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MUSIC GENRE RECOGNITION WITH RISK AND REJECTION

Bob L. Sturm

Audio Analysis Lab, Dept. Architecture, Design and Media Technology
Aalborg University Copenhagen, A.C. Meyers Vange 15, DK-2450
bst@create.aau.dk

ABSTRACT

We explore risk and rejection for music genre recognition
(MGR) within the minimum risk framework of Bayesian clas-
sification. In this way, we attempt to give an MGR system
knowledge that some misclassifications are worse than oth-
ers, and that deferring classification to an expert may be a
better option than forcing a label under high uncertainty. Our
experiments show this approach to have some success with
respect to reducing false positives and negatives.

Index Terms— Music genre recognition, machine learn-
ing, Bayesian classification

1. INTRODUCTION

The problem of making a machine recognize kinds of cultural
content has been explored in various mediums, from iden-
tifying literary authors [1], to categorizing “tweets” [2], au-
tomatically writing music reviews [3], characterizing paint-
ing styles [4], recognizing spoken dialects [5], and classify-
ing the genre and mood of music [6]. A large amount of
work addresses the specific problem of music genre recog-
nition (MGR) [7]; and a recent review [6] appears to show
significant progress has been made.

Our recent work [8, 9], however, challenges the claim
that this progress is due to any real increase of the capac-
ity of MGR systems to recognize genre. In [8], we take two
systems exhibiting some of the highest classification accura-
cies reported for a particular benchmark dataset, and submit
them to three tests. In the first, we show each system per-
sistently makes misclassifications that are very poor with re-
spect to musicological principles — explored further in [9].
For instance, one system persistently misclassifies as Metal,
“Mamma Mia” by ABBA. In the second test, we show how
each system can be tricked into classifying as different genres
the same piece of music just by minor filtering of the signal.
Finally, we show humans are unable to recognize the gen-
res used by music excerpts composed by each system to be
highly representative of the genres in which they have been
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trained. Whether or not an MGR system is really recognizing
genre, these findings motivate the question: can we modify an
MGR system such that it avoids making very poor misclassi-
fications? In this paper, we explore this idea within the mini-
mum risk framework offered by Bayesian classification [10].

Surprisingly little research in MGR explores the idea that
some kinds of misclassification are worse than others. A few
works, e.g., [11-19], argue that MGR systems should be eval-
uated in light of the specific confusions humans make. For
instance, confusing metal for rock music is “better” than con-
fusing metal for classical music. Weighting more heavily er-
rors of the latter kind might better reflect the usability of an
MGR system. This “discounted” approach to evaluation ap-
pears, for instance, in the 2005, 2007, and 2009 editions of
the MGR challenge of the Music Information Retrieval Eval-
uation eXchange (MIREX) [20]. Though we do not find work
directly implementing such knowledge in an MGR system,
rather than in its evaluation, there is some work in music au-
totagging employing risk, e.g., that of Lo et al. [21]. That
work, however, estimates a cost from a dataset, whereas we
define it according to what a user deems offensive. Other ar-
eas, such as automatic speech recognition, have also applied
risk minimization, e.g., [22].

Another aspect little explored in MGR are systems able
to defer classification. For instance, when asked whether a
piece of music is “Blues” or “Disco,” acceptable answers in-
clude “don’t know,” and “something other” [11,12,15,16,23].
Nearly all MGR systems so far proposed are designed to
choose only from those genres in which they are trained, but
we find four exceptions. Dannenberg et al. [24] describe
how they can reduce the false positives committed by their
style-recognition system with a threshold on the minimum
difference in distances between class means to observations.
Pye [25] describes, but provides no details about, forming a
“garbage model” by augmenting his dataset with songs out-
side of his six selected genres. Akin to this, Harb and Chen
[26] also state they use a “garbage model,” but do not discuss
what music they use to define that class, and how it affects
their system. Finally, the system of McKay [13] labels an ex-
cerpt “unknown” if the largest weighted sum of class-specific
“scores” from component classifiers (neural networks) is too
low, or not high enough with respect to other classes.



When an MGR system works by virtue of confounds and
not musicological factors [8,9], it is certain to make unaccept-
able misclassifications. Since we find no work adequately
addressing this problem, the opportunity arises to explore
whether incorporating the concept of misclassification risk
into an MGR system, and the option to defer classification,
can reduce the number of “bad” decisions. In the next sec-
tion, we review classification with loss and rejection from the
point of view of MGR. The third section presents our experi-
mental results.

