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Abstract— This paper exploits input-output feedback linear-

ization technique to implement distributed cooperative control 

of multi-agent systems with nonlinear and non-identical dy-

namics. Feedback linearization transforms the synchronization 

problem for a nonlinear and heterogeneous multi-agent system 

to the synchronization problem for an identical linear multi-

agent system. The controller for each agent is designed to be 

fully distributed, such that each agent only requires its own in-

formation and the information of its neighbors. The proposed 

control method is exploited to implement the secondary voltage 

control for electric power microgrids. The effectiveness of the 

proposed control is verified by simulating a microgrid test sys-

tem. 

 Index Terms— Distributed cooperative control, Input-

output feedback linearization, Multi-agent systems, Microgrid. 

I. INTRODUCTION 

Multi-agent systems, inspired by the natural phenomena 

such as swarming in insects and flocking in birds, have re-

ceived much attention due to their flexibility and computa-

tional efficiency. In these phenomena, the coordination and 

synchronization process necessitates that each agent ex-

change information with other agents according to some re-

stricted communication protocols [1]-[3].Cooperative con-

trol schemes for synchronization of multi-agent systems are 

mainly categorized in to regulator synchronization problems 

and tracking synchronization problem. In the regulator syn-

chronization problem, also called leaderless consensus, all 

agents synchronize to a common value that is not prescribed 

or controllable. In the tracking synchronization problem all 

agents synchronize to a leader node that acts as a command 

generator [4]-[8]. 

In this paper, the tracking synchronization problem for 

nonlinear and heterogeneous multi-agent systems is of con-

cern. Cooperative control schemes for multi-agent systems 

with non-identical and nonlinear dynamics are sparse in the 

literature [9]-[13].This paper exploits input-output feedback 

linearization to transform the nonlinear heterogeneous dy-

namics of the agents to linear dynamics. Using feedback lin-

earization, the synchronization problem for nonlinear and 

non-identical multi-agent systems is transformed to the syn-

chronization problem for linear and identical multi-agent 

systems. The Lyapunov technique is adopted to derive fully 

distributed control protocols for each agent, such that each 

agent only requires its own information and the information 

of its agents on the communication graph. 

Electric power microgrids are small-scale power systems 

containing distributed generators (DG). The dynamics of 

DGs are nonlinear and non-identical. Microgrids may get 

islanded form the main power grid. Once islanded, the DG 

voltage amplitudes start to deviate. To maintain these volt-

age amplitudes in stable ranges, the so-called primary con-

trol is applied. However, primary control may not return the 

DG voltage amplitudes to the nominal voltage. This function 

is provided by the secondary control, which compensates for 

the voltage and frequency deviations caused by the primary 

control [14]-[19]. The secondary voltage control of mi-

crogrids resembles the tracking synchronization of a multi-

agent system with nonlinear and non-identical dynamics. 

The effectiveness of the proposed control scheme, hence, is 

verified by implementing the secondary voltage control of a 

typical microgrid.  

II. PRELIMINARIES OF GRAPH THEORY 

The communication network of a multi-agent cooperative 

system can be modeled by a directed graph (digraph). A 

digraph is usually expressed as =(VG,EG,AG) with a 

nonempty finite set of N nodes VG={v1,v2,…,vN}, a set of 

edges or arcs EG VG×VG, and the associated adjacency 

matrix AG=[aij]
N N

. In a microgrid, DGs are considered 

as the nodes of the communication digraph. The edges of the 

corresponding digraph of the communication network 


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denote the communication links.  In this paper, the digraph 

is assumed to be time invariant, i.e., AG is constant. An edge 

from node j to node i is denoted by (vj,vi), which means that 

node ireceives information from node j. aij is the weight of 

edge (vj,vi), and aij>0 if  (vj,vi)EG, otherwise aij=0. Node i 

is called a neighbor of node jif (vi,vj)EG. The set of 

neighbors of node j is denoted as Nj={i│(vi,vj)EG}. For a 

digraph, if node i is a neighbor of node j, then node jcan get 

information from node i, but not necessarily vice versa. The 

in-degree matrix is defined as D=diag{di}
N N  with 

ii j N ijd a . The Laplacian matrix is defined as L=D-AG. 

