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ABSTRACT 

The growth of the global economy has led to noticeable issues of energy crisis and 

environmental issues, hence driving the advancement of alternative energy production. 

Renewable energy generation may effectively access the power system by utilizing 

dispersed access to the power grid. Renewable energy generation exhibits significant 

unpredictability and instability, and the inclusion of numerous renewable energy 

sources (RESs) leads to substantial alterations in the functioning of the power grid. 

Moreover, the unpredictable variability of energy costs and the inconsistent patterns 

of controlled loads, such as electric vehicles (EVs), introduce a level of uncertainty to 

the functioning of the power system.  

Another ongoing energy transition is the integration of different forms of energy. 

Multi-energy system (MES), have the potential to yield significant sustainable, 

efficient, economic and resiliency benefits. However, intermittent RES generation, 

uncertain and heterogeneous load demands, and balance-of-system costs render the 

traditional energy analysis methods obsolete.  

Artificial Intelligence (AI) technology is an important tool to address the above 

challenges. As an important branch in the field of computer science, AI technology 

aims to realize the self-improvement of computers and the simulation of human 

intelligence by refining knowledge and experience from data. Since the knowledge 

extracted from data has a certain generalization ability, AI methods can cope with the 

uncertainty of the system and enable online decision-making. 

Hence, the aim of this thesis is to utilize DRL algorithms to guarantee an efficient and 

dependable energy management strategy for the MESs. In Chapter 2, with the 

objective of achieving a low-carbon economic dispatch strategy for the electricity-gas 

MES, this project takes into account the flexible coordination between the carbon 

capture system and power-to-gas units. Chapter 3 investigates a two-timescale energy 

management strategy for the residential MES. This strategy utilizes a multi-agent deep 

reinforcement learning (MADRL) algorithm to control the internal energy conversion 

and external energy trading behaviors. Chapter 4 introduces a decentralized energy 

management strategy for multiple MESs. The proposed framework is a bilevel energy 

management system. In the bottom layer, a control strategy based on MADRL is used 

for the multi-energy microgrid (MG) cluster. In the upper layer, energy routers 

determine the optimal energy trading based on feedback from the bottom layer. 

Moreover, an energy hub (EH) is a very efficient solution for managing energy in the 

MES. EVs have been extensively integrated into the power grid in recent years. Hence, 

taking into account that EHs and EVs pertain to distinct entities, a refined MADRL-

based decentralized energy management strategy is suggested to optimize the 

revenues of the EV entity and decrease the energy expenses of the EH entity. In 

addition, a specialized neural network is employed to address the intricate 

uncertainties, hence enhancing the effectiveness of the suggested strategy. Chapter 5 
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contains information that is related to the topic. Chapter 6 presents the final findings 

of the thesis. 

To conduct efficient simulation of the proposed AI-based energy management 

strategy, a series of case studies were performed on Python. Specifically, training 

datasets come from real-world historical datasets, and AI algorithms are programmed 

based on TensorFlow. Besides, algorithm comparison is also conducted to illustrate 

the superiority of the proposed method. Simulation results demonstrate that the 

proposed strategy can (i) reduce energy costs, (ii) deal with uncertainties, (iii) provide 

real-time energy management strategy, and (iv) realize decentralized energy 

management for different entities. Besides, the proposed method shifts the 

computation from online to offline, which greatly reduces the computation of online 

execution and facilitates later applications. 
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DANSK RESUME 

Med udviklingen af den globale økonomi bliver problemerne med energimangel og 

miljøforurening mere og mere fremtrædende, hvilket fremmer udviklingen af ny 

energiproduktion. Vedvarende energiproduktion gennem distribueret adgang til 

elnettet er en vigtig måde for ny energiproduktion at få adgang til elnettet på. 

Produktionen af vedvarende energi har imidlertid en stærk tilfældighed og volatilitet, 

og adgangen til et stort antal vedvarende energikilder medfører dybtgående ændringer 

i driften af elnettet. Derudover medfører den stokastiske karakter af energipriser og 

svingende adfærd af kontrollerbare belastninger, herunder elektriske køretøjer (EV), 

risiko for driften af energisystemet. 

En anden igangværende energiovergang er integrationen af forskellige energiformer. 

Multi-energy system (MES) har potentiale til at give betydelige bæredygtige, 

effektive, økonomiske og modstandsdygtige fordele. Periodisk elproduktion, usikre 

og heterogene belastningskrav og systembalanceomkostninger gør de traditionelle 

energianalysemetoder forældede. 

Kunstig intelligens (AI) teknologi er et vigtigt redskab til at løse ovenstående 

udfordringer. Som en vigtig gren inden for datalogi, AI teknologi sigter mod at 

realisere selv-forbedring af computere og simulering af menneskelig intelligens ved 

at raffinere viden og erfaring fra data. Da viden udvundet fra data har en vis 

generaliseringsevne, kan AI-metoder klare usikkerheden i systemets kildebelastning 

og muliggøre online beslutningstagning. 

Formålet med denne afhandling er derfor at anvende AI metoder til at sikre en effektiv 

og pålidelig energistyringsstrategi for MES. Med henblik herpå starter dette projekt 

med en lav CO2-økonomisk afsendelsesstrategi for elektricitet-gas MES, hvor den 

fleksible koordinering mellem kulstofopsamling og el-til-gas-enheder overvejes. Det 

relative indhold er præsenteret i kapitel 2. For det andet, for at løse spørgsmålene om 

centraliseret energistyring, er en decentraliseret energistyringsstrategi udviklet i en 

bolig MES, hvor multi-agent dyb forstærkning læring (MADRL) metode anvendes til 

at regulere den interne energikonvertering og eksterne energihandelsadfærd. 

Tilsvarende indhold præsenteres i kapitel 3. I kapitel 4, for at undersøge en 

decentraliseret energistyringsstrategi for flere MES, foreslås en bilag 

energistyringsstrategi, hvor der foreslås en MADRL-baseret styringsstrategi for den 

nederste lag multi-energy mikrogrid klynge, og de øverste lag energi routere 

bestemmer den optimale energihandel baseret på bundlagsinformation feedback. 