2. CLASSIFICATION WITH RISK AND REJECTION

Consider an M -dimensional real observation x from a sample
space of K classes. Bayesian classification [10] seeks the
class with the minimum expected risk R(k|x):

K
i = 1 = 1 P
k = arg min R(k|x) = arg Iklélllclmz::l Lim P(m|x)

. T
argmin ey P(x) )]

where e, is the kth standard basis vector, and we define the
loss matrix and vector of posteriors

i1 by -0 ik P(1]x)
621 522 EQK P(2|X)

L= ,p(x) := : 2)
le EKQ EKK P(K|X)

where the set K := {1,..., K} indexes the classes. The loss
lim 1s user-defined to encapsulate the loss associated with
choosing class k for x when it is actually from m. P(m|x) is
the posterior of class m given the observation x. We assume
that all priors P(m) are non-zero, and all classes are disjoint.
For MGR, the last assumption means our model restricts each
piece of music to be of only one class. This is obviously arti-
ficial [27], but provides a starting point. Furthermore, out of
467 works in MGR, only ten do not use this model [7].

2.1. Uniform loss

If we believe all misclassifications are equally bad, then we
can define {j,, := 1—0j_,, where 6, = 1 for p = 0, and zero
otherwise. This is also called the “zero-one loss” function,
which makes L = 117 — I, where 1 is a vector of K ones,
and I is the identity matrix of appropriate size. In this case,
(1) becomes the maximum a posteriori (MAP) classifier [10]:

arg min e ( )P(x) arg min e; (1 —p(x)]

= arg max P(klx). (3)

MAP classification in MGR has been used in, e.g., [28-32].
If all classes are equally likely, the MAP classifier becomes

the maximum likelihood (ML) classifier [10]:

k = arg max P(x|k). 4)

ML classification in MGR has been used in [24, 33—-43].

2.2. Non-uniform loss

Consider in the sample space a ¢ € K for which it is impera-
tive the system has high precision (most observations it labels
c are from c) and recall (it mislabels few observations from
¢). We are not concerned with other misclassifications. Thus,
define the “persnickety-apathetic” loss function with loss [

lem = (1= i) [1+ (L= DOy + 6nc)]. )

The loss matrix L has zeros on its diagonal, K — 1 elements

in row c of value [, and K — 1 elements in column c of value

[, and ones everywhere else. We now analyze the role of .
The risk in (1) with this loss function becomes

R(k|x) = T [(11T ~Dp(x) + (I — 1)P(c]x)1
— (1= 1)[2P(c|x) — 1]ec}

=1—P(k|x) + (I — 1)P(c|x)
— (= 1)[2P(cx) = 1]k (6)

which makes the selection criterion become
k= arg max P(k|x) = (I = 1)[P(=elx) = P(c[x)}r—c
c
(7N
with P(—¢|x) := 1 — P(c|x). The classifier selects ¢ when

P(ex) ~ (1 = D[P(~elx) ~ P(cho] > max P(kfx). (8)

If | = 1, this reduces to (3). For [ > 1/2, if

-1

Plelx) <
() < 57—=5

€))

then the classifier will never select ¢ since the left hand side
of (8) is then negative. The same thing occurs for I < 1/2 if

-1
P(clx) > :

(10)

In the limit as [ — oo, the classifier will not select c as long
as P(c|x) < 1/2; and in the limit as | — —o0, the classifier
will not select ¢ as long as P(c|x) > 1/2. We see by substi-
tution that for [ = 1/2, if maxycx\. P(k|x) < 0.5, then the
classifier selects c.



2.3. Rejection
We can enable this system to reject classification when

min R(k|x) > Rmax (11)

for a maximum risk R .. For the “persnickety-apathetic”
loss function (5), the system rejects classification if

géi)rcl 1 — P(klx)+ (I —1)P(c|x)
- (l - 1)[2P(C|X) - 1]5k—c > Rmax  (12)

If, for a given [, the class with smallest risk in (6) is ¢, and
[P(—c|x) > Rmax, then the classifier rejects classification.
If the least-risk class in (6) is k* # ¢, and P(—k*|x) >
Ruax — (I—1)P(c|x), then the classifier will reject classifica-
tion. Hence, we see that in order to make the system capable
of rejecting classification, we must define Ry, < I.

3. SIMULATIONS

We now test the impact of loss and rejection for an MGR
system. As an example scenario, consider we have many
hours of radio recordings, and wish to estimate the extent to
which music that sounds ‘“classical” appears. The amount
of data we have is such that it prohibits manual listening
and labeling. The success criteria of a useful MGR sys-
tem include: high precision, i.e., that it is correct in most of
what it identifies as “classical-sounding”’; high recall, i.e., that
very few ‘“classical-sounding” excerpts are mislabeled; and
that it produces a set of rejected classifications that is either
mostly “classical-sounding” or mostly “not classical-sound”,
i.e., manual listening and labeling of this set is not prohibitive.