A direct path from node i to node jis a sequence of edges, 

expressed as {(vi,vk),(vk,vl),…,(vm,vj)}. A digraph is said to 

have a spanning tree, if there is a root node with a direct path 

from that node to every other node in the graph [3]. 

III. SYNCHRONIZATION AND FEEDBACK 

LINEARIZATION 

Consider N nonlinear and heterogeneous systems or 

agents that are distributed on a communication graph  

with the node dynamics 

 
( ) ( )

( )

i i i i i i

i i i

x f x g x u

y h x

 



, (1) 

where ( ) in
ix t  is the state vector, ( )iu t  is the control 

input, and ( )iy t   is the output ofi
th

 node. It is assumed 

that ( ) : i in n
if   is locally Lipschitz in in

and (0) 0if  . 

The agent state dynamics and state dimensions in  do not 

need to be the same. The usual assumptions are made to 

ensure existence of unique solutions. 

In the tracking synchronization problem, it is desired to 

design distributed control inputs ( )iu t  to synchronize the 

output of all nodes to the output of a leader node 0( )y t , i.e. 

one requires 0( ) ( ),iy t y t i  . The leader node can be 

viewed as a command generator that generates the desired 

trajectory  

 0 0 0

0 0 0

( )

( )

x f x

y h x





. (2) 

The functions 0f  and 0h  are assumed to be of class C
. 

Definition 1. For the smooth function ( ) : nh x  and 

smooth vector field ( ) : n nf x  , the Lie derivative is 

defined as ( )f

h
L h f x

x





, with 
h

x




being the Jacobian ma-

trix [20]. 

A direct relationship between the dynamics of the outputs 

( )iy t  and the control inputs ( )iu t  is generated by differenti-

ating the ( )iy t . Differentiating the output of the i
th 

agent 

yields 

 .
i ii f i g i iy L h L h u   (3) 

An auxiliary control iv is defined as 

 .
i ii f i g i iv L h L h u   (4) 

If 
ig iL h  is invertible over  , the control input iu can be 

expressed as 

 
1( ) ( ).

i ii g i f i iu L h L h v    (5) 

If 
ig iL h  is equal to zero, the differentiation process is con-

tinued until iu can be written as a function of iv as follows. 

Definition 2. For the smooth vector field ( ) : nh x   

and smooth matrix field ( ) : n nf x  , 

1
1

( )
( )

k
fk k

f f f

L h
L h L L h f

x





 


, 1k  , where fL h has 

been defined in Definition 1 [20]. 

Assumption 1. There exists an 1r   such that 

a. 0, 1,
i i

l
g f iL L h for l r i    . 

b. 1 0,
i i

r
g f iL L h i   . 

According to Definition 2 and Assumption 1a, the r
th 

de-

rivative of ( )iy t can be written as 

 
( ) 1 .

i i i

r r r
i f i g f i iy L h L L h u   (6) 

Define the auxiliary control iv  as 

 
1 .

i i i

r r
i f i g f i iv L h L L h u   (7) 

If Assumption 1b holds, then the control input iu  is imple-

mented as 

 
1 1( ) ( ).

i i i

r r
i g f i f i iu L L h L h v     (8) 

Equation(7) results in the r
th

-order linear system  

 
( ) , .r
i iy v i   (9) 

Equation (9) and the first ( 1)r  derivatives of iy can be 

written as 

 

,1

,1 ,2

, 1

, .

i i

i i

i r i

y y

y y
i

y v








 

 (10) 

or equivalently  

 , ,i i iv i BA  (11) 
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where ,1 , 1[ ]Ti i i i ry y y   , 1[0 0 1]Tr B , 

and  

 

0 1 0 0 0

0 0 1 0 0

.

0 0 0 0 1

0 0 0 0 0 0
r r

 
 
 
 
 
 
  

A  (12) 

Using this input-output feedback linearization, the dynam-

ics of each agent is decomposed into the r
th

-order dynamical 

system in (11), and a set of internal dynamics denoted as 

(Slotine & Li, 1991) 

 ( , ),ii i iW i   . (13) 

The commensurate reformulated dynamics of the leader 

node in (2) can be expressed as 

 
( )

0 0 0 ,ry BY AY  (14) 

where 
( 1)

0 0 0 0[ ]r Ty y y  Y . 

