between the long-term 

414 subsidence and the modeled groundwater level at the selected GPS locations (Table 1). Skv 

415 computed from groundwater level and CS2 varies among the subbasins. The mean Skv over 

416 the subbasins is 5.89×10-2.

417

418 Figure 5. Computation of inelastic storage coefficient. (a) and (b) shows modeled groundwater 

419 level and vertical deformation from GPS at P304 and P545 (shown in Figure 1). (c) shows the 
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420 inelastic storage coefficients for subbasins computed from modeled groundwater level and 

421 deformation data from CS-2 altimeter.  

422

GPS Skv 

(This study)

Correlation between groundwater 

level and deformation from GPS

Skv

(Ojha et al., 2019)

P303 3.46 0.90 1.87

P304 0.9 0.96 1.38 

P307 1.94 0.89 1.14 

P544 0.15 0.85 0.19 

P565 4.02 0.91 -

P566 0.86 0.86 0.76

P545 0.42 0.94 0.33

P563 0.38 0.96 -

423

424 Table 1. Computation of Skv from modeled groundwater level and vertical deformation. Skv 

425 from Ojha et al., (2019) is shown for reference 

426

427

428 4.3 Spatio-temporal variations of groundwater variations

429 Central Valley lost approximately 30 km3 of groundwater from October 2002 - September 2016 

430 (Figure 6a). The most rapid decline in groundwater occurs during the two drought periods, 

431 January 2007- December 2009, and October 2011 - September 2015 (Table). These periods of 
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432 decline usually follow or happen during phases of low/negative annual precipitation anomalies 

433 (Figure 6b). Periods of positive annual precipitation anomalies usually are followed by periods of 

434 increase in groundwater storage.

435

436 Figure 6. (a) Temporal variations of groundwater storage in Central Valley and San Joaquin 

437 Valley (shown for comparison), and (b) annual precipitation anomalies in the Central Valley.

438

439

440

441

442
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Annual groundwater volume loss (km3 yr-1)Time period

This Study Previous Results Study

April 2006 - 

September 2009

-5.1 ± 1.2 -7.8 ± 0.8

-4.2 ± 0.3

(Scanlon et al., 2012)

(Xiao et al., 2017)

April 2006 – March 

2010

-4.2 ± 1.0 -6.0 ± 1.5

-4.1 ± 0.2

(Famiglietti et al., 

2011)

January 2007 – 

December 2009

-5.7 ± 1.2 -7.1 ± 2.4

-5.5 ± 0.3

-6

-(3-10)

(Ojha et al., 2018)

(Xiao et al., 2017)

(Alam et al., 2021)

(Ahamed et al., 2022)

October 2011 – 

September 2015

-7.6 ± 1.5 (San 

Joaquin Valley only)

-9.8 ± 1.7

-6.1 * (San Joaquin 

Valley only)

-7

-(6-17)

(Ojha et al., 2019)

(Alam et al., 2021)

(Ahamed et al., 2022)

October 2012 – 

September 2016

-7.7 ± 1.8 -10.0 ± 0.2 (Xiao et al., 2017)

443 Table 2. Comparison of GWS loss obtained from this study with previously published estimates.

444
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445 GWS declines over San Joaquin valley are more prominent than declines over Sacramento 

446 valley (Figure 7). The decline during the latter drought period can be seen in wider areas and 

447 have a higher magnitude compared to the declines during the former period. Groundwater 

448 depletion can be seen mainly in Tulare Lake, Tule, and Kern subbasins, although lower 

449 groundwater depletion can be observed in Kings, Westside, and Kaweah subbasins.

450

451 Figure 7. Spatial variations in modeled groundwater storage trends at 5-km resolution for (a) 

452 January 2007- December 2015 (b) October 2011–September 2015

453

454 Discussion
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455 1. Choice of predictor variables in ML modeling

456 Several hydrological and geological datasets have been used in past studies for modeling 

457 groundwater storage variations in previous studies. These include temperature, precipitation, 

458 soil type, soil moisture, land cover, evapotranspiration, canopy water, and surface runoff 

459 (Jyolsna et al., 2021; Milewski et al., 2019; Seyoum et al., 2019; Sun et al., 2013; Yin et al., 

460 2022). The choice of these predictors depends on the study area and type of aquifer and 

461 obviously on the availability of reliable data. For example, evapotranspiration is difficult to model 

462 reliably for heavily irrigated regions like Central Valley (Allen et al., 2011) and was not used. 