Endvidere er energihub (EH) en effektiv løsning til at levere energistyring til MES. I 

de senere år er elektriske køretøjer også blevet tilsluttet nettet i stor skala. I betragtning 

af, at EH'er og EV'er tilhører forskellige enheder, foreslås der derfor en forbedret 

MADRL-baseret decentraliseret energistyringsstrategi for at maksimere overskuddet 

for EV-enheden og minimere energiomkostningerne for EH-enheden. Desuden 

bruges et specifikt neuralt netværk til at tackle de komplekse usikkerheder, så 
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ydeevnen af den foreslåede metode forbedres. Det relative indhold er præsenteret i 

kapitel 5. Endelig er afhandlingens konklusioner introduceret i kapitel 6. 

For at udføre effektiv simulering af den foreslåede AI-baserede energistyringsstrategi 

blev der udført en række casestudier på Python. Specielt kommer træningsdatasæt fra 

historiske datasæt i virkeligheden, og AI-algoritmer programmeres baseret på 

TensorFlow. Desuden udføres algoritme sammenligning også for at illustrere 

overlegenheden af den foreslåede metode. Simuleringsresultater viser, at den 

foreslåede strategi kan (i) reducere energiomkostningerne, (ii) håndtere usikkerheder, 

(iii) levere energi i realtid og (iV) realisere decentraliseret energistyring for forskellige 

enheder. Desuden skifter den foreslåede metode beregningen fra online til offline, 

hvilket i høj grad reducerer beregningen af online udførelse og letter senere 

applikationer. 
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CHAPTER 1. INTRODUCTION  

1.1. BACKGROUND 

Energy, particularly electricity, is the foundation of social and economic development 

[1]. In the past, the majority of electricity was generated using fossil fuels, which not 

only caused the world energy crisis but also worsened environmental pollution 

through their overexploitation [2]. The International Energy Agency (IEA) predicts 

that CO2 emissions will increase by 130% by 2050, leading to a global average 

temperature rise of 6°C [3]. According to the IEA [4], the world's cumulative 

photovoltaic (PV) installed capacity was approximately 800 GW. According to the 

Global Wind Energy Council [5], the global cumulative wind power installed capacity 

was 743 GW at the end of 2020. GWEC also forecasted that an additional 469 GW of 

wind power capacity would be added between 2021 and 2025, which would bring the 

total installed capacity to over 1.2 TW by the end of 2025. According to statistics from 

the Danish Energy Agency, Figure 1-1 shows the gross energy consumption in 

Denmark as of 2022 [6]. It is notable that RES accounted for a significant portion, 

with wind and solar power alone contributing to nearly 60% of the total electricity 

production.  

 

Figure 1-1 Danish gross energy consumption as of 2021. Source: [6] 

However, due to the randomness and intermittency of renewable energy, the issue of 

renewable energy integration has become increasingly prominent. Relying solely on 

exploiting the existing potential of power systems makes it difficult to overcome the 

challenges of renewable energy integration. Currently, different energy systems 

operate in isolation with limited coordination, severely affecting the flexibility of 

power system operations and failing to fully tap into the potential of these systems. 

Therefore, developing theories and methods for multi-energy system (MES) 
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integration is an effective way to address the renewable energy integration challenge 

[8]. 

A generalized MES refers to a large-scale system encompassing various energy 

systems. This system involves different stages, including energy development, 

conversion, storage, transportation, scheduling, control, management, and utilization. 

Different types of energy have complex coupling relationship. Natural-gas and 

heating networks can also be converted into electricity in various ways. Additionally, 

the integration of distributed energy resources (DERs) further enriches the MES, the 

structure of which is shown in Figure 1-2. Effective energy management strategies for 

MESs can optimizes the use of diverse energy sources, leading to improved overall 

efficiency and reduced operational costs. By coordinating different energy carriers 

such as electricity, heat, and gas, these strategies enhance system flexibility and 

reliability, facilitating the integration of RESs [9]. Additionally, effective 

management strategies can support dynamic demand response and reduce 

environmental impact, contributing to more sustainable and resilient energy systems 

[10]. 

 

Figure 1-2 A typical framework of the MES [J1]. 

1.2. STATE OF THE ART 

1.2.1. DEEP REINFORCEMENT LEARNING 

Deep reinforcement learning (DRL) combines the feature representation capabilities 

of deep learning (DL) with the decision-making abilities of reinforcement learning 

(RL). DRL efficiently solves sequential problems by breaking them down into 

multiple subproblems and solving them step by step [11]. During the training phase, 

the DRL agent embeds knowledge extracted from historical data into a neural network, 

enabling online decision-making after deployment. Additionally, with proper design, 
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DRL can achieve control without relying on physical models, thereby reducing 

control deviations caused by inaccuracies in the physical model [12][13]. 

DRL’s framework is shown in Figure 1-3. In DRL, the interaction between the agent 

and the environment can be described as a Markov Decision Process (MDP). In this 

framework, the agent observes the current state of the environment, selects an action 

based on the states, and then receives a reward from the environment.  he agent’s 

objective is to learn a policy that maximizes the cumulative reward over time by 

optimizing its actions across different states. This iterative process allows the agent to 

adapt and improve its strategy to solve complex optimization problems effectively.  

Common DRL algorithms are deep Q-Network (DQN), deep deterministic policy 

gradient (DDPG), twin delayed deep deterministic policy gradient (TD3) and soft 

actor-critic (SAC). DQN is known for its simplicity and effectiveness in discrete 

action spaces, but it struggles with stability and exploration, especially in continuous 

action environments. DDPG addresses continuous action spaces by combining actor-

critic methods and deterministic policies, but it often suffers from instability and 

overestimation of action values. TD3 improves upon DDPG by using two Q-networks 

to reduce overestimation bias and applying delayed policy updates for better stability, 

although it can still be sample-inefficient. SAC, on the other hand, introduces entropy 

regularization to encourage exploration, making it more robust and stable in complex 

environments, but it tends to be computationally expensive due to its soft policy 

updates. Each of these algorithms has its strengths and weaknesses, depending on the 

environment's state and action spaces. 

