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Abstract: Urban micro-climate plays an important role in human activities and in ensuring public
health. For instance, the urban heat island effect is crucial to the thermal comfort of citizens and
tourists, similar to the urban cool island effect’s importance on human and infrastructure resilience.
Approximately 35% of global big cities are located in drylands. While existing research has focused
on the spatial and temporal changes of surface urban cooling island intensity (SUCII) in drylands
in the past, there is a gap in predicting the future spatiotemporal changes in SUCII for cities within
these dryland regions. This study aims to forecast the spatiotemporal dynamics of daytime SUCII
of representative growing cities with a dry and cold climate. Kerman and Zahedan cities, which
are undergoing large urbanization and have harsh hot summer climates, were selected as the study
area. Landsat 5 and 8 images and products were utilized for six timestamps within the timeframe
of 1986–2023. Various methods, including a random forest algorithm, spectral indices, Cellular
Automata-Markov (CA-Markov) model, the cross-tabulation model, and spatial overlay and zonal
statistics, were employed to assess and model the spatiotemporal changes in SUCII. Initially, historical
land cover maps, land surface temperature (LST), surface biophysical characteristics, and SUCII data
were prepared, and their spatiotemporal changes were evaluated. Then, projected maps for these
variables for the year 2045 were produced. The results indicated that the built-up areas, bare lands,
and green spaces of Kerman (Zahedan) city in 1986 were 26.6 km2 (17.6 km2), 103 km2 (92.5 km2), and
44.4 km2 (5.6 km2), respectively, and these values reached 99.3 km2 (41.9 km2), 61.2 km2 (70.7 km2),
and 13.5 km2 (3.2 km2) in 2023. The built-up lands area of Kerman (Zahedan) city is expected to
increase by approximately 26% (36%) by 2045, while bare land and green space are expected to
decrease by about 32% (20%) and 39% (31%), respectively. The greatest rise in average LST of Kerman
(Zahedan) city is associated with the conversion of green spaces to barren land, resulting in a notable
increase of 5.5 ◦C (4.3 ◦C) in 1986–2023. The conversion of barren land to built-up land in Kerman
(Zahedan) city has led to a decrease of 4.6 ◦C (3.8 ◦C) in LST. The SUCII of Kerman (Zahedan) city
for 1986, 1994, 2001, 2008, 2015, and 2023 were −0.3 ◦C (0.9 ◦C), −0.8 ◦C (0.4 ◦C), −1.4 ◦C (−0.5 ◦C),
−1.9 ◦C (−1.5 ◦C), −2.6 ◦C (−2.5 ◦C), and −3.2 ◦C (−3.4 ◦C), respectively. The projected SUCII in
Kerman (Zahedan) city for 2045 is about −4.3 ◦C (−4.5 ◦C), indicating an increasing trend in SUCII
in the future. The area of zones without SUCII in Kerman (Zahedan) city decreased by 44.8 Km2

(54.8 Km2) from 1986 to 2023, while the areas of low, medium, and high SUCII classes increased
by 9.1 Km2 (9.9 Km2), 10.9 Km2 (11.9 Km2), and 24.8 Km2 (33.1 Km2), respectively. The area of
non-SUCII and high SUCII classes of Kerman (Zahedan) city in 2045 is expected to decrease by
31.5 Km2 (12.0 Km2) and increase by 51.2 Km2 (9.5 Km2) compared with 2023. The findings of this
research indicate that the physical growth of cities in drylands can lead to the moderation of LST,
contrary to mechanisms in humid and wet regions.
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1. Introduction

As cities grow physically due to population growth, economic, social, resilience, and
sustainability factors continue to grow and cause cascading and compound effects on
natural resources, the environment, surface energy balance, water ecosystems, atmospheric
conditions, ecosystems, and climate [1–3]. The cumulative negative impacts of unsus-
tainable urban development practices ultimately will lead to a decline in the quality of
human life in urban and non-urban environments, particularly in developing countries
with classical urban planning agendas [4–8]. To manage the adverse effects of population
growth and urban expansion, the implementation of smart and sustainable urban strategies
is essential [7,9–11]. In this regard, international communities in light of the UN Sustainable
Development Goals (UN-SDGs) are seeking innovative and sustainable solutions for urban
development and optimal resource management to maintain a balance between urban
development and environmental conservation for a sustainable future.

Changes in land cover are among the primary effects of the physical growth of cities
on the environment and natural resources, and they hold significant importance [12–15].
These changes typically occur due to construction activities, urban development, and land
use alterations. The impacts can induce various alterations in the biophysical characteristics
of the land surface, including surface permeability, vegetation cover, and imperviousness,
leading to irreversible unpleasant consequences [16–18]. The outcomes of these changes
exacerbate anomalies in urban environment thermal quality [19–22] and also influence veg-
etation phenology [23,24] and vegetation growth [25]. Therefore, monitoring and predicting
land cover changes resulting from urban growth and their impact on urban environment
thermal quality not only enhances our comprehension of the effects stemming from such
changes but also facilitates the implementation of primitive measures to mitigate these
effects [26–31]. This, in turn, assists climate planners, stakeholders, and relevant decision
makers in developing more effective management strategies to control environmental
thermal stress and alleviate its adverse consequences. Additionally, studies on this subject
contribute to various UN- SDGs, underscoring its potential to drive global sustainability
initiatives. In summary, the results of this study contribute to the sustainable well-being of
urban environment thermal quality and the quality of life for its inhabitants.

The difference in energy balance between urban and peri-urban areas arises from
variations in surface characteristics [1,32,33]. Disparities in surface features between ur-
ban and non-urban areas include factors such as heat absorption capacity, surface albedo,
permeability, vegetation cover density, and three-dimensional geometry of structures, con-
tributing to temperature differences between urban and non-urban areas [34–37]. The
magnitude of this temperature difference varies in regions with different climatic condi-
tions [16,38–40]. In humid and temperate climates, increased building density, widespread
use of heat-absorbing materials like asphalt and concrete, reduced surface albedo, and over-
all vegetation constraints intensify heat retention [16,31,37,41]. These factors ultimately lead
to higher LST in urban areas compared with non-urban areas, creating the surface urban
heat island (SUHI) effect [42–45]. The SUHI effect has been extensively evaluated in past
research, emphasizing the importance of urban planning and environmental management
in mitigating the adverse effects of SUHIs.

The impact of urban growth and the conversion of natural lands into built-up areas
in semi-arid and arid regions differs. Placing dry bare lands around cities in semi-arid
and arid regions results in lower daytime LST in urban areas compared with non-urban
areas [46–50]. The cooler daytime LST in urban areas may be attributed to factors such
as soil moisture levels in the urban area, cooling effects from plant transpiration, shading
from the crowns of trees and buildings, and the presence of open water bodies like urban
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lakes and rivers. This contrasts with the barren lands surrounding the city, which have
dry surfaces with minimal vegetation cover and shade. This cooling effect is termed the
surface urban cooling island (SUCI) [51–53]. Some past studies have focused on assessing
the SUCI effect and its spatiotemporal changes. Their results indicate that the physical
growth of cities in dry and semi-arid regions can lead to the moderation of LST, contrary to
mechanisms in humid and temperate areas [46–53].