463 Surface water changes for Central Valley might be available at sufficient resolution through the 

464 Surface Water Ocean Topography (SWOT) mission to be launched after 2022. Several of the 

465 predictors chosen in this study, such as precipitation, temperature, topographic slope, and 

466 texture, have also been used in the numerical groundwater models as they hold importance for 

467 hydrological balances (Faunt, 2009; Faunt et al., 2016).

468 RF moel also estimated that input data used in modeling has different importance for 

469 Sacramento and San Joaquin Valley (Figure 3b), suggesting that different processes are 

470 ongoing in the two regions. Texture or percentage of coarse-grained material is an important 

471 indicator of the lithological variations in Central Valley. While Sacramento valley shows fine-

472 grained texture as it majorly consists of sediments derived from fine-grained volcanic rocks, San 

473 Joaquin Valley shows spatial variation in texture from east to west. The eastern region near the 

474 Sierra Nevada has coarser-grained sediments, making this region a good aquifer. The western 

475 part near the Coast Ranges has a fine-grained texture, being richer in shale. San Joaquin Valley 

476 and Tulare Basin consist of alternating layers of coarse and fine material, creating a mix of 

477 confined, unconfined, and semi confined units. 

478 Saturated hydraulic conductivity (K) describes the ease with which water moves through the 

479 pore spaces in the soil and is considered an important quantity in groundwater modeling 
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480 (Sanchez-Villa et al., 2006). Its order of importance is second and third for Sacramento and San 

481 Joaquin valley based on permutation of OOB data. Together, hydraulic conductivity and texture 

482 provide important geological information about groundwater flow patterns in the whole Central 

483 Valley at high spatial resolutions and the removal of both predictors causes a significant 

484 increase in RMSE of models. Variations in topographic slopes lead to differences in 

485 groundwater recharge (Satapathy and Syed, 2015). Its importance is, however, lesser than 

486 other geological variables.

487 TWSA-SMA, though at coarse resolution, provides valuable information about the continuous 

488 spatio-temporal groundwater storage variations over the last decade and a half. However, 

489 removal of this predictor alone causes the most increase in RMSE for models built for 

490 Sacramento and San Joaquin valley. Based on OOB permutation, it is of mid-importance. The 

491 above two findings seem contradictory. However, they can be explained by the fact that this 

492 predictor has crucial information for modeling groundwater variations, though at the lowest 

493 resolution of all predictors. Therefore, the permutation of this predictor might not significantly 

494 affect the predictions, while its removal affects the modeling results.

495 Precipitation is the dominant source of groundwater recharge and is, therefore, most significant 

496 for determining groundwater level patterns in Sacramento Valley based on OOB permutation. In 

497 contrast, San Joaquin Valley majorly depends on other surface water sources for recharge and 

498 anthropogenic sources might influence the groundwater withdrawal significantly. Its significance 

499 is, therefore, least for San Joaquin Valley. However, based on the drop-column method, 

500 precipitation has the least impact if removed from modeling in both Sacramento and San 

501 Joaquin valley.

502 Temperature consists of seasonal signals, which might also help capture seasonal groundwater 

503 signals. It is the least important for San Joaquin valley based on OOB permutation. However, its 

504 removal significantly affects the accuracy of modeling in Sacramento valley.
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505

506 2. Accuracy of machine learning results 

507 Our study achieved high accuracy for both cross-validated and test data in Sacramento and San 

508 Joaquin valleys (Figure 3a). Therefore, we minimized the overfitting, which reduces the 

509 confidence of machine learning results (Roelofs, 2018). Overall results indicate excellent NSE 

510 coefficients at 0.94–0.97 for validation data, revealing superior model predictive capability. 

511 These results are similar to Agarwal (2020), that used only 180 wells for modeling in Central 

512 Valley using the Random Forest model. As our accuracy estimates are similar to Agarwal, 

513 (2020), we can conclude that Random Forest can accommodate additional data without 

514 sacrificing accuracy.