DRL has been widely used in power system optimization, such as voltage control [14], 

demand response [15], and energy storage management [16]. Furthermore, curriculum 

learning -based DRL, is effective in solving complex environments, e.g., quantum 

control [17], by gradually increasing the difficulty of tasks during training. Combining 

transfer learning with DRL allows an agent to leverage knowledge learned from one 

task or environment to improve its performance on a related task or in a different 

environment, which has been applied in navigation [18] and trading strategies [19]. 

Combining DRL with graph learning to extract topological features is an advanced 

approach that improves decision-making ability of DRL, e.g., distribution network 

voltage control [20]. In addition, federated learning-based DRL to address demand 

response problems offers a powerful approach to optimize energy consumption 

without compromising data privacy [21]. Besides, quantum RL shows superior 

performance in computer simulations than classical RL, e.g., better performance on a 

large search space, faster learning speed and better balances between exploration and 

exploitation [22]. DRL can also integrate with a large language model to realize real-

time optimal power flow, in which some unquantifiable linguistic stipulations can be 

directly modeled as objective [23]. Besides, integrating physics-informed rules into 

state-of-the-art DRL algorithms enhances the explainability of the obtained results. 

This approach has already been applied in power systems [24]. 
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Figure 1-3 Framework of DRL. 

In a multi-agent environment, each agent’s strategy evolves during training, causing 

non-stationarity that challenges single-agent DRL algorithms. Multi-agent DRL 

(MADRL) algorithms using centralized training and decentralized execution address 

this by leveraging the structural differences between actor and critic networks [25]. 

The framework of the MADRL is shown in Figure 1-4. The critic network, which uses 

global information from all agents, helps guide the learning of cooperative strategies. 

The actor network, using only local information, is used during execution. This design 

maintains environmental stability for each agent and improves the stability of the 

training process. MADRL has been used to address multi-robot coordination control 

problems [26]. In addition, MADRL can be combined with graph learning to enhance 

algorithm performance by learning the topology and node features of the network, e.g., 

voltage control [27]. MADRL can also be applied for adaptive traffic signal control 

in the guidance of transfer learning [28], which can improve the scalability of each 

agent. In MADRL, multiple agents may have cooperative or competitive relationships. 

Through transfer learning, the strategies learned by certain agents can be used as the 

foundation for other agents to learn from. 

 

Figure 1-4 Framework of MADRL. 

1.2.2. MES ENERGY MANAGEMENT 

1) Electricity-Gas MES Energy Management 

Agent

Action

Reward

State
Environment

Agent

Action

Reward

State
Environment

Environment

State

Actor Network

Critic Network

Agent 1 Agent N…

Actor Network

Critic Network

State

Action Action



CHAPTER 1. INTRODUCTION 

5 

Integrating electricity and natural gas into a MES offers greater flexibility, efficiency, 

reliability, and cost-effectiveness [29]. In addition, there is a rising trend in the 

integration of carbon capture and storage (CCS) technology into coal-fired power 

plants, leading to the development of carbon capture power plants (CCPP) [30]. 

Power-to-gas (P2G) technology allows the conversion of excess wind power into 

synthetic natural gas [31]. Several studies [32]-[34] worked on the availability of fuel, 

changes in natural gas prices, the influence of wind energy on the costs of power 

operations, and the development of innovative integrated structures for power and 

cooling cogeneration systems that offer improved thermal efficiency. Most of these 

studies tend to focus on single-plant perspectives to investigate the low-carbon energy 

management strategy, often overlooking the coordination between the CCS and P2G 

units [35]. The coordination between CCS and P2G can effectively promote the 

integration of renewable energy, improve the operational flexibility, and reduce 

generation costs. 

In addition, investigating the optimal energy management strategy for the electricity-

gas MES is complicated by numerous variables, including fluctuating electricity and 

gas consumption, uncertain wind power generation, and fluctuating energy prices. 

Complications also arise from the complex coupling relationships of energy flow 

models, the lack of network topology, and the intricacies of a non-convex multi-

objective function. Traditionally, energy management strategies for MESs have 

heavily depended on programming methods. The methods can be classified into three 

primary categories: dynamic programming [36], linear programming [37], and non-

linear programming [38]. However, programming methods require a considerable 

amount of time when handling complex systems or uncertainties, which restricts their 

scalability in complex systems. Specifically, these methods often require numerous 

iterations to find the optimal strategy for a given state. Given the computational time 

required for online deployment, programming-based methods are not well-suited for 

addressing this problem [39]. Furthermore, to address multiple uncertainties and 

enable real-time decision-making, DRL-based energy management strategies have 

been proposed to optimize the operation of electricity-gas MES systems [40]. 

2) Residential MES Energy Management  

Globally, residential energy consumption typically accounts for 30% to 40% of total 

energy use [41]. This includes heating, cooling, hot water, lighting, and appliances. A 

residential MES (RMES) includes both heating and electricity supply for residential 

users. The idea of using energy carriers has arisen as a promising framework for future 

energy networks [42]. Multi-energy carriers focus on optimizing the interaction 

between various energy sources and demands. Users may easily modify their energy 

usage and transition between various energy sources using this method [43]. An 

effective residential energy management strategy can lead to economic benefits [44], 

carbon emission reduction [45], enhancing renewable energy usage [46], maintaining 

residential comfort [47], and balancing load curves [48]. Few studies focus on 
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residential energy management strategies aimed at addressing both energy trading and 

energy conversion. This is because the time scales for these two objectives may differ 

significantly, and their integration introduces additional uncertainties, making the 

optimization problem more complex. 