The synchronization problem is to find a distributed iv in 

(8)such that 0 ,i i Y . To solve this problem, the coop-

erative team objectives are expressed in terms of the local 

neighborhood tracking error  

 
0( ) ( ).

i

i ij i j ii

j N

a b



   e Y  (15) 

The pinning gain 0ib   is nonzero only for the nodes that 

are directly connected to the leader node. From (15), the 

global error vector for graph is written as 

      0 ,r rL G I L G I      e δ
 

(16) 

where 
1 2

T
T T T

N
 
 

, 
1 2

T
T T T

N
 
 

e e e e , 

00 N 1 Y , G=diag{bi}, and δ  is the global disagree-

ment vector. can be written as 

 

( ) ( ) ,N NI I v   A B  (17) 

where 1 2

T

Nv v v v 
 

 is the global auxiliary con-

trol vector. 0  
can be written as 

 

( )
0 00( ) ( ) ,

r
N NI I   A B y  (18) 

where ( ) ( )
00

r r
N y y 1 . 

Definition 3. The i are cooperative UUB with respect to 

0Y  in (14) if there exists a compact set 
r  so that 

0 0 0( ( ) ( ))i t t  Y  there exists a bound B  and a time 

0 0 0( ,( ( ) ( )))ift B t tY , both independent of 0t , such that 

0 0 0 0( ) ( ) ,i ft t B t t t    Y [10]. 

The following lemmas are required. 

Lemma 1. Let ( A , B ) be stabilizable. Let the digraph  

have a spanning tree and 0ib  for at least one root node. Let 

i  be the eigenvalues of L G . The matrix 

 
( )NI c L G K    H A B ,                       (19) 

with c  and 
1 rK  , is Hurwitz if and only if all the 

matrices ,   ic K i A B  are Hurwitz [4], [21]. 

Remark 1. Note that A in(12) has r eigenvalues at s=0 and, 

hence, is unstable. Therefore, Lemma 1 requires that 

,   0i i   , that is L+G is non-singular. This requires the 

digraph to have a spanning tree and 0ib  for at least one 

root node. 

Lemma 2. Let the digraph  have a spanning tree and 

0ib  for at least one root node. Let ( A , B ) be stabilizable 

and matrices TQ Q  and TR R  be positive definite. Let 

feedback gain K be chosen as 

 

1

1,
TK R P B  (20) 

where
1P  is the unique positive definite solution of the con-

trol algebraic Riccati equation  

 

1

1 1 1 1 0.T TP P Q P R P   A A B B  (21) 

Then, all the matrices ,   ic K i  A B  are Hurwitz if 

min

1
,

2
c


 where min min ( )i iRe  [21]. 

Assumption 2. The vector ( ) ( )
00

,
r r

N r y 1 y  is bounded so 

that 
( )

0

r r
MYy , with r

MY  a finite but generally unknown 

bound. 

Theorem 1. Let the digraph  have a spanning tree and 

0ib  for at least one root node. Assume that the zero dy-

namics of each node 0( , ),i i iW i    are asymptotically 

stable. Let the auxiliary control iv in (8)be chosen as 

 ,i iv cK  e  (22) 

where c is the coupling gain, and 
1 rK   is the feed-

back control matrix. Then i  are cooperative UUB with re-

spect to 0Y  in (14)and all nodes synchronize to 0Y  if K  is 

chosen as in (20) and 

 
min

1
,

2
c


  (23) 

where min min ( )i iRe  . 
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Proof: Consider the Lyapunov function candidate  

 

2 2 2 2

1
, , 0,

2

T TV P P P P  e e  (24) 

where e  is the global error vector in (16). Then 

   

   
2 2

( )
2 0

0( )

( ) ( ) ( )( ) .

T T
r

rT
r N N

V P P L G I

P L G I I I v

    

      

e e e

e A δ B y

      

(25) 

Since the digraph has a spanning tree, and 0ib  for at 

least one root node,  L+G is invertible. Therefore, (25) can 

be written as 

  1
2

( )

0

( )(( )(( ) )

( )( )).