515 An earlier study in southern San Joaquin Valley by Miro and Famiglietti, (2018) also used ANN 

516 and therefore we compared similarities and differences between this study, Agarwal, (2020) and 

517 Miro and Famiglietti, (2018). Miro and Famiglietti (2018) obtained validation NSE ranging from 

518 0.039 to 0.751 when modeling annual groundwater storage variations in southern San Joaquin 

519 valley using ANN. We obtained a better validation NSE of 0.95 for San Joaquin Valley when 

520 modeling monthly groundwater variations using random forest. Even Agarwal (2020) obtained a 

521 validation NSE of 0.86 using ANN. This is despite the fact that our study used similar predictors 

522 such as precipitation, temperature, and topographic slope from the same source as Miro and 

523 Famiglietti, (2018). We have processed GRACE L2 data along with leakage correction, while 

524 Miro and Famiglietti, (2018) used GRACE L3 monthly mass grids. A possible reason for the 

525 lower accuracy in their study might be because they model groundwater storage for each year, 

526 leaving less spatio-temporal data for modeling groundwater storage. Miro and Famiglietti (2018) 

527 use kriging to interpolate groundwater level changes for each year, a process that might lead to 

528 further errors (Deutsch, 2003; Sun et al., 2009). Since these kriged groundwater levels were 

529 used for training the model, kriging errors can further propagate in the modeled groundwater 
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530 storage variations. The choice of geological variables like texture and/or hydraulic conductivity 

531 might have further improved the accuracy. Further, since Random Forest is less prone to 

532 overfitting compared to ANN (Agarwal, 2020), Miro and Famiglietti, (2018) could have 

533 considered random forest for comparison with their results. 

534 We have directly used groundwater level as the output variable in ML modeling and then used 

535 the modeled results to compute groundwater storage. Several studies in the past have focused 

536 on groundwater level modeling and forecasting using fuzzy logic, ANN, Support Vector 

537 Machine, and other computational algorithms (see a comprehensive review by Rajaee et al., 

538 (2019) and references therein). Nonetheless, several studies have been conducted lately on 

539 modeling groundwater storage using RF and other algorithms.

540 Jyolsna et al. (2021) obtained a correlation of 0.50-0.83 when modeling TWSA in different 

541 Indian aquifers using RF, while Seyoum and Milewski, (2017) found a correlation of 0.86 when 

542 modeling TWS in Northern High Plains using ANN. Koch et al., (2019) obtained a correlation of 

543 0.78 when modeling depth to shallow water table for aquifers in Denmark using RF. Seyoum et 

544 al., (2019) obtained an NSE value of 0.45 when downscaling groundwater level anomalies for 

545 glacial aquifers in Illinois using a two-stage boosted regression tree. Rahaman et al., (2020) 

546 downscaled GRACE-derived groundwater storage variations in Northern High Plains to 0.25° 

547 resolution and produced NSE in the range of 0.5-0.8 using RF.  Although our study and past 

548 studies have used different output variables related to groundwater in machine learning 

549 modeling, better validation accuracy achieved in this study might also be attributed to 

550 improvements in model choice and model development as well as the choice of input predictors. 

551 The modeled groundwater level fits closely to the in-situ data from individual ground wells. They 

552 can capture the long-term decline in groundwater, accelerated depletion during the two drought 

553 periods, recovery during the wet years, and seasonal variations, which are essential for 

554 groundwater modeling in Central Valley (Ahamed et al., 2022).
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555

556 3. Spatio-temporal variations in groundwater storage

557 The groundwater storage losses or drought 1 range from 27 km3 (Scanlon et al., 2012) to 29 

558 km3 (Ahamed et al., 2022), while losses for drought 2 are 71 km3 (Ahamed et al., 2022). 