Energy components in the multi-energy carriers include electrical storage (ES), water 

electrolyzers (WE), fuel cell (FC), gas boiler (GB), hydrogen boiler (HB), and 

hydrogen tank (HT). ES devices can also be used to make up for energy shortages by 

storing extra electrical energy. WE converts electrical energy into hydrogen. This 

hydrogen can then be used by FC units to produce electricity and heat [49], by HB for 

heating, or stored in HT for future needs. GB serves as an auxiliary heat source, using 

purchased natural gas to meet heating requirements. 

Hydrogen fuel, noted for its versatility in generating electricity, heating, and powering 

electric vehicles, plays a significant role in reducing carbon emissions. With ongoing 

corporate investments and the development of hydrogen infrastructure, hydrogen fuel 

costs are anticipated to decrease [50], promoting its adoption in residential areas. 

However, its use in residential buildings is still emerging. The WE is designed to 

convert electrical energy into hydrogen, which can be stored indefinitely, a significant 

advantage over other energy storage devices like batteries that require frequent 

recharging [51]. The investment cost for WEs is decreasing, and their efficiency is 

improving over time [52]. 

Centralized residential energy management strategies optimize energy costs in various 

residential loads and controlling intelligent home appliances for cost minimization 

[48]. However, centralized energy management strategies face challenges like single-

point communication failures and operation maintenance costs [53]. In tackling these 

challenges, distributed energy management strategies offer an alternative choice, 

where each subsystem computes its outcomes with minimal communication with 

others [54]. Different extended frameworks for distributed exchange are available. 

One direction considers interactions in domestic energy management as a generalized 

Nash game, while another uses a distributed model predictive controller to regulate 

collective power consumption [55]. However, model predictive controllers rely on 

accurate modeling of residential energy systems, which is challenging due to the 

complex operational modes and energy coupling relationships involved. In addition, 

the distributed methods suffer from communication delays, e.g., consensus-based 

methods [56]. Furthermore, data-driven MADRL-based residential energy 

management strategies have been proposed to optimize residential energy costs. Since 

MADRL-based strategies only require local information during online deployment, 

they significantly reduce communication demands [57]. 

3) Energy Management of Multiple MESs 
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The shift toward DERs in the modern energy system is steering the electricity sector 

away from traditional centralized models. In this context, microgrids (MGs) are 

becoming increasingly vital for enhancing renewable energy usage. More advanced 

than MGs, multi-energy MGs (MEMGs) are critical for achieving optimal energy 

solutions by facilitating coordination among different energy sectors like electricity, 

gas, and heating [58],[59]. MEMGs offer a framework to handle the dynamic 

interactions and interdependencies among different energy components. 

The energy Internet (EI), which is defined by its reliance on renewable energy, 

decentralized networks, and peer-to-peer connections, is becoming increasingly 

popular as an attractive option [60]. In decentralized network, each unit makes 

decisions about its energy consumption or production locally, often based on its 

specific needs or constraints. It enables the growth and use of many energy sources in 

a distributed way, providing significant benefits for the environment, economy, and 

resilience. Energy routers (ERs) are essential components within the EI architecture, 

similar to internet routers. They facilitate the transmission of both information and 

energy across MGs, which is necessary for actual EI scenarios [61]. Yet, the 

decentralized structure of numerous energy networks and the unpredictability of 

DERs provide difficulties in efficiently controlling units due to its complex physical 

and communication framework. 

Centralized energy management strategies involve a central controller communicating 

with MGs for global information and decision-making, which is a top-bottom 

framework [62]. Despite its widespread use, this approach has several drawbacks: 

high connectivity costs, vulnerability to single-point failures, and significant 

computational burdens, especially as more DERs integrate into the system [63]. The 

centralized energy management strategy also struggles with high DER penetration and 

the need for customized energy interactions, limiting the flexibility of transactions 

between consumers and markets [64]. There is a growing interest in implementing 

bottom-up energy management schemes, which offer a more practical strategy for 

monitoring multiple agent systems (MAS) at both the MG and energy router (ER) 

levels [45]. These schemes take into account individual MGs' unique consumer energy 

demands and operational costs, aiming to facilitate future energy planning and cost 

reduction. For instance, research has demonstrated significant reductions in the 

levelized cost of electricity through the utilization of bottom-up approaches [46][47]. 

Instead of starting with a high-level and centralized perspective, bottom-up methods 

begin by optimizing energy usage at the local level—such as households, devices, or 

DERs—and then coordinating these local optimizations to achieve broader energy 

management goals. 

However, these bottom-up energy management strategies encounter challenges due to 

their reliance on traditional mathematical models, which necessitate precise parameter 

estimation and can be computationally demanding, rendering them unsuitable for real-

time energy management [48]. Current research has examined various distributed 
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techniques, such as game theory, the alternate direction method of multipliers 

(ADMM), consensus theory, and event-trigger processes, with the purpose of 

coordinating MGs [49][50]. These techniques aim to address concerns with energy 

trade and congestion management among MGs. However, their reliance on particular 

optimization models can lead to complications and possible problems with 

convergence owing to nonconvexity. Additionally, they have difficulties in dealing 

with the uncertainties related to renewable energy and complicated energy 

conversions [51]. 

4) Energy Management for the MES including EVs 

District heating systems involve the centralized production and distribution of thermal 

energy through pipelines [52],[53]. The integration of electricity and district heating 

systems has been furthered by the electrification of heating devices and the emergence 

of energy hubs (EHs). EHs serve as versatile multi-energy carriers, encompassing 

energy production, conversion, and storage, and play a flexible role in system 

operations and market trading [54]. Additionally, the rise of electric vehicle (EVs) 

driven by climate change concerns, air quality improvements, and advancements in 

battery technology is reshaping transportation. Global EV sales have skyrocketed 

from 12,000 in 2012 to a record 6.6 million in 2021 [69]. The integration of EVs into 

the power grid is becoming increasingly important, with projections suggesting a 

significant increase in electricity demand [70]. Research indicates that integrating EVs 

into MESs can enhance operational flexibility and reduce costs. For instance, research 

[71] observed an 8.81% cost decrease by integrating EVs into a MES. Research [72] 

examined the optimized scheduling of a zero-carbon MES for the next day, using EVs 

to meet the electricity and cooling requirements. Literatures [73][74] further 

investigated the economic and emission scheduling in local MESs that include plug-

in EVs. They also studied the optimized planning of MESs that include transportation, 

natural gas, and active distribution networks. 