3.1. Method

We use the following experimental design. We train a clas-
sifier in six genre categories using features extracted from all

ISMIR2004 ISMIR2004 GTZAN
Training Validation Testing
Label files |excerpts|| files |excerpts| files |excerpts
Classical 320 | 1864 318 | 2016 | 102 102
Country - - - - 100 100
Disco - - - - 94 94
Electronic 114 | 1150 115 1216 - -
Hip hop - - - - 98 98

Jazz/Blues 26 206 26 190 185 185
Metal/Punk | 45 334 45 357 92 92

Reggae - - - - 89 89
Rock/Pop | 102 | 776 || 101 [ 718 | 191 [ 191
World 122 | 1256 [ 122 | 1384 | - -

| Toral [ 729 | 5586 || 727 [ 5881 | 951 [ 951 |

Table 1. Summary of training, validation, and testing datasets

disjoint 27.9 s (5 - 217 samples at 22.05 kHz sampling rate)
excerpts from the 729 audio files of the ISMIR2004 training
dataset [44]. Table 1 lists the six categories, the number of
files, and the number of excerpts from each. Then, using the
validation set of ISMIR2004 [44], we estimate the best loss [
and rejection threshold Ry,ax with respect to minimizing

FU,R) = [1 = tpr(l, R)? + [fpr(l, R)]?

X /1 1
+ ﬂﬁ (2 -5 cos[??rpur(l;R)D (13)

where tpr(l, R) is the true positive rate, fpr(l, R) is the false
positive rate, 5X /N is the weighted ratio of rejections X to
the total number of excerpts IV, and pur(l, R) is the propor-
tion of the rejected classifications that are labeled “classical.”
For our problem, we want tpr(l, R) ~ 1, fpr(l, R) ~ 0, and,
if 8 > 0, the number of rejected classifications either to be
small, or to be large and consist mostly of excerpts that sound
“non-classical” (in which case we ignore them), or “classical”
(in which case we add them all to the positives). In our imple-
mentation, we compute f(l, R) at several {(/, R)}, and find
where it is the smallest for each classifier. Finally, we test the
tuned system using features extracted from the 1000 excerpts
of the GTZAN dataset [45]. Since GTZAN has recently been
analyzed and shown to have several faults [46], we remove
from the analysis 49 exact replicas, and relabel two “jazz” ex-
cerpts as “classical.” The GTZAN column in Table 1 reflects
these changes.

Few papers in MGR apply training on one dataset and
testing on another, e.g., [40,47]. The danger of this is that
the concepts between two datasets may not be the same, even
though names of some of their classes are identical. In our
simulations, we thus assume the concepts of “Classical” in
ISMIR2004 and GTZAN are similar enough that this will not
be a serious problem for the validity of our experiments.

To create features for each 29.7 s excerpt, we compute
“scattering coefficients” — recently proposed by Anden and
Mallet [48] — using the implementation in [49]. The spe-
cific settings we define are: second-order decompositions, fil-
ter g-factor 16, and maximum scale 160. Since each excerpt
produces 40 feature vectors of dimension 469, we classify an
excerpt by selecting the class with the least rotal risk, i.e.,

40
k= in el L ; 14
argglelllcl ey, ;p(x,) (14)

where p(x;) are the posteriors for the ith feature vector. If
the argument above is greater than 40R,,.x, then we make
the system reject classification.

For each class, we define P(x|k) = N (x; pr, Ci), i.e.,
an observation of class k is distributed multivariate Gaussian
with mean i, and covariance Cy:

P(x|k) o |Ck|*1/26*%(X*Nk)TCk_-l(X*Mk). (15)
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Fig. 1. Receiver operating characteristics (ROC) of our sys-
tems. Circle: system that does not use loss or rejection. Di-
amond: best system with respect to (13) for § = 0. Star:
best system with respect to (13) for 5 = 1. The dots in the
lower-right corner are all systems with | < 0.

To learn the parameters of each distribution, we use unbiased
minimum mean-squared error estimators with the features we
extract from the ISMIR2004 training data [50]. If we assume
all classes are distributed with different means but the same
covariance (estimated from the data of all classes) the classi-
fier (1) is called “Linear Bayes Normal” (LBN); and if each
class is distributed with different covariances (estimated from
the data of each class), it is called “Quadratic Bayes Normal”
(QBN) [10]. We define the priors of all classes to be the same.