The phenomenon of SUCI is not limited to arid regions but also occurs in other climate
zones such as temperate, tropical, and humid areas, though the patterns, intensity, and
mechanisms of formation vary across these regions. In humid and temperate climates,
the SUCI effect often emerges due to the cooling effects of water bodies and extensive
vegetation, whereas in arid zones, they largely depend on strategic urban planning, green
infrastructure, and reflective surfaces. A comparative analysis of SUCIs across different
climate zones would contribute to a broader understanding of this phenomenon and
offer more effective strategies for managing urban heat on a global scale, particularly in
response to climate change. As for the relationship between urbanization and the formation
of SUCIs, urban expansion can have both positive and negative impacts. On the one
hand, the expansion of cities into suburban areas and the development of green spaces
and open areas can foster the formation of SUCIs. On the other hand, the densification
of urban areas and the reduction of green cover in central city zones can inhibit their
development. Implementing innovative urban design techniques—such as green roofs,
reflective materials, urban parks, and low-heat-absorbing building materials—can help
reinforce SUCI formation. These strategies are especially critical in arid regions, where
high daytime temperatures and limited water resources present significant challenges. By
improving urban thermal conditions, these measures can mitigate the effects of urban heat
islands and enhance the overall livability of cities.

A detailed and comprehensive examination of environmental conditions in urban
areas requires integrated, accurate, and extensive data and information. Satellite data,
due to its ability to provide information over a long period, stay up-to-date, and capture
data at various local, regional, and global scales, plays a crucial role in assessing spatial
and temporal changes in the physical growth of cities, their surface characteristics, and
their thermal effects [15,16,36,38,41,54]. Understanding and mitigating SUHI and SUCI
effects necessitates accurate and comprehensive measurements of LST. Recent decades have
witnessed significant advancements in remotely sensed thermal infrared (TIR) data and
modeling techniques, enabling the derivation of LST with varying spatial and temporal
resolutions [55–58]. To gain deeper insights into the spatial and temporal dynamics of
urban heat, researchers have increasingly leveraged TIR remote sensing to estimate LST
across extensive urban areas [59–62]. While earlier studies primarily relied on coarse-
resolution data from sensors like Advanced Very High Resolution Radiometer (AVHRR)
and Moderate Resolution Imaging Spectroradiometer (MODIS), the availability of higher-
resolution imagery from platforms such as Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), Landsat, and ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station (ECOSTRESS) has facilitated more detailed analyses of urban
thermal environments [41,59,63–69]. Analyzing historical satellite data helps us understand
patterns of urban growth and temperature changes in cities, evaluating their impacts on the
environment and the quality of life for residents. Predicting future changes based on these
assessments is also important. Considering the projected urban growth and analyzing
spatial and temporal changes allows for the development of optimal strategies to enhance
urban heat management.

Our literature review found several studies on SUHI and SUCI that include (a) quan-
titative assessments of SUHI and SUCI methods [1,37,42,60,70–72], (b) spatial and tem-
poral changes in SUHIs and SUCIs [36,41,73–78], (c) parameters influencing the forma-
tion and intensity of SUHIs and SUCIs [38,79–84], (d) methods to mitigate the nega-
tive effects of SUHIs [85–87], and (e) the prediction of spatial and temporal changes in
SUHIs [21,30,31,88–90]. For instance, Firozjaei et al. [31] predicted the spatial and temporal
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changes in SUHIs for Babol city in the year 2045. The study’s results indicated that 67% of
the built-up lands in Babol experienced SUHI effects in 2018, which will increase to 72%
in 2045. Wang et al. [21] predicted the spatial and temporal changes in SUHIs for Nanjing
city in the years 2030 and 2050 using the CA-Markov model. Their results showed that
areas with high SUHI intensity in 2030 and 2050 will mainly be distributed in the central
region of Nanjing, resulting from the distribution of built-up lands. Liu et al. [91] predicted
the intensity of SUHIs in Shuchang, China, for the year 2023 based on a future land use
simulation model and regression analysis. The study revealed a significant correlation
between the land use index of urban areas and SUHI. A regression analysis showed that
the effects of SUHIs in this city will decrease in 2030. Kiavarz et al. [29] predicted the SUHI
intensity in Tehran for the years 2026, 2032, and 2045. Their results showed that SUHI
intensity in Tehran was minimal in 1985 but increased to nearly one-third of the built-up
lands in the city in 2019. The predicted results indicate that approximately 38%, 45%, and
51% of the built-up lands in Tehran will be under the influence of SUHIs in 2026, 2032, and
2045, respectively.

In summary, previous studies have predominantly focused on SUHIs rather than
SUCIs. Additionally, a notable finding is that 35% (586 of 1692) of global big cities are
located in drylands (dry sub-humid, semi-arid, arid, and hyper-arid) (https://wad.jrc.ec.
europa.eu/aridityurban (accessed on 15 February 2024)). Most research has concentrated
on the spatial and temporal changes of SUCIs in drylands in the past, and there is a gap
in predicting the future spatiotemporal changes in SUCIs for cities in dryland areas. The
lack of attention to forecasting SUCI dynamics in these regions presents an opportunity
for future research. This study aims to address this gap by forecasting the spatiotemporal
dynamics of daytime SUCI intensity (SUCII) in response to the urbanization process in
drylands. The results of such forecasts can serve as valuable tools for urban planners in
optimizing future urban development plans.

2. Study Area

The first study area encompasses Kerman city and its surrounding regions, with a
total area of 174 km2, located at 57.06◦N and 30.2◦E, and the city serves as the capital of the
Kerman province of Iran (Figure 1). It serves as a significant hub for industrial, political,
cultural, scientific, and technological activities in the southeast of Iran. The city’s average
elevation above sea level is 1756 m, and it is categorized as dry and semi-arid according
to the Dumatron climate classification. With an annual average precipitation of 135 mm,
Kerman often experiences extremely hot summers and intense sandstorms in the spring,
given its proximity to the Lut Desert. The highest average monthly temperature in Kerman
city is 32.9 ◦C in July. The difference between the highest and lowest average monthly
temperatures in this city is 24.5 ◦C, with January recording the lowest average monthly
temperature. The urban population of Kerman is approximately 718,000, making it the
tenth most populous city in Iran. Over the past four decades, migration from southern
counties of the Kerman province and neighboring provinces to Kerman city has contributed
to the city’s physical growth and land cover changes in the surrounding areas.