559 Groundwater storage losses from the ensemble water balance method (Ahamed et al., 2022) 

560 range from 8 to 31 km3 for drought 1 and vary from 22 to 67 km3 for drought 2. Variations in the 

561 estimate are due to different combinations of remote sensing, in-situ, and model data used in 

562 the water balance approach. Xiao et al., (2017) estimated groundwater storage loss of 16.5 km3 

563 and 40.0 km3
 during drought 1 and 2, respectively, using the water balance approach, which 

564 also matched with the estimates from GRACE in their study. Ojha et al., (2018) estimated 

565 groundwater loss of 21.32 ± 7.2 km3 during drought 1. Ojha et al., (2019) estimated that San 

566 Joaquin valley lost 24.2 ± 9.3 km3
 lost groundwater from October 2011 to September 2015 

567 based on GRACE data. Based on the GPS vertical deformation data, groundwater loss was 

568 29.25 ± 8.7 km3 for the same region and period (Ojha et al., 2019). Groundwater storage losses 

569 for droughts 1 and 2 are 17.1 ± 3.6 and 39.2 ± 5.1 km3, respectively, from this study which lie 

570 within the range of previous estimates. 

571 There is significant variability of storage losses for similar time periods using similar 

572 approaches. The causes of the variations include different methods and datasets along with 

573 their errors. Scanlon et al., (2012) used a distributed specific yield ranging from 0.05-0.3 in their 

574 study to estimate groundwater storage variations from in-situ groundwater levels (Faunt, 2009). 

575 Since regions with high groundwater level declines in southern San Joaquin valley have higher 

576 specific yields, it might be one of the reasons for higher groundwater storage estimated by their 

577 study. Water balance approach also has errors related to input variables, such as 

578 evapotranspiration which was identified as the most uncertain variable (Xiao et al., 2017; 

579 Ahamed et al., 2022).  Estimates of regional groundwater storage from in-situ groundwater level 
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580 data will require significant spatio-temporal interpolation due to issues with coverage in many 

581 regions (Figure 1). GRACE-derived TWS is also affected by several errors during data 

582 processing, which might also impact our machine learning model.

583

584 4. Comparison with vertical deformation data

585 Several past studies have combined groundwater levels from in-situ wells with geodetic 

586 observations from GPS and InSAR to obtain inelastic storage coefficient. Calculated inelastic 

587 storage coefficients for individual subbasins in southern San Joaquin valley from this study is 

588 comparable to past studies (Ojha et al., 2018). Ojha et al., (2018) computed Skv of 4.08 x 10-2 

589 for the whole of Central Valley, with San Joaquin having a higher Skv. Ojha et al., (2019) 

590 computed a mean value of as 2.3 × 10-2, while Smith et al., (2017) reported a computed mean 

591 with the range of 2.3 × 10-2 - 11.0 × 10-2 using estimates of aquifer compaction modeling for the 

592 San Joaquin Valley. These estimates compare to 5.8 x 10-2 from our study.  

593 At GPS sites, P304 and P545, vertical deformation can be seen mostly in times of drought with 

594 the groundwater level dropping. Between drought periods, the groundwater level was rising due 

595 to the availability of surface water; hence, little deformation occurred. Further, at the well site 

596 near P304, the lowest water level was recorded in 1992 at 45 m below the land surface (Faunt 

597 egt al., 2016). At the end of drought1, and most of the drought 2, modeled groundwater level at 

598 the site of P304 was below the previous lowest level (pre-consolidation stress level). The 

599 correlation between subsidence and long-term groundwater levels suggests that groundwater 

600 overdraft was the cause of the subsidence (Liu et al., 2019). Further analysis could be done with 

601 long-term modeled groundwater level data and vertical deformation data for other sites to 

602 understand the aquifer compaction.  Higher groundwater depletion can be combined with 

603 geological models to study sites that might be further vulnerable to subsidence.
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604 Significant groundwater depletion can be seen for subbasins in the Tulare basin and western 

605 San Joaquin valley for both the droughts. These regions have also been subjected to 

606 subsidence (Faunt et al., 2016, Sneed et al., 2013; Farr et al., 2015). It is an expected 

607 consequence because this region requires water for intensive irrigation and drinking water 

608 needs. Due to climate extremes such as droughts, surface water has dwindled over the years. 

609 Consequently, groundwater from the deeper confined aquifers is usually extracted and the 

610 overlying aquitard belonging to the Corcoran clay layer undergoes compaction. Due to the 

611 continued groundwater losses in this region exacerbated during droughts, irreversible 

612 compaction of the clay layers results in subsidence signals and might reflect the permanent loss 

613 in groundwater (Smith et al., 2017; Vasco et al., 2019).