The field of EH optimization is expanding, addressing intricate energy 

interconnections using methods such as stochastic programming [75]. This study 

involves the control of the influence of ES on operational expenses and the 

formulation of approaches for dependable and effective energy administration [76]. A 

significant amount of academics is now prioritizing the centralized coordination of 

EHs and EV Aggregators (EVAGGs) in energy management [77]-[84]. Centralized 

methods involve a central entity handling all decision-making processes. While these 

methods can minimize energy purchase costs and optimize various objectives, they 

face challenges like dependency on perfect communication conditions, privacy 

concerns for prosumers, and potential delays in response times, hindering real-time 

scheduling [85][86]. In addition, model-based algorithms require accurate modeling 

of uncertainties and find it difficult to make real-time decisions during online 

deployment. It’s significant to investigate a model-free decentralized energy 

management strategy for the MES and EVAGG entities. 
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To avoid reliance on precise modeling of the MESs and uncertainties, model-free 

DRL methods have been applied into the optimal energy management of EHs and 

EVAGGs. For example, Liu et al. [87] and Qiu et al. [88] proposed DQN and DDPG 

algorithm to minimize the operation costs in a smart EH, respectively. However, DQN 

and DDPG-based strategies are centralized and do not account for the privacy of 

different entities. Additionally, DQN is specifically suited for problems with discrete 

action and state spaces, and DDPG is sensitive to hyperparameter settings. In addition, 

these studies did not use specialized neural networks to handle uncertainty, nor did 

they incorporate the system’s safety constraints into the algorithm training. 

1.3. THE OBJECTIVES OF THIS THESIS 

To tackle the aforementioned challenges, the objectives of this thesis are summarized 

as follows: 

1) DRL-based low-carbon economic energy management strategy for the 

electricity-gas MES. 

This thesis develops a data-driven energy management strategy for the electricity-gas 

MES. A DRL algorithm is applied to find the optimal low-carbon energy management 

strategy. The coordination between P2G and CCS units is investigated. 

2) MADRL-based two-timescale energy management strategy for the 

residential MES. 

This thesis applies an MADRL algorithm to investigate the two-timescale energy 

management strategy for the residential MES, where an hourly-ahead energy trading 

agent and a 15-min-ahead energy conversion agent are set. The learned strategy can 

flexibly adjust unit operations in response to varying load profiles and energy prices. 

3) MADRL-based bottom-up energy management strategy for multiple MESs. 

This thesis develops a bottom-up energy management framework for the EI network. 

The bottom layer is an MG cluster composed of multiple MESs, and an MADRL 

algorithm is applied to learn the optimized operation strategies for the MESs. The 

upper layer is an ER cluster responsible for energy allocation across MESs.  

4) MADRL-based decentralized energy management strategy for MESs and 

EVAGG. 

This thesis presents a DRL-based energy management strategy for the grid-connected 

MG with EVs. Furthermore, this thesis develops a decentralized energy management 

strategy for the EH and EVGAA entities, where each entity can make decisions based 

on local measurements. 



MODELLING AND OPTIMIZATION OF MULTI-ENERGY SYSTEMS OPERATION BASED ON DEEP REINFORCEMENT 
LEARNING 

10
 

The relationships between the above four parts are shown in the Figure 1-5.  

 

Figure 1-5 The contents of the thesis 

As discussed earlier, modern MESs are complex and broad, which includes integrated 

energy networks, residential MESs, EI network including multiple MESs, and the 

MES interacting with other entities (e.g., EVAGG). Therefore, this thesis focuses on 

developing characterized energy management strategies for different types of MESs. 

Specifically, Chapter 2 focuses on hourly-level low-carbon economic operation in an 

electricity-gas MES, which is a centralized management strategy. In Chapter 3, we 

transition to a residential MES, exploring a two-timescale energy management 

strategy to reduce energy costs while using MADRL to create individual strategies for 

an energy trading agent and an energy conversion agent. In Chapter 4, we further 

consider energy management strategies for an EI composed of multiple MESs, 

proposing a bottom-up management framework in a collaborative environment. 

Finally, in Chapter 5, we examine a competitive environment with EVAGG entities 

and investigate how to develop decentralized energy management strategies to 

maximize the EVAGGs’ profits and minimize the energy cost of MESs. The system 

modeling of different MESs is provided in each chapter.  
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Furthermore, the methodology also follows a progressive approach. It starts with the 

single-agent DRL algorithm, moves to the MADRL algorithm, and finally involves 

improving the MADRL algorithm to enhance training effectiveness. Since solving 

energy management problems with DRL or MADRL requires transforming the 

original problem into an MDP or Markov game, the description of MDP or Markov 

game is essential. Although this may lead to structural repetition, each description is 

different, as it is specific to different energy management problems. 

1.4. THESIS OUTLINE 

The thesis is written based on the publications in the Ph.D. project, and is presented 

in the form of a collection of papers. The contents of this thesis are divided into two 

sections: a Report and Selected Publications. 

Figure 1-6 outlines the structure of the thesis. Chapter 1 presents the research 

background, objectives and contributions. Chapter 2 investigates the low-carbon 

economic energy management strategy for the electricity-gas MES, where the 

coordination of P2G and CCS units is studied. In Chapter 3, two-timescale energy 

management strategy for the residential MES is elaborated to minimize operation cost. 

Chapter 4 exhibits a bottom-up energy management strategy for multiple MESs under 

the framework of EI. In Chapter 5, a decentralized energy management strategy for 

MES and EVAGG entities is investigated to maximize their profits. The conclusion 

is shown in Chapter 6. 