The second study area comprises the city of Zahedan and its surrounding regions,
covering an area of 100.5 square kilometers. Geographically, it is located at 60.85 degrees
east longitude and 29.49 degrees north latitude. This city is one of Iran’s metropolises and
is the capital of Sistan and Baluchestan Province. Zahedan is situated in Zahedan County
and is bordered by Hamoun County to the north, Taftan County to the south, Afghanistan
and Pakistan to the east, and Fahraj County to the west. Zahedan is a newly established city
located 517 km east of Kerman. Due to a significant population increase in recent years, the
city has experienced rapid and substantial urban land expansion. Based on the 2016 Iranian
census, Zahedan’s population was 587,730, making it the 12th most populous city in Iran.
The climate of Zahedan is hot and arid, although nights in the summer tend to be cooler.
For most of the year, the weather is hot and dry, with very hot days and relatively cool
nights in the summer. Snowfall is rare in the city, with the highest precipitation occurring
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in winter. In December and January, the weather is generally cool with cold nights. The
highest average monthly temperature in Zahedan city is 35.3 ◦C in July. The difference
between the highest and lowest average monthly temperatures in this city is 25.9 ◦C, with
January having the lowest average monthly temperature. Zahedan is situated in a large
basin surrounded by various mountains. Among the most important mountains in the city
are Ashtran (3012 m), Anjirdan (2255 m), Jiko, Pirkhan (2221 m), and Maleksiah.
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Figure 1. Maps: (a) Geographical location of the study area on the digital elevation model (DEM)
map; (b) geographical location of Kerman city on the land cover map; (c) Landsat 5 color composite
image (SWIR 2, NIR, Blue) of Kerman city from 1986; (d) Landsat 8 color composite image (SWIR 2,
NIR, Blue) of Kerman city from 2023; (e) Geographical location of Zahedan city on the land cover
map; (f) Landsat 5 color composite image (SWIR 2, NIR, Blue) of Zahedan city from 1986; (g) Landsat
8 color composite image (SWIR 2, NIR, Blue) of Zahedan city from 2023.
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3. Data and Methods
3.1. Data

In this study, multi-temporal Landsat 5 and 8 satellite images were utilized for the
years 1986, 1994, 2001, 2008, 2015, and 2023. Launched in 1984 in collaboration with
NASA and the United States Geological Survey (USGS), Landsat 5 observed the Earth’s
surface for 28 years. The satellite image from Landsat 5 comprises six bands in the reflective
wavelength range, one thermal band, and one panchromatic band, with an 8-bit radiometric
resolution. Landsat 8, launched in 2013 as part of the Landsat satellite series, features two
operational Earth imagers (OLIs) and a thermal infrared sensor (TIRS). The OLI sensor
consists of 8 reflective bands and 1 panchromatic band, while the TIRS sensor has 2 thermal
bands situated in the atmospheric window between the wavelengths of 10 and 12 µm,
with a 16-bit radiometric resolution. The spatial and temporal resolution of Landsat 5 and
8 satellite images is 30 m and 16 days, respectively, with a referencing error of less than
12 m. Due to their sensors being capable of recording information in both the reflective and
thermal ranges of electromagnetic waves, long-term temporal coverage, and appropriate
spatial resolution, Landsat satellite images are widely employed in various environmental
and urban applications [30,54,92–97].

In this study, Landsat products were employed to generate maps of surface charac-
teristics for different years. Landsat Collection 2 Level 2 surface reflectance and Landsat
Collection 2 Level 2 surface temperature products, with a spatial resolution of 30 m, were
used. The cloud coverage for all selected images was less than 10%. A median image,
derived from cloud-free images available for the study area from the beginning of May
to the end of August each year, was used to map various surface characteristics. These
images can be accessed on the USGS website (https://earthexplorer.usgs.gov (accessed on
15 February 2024)). In this study, the median image for different years was calculated using
the Google Earth Engine (GEE) platform.

To create training and test data for land cover classification and evaluation operations,
data were collected based on Landsat color composite images and high-spatial resolution
images such as Google Earth. On each date, around 600 pixels were utilized as training data,
while an additional 300 pixels were allocated for test data for each of the land cover classes.

3.2. Methods

The general stages of the method are illustrated in Figure 2. To achieve the research
objective, seven main stages have been implemented. In the first step, land cover maps for
different years were prepared using the random forest classification algorithm. In the sec-
ond step, maps of surface biophysical characteristics, including greenness, imperviousness,
and wetness, for different years were generated using spectral indices such as Normalized
Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and
Normalized Difference Water Index (NDWI). Additionally, LST maps for Kerman and
Zahedan cities were extracted using the Landsat Collection 2 surface temperature product.
In the fourth step, spatial and temporal changes in land cover were assessed using the
cross-tabulation model, and changes in surface biophysical characteristics and LST were
evaluated using the subtraction operator. In the fifth stage, the impact of changes in land
cover and surface biophysical characteristics on LST changes in Kerman and Zahedan cities
was calculated and compared. In the sixth stage, predictive maps of land cover and LST
for the future year were prepared based on the CA-Markov model. In the seventh stage,
the spatiotemporal dynamics patterns of SUCII for different years in Kerman and Zahedan
cities were quantified and compared within past and future time intervals.

https://earthexplorer.usgs.gov
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3.2.1. Land Cover Classification

The types and number of land cover classes in Kerman and Zahedan cities were
determined based on the author’s information, field visits, and visual interpretation of
satellite images. In this study, the random forest algorithm was employed to generate land
cover maps for different years [98–100]. The spectral bands of Landsat satellite images,
including blue, green, red, near-infrared, SWIR 1, and SWIR 2, were used as effective
features in the random forest algorithm for land cover classification. The implementation
of the random forest algorithm as a supervised method requires training data. In this stage,
a training dataset was created for the algorithm’s training and calibration, using visual
interpretations of Landsat color composite images and high-spatial resolution satellite
images in different years. The testing dataset was also established for evaluating the
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accuracy of the produced land cover maps. Overall accuracy was used as a general criterion
for assessing the accuracy of the land cover maps. After generating the land cover maps,
the area corresponding to each land cover class in different years was calculated, and the
trend of changes was evaluated. To determine land cover changes in the study period, land
cover maps produced in 1986 and 2023 were compared using the cross-tabulation model.
The land cover maps and their accuracy assessment, as well as the land cover change maps,
were prepared using ENVI 5.3 software.

• Prediction of future land cover map

In this study, the CA-Markov model was employed for predicting the future land
cover patterns. Both Markov chain and CA are discrete dynamic models in space and
time [101–103]. In the CA-Markov model, the Markov chain process transforms temporal
changes between land cover classes based on transition probabilities, while spatial changes
are controlled by locally defined rules through the CA spatial filter. The details of this
method for predicting land cover were presented in Arsanjani et al. [104] and Firozjaei
et al. [105]. To generate the land suitability map for the transformation to built-up lands,
criteria such as distance from built-up lands, distance from road networks, distance from
agricultural areas, distance from green spaces, distance from the city center, and slope were
utilized. Parks and protected areas within Kerman and Zahedan cities were considered
as constraints. The analytic hierarchy process (AHP) model [106,107] was employed
to determine the weights of these criteria, and the weighted linear combination (WLC)
method was used to combine the criterion values and weights. Initially, by implementing
the CA-Markov model on land cover maps for the years 1994 and 2008, the land cover
map for 2023 was predicted. The accuracy of the predicted land cover map using this
model was calculated by comparing it with the land cover map obtained from satellite
imagery in 2023. Subsequently, by inputting the land cover maps for the years 2001 and
2023 into the CA-Markov model, the land cover map for Kerman and Zahedan cities in
2045 was predicted. TerrSet 2020 software was used for implementing the CA-Markov
model. Finally, the changes in land cover between 2023 and 2045 were investigated using
the cross-tabulation model.