614 It is important to note that the groundwater storage variations reflect the balance between 

615 groundwater recharge and abstractions in an area or region and directly reflect groundwater 

616 depletion. Magnitude and rate of subsidence, on the other hand, might also depend on the 

617 hydraulic and mechanical properties of the aquifer along with the past stress regime in the region. 

618 Our results are, therefore, an important contribution to the study of localized groundwater 

619 variations in the Central Valley for the study period longer than one and a half decades.

620

621

622 5. Future perspectives 

623 The approach presented here has some limitations. The Random forests, like most of the 

624 other machine learning models, cannot predict reliably outside the training range (Hengl et al., 

625 2019). We might not be able to use the model developed here in a new region with different 

626 geology and groundwater conditions. We will have to build a new model which can be applied to 

627 a specific region. However, this limitation is also applicable to numerical groundwater models or 
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628 the water balance approach. We propose building deep learning networks incorporating larger 

629 datasets and wider regions to model more complex variations in the future.  

630 Further, unlike the water balance method of Ahamed et al., (2022), which predicted groundwater 

631 storage variations for 2002-2020 in Central Valley, our method is currently limited by the 

632 temporal coverage of the GRACE. The GRACE mission operated from 2002-2017, followed by 

633 a gap of 1 year, after which GRACE-FO was launched. Several studies have filled the data gap 

634 using deep learning (e.g., Uz et al., 2021), and modeled GRACE data from such studies can be 

635 used to extend the study for a longer time.

636 Conclusions

637 This study advances the application of remote sensing data in the field of hydrological 

638 sciences by demonstrating an effective and improved downscaling of GRACE-estimated 

639 groundwater storage variations in Central Valley to a spatial resolution of 5 km using Random 

640 Forest ML approach and other hydrologic, meteorologic, and geologic datasets. We applied it in 

641 the Central Valley region, which has developed an ever-increasing groundwater demand for 

642 irrigation given the lack of surface water supplies within most parts and has also been impacted 

643 by two droughts during our study period. Making the information about local-scale groundwater 

644 variations across Central Valley will be crucial to help twitch the groundwater management as 

645 per the plans of SGMA. 

646 We obtained good modeling accuracy for San Joaquin and Sacramento Valley, proving that 

647 Random Forest is a robust machine learning model for such applications. We obtained similar 

648 or better prediction accuracy than other studies implementing machine learning to quantify 

649 groundwater storage variations, possibly because of the choice of predictors, choice and 

650 development of machine learning models. Development of better models, including deep 
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651 learning, can further improve modeling. However, the Random Forest model developed here is 

652 suited for studies wherein predictor importance is required. 

653 We also suggest new approaches for validating machine learning modeled results by 

654 comparing long-term modeled groundwater level changes with vertical deformation from GPS 

655 and CS-2 altimeter. The produced inelastic storage coefficient is an important aquifer 

656 mechanical reflecting deformation caused due to groundwater withdrawal. Since 2014, Sentinel-

657 1 can provide information about continuous vertical deformation using Interferometric Synthetic 

658 Aperture Radar (InSAR) technique. Using a similar approach as in this study, new information 

659 about the aquifer dynamics using Sentinel-1, GRACE-FO, and in-situ groundwater level data 

660 can be generated.

661 Central Valley exhibits groundwater loss of ~ 30 km3 during October 2002 - September 2016; 

662 however, there are periods of depletion and recharge during or followed by precipitation. 

663 Maximum amount of groundwater depletion occurs during the drought of January 2007- 

664 December 2009 and October 2011-September 2015, with rates of -5.7 ± 1.2 and -9.8 ± 1.7 km3 

665 yr-1, respectively. We produced groundwater depletion maps at 5 km resolution for these 

666 drought periods that can identify groundwater overdraft areas. These areas have also exhibited 

667 land subsidence. 

668 We conclude that the resulting modeled time series of groundwater storage variations at 5 km 

669 resolution over a decade and a half time period is effective for practical groundwater resources 

670 management.

671

672

673

674
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