 

Figure 1-6 The outline of this thesis. 
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CHAPTER 2. A LOW-CARBON ENERGY 

MANAGEMENT STRATEGY FOR THE 

ELECTRICITY-GAS MES 

The contents of Chapter 2 are based on the following two papers: 

J1: B. Zhang, X.  u, A. Ghias and Z.  hen, “ oordinated  arbon  apture  ystems 

and Power-to-Gas Dynamic Economic Energy Dispatch Strategy for Electricity-Gas 

Coupled Systems considering System Uncertainty: An Improved Soft Actor-Critic 

Approach,” Energy, vol. 271, no. 126965, May 2023. 

J2: B. Zhang,  .  u, X. Xu, Z. Zhang and Z.  hen, “ ybrid  ata-Driven Method 

for Low-Carbon Economic Energy Management Strategy in Electricity-Gas Coupled 

Energy  ystems based on  ransformer  etwor  and  eep Reinforcement  earning,” 

Energy, vol. 273, no. 127183, Mar. 2023. 

2.1. INTRODUCTION 

The high penetration of wind power resulting high randomness and uncertainty pose 

significant challenges to investigate low-carbon economic operation strategy for 

MESs. Traditional model-based strategies rely on accurate modeling of uncertainties, 

which is often difficult to achieve. Therefore, a data-driven low-carbon operation 

strategy based on DRL is proposed in this chapter. In Section 2.2, the model of 

electricity-gas MES including objective function, constraints and coordination of P2G 

and CCS is established. Section 2.3 formulates the investigated problem as MDP, and 

presents an improved SAC algorithm with prioritized experience replay (PER). The 

effectiveness of the proposed strategy is verified in the simulation in Section 2.4. 

Conclusion is given in Section 2.5. 

2.2. SYSTEM DESCRIPTION 

Figure 2-1 illustrates the structure of the energy management of the electricity-gas 

MES, including cyber space and physical space [89],[90]. In the cyber space, energy 

information from the electricity-gas MES is collected before making energy 

management strategy. In the physical space, the electricity-gas MES is coupled by 

multiple components, including GT and P2G. Natural gas demand is met through 

purchases from the gas well and P2G. Electrical load is supplied by the main grid, 

wind power, CCS, GT, and coal-fired units. The detailed mathematical models can be 

found in Section 2 in [J1]. 
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Figure 2-1 Structure diagram of the electricity-gas MES with P2G and CCPP units [J1]. 

2.2.1. CCPP OPERATION 

CCPP model consists of a fossil fuel unit and a CCS unit. The fossil fuel unit provides 

electricity for both the load and the CCS. The electricity consumption of the CCS 

includes a fixed consumption and consumption related to CO2 processing. The CCS 

captures CO2 emitted by the fossil fuel unit, with a capture rate of 90%.   

2.2.2. P2G OPERATION  

The structure of P2G operation is illustrated in Figure 2-2. P2G is a coupling unit 

between electricity and gas systems, functioning as both a supply of natural gas and 

an electrical load. P2G operation encompasses two main processes: electrolysis and 

methanation [69]. H2 storage is utilized to provide operation flexibility. The electricity 

consumption of P2G is used for water electrolysis, and the heat generated during the 

methanation process can be recycled by the CCS, thereby reducing the energy 

consumption of the CCS. 
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Figure 2-2 Operation scheme of the P2G facility [J1]. 

2.2.3. COORDINATION BETWEEN CCS AND P2G UNITS 

Figure 2-3 details the coordination operation between CCS and P2G units. The 

coordination involves carbon capture process and P2G operation. In order to improve 

operation flexibility, CO2 storage, H2 storage and GT units are used. The H2 storage 

stores excess H2, which is then utilized by the GT during periods of high electricity 

prices to reduce energy expenses. 

 

Figure 2-3 Coordination model of the P2G and CCS [J1]. 

The objective function of the low-carbon economic operation is to reduce the overall 

cost during [0, T], which is expressed as follows: 

0

min
T

oc cp wp

t t t

t

F C C C
=

= + +  (2.1) 

where { , , }oc cp wpC C C  are the operation cost, the CO2 processing cost and the penalty 

cost of wind curtailment. The constraints include unit operation constraints, energy 
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storage constraints, and gas and electricity balance constraints. T represents the time 

period, and since the goal is to optimize the daily operation cost, T is set to 24. 

2.3. METHOD INTRODUCTION 

In this section, the studied low-carbon economic operation problem is first formulated 

as MDP. Then, an improved SAC algorithm is presented. Finally, the DRL-based 

energy management method is proposed. 

2.3.1. MDP FORMULATION 

The MDP consists of four elements, including state set ( S ), action set ( A ), reward 

function ( R ), and state transition function ( P ).  

1) State: The states 
ts S  at time slot t  are wind power output, electricity loads and 

gas loads.  

2) Action: The actions 
ta A  at time slot t  are electricity output of CCPP and gas-

fired generators, the electricity used to capture CO2, the electricity output of GT and 

the CH4 generation of the P2G.  

3) Reward function: The reward is defined as the negative form of the objective 

function. The Reward 
tr R  at time slot t  is expressed as follows: 

( )oc cp wp

t t t tr C C C= − + +  (2.2) 

4) Transition probability: The state transition probability P  represents the 

probability of the instant state moves to the next state. The state transition probabilities 

of wind power and load demands cannot be determined, but DRL can learn the 

relationship between states and actions through interactions with the environment. 