Uniform loss, no rejection: [ = 1, Rmax = o0

Pred. (LBN) Pred. (QBN)
+ - r + — r
+ | 1905 | 111 0 1985 31 0
— | 195 | 3670 0 293 | 3572 0
Non-uniform loss, rejection, but no rejection purity (5 = 0).
LBN: ! =2, Rax = 0.5; QBN: [ = 3, Rinax = 0.75
Pred. (LBN) Pred. (QBN)
+ - r + — r
+ | 1490 19 507 1971 17 28
— 36 2712 | 1117 140 | 3281 444

Non-uniform loss, rejection, and purity (5 = 1). LBN: [ = 1,
Rimax = 0.75; QBN: | = 2, Riax = 0.5

Pred. (LBN) Pred. (QBN)
+ - r + — r
+ | 1905 111 0 1971 15 30
- 194 3670 1 140 3040 685

Table 2. Validation (ISMIR2004) confusion tables for LBN
and QBN. Column “r” shows number of rejections in each.

3.2. Results of validation

From evaluation using the validation set of ISMIR2004, Fig.
1 shows the receiver operating characteristics (ROC) of LBN
and QBN for several pairs of loss [ and maximum risk Ryax;
and Table 2 shows the confusion tables of three particular
pairs. First, the open circles shows the performance of each
system with uniform loss and no rejection, and Table 2(a)
shows the confusion tables. We see LBN has about 100 fewer
false positives than QBN, but about 80 more false negatives.
The diamond in each ROC shows the best performance of
each system with respect to (13) for 8 = 0 for non-uniform
loss and rejection; and Table 2(b) shows the confusion tables.
While the number of false positives and negatives for LBN
decrease dramatically, it now finds 500 fewer true positives
than before. QBN, however, now halves its number of false
positives and negatives, and produces a set of rejections that
is only 6% Classical. Finally, the star in each ROC shows the
best performance of each system with respect to (13) for non-
uniform loss and rejection, and rejection purity S = 1; Table
2(c) shows the confusion tables. Now we see that QBN pro-
duces 2 fewer false negatives, and has a set of rejections that
is 4% Classical. The performance of LBN here essentially
equals what it is for uniform loss and no rejection.

3.3. Results of classification

We now test each of these systems using the GTZAN dataset,
the results of which are shown in Table 3. First, for the sys-
tems using uniform loss and no rejection we see in Table 3(a)
that while LBN here has less than half as many false posi-
tives as QBN, it has a far higher number of false negatives.
When these system consider non-uniform loss and rejection,
but do not consider the purity of the rejections, Table 3(b)
shows QBN and LBN both have a large decrease in the num-



Uniform loss, no rejection: [ = 1, Rmax = 00

Pred. (LBN) Pred. (QBN)
+ — r + — r
+ | 73 29 0 99 3 0
— | 20 | 829 0 47 | 802 0

Non-uniform loss, rejection, but no purity (5 = 0). LBN: [ = 2,
Rmax = 0.5; for QBN: [ = 3, Rimax = 0.75

Pred. (LBN) Pred. (QBN)
+ — r + — r
+ | 31 0 71 94 0
— 2 617 | 230 19 | 760 70

Non-uniform loss and rejection, and rejection purity (8 = 1).
LBN: [ =1, Rmax = 0.75; QBN: | = 2, Rinax = 0.5

Pred. (LBN) Pred. (QBN)
+ — r + — r
+ | 73 29 0 94 0 8
— | 20 | 828 1 19 | 711 119

Table 3. Test (GTZAN) confusion tables for LBN and QBN.
Column “r” shows number of rejections in each.

ber of false positives, but LBN suffers significantly in its num-
ber of true positives. Finally, Table 3(c) shows, for our cases,
considering the purity of the rejections produces little differ-
ence with the previous QBN system, or with LBN with uni-
form loss and no rejection. In summary, we see that with
non-uniform risk and rejection we are able to make an MGR
system, produce fewer false positives and false negatives for
our given scenario then when it does not consider them.

4. CONCLUSION

That an artificial system misclassifies is no surprise; and to
aim for one that does not misclassify certainly aims too high.
When it comes to cultural content such as music genre, which
escapes clear and definitive categories [27], and of which hu-
mans often disagree [11, 12,23, 51, 52], misclassification is
an inevitable part of an MGR system. One might see this as
a selling point: “some people would be entertained by the
predictions, especially when they were wrong” [53]. How-
ever, not all misclassifications are equal — some are worse
(funnier?) than others — and little work in MGR explores
this idea outside of evaluation. We have shown how such an
idea can be naturally incorporated into an MGR system by
using non-uniform loss and rejection and the minimum risk
framework of Bayesian classification. We analyzed a particu-
lar form of the loss, and applied it within a scenario of detect-
ing “classical-sounding” music. We could, of course, have
trained the classifiers to discriminate between “classical” and
“non-classical” — lumping together all excerpts in the ISMIR
2004 dataset that are not labeled “Classical” — but the point
of this paper is not to solve that particular scenario. It is to
investigate how loss and rejection can tune a multiclass MGR
system to produce results that could be more useful in a sce-
nario, regardless of whether or not the MGR system has any
capacity to recognize the genre used by music [8,9].
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