3.2.2. Extraction of Surface Biophysical Characteristics

In this study, surface characteristics, including vegetation, moisture, and impervious-
ness, were extracted using the NDVI, NDBI, and NDWI, respectively. These indices were
calculated using the reflective bands of Landsat satellite images in different years. These
maps were produced on the GEE platform.

• NDVI

The NDVI serves as an indicator of surface greenness and vegetation information [108].
It stands out as one of the most crucial metrics in remote sensing and environmental
monitoring, employed to evaluate and visualize alterations in vegetation cover within
a specified area. This index is derived by amalgamating satellite data from two distinct
wavelengths, one in the near-infrared and the other in the red spectrum. NDVI values
span from −1 to 1, where positive values near 1 signify regions with robust vegetation
and heightened photosynthetic activity. Conversely, negative values near −1 indicate
areas with minimal or no vegetation, such as water surfaces, and values approximating
0 denote regions with sparse or bare land cover. In essence, NDVI proves indispensable
for tracking changes in land cover, detecting drought conditions, overseeing agricultural
productivity, managing natural resources, and facilitating environmental studies. Through
the analysis of fluctuations in this index, valuable insights into the condition of plants and
the environment can be gleaned. The NDVI is calculated using Equation (1):

NDVI =
ρNIR − ρRed
ρNIR + ρRed

(1)

where ρNIR and ρRed represent the near-infrared and red bands, respectively.
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• NDBI

The NDBI provides information on land cover, specifically the percentage of imper-
vious surfaces, which include bare and built-up lands [109]. NDBI plays a crucial role in
analyzing urban changes and development. The index is computed using satellite data
from two different bands, one associated with near-infrared and the other with thermal
infrared radiation. Positive NDBI values indicate built-up and urbanized areas, while val-
ues that are close to zero or that are negative suggest less developed and more permeable
regions. This information is valuable for sustainable urban development management,
urban change analysis, and urban resource planning. The NDBI was calculated based on
Equation (2):

NDBI =
ρSWIR − ρNIR
ρSWIR + ρNIR

(2)

where ρSWIR and ρNIR represent the short-wave infrared and near-infrared bands, respec-
tively.

• NDWI

The NDWI indicates wetness information, specifically related to the characteristics
of water-related components, including soil, plants, and built-up areas [110]. This index
offers valuable insights into detecting watery areas, measuring soil moisture levels, and
monitoring water changes in the studied areas. Positive NDWI values typically highlight
moist and watery regions, whereas negative values suggest dry and water-deprived areas.
This information is instrumental in monitoring changes in water resources, managing water
resources, and planning water resource utilization. The NDWI was calculated based on
Equation (3):

NDWI =
ρGreen − ρRed
ρGreen + ρRed

(3)

where ρGreen and ρRed represent the green and red bands, respectively.
After generating maps for these spectral indices, these maps were classified based on

the provided information in Table 1. Subsequently, the area of each class and the trend of
changes in the study period were calculated and compared with each other.

Table 1. Defined ranges for classifying maps of surface biophysical characteristics.

Class NDVI Range NDBI Range NDWI Range

Very low NDVI < 0 NDBI < −0.10 NDWI < −0.10
Low 0 < NDVI < 0.15 −0.10 < NDBI < 0.0 −0.10 < NDWI < 0.0
High 0.15 < NDVI < 0.30 0.0 < NDBI < 0.10 0.0 < NDWI < 0.10

Very high NDVI > 0.30 NDBI > 0.10 NDWI > 0.10

3.2.3. Land Surface Temperature (LST)

In this study, the LST maps of Kerman and Zahedan cities were extracted using the
Landsat provisional surface temperature (LPST) product. The average of this product for
the months of May, June, July, and August each year was used as the LST map. The use
of the average from the four warm months aimed to reduce and normalize the impact of
climatic and environmental conditions on LST during the satellite’s overpass time. After
obtaining the LST map: (1) the average LST was calculated for the study area, and its
comparison was conducted with land cover classes in different years; (2) the map of LST
changes was prepared for the study period using the difference operator, and the spatial and
temporal variations in LST were evaluated; (3) the correlation coefficient between surface
biophysical characteristics and LST was calculated for different years and compared; (4) the
classified map of LST in Kerman and Zahedan cities was generated with classes such as very
low LST (LST < 32 ◦C), low LST (32 ◦C < LST < 37 ◦C), moderate LST (37 ◦C < LST < 42 ◦C),
high LST (42 ◦C < LST < 47 ◦C), and very high LST (LST > 47 ◦C); and (5) subsequently, the
area of LST classes was calculated for different years, and the trend of changes during the
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study period was evaluated. ArcMap 10.3 software was used for classifying LST maps and
calculating the area of LST classes.

• Prediction of future LST map

The details of the method for predicting LST were presented in Firozjaei et al. [31],
Nadizadeh Shorabeh et al. [30], and Kiavarz et al. [29]. To predict the LST, the trends in
land cover changes and the resulting changes in LST over the past 37 years have been
utilized. The extent of LST changes for each type of land cover change was examined at
different time intervals. Accordingly, the average LST change resulting from each type of
land cover change was calculated. Subsequently, using the predicted land cover change
map for the future and the matrix of average LST changes resulting from land cover change,
the map of future LST changes was generated. By combining the map of LST changes for
the time period 2023–2045 with the LST map for the year 2023, the LST map for the year
2045 was produced.

3.2.4. Surface Urban Cool Island Intensity (SUCII)

Initially, to normalize the LST values for different years concerning changes in climatic
and seasonal conditions, the LST values for each pixel were subtracted from the average
LST value for areas with NDVI > 0.6 [2,111]. Regions with NDVI > 0.6 in the study area
represent pixels containing vegetation cover with full canopy. The surface temperature
of these pixels is close to the air temperature, and it can be used to normalize climatic
and seasonal conditions. The normalized LST maps were then obtained. In this study, to
calculate the SUCII in each geographical location, the difference between the normalized
LST in each pixel and the average normalized LST for the study area in different years was
calculated using Equation (4):

SUCIIPixel = NLSTPixel − NLSTstudy area (4)

where SUCIIPixel represents the urban cold island intensity in each pixel, NLSTPixel rep-
resent the normalized surface temperature at the pixel, and NLSTstudy area represents the
average normalized surface temperature for the study area. The SUCII maps and their
changes were prepared using ArcMap 10.3 software.