5) System problem: The system operation optimization problem is indeed a 

stochastic optimization problem, as the dynamics of the MES (such as state transitions 

and rewards) involve inherent uncertainty. This uncertainty is captured using an MDP 

model, where the solution for the MDP is to find the optimal policy *( | )t ta s  to 

maximize the cumulative reward 
T

i t

t i

i t

R r −

=

= , where   denotes the discount factor 

within [0,1] . The MDP framework allows us to model and solve this stochastic 

optimization problem by learning the optimal actions to take in each state to achieve 

the highest expected cumulative reward. 
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2.3.2. IMPROVED SAC ALGORITHM 

The SAC algorithm based on actor-critic (AC) structure is used to solve the MDP 

problem. AC structure consists an actor network and a critic network, which is 

presented Figure 2-4. The actor parameterized by   takes the state as input and 

outputs the action based on the policy  . The critic network parameterized by   

outputs the Q value ( , )t tQ s a  which is used to direct the actor chooses action that has 

higher reward. Furthermore, SAC uses two critic networks to solve overestimation of 

Q-values, and employs target networks to improve training stability [91],[92]. 

 

Figure 2-4 Structure of the actor-critic network [J1]. 

The maximum entropy is used to improve exploration and keep the algorithm from 

being stuck in local optima, which is expressed as follows: 

0

( ) [ ( , ) ( ( | ))]
T

t t t

t

J E r s a H s  
=

= +   (2.3) 

where ( ( | ))] log ( | )t t tH s a s  = −  is the entropy item, and   is the entropy 

coefficient. The critic and actor networks are updated based on gradient decent. 

To improve training efficiency and convergence, PER mechanism is used. PER 

assigns higher weights to important samples obtained from the experience replay 

buffer, increases the sampling probability of those samples. The probability is 

expressed as follows: 

j

j

k

k

p








=


 (2.4) 

where   denotes the priority control coefficient, and 
j

  is the weight of sample j . 
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The pseudocode of the PER-SAC algorithm is shown in Algorithm 1, and details 

about the PER-SAC can be found in Section 3 in [J1]: 

Algorithm 1. Pseudocode of PER–SAC algorithm 

// Start training 

1. Initialize critic network, actor network and their target networks, respectively. 

2. Initialize experience replay buffer. 

3. For each episode, do 

    // generate training data. 

4.    For each time step, do 

5.          Obtain action 
ta  at a given state 

ts  under policy 
 . 

6.          Take action 
ta  and obtain reward 

tr , and environment moves to next state
ts . 

7.         Store 
1{ , , , }t t t ts a r s +

 in experience buffer.  

8.    End For 

// Train neural networks 

9.   Sample from experience buffer based on probability 
jp  provided by PER. 

10. For each update step, do 

11.      Update the critic networks: 

( )
ii i Q Q iJ    −   for {1,2}i . 

12.      Update the actor network: 

( )J      −  . 

13.      Update the entropy coefficient: 

( )J     −  . 

14.      Update each target network. 

(1 )i ii    + − , (1 )    + −  

15. End For 

16. END 

 

2.3.3. PER-SAC -BASED ENERGY MANAGEMENT STRATEGY 

The framework of the proposed PER-SAC -based energy management strategy is 

shown in Figure 2-5. The environment is the electricity-gas MES, and the system 

operator is the DRL agent that determines the operation of controllable units. In the 

offline training, PER-SAC algorithm continuously updates network parameters to 

maximize cumulative rewards until it eventually converges. When deployed online, 

the actor network fixes its parameters and outputs the real-time decisions. Details 

about algorithm updating can be found in Section 3.2.2 in [J1]. 
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Figure 2-5 Framework of the proposed PER-SAC energy management strategy [J1]. 

2.4. NUMERICAL SIMULATION 

This simulation validates the effectiveness of the proposed energy management 

strategy through the use of real-world historical data.  

2.4.1. CASE SETUP 

The system example is an urban industrial park. With additional parameter details 

given in [J1], Figure 2-6 shows wind power generation and electricity load. Each time 

step is one hour, and each episode is one day (24 time steps). Five cases are set: Case 

1: MES without CCS and P2G; Case 2: MES with P2G; Case 3: MES with CCS; Case 

4: MES with CCS and P2G operating independently; Case 5: Same as Case 4, but with 

coordination between CCS and P2G units. 

Due to the lack of coordination from P2G, Cases 3 and 4 face a challenge as all 

captured CO2 needs to be transported and stored, with no efficient accommodation. 

Furthermore, in Case 4, the heat produced by the methanation reaction remains unused 

by CCS. In addition, in Cases 2 and 4, the production of methane (CH4) involves using 

CO2 directly obtained from atmosphere, rather than using a CO2 storage device. 
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(a) (b) 

Figure 2-6 The training dataset utilized to train the PER-SAC algorithm: (a) Wind power 

generation, (b) Electricity load [J1]. 

2.4.2. ALGORITHM TRAINING 

The algorithm parameter settings are detailed in [J1]. The convergence of episodic 

average rewards of Case 5 is presented in Figure 2-7. The benchmarks are SAC 

algorithm and DQN algorithm. During the training process, DRL agent continuously 

adjusts weights of neural networks until the episodic reward reaches a stable state, 

indicating that an optimal strategy has been attained. As seen, the PER-SAC algorithm 

demonstrates a steadier and quicker average return than SAC. Moreover, due to the 

DQN algorithm's limitation to discrete action spaces, it achieves a lower average 

return. 

 

Figure 2-7 The convergence of cumulative rewards per episode in the PER-SAC, SAC and 

DQN algorithm [J1]. 

2.4.3. RESULTS ANALYSIS 

A test day which is not included in the training dataset is used to test the well-trained 

low-carbon energy management strategy. The test data is shown in Figure 2-8. The 

peak values of the gas load, wind generation and electrical load are 1840 kcf , 210 

MW and 580 MW, respectively. 
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Figure 2-8 Load demand and wind power generation on a test day [J1]. 

2.4.3.1 Analysis of Wind Power Utilization Results 

Wind power utilization results of 5 cases are shown in Figure 2-9. In Case 1, highest 

wind curtailment is observed during the early hours (1 to 6) due to the absence of P2G 

facility and CCS units for utilizing excess wind energy. While Cases 2 and 3 show a 

reduction in wind curtailment compared to Case 1, the complete absorption of surplus 

wind power is still not achieved, even with the inclusion of P2G facilities and CCS in 

Cases 4 and 5. 