T
r N r

r
N

V P L G I I L G I

I v

     

  

e A e

B y
(26) 

The global auxiliary control v  can be written as 

 

( ) .Nc I K  v e  (27) 

Placing (27) into (26) and considering the fact that

( )( ) ( ) ( )A B C D AC BD     yields 

 

 2

( )
2 20

( )
2 0

( )

(( ) )

(( ) ) .

T
N

rT T

rT

V P I c L G K

P L G P

P L G

     

   

 

e A B e

e B y e He

e B y

 (28) 

From Lemma 1 and Lemma 2, H  is Hurwitz. Given any 

positive real number  , choose the positive definite matrix 

2P , such that the following Lyapunov equation holds, 

 

2 2 .T

NrP P I H H  (29) 

Placing (29) in (28) yields 

( )
2 2 2 0

( )
2 0

1
( ) (( ) )

2

(( ) ) .
2

T

Nr

rT T

rT T

V P P L G

P L

P

I G


    

    

e H H e e B y

e e e B y  

(30) 

According to Assumption 2 

 

2

2( (( ) )) ,
2

r
MV P L G Y


    e e B  (31) 

then, 0V   if 

 

22 ( (( ) ))
.

r
MP L G Y



  


B
e  (32) 

Equation (32) shows that the global error vector e  is 

UUB. Therefore, the global disagreement vector δ is UUB 

and, hence, i  
are cooperative UUB with respect to 0Y  [9]. 

If zero dynamics are asymptotically stable, then (9) and (22) 

are asymptotically stable [20]. This completes the proof. □ 

Remark 2. If 
( )
0 0ry  , the error bound in (32) is zero and 

the global error vector e  is asymptotically stable. 

IV. TRACKING SYNCHRONIZATION PROBLEM IN 

MICROGRIDS 

In this section, the feedback linearization-based tracking 
synchronization method presented in Section III is used to 
implement the secondary voltage control of microgrids. 

Figure 1 shows the block diagram of an inverter-based 
DG. It contains the primary power source (e.g., photovoltaic 
panels), the voltage source converter (VSC), and the power, 
voltage, and current control loops. The control loops set and 
control the output voltage and frequency of the VSC. Outer 
volt-age and inner current controller block diagrams are 
elaborated in [22]. The power controller provides the voltage 

references 
*
odiv  and *

oqiv  for the voltage controller, and the  

 

Fig 1. The block diagram of a DG. 

operating frequency i  for the VSC. Note that nonlinear 

dynamics of each DG in a microgrid are formulated on its 
own d-q (direct-quadratic) reference frame. The reference 
frame of microgird is considered as the common reference 
frame, and the dynamics of other DGs are transformed to the 
common reference frame. The angular frequency of this 

common reference frame is denoted by .com  

The nonlinear dynamics of the i
th 

DG, shown in Fig. 1, 
can be written as 

 

( ) ( ) ( )

( )

i i i i i i i i i

i i i

u

y h

  




x f x k x D g x

x
, (33) 

The term iD  is considered as a known disturbance. Detailed 

expressions for ( )i if x , ( )i ig x , ( )i ih x , ( )i id x , and ( )i ik x  

are adopted from the nonlinear model presented in [22]. 

The primary voltage control is usually implemented as a 
local controller at each DG using the droop technique. 
Droop technique prescribes a desired relation between the 
voltage amplitude and the reactive power. The primary volt-
age control is  

 

*
, ,

io magi ni Q iv V n Q   (34) 

where
*
,o magiv  is the voltage set point provided for the inter-
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nal voltage control. iQ
 
is the filtered reactive power at the 

DG’s terminal. Qin is the droop coefficient that is chosen 

based on the reactive power ratings of DGs. niV  is the pri-

mary control reference [19]. 

The secondary frequency control chooses niV  such that 

the output voltage amplitude of each DG synchronizes to its 

nominal value, i.e. ,o magi refv v . For secondary voltage 

control, the input and output in (33) are i niu V and 

,i o magiy v , respectively. Considering the nonlinear dynam-

ics of each DG in (33), the input niV  appears in the second 

derivate of ,o magiv , i.e., 2r   in (9). According to the re-

sults of  Theorem 1, adopting appropriate values for c in (22)

, and P1 and Q in (21), the control protocol in (8) and (22) 

synchronizes the output voltage amplitude of each DG to its 

nominal value. 