4. Results
4.1. Land Cover

Land cover maps of Kerman and Zahedan cities for different years are presented
in Figure 3. The overall accuracy of the generated Kerman (Zahedan) land cover maps
for the years 1986, 1994, 2001, 2008, 2015, and 2023 was 91% (92%), 88% (91%), 89%
(89%), 87% (89%), 92% (91%), and 91% (92%), respectively. The predicted land cover
map overall accuracy of Kerman (Zahedan) city for 2023 relative to land cover map for
2023 obtained from the classification algorithm was 84% (86%), indicating the CA-Markov
model’s capability of predicting the spatial distribution of land cover for the study area
in the future. The dominant land cover in Kerman and Zahedan cities includes built-up
and bare lands. The considerable physical growth of built-up areas in these cities was
noticeable. The horizontal expansion of Kerman and Zahedan cities in recent years has led
to the destruction of natural lands on the city’s outskirts. Consequently, the physical growth
of the city has transformed a significant amount of green and bare lands into built-up areas.
This trend is expected to continue in future years. Given the rising land/house prices,
vertical expansion of the city could be argued to minimize the horizontal expansion.
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The area percentage of different land cover classes in Kerman and Zahedan cities
shows a considerable increase in the built-up areas over the past years. Conversely, the
bare lands and green spaces have shown a significant reduction due to conversion into
built-up areas (Figure 4). In 1986, the area percentage of built-up, bare, and green spaces
in Kerman (Zahedan) city was 15% (15%), 59% (80%), and 26% (5%), respectively. These
values reached 57% (36%), 35% (61%), and 8% (3%) in 2023. By 2023, the built-up area of
Kerman (Zahedan) city has increased by approximately 272% (138%). The area of bare
lands and green spaces in Kerman (Zahedan) city has decreased by about 40% (39%) and
69% (24%), respectively. By 2045, the area percentage of built-up, bare, and green spaces of
Kerman (Zahedan) city is expected to be 72% (49%), 24% (49%), and 4% (2%), respectively.
In the next 22 years, approximately 11% (12%) and 4% (1%) of bare lands and green spaces
in Kerman (Zahedan) city are expected to be converted into built-up areas. The built-up
area of Kerman (Zahedan) city is expected to increase by about 15% (13%) by 2045.
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4.2. Surface Biophysical Characteristics

Maps of NDBI, NDVI, and NDWI classes for Kerman and Zahedan cities in different
years were illustrated in Figure 5. The average values of NDVI, NDBI, and NDWI for
Kerman (Zahedan) city have changed from 0.14 (0.10), 0 (0.05), and −0.07 (−0.04) in 1986 to
0.11 (0.08), 0.07 (0.11), and −0.01 (0.0) in 2023, respectively. During this period, the average
values of NDBI and NDWI for Kerman (Zahedan) city have increased by 0.07 (0.06) and
0.06 (0.04), respectively, while the average value of NDVI has decreased by 0.03 (0.02). The
increase in average NDWI in Kerman and Zahedan cities indicates the warming and drying
of the built-up areas from the surrounding barren lands, and a significant portion of these
lands has transformed into developed areas in recent years. Additionally, the increase in
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the average NDBI index reflects the degree of surface imperviousness, as it increases with
the fraction of impervious surfaces in a pixel.
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Areas with very high NDBI values were mostly situated in built-up lands. Green
spaces were primarily classified in the low and very low NDBI classes, while barren lands
were mostly classified in the high NDBI class. The transformation of green and barren
lands into built-up areas increases the surface imperviousness; hence, areas with high
NDBI have expanded. The NDBI values range between −1 and 1, with an increase in
impervious surfaces leading to values closer to 1. The area of the very high NDBI class
in Kerman (Zahedan) city has increased significantly from 3.0 km2 (6.1 km2) in 1986 to
64.2 km2 (33.7 km2) in 2023. Conversely, the areas of high, low, and very low NDBI classes
in Kerman (Zahedan) city have decreased noticeably, reaching 82.8 km2 (78.0 km2), 21.9 km2

(3.2 km2), and 5.1 km2 (0.8 km2) in 2023 from 94.9 km2 (104.3 km2), 60.2 km2 (3.8 km2), and
15.9 km2 (1.5 km2) in 1986, indicating a considerable reduction. Most areas with high and
very high NDVI were located around the urban periphery. In contrast, areas with low and
very low NDVI were positioned within the urban boundary. The areas with high and very
high NDVI in Kerman (Zahedan) city have significantly decreased until 2023, with a total
reduction of approximately 11 km2 (2.8 km2) in this period. In contrast, the total area of
low and very low NDVI classes in Kerman (Zahedan) city has increased from 135.2 km2

(107.0 km2) in 1987 to 146.2 km2 (109.9 km2) in 2023, indicating an expansion of these
classes. The growth of built-up areas has led to the destruction of green spaces in Kerman
and Zahedan cities. High and very high vegetation cover clusters have disappeared or
had their areas significantly reduced. Due to the absence of aquatic lands in Kerman and
Zahedan cities, these regions lack a very low vegetation cover class. The area of NDWI
classes in Kerman (Zahedan) city, including very low, low, high, and very high, has changed
from 82.9 km2 (101.7 km2), 43.1 km2 (11.9 km2), 32.3 km2 (0.9 km2), and 15.8 km2 (1.3 km2)
in 1987 to 57.2 km2 (77.1 km2), 68.4 km2 (35.7 km2), 42.5 km2 (1.4 km2) and 5.8 km2 (1.4 km2)
in 2023, respectively. In this period, the areas of very low and very high NDWI classes have
increased, while the low and high classes have decreased. Green spaces were classified
in the very high NDWI class; however, due to the high surface dryness of barren lands
caused by high solar energy receipt, barren lands have fallen into the very low NDWI
class in these cities. The NDWI class of built-up lands in these cities was generally low
and high. Therefore, over the past 37 years, with the transformation of a considerable area
from barren lands to built-up areas, areas with low and high NDWI classes in these cities
have increased.

4.3. Maps of Land Surface Temperature (LST)

Classified LST maps for Kerman and Zahedan cities for various years are displayed
in Figure 6. Areas with high and very high LST in Kerman and Zahedan cities were
located outside the built-up land area. Pixels within urban areas are usually heterogeneous,
including green spaces, shadows, and moisture, resulting in lower LST compared with
the peripheral areas with barren land cover. The average (standard deviation) LSTs of
built-up land, green spaces, and barren land of Kerman city in 1986 were 47.9 ◦C (1.7 ◦C),
46.9 ◦C (3.3 ◦C), and 50.1 ◦C (2.5 ◦C), respectively. These values have decreased in 2023 to
44.1 ◦C (3.5 ◦C), 43.1 ◦C (4.3 ◦C), and 49.5 ◦C (3.2 ◦C), respectively. For Zahedan city, the
average (standard deviation) LSTs of built-up land, green spaces, and barren land in 1986
were 45.2 ◦C (1.3 ◦C), 44.4 ◦C (2.5 ◦C), and 49.5 ◦C (2.0 ◦C), respectively. These values have
decreased in 2023 to 43.3 ◦C (2.3 ◦C), 44.6 ◦C (2.9 ◦C), and 49.1 ◦C (3.2 ◦C), respectively.
The average LST of Kerman (Zahedan) city has decreased from 49.1 ◦C (48.6 ◦C) in 1986 to
44.6 ◦C (45.1 ◦C) in 2023. The LST of built-up land was lower than that of barren land, and
as a result, the average LST of the study area has decreased due to the physical growth of
the city and the reduction of barren land.
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In the years 1987, 1994, and 2001, most of the built-up land areas were classified into
the high and very high LST classes, mainly due to the presence of pixels with a combination
of developed and barren land cover in urban areas. However, with the increasing density
of built-up land within a pixel in the years 2008, 2015, and 2023, more built-up land areas
have fallen into the moderate LST class. Over the past years, the expansion of built-up land
areas in the outskirts has led to the extension of areas with moderate and low LST. This
expansion trend is expected to continue until 2045, as visible on the predicted LST map
of Kerman and Zahedan cities. The most significant reduction in the area of LST classes
in Kerman (Zahedan) city was related to the very high LST class, which has decreased
from 138.9 km2 (84.9 km2) in 1986 to 58.49 km2 (34.4 km2) in 2023. Additionally, the area
of low, moderate, and high LST classes has increased from 0.33 km2 (0.03 km2), 3.5 km2

(0.9 km2) and 31.21 km2 (30.1 km2) in 1986 to 8.0 km2 (7.9 km2), 62.8 km2 (39.8 km2), and
44.7 km2 (33.6 km2) in 2023. Over the study period, Kerman does not have a very low
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LST class. In the past 37 years, the total area of high and very high LST classes in Kerman
and Zahedan has significantly decreased. This value is expected to reach 63 km2 and
19.8 km2 in 2045, respectively. The total area of moderate, low, and very low LST classes in
Kerman (Zahedan) city in 1986, 2023, and 2045 was calculated as 4 km2 (30.9 km2), 70 km2

(81.3 km2), and 110 km2 (91.4 km2), respectively.

4.4. Land Cover, Surface Biophysical Properties, and LST Changes

Maps of land cover, LST, NDVI, NDBI, and NDWI changes for Kerman and Zahedan
cities are shown in Figure 7. The transformation of green and bare land into built-up areas
in Kerman (Zahedan) city has amounted to 20.1 km2 (2.2 km2) and 52.5 km2 (22.1 km2),
respectively, between 1986 and 2023. Land cover changes have resulted in alterations in
surface biophysical properties. Over the study period, LST for Kerman (Zahedan) city has
fluctuated between −18 ◦C (−16 ◦C) and 15 ◦C (14 ◦C). The temperature of built-up areas
has generally decreased. The highest increase (decrease) in NDVI, NDBI, and NDWI in
Kerman city was 0.65 (−0.69), 0.62 (−0.49), and 0.67 (−0.54), respectively; these values for
Zahedan city were 0.63 (−0.62), 0.51 (−0.42), and 0.47 (−0.50), respectively. Over the past
37 years, the highest average increase in LST of Kerman (Zahedan) city was associated with
the conversion of green areas to bare and built-up land, amounting to 5.5 ◦C (4.3 ◦C) and
1.5 ◦C (1.7 ◦C), respectively. On average, the transformation of bare land to built-up areas
of Kerman (Zahedan) city has resulted in a 4.6 ◦C (3.8 ◦C) reduction in LST in Kerman.
Additionally, the LST of areas consistently classified as built-up overall years has decreased
by 2.7 ◦C (2.4 ◦C).

The highest average change in NDVI for Kerman (Zahedan) city, with a value of 0.13
(0.20), was related to the conversion of bare land to green areas. The transformation of bare
and green areas into built-up land in Kerman (Zahedan) city has led to a decrease in NDVI
by 0.03 (0.02) and 0.13 (0.18), respectively. Moreover, the highest average change in NDBI
of Kerman (Zahedan) city, amounting to 0.19 (0.14), was associated with the conversion of
green areas to built-up land. The transformation of bare land to built-up areas in Kerman
(Zahedan) city has, on average, increased NDBI by 0.1 (0.06). The NDBI value for areas
consistently classified as built-up in Kerman (Zahedan) city in both 1987 and 2023 has also
increased by 0.06 (0.05), indicating an increase in the built-up land density in these areas.
The most significant average change in NDWI was observed in the conversion of bare land
to green areas (0.17 for Kerman city and 0.12 for Zahedan city), with an average increase in
NDWI of 0.1 and 0.05 resulting from the transformation of bare land to built-up areas in
Kerman and Zahedan cities, respectively. The results demonstrate that land cover changes
significantly influence surface biophysical characteristics.
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4.5. Maps of Surface Urban Cool Island Intensity (SUCII)

The SUCII maps for the Kerman and Zahedan cities for various years are illustrated
in Figure 8. The trend in the SUCII for these cities from 1986 to 2023 shows an increasing
pattern, mainly attributed to the conversion of barren lands into built-up areas. The highest
and lowest SUCII values were generally located inside and around the urban boundary,
respectively. The transformation of barren lands into built-up areas has led to a significant
increase in SUCII in these regions. However, in some parts of this area, the conversion of
green spaces into built-up areas has resulted in decreased SUCII. Moreover, the SUCII of
areas converted from barren lands to green spaces have significantly increased. The trend
of decreasing areas with medium and high SUCII in Kerman was expected to continue
until 2045. The estimated SUCII values for Kerman in 1986, 1994, 2001, 2008, 2015, and 2023
were −0.3 ◦C, −0.8 ◦C, −1.4 ◦C, −1.9 ◦C, −2.6, and −3.2 ◦C, respectively. These values
for Zahedan were 0.9 ◦C, 0.4 ◦C, −0.5 ◦C, −1.5 ◦C, −2.5 ◦C, and −3.4 ◦C, respectively.
The SUCIIs for Kerman and Zahedan indicate a decreasing trend, suggesting a cooling
effect in these urban areas. The results show that the SUCII in Kerman (Zahedan) has
increased by 2.9 (4.3) ◦C over the past 36 years. The SUCII values in Kerman and Zahedan
are expected to reach −4.5 and −4.9 ◦C in 2045, indicating an increase in SUCII in the
future. The determination coefficients between the built-up area, population, and SUCII for
Kerman (Zahedan) were 0.91 (0.89) and 0.83 (0.84), respectively. The relationship between
the built-up area, population, and SUCII in these cities was direct; in other words, as the
built-up area and population of Kerman increased, the SUCII in these cities increased.

The area percentage of SUCII classes in Kerman and Zahedan cities is depicted in
Figure 9. In Kerman (Zahedan), the areas percentage of regions classified as non-SUCII,
low SUCII, medium SUCII, and high SUCII in 1986 were 50% (76%), 23% (13%), 18% (10%),
and 9% (1%), respectively. These values reached 25% (29%), 28% (21%), 24% (20%), and 23%
(30%) in 2023, respectively. The area percentage of non-SUCII regions in Kerman (Zahedan)
decreased by 25% (47%) during this period, while the areas of low SUCII, medium SUCII,
and high SUCII increased by 5% (8%), 6% (10%), and 14% (29%), respectively. Until 2015,
the largest area percentage belonged to the non-SUCII class in Kerman and Zahedan, but
in 2023, the area percentage of the low SUCII class in Kerman and high SUCII class in
Zahedan exceeded that of the non-SUCII class. The area percentage of non-SUCII class
in Karman (Zahedan) is expected to decrease to 18% (18%) in 2045 compared with 2023.
Additionally, the areas percentage of medium SUCII and high SUCII classes in Kerman are
expected to increase to 26% and 30%, respectively, compared with 2023. These values were
18% and 38% for Zahedan, respectively.
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5. Discussion

Our finding reveals that the built-up area of Kerman (Zahedan) city has increased by
approximately 272% (138%) within 1986–2023. The area of bare lands and green spaces in
this city has decreased by about 40% (39%) and 69% (24%), respectively (Figures 3 and 4).
In the same period, the study area was physically expanded largely due to economic
development rooted in industrial activities such as mining, rural–urban migration, long-
term droughts and other climate change-born impacts, and lack of proper policies. The city
has expanded outward, with new housing and commercial developments extending into
the surrounding desert areas. Kerman and Zahedan are situated in a hot and arid climate
with large surrounding affordable barren lands available for development not in favor
of vertical expansion, i.e., a large share of the constructed buildings are less than three-
story buildings expanding around the city outskirts and suburban areas. Thus, vertical
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expansion is insignificant to be included in the urban expansion simulation. Over the past
four decades in Kerman (Zahedan) city, more than 52.5 km2 (21.8 km2) of bare lands have
been transformed into built-up areas. This result is consistent with findings from other
studies conducted in arid regions [112–116]. Wang et al. [112] demonstrated that bare land
in the Shiyang River Basin (SRB), primarily located in the Tengger Desert, Badain Jaran,
and the surrounding Gobi area, has been continuously decreasing due to urban physical
growth from 1987 to 2017.

Our simulation results indicate that the physical growth of Kerman and Zahedan cities
and the reduction of barren lands and green spaces are expected to continue in the future,
as shown in Figures 3 and 4. Mansour et al. [117] conducted a study examining the physical
growth of the city of Ibri in Oman, which has a climate similar to Kerman. The results of
this study showed that changes in land use and land cover (LULC) across the city were
rapid between 2010 and 2020, converting desert, bare land, and vegetation into urban areas.
Projections indicate that the area of land conversion from desert to urban regions will reach
56.6 km2 in the next two decades and 77.5 km2 by 2045. This is in line with the projected
population and urban growth for Asian, African, and South American cities, possibly
jeopardizing their pathways towards sustainable development goals [44,81,94]. One crucial
example of such consequences is the alteration of LST [16,46]. For instance, in humid and
tropical climate zones, the replacement of natural permeable surfaces with impermeable
surfaces reduces the amount of greenery and surface roughness, disrupting the energy
balance of the natural surfaces. This results in an increase in LST while creating and
intensifying the SUHI effect [16,31,41,75]. Previous studies have shown that the physical
growth of cities in humid climates leads to an increase in the area of the high LST class and,
consequently, an increase in the intensity of the heat island effect. Typically, the land cover
around these cities includes agricultural land, green spaces, and water surfaces which, due
to high vegetation and moisture, have lower LSTs. Urban expansion transforms these areas
into built-up and impermeable land, leading to a considerable increase in LST. However,
it is different in the arid regions surrounding cities as the land cover consists of barren
lands (Figure 3). These areas have higher LST during the day compared with built-up
areas (Figure 6) due to factors such as the lack of shade, low surface roughness, high
aridity, and low latent and sensible heat fluxes. However, in urban environments, green
spaces, water bodies, and building shadows contribute to cooling effects [36,50–52], which
is also evident in the case study as the average NDWI has risen due to urban expansion
(Figures 5 and 7). It should be noted that the emissivity coefficient of built-up lands is
higher than that of barren lands [41,71]. The higher emissivity coefficient results in the
absorption of a higher amount of solar energy, a significant portion of which is released
with a slight delay during the night. In cases where the absorption and retention of solar
energy at the surface of barren lands are low, the LST rises quickly. Another explanation
for why bare soil has higher LST values compared with urban surfaces is the concentration
of heat, low vegetation cover, low relative humidity, and surface dryness in the upper
layers of sandy soil [118]. During the summer, sandy soil has lower water content and
faster drainage, which leads to higher LST. Bare soil in this region is characterized by sandy
soil with lower water retention capacity and lower thermal inertia [119]. In contrast, other
types of soil, such as clay soil used for planting, have higher water retention capacities.
Therefore, the higher the water content in the soil, the slower the drainage rate, resulting in
a decrease in the LST. This surface temperature difference confirms that the SUHI effect
has an inverse effect and an overall negative impact on the urban environment in arid
regions. These findings align with the studies of Abulibdeh [119], Parvez et al. [120], and
Rida et al. [118]. Abulibdeh [119] demonstrated that the average surface temperature of
bare land areas was approximately 2 ◦C higher than that of urban areas in eight arid and
semi-arid Gulf region cities. They demonstrated that spatiotemporal variations in LST in
arid climates exhibit an inverse effect due to the nature of urban fringe areas, which possess
soil with desert-like characteristics. As a result, cities located in dry environments are
cooler during the day than suburban areas and vice versa during the night. The physical
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growth of the city, leading to the replacement of these areas with built-up areas, results in a
reduction in LST (Figures 6 and 7). Accordingly, the SUCII in Kerman and Zahedan has
decreased in recent years due to the growth of built-up areas and the reduction of barren
lands (Figures 8 and 9). Previous studies have also shown that cities such as Jeddah [121],
Isfahan [51], Dubai [122], Erbil [50], Mash’abei-Sadeh [123], Bengaluru [52], Tehran [36],
Kuwait [47], Ulaanbaatar [124], and arid cities in the United States [125], located in dry
environments, are cooler than suburban areas in the day time.

The findings of this study indicate that the physical growth of cities in arid and semi-
arid regions, considering the climatic characteristics of these areas, can have positive effects
on the thermal quality of the urban environment. For example, while urban growth in
humid areas typically leads to an increase in the UHI effect, in dry regions, the reduction of
barren surfaces and the increase in construction can result in lower surface temperatures
during the day. This suggests that urban development policies in arid areas should focus
on reducing barren surfaces and enhancing green and blue infrastructure, such as parks
and urban green spaces. Urban planners should leverage these findings and prioritize
development policies that promote climate sustainability in cities, such as using highly
reflective building materials and creating more green spaces. These findings can assist in
the development of climate-resilient urban areas. Policy makers can design appropriate
strategies to address extreme climatic phenomena, such as heatwaves, using projected data
on urban growth and its impact on surface temperatures. Particularly in areas with access
to barren lands, planning for the optimal use of these lands through the creation of green
infrastructure and sustainable buildings can help mitigate urban heat effects. Additionally,
developing policies aimed at increasing green spaces and reducing impervious surfaces
can help alleviate the impacts of UHI in arid regions.

6. Conclusions

Forecasting future urban development arising from population growth and socioeco-
nomic activities is fundamental for sustainable urban planning. Such insights should be
used to study the cascading changes in the thermal quality of the urban environment, which
is crucial for urban planning, improving the quality of urban ecosystems, and ultimately
enhancing the quality of human life. The type and extent of the impact of urban growth
on changes in the thermal quality of the urban environment can vary depending on the
climatic conditions in which a city is located. Therefore, understanding the differences
in how urban growth affects changes in the thermal quality of the urban environment in
regions with different climates is vital for the development of effective urban development
and sustainable urban environments. In summary, previous studies have predominantly
focused on SUHIs rather than SUCIs. Additionally, a notable finding is that 35% of global
big cities are located in drylands. Most research has concentrated on the spatial and tem-
poral changes of SUCIs in drylands in the past, and there is a gap in predicting the future
spatiotemporal changes in SUCIs for cities in dryland areas. The lack of attention on
forecasting SUCI dynamics in these regions presents an opportunity for future research.
This study showcased how to forecast the spatiotemporal dynamics of SUCIs in response
to the urbanization process in drylands using geographical data and models. The area of
built-up land in Kerman (Zahedan) city located in a dry region increased by approximately
272% (138%), followed by a decrease in bare lands and green spaces by about 40% (39%)
and 69% (24%), respectively, in the studied period. The conversion of bare land to built-up
land has led to an average decrease of 4.6 ◦C (3.8 ◦C) in LST in this city. The most notable
land conversion in Kerman and Zahedan cities has been the conversion from bare land to
built-up land. Consequently, the area of high and very high temperature classes in Kerman
and Zahedan cities has significantly decreased. The SUCII of Kerman (Zahedan) city has
decreased from −0.3 ◦C (0.9 ◦C) in 1987 to −3.2 ◦C (−3.4 ◦C) in 2023. By 2045, approxi-
mately 31% (19%) of its bare land is expected to be converted to built-up land, resulting
in a decrease in LST and an increase in SUCII. The physical growth of cities in arid and
semi-arid regions improves the thermal quality of the urban environment, which should be
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further supplemented by adding green and blue infrastructure where possible. Therefore,
the physical growth of cities located in hot and arid regions, despite those located in humid
climates, can mitigate the heat comfort concerns. Hence, urban development plans embrac-
ing climate-friendly, climate-neutral, green, and environmentally friendly urban planning
frameworks should be prioritized in arid regions. The methodical approach, choice of
data, presented findings, and discussions can be inspirational for a broader community of
researchers, urban planners, and decision makers.

7. Limitations and Future Directions

The present study has provided valuable insights into the relationship between LST,
SUCIs, and land cover in the study area. However, several limitations need to be ac-
knowledged. First, CA-Markov models, while useful for land cover change prediction,
have limitations. They assume static transition probabilities, ignoring dynamic factors
influencing land cover change. Additionally, these models neglect crucial driving forces
and oversimplify spatial patterns, leading to less accurate predictions. Second, the study
focused on daytime LSTs during the summer season, limiting the understanding of SUCI
dynamics throughout the year. Incorporating nighttime LSTs and data from different
seasons would provide a more comprehensive picture of SUCI effects. Third, the spatial
resolution of satellite imagery might limit the ability to capture fine-scale variations in LST
within urban areas, particularly in densely built-up regions. Higher-resolution data or
ground-based measurements could address this limitation. Fourth, the accuracy of LST
retrieval can be influenced by factors such as atmospheric conditions, thermal anisotropy,
incomplete sampling, and land surface emissivity, which could introduce uncertainties
in the results. In this study, the impact of future climate changes on the prediction of
surface temperature changes was not included as such data are not available and must be
simulated using projected climate data, e.g., temperature, moisture, and land cover/use.
Hence, one conclusion of this study is to simulate future LST data so that urban planners
and decision makers can investigate how to plan for heatwaves in the future and implement
climate-friendly measures.

Future research directions include:
Land cover change prediction improvement: To enhance predictive capabilities, future

research should focus on integrating dynamic factors, incorporating socioeconomic and
environmental variables, and exploring more sophisticated spatial modeling techniques.
Hybrid models combining CA-Markov with machine learning or agent-based modeling
can provide more robust and realistic land cover change projections.

Spatial and temporal expansion: Extending the study to cover a larger geographical
area and longer time periods to identify regional patterns and trends in SUCI development.

High-resolution analysis: Utilizing higher-resolution satellite imagery and ground-
based measurements to investigate intra-urban variations in LST and their relationship with
land cover/use, urban morphology, and local climate zones (LCZs). Also, future studies
should combine low-resolution geostationary satellites (e.g., GOES) with high-resolution
polar-orbiting satellites (e.g., Landsat, MODIS) to address the influence of local time and
viewing–illuminating geometry on LST measurements. This combination would improve
both temporal and spatial coverage, providing a better understanding of LST variations.
Additionally, exploring LST reconstruction methods, such as spatiotemporal fusion and
machine learning techniques, can fill data gaps and enhance accuracy. Incorporating
atmospheric correction models and improving emissivity estimations could also reduce
uncertainties related to thermal anisotropy and atmospheric conditions.

Nighttime UHI: Analyzing nighttime LSTs to understand the diurnal cycle of SUCIs
and its impact on human comfort.

Seasonal variations: Investigating the seasonal dynamics of SUCIs and their relation-
ship with meteorological factors.

Urban planning and mitigation strategies: Understanding the SUCII is crucial for
effective urban planning and development. By strategically incorporating green infrastruc-
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ture, such as parks, green roofs, and urban forests, cities can mitigate the urban heat island
effect and enhance livability. Additionally, careful selection of building materials with high
reflectivity can reduce heat absorption. Furthermore, SUCII studies can inform land use
planning decisions, guiding the placement of residential and commercial areas to optimize
thermal comfort. By addressing SUCII, cities can improve public health, reduce energy
consumption, and create more sustainable urban environments.

Integration of socioeconomic factors: Incorporating socio-economic variables is impor-
tant for understanding the vulnerability of different population groups to SUHI.

Additionally, the challenges associated with using satellite-derived LSTs in urban
areas should be further explored. This includes the development of advanced techniques
for estimating land surface emissivity and correcting for atmospheric effects. Moreover,
future research should focus on understanding and modeling thermal anisotropy in urban
environments to improve the accuracy of LST-based studies. By addressing these limitations
and pursuing the proposed research directions, a deeper understanding of SUHIs and
SUCIs and their impacts can be achieved, ultimately informing effective urban planning
and mitigation strategies.
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