 

Figure 2-9 Wind power curtailment in Cases 1-5 [J1]. 

2.4.3.2 Operation of CCPP, P2G and GT units 

Figure 2-10 displays the operation of CCPP. Between hours 1 and 6, there is a 

noticeable decrease in the net power of CCPP for Cases 3-5 compared to Cases 1-2, 

primarily due to the CCS. Therefore, approximately 20 MW of wind power is 

promptly utilized to provide electricity. 
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Figure 2-10 Operation results of CCPP [J1]. 

Furthermore, the P2G unit operation is shown in Figure 2-11. P2G operates only 

during periods of high wind power generation. Since both Case 4 and Case 5 include 

CCS, the CCPP will supply more electricity, thereby reducing the input power of P2G 

to lower operation costs. 

 

 Figure 2-11 Operation of P2G unit in Case 2, 4 and 5 [J1]. 

Figure 2-12 displays the operation of GT and waste heat utilization in Cases 2, 4, and 

5. In Cases 2 and 4, where there's no coordination of P2G and CCS, the produced H2 

is directly used for CH4 synthesis. However, in Case 5, the presence of H2 and CO2 

storage devices allows for the decoupling of the CH4 synthesis process. Consequently, 

Case 5 offers two applications for the produced H2 – methane synthesis or electricity 

generation through GTs. Notably, during peak electricity demand periods, specifically 

hours 15-16 and 20-21, some of the H2 is utilized by GTs to produce additional 

electricity. To meet the rising gas demands at hours 11, 16, and 19, the Sabatier 

reaction is employed to lower gas supply costs. Furthermore, the heat from the 

reaction is recycled in the CCS to capture CO2, reducing the generation costs for the 

CCPP. 
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Figure 2-12 Operation of GT and the utilization of waste heat in Case 5 [J1]. 

2.4.4. ALGORITHM PERFORMANCE 

To validate the generalization and robustness of the proposed strategy, a comparison 

analysis of the proposed strategy and scenario analysis (SA) over different forecast 

errors is conducted. The description of the SA can be found in Section 4.3 in [J1]. The 

prediction errors are generated following the normal distribution. The wind power 

profiles for the real-scenario and two prediction scenarios are presented in Figure 2-13. 

Cost comparison results for different scenarios over 14 consecutive days are presented 

in Figure 2-14. As seen, the operation cost and cumulative cost achieved by the 

proposed strategy are closed to the optimal results. The satisfactory results stem from 

the fact that DRL learns near-optimal policies from a large amount of historical data. 

As a result, DRL performs well in environments where the training and testing sets 

exhibit similar random characteristics. In contrast, SA algorithms rely on precise 

modeling of uncertainties, making their outcomes highly sensitive to prediction errors 

in the deterministic model. 

 

Figure 2-13 Wind power profiles for the real-scenario and two prediction scenarios [J1]. 
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(a) 

 
(b) 

Figure 2-14  Cost for 14 test days: (a) operation cost; (b) cumulative cost. 

The comparison results of different algorithm are presented in Table 2-1 and Table 2-

2. Case 1 is the benchmark case. The total cost provided by SA method is 0.68% lower 

than that of PER-SAC algorithm. SA relies on the accurate uncertainty modeling and 

requires too much calculation time, but PER-SAC only requires the forward pass of 

the well-trained actor network during online operation, enabling real-time and 

continuous decision-making. Since DQN requires discretizing the action space, the 

cost results are unsatisfactory. 

Table 2-1 Comparative analysis of total cost under different forecast accuracy [J1] 

Case Method Cost ($/d) Improvement (%) 

Case 1 - 37,198.62 0 

Case 5 

PER–SAC 23,514.89 36.78 

DQN 36,213.65 2.65 

SA 23,264.23 37.46 
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Table 2-2 Computation performance of different algorithms [J1] 

Method Offline training time (s) Online operation time (s) 

PER-SAC 341.237 0.039 

DQN 221.748 0.048 

SA - 1563.851 

 

2.5. CONCLUSION 

In this chapter, a DRL-based low-carbon economic energy management strategy for 

the electricity-gas MES is investigated. To solve the uncertainties, the studied problem 

is first formulated as MDP, and solved by the PER-SAC algorithm. Case study shows 

that the controlled units can flexibly adjust their operations to increase wind power 

utilization and reduce operation costs. In comparison with other algorithms, the 

proposed strategy effectively reduces operation costs and can provide real-time 

operation strategy. 
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CHAPTER 3. MADRL-BASED TWO-

TIMESCALE ENERGY MANAGEMENT 

STRATEGY FOR THE RESIDENTIAL 

MES 

The contents of Chapter 3 are based on the following two papers: 

J3: B. Zhang, X. Xu,  .  u, and Z.  hen, “ wo-Timescale Autonomous Energy 

Management Model based on Multi-Agent Deep Reinforcement Learning Approach 

for Residential Multicarrier Energy  ystem”, Applied Energy, vol. 351, no. 121777, 

Dec. 2023.  

C1: B. Zhang, Z.  hen, and A. Ghias. “ eep Reinforcement  earning -based Energy 

Management Strategy for a MG with Flexible  oads”, 2023 the 7th International 

Conference on Power Energy Systems and Applications (ICoPESA 2023). 

3.1. INTRODUCTION 

Residential energy use accounts for a significant portion of total energy consumption. 

It’s significant to investigate an effective residential energy management strategy to 

minimize energy costs. Residential energy management includes internal short-term 

energy conversion and external long-term energy trading. However, multiple 

uncertainties including long-term and short-term uncertainties make the energy 

management complex introducing high-dimension stochastic constraints. It’s difficult 

to solve it by using single-agent DRL algorithm. Therefore, this chapter proposes an 

MADRL-based two-timescale residential energy management strategy, considering 

the hourly-ahead energy trade and the 15-minute-ahead energy operation. Section 3.2 

describes the two-timescale energy management problem. In Section 