V. SIMULATION RESULTS  

The effectiveness of the proposed secondary voltage con-

trol is verified by simulation on an islanded microgrid. Fig-

ure 2 illustrates the single line diagram of the microgrid test 

system. This microgrid consists of four DGs. The lines be-

tween buses are modeled as series RL branches. The specifi-

cations of the DGs, lines, and loads are summarized in Table 

I. In this table, PVK , IVK , PCK , and ICK are the parame-

ters of the voltage and current controllers in Fig. 1. The volt-

age and current controllers used in the following simulation 

are adopted from [21]. It is assumed that the DGs communi-

cate with each other through the communication digraph de-

picted in Fig. 3. The associated adjacency matrix of this di-

graph is  

 

0 0 0 0

1 0 0 0
.

0 1 0 0

1 0 0 0

GA

 
 
 
 
 
 

 (35) 

TABLE I 

SPECIFICATIONS OF THE MICROGRID TEST SYSTEM 

DGs 

DG 1 & 2 (45 kVA rating) DG 3 & 4 (34 kVA rating) 

mP 9.4×10-5
 mP 12.5×10-5

 

nQ
 1.3×10-3 nQ

 1.5×10-3 

Rc 0.03 Ω Rc 0.03 Ω 

Lc 0.35 mH Lc 0.35 mH 

Rf 0.1 Ω Rf 0.1 Ω 

Lf 1.35 mH Lf 1.35 mH 

Cf 50 µF Cf 50 µF 

KPV 0.1 KPV 0.05 

KIV 420 KIV 390 

KPC 15 KPC 10.5 

KIC 20000 KIC 16000 

Lines Line 1 Line 2 Line 3 

Rl1 0.23 Ω Rl2 0.35 Ω Rl3 0.23 Ω 

Ll1 318 µH Ll2 1847 µH Ll3 318 µH 

Loads 

Load 1 Load 2 

PL1 

(per phase) 

12 kW PL2  

(per phase) 

15.3 kW 

QL1  

(per phase) 

12 kVAr QL2  

(per phase) 

7.6 kVAr 

 

Fig 2. Single-line diagram of the microgrid test system. 

 

Fig 3. Topology of the communication digraph. 

 

Fig. 4. DG output voltage magnitudes: (a) when vref=1 pu, (b) when 

vref=0.95 pu, and (c) when vref=1.05 pu. 

DG 1 is the only digraph that is connected to the leader 

node with 1 1g  . Since agent outputs need to track constant 

references, the leader node has no dynamics, i.e. 0 0y  .The 

coupling gain in (22) is c=4 which satisfies(23). The solution 

of the algebraic Riccati equation in (21) is used to calculate 
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the feedback control vector Kin(22). In(21), the algebraic 

Riccati equation parameters are chosen as 
50000 0

0 1
Q

 
  
 

 

and R=0.01. The resulting feedback control vector is 

K=[2236   67.6]. It is assumed that the microgrid is islanded 

from the main grid at t=0, and the secondary control is ap-

plied at t=0.6 s. Figures 4a, 4b, and 4c show the simulation 

results when the reference voltage value is set to 1 pu, 0.95 

pu, and 1.05 pu, respectively. As seen in Fig. 4, while the 

primary control keeps the voltage amplitudes stable, the sec-

ondary control establishes all the terminal voltage ampli-

tudes to the pre-specified reference values after 0.1 seconds. 

VI. CONCLUSION 

This paper proposes a control method for the tracker syn-

chronization problem of multi-agent systems with nonlinear 

and heterogeneous dynamics. Input-output feedback lineari-

zation is used to transform the nonlinear dynamics of agents 

to linear dynamics. The distributed control inputs are de-

signed such that the synchronization errors are bounded. The 

proposed control method is used to implement the secondary 

voltage control for microgrids. The proposed secondary con-

trol is fast and uses a sparse and cheap communication net-

work. The effectiveness of the proposed secondary control is 

verified by simulating a microgrid test system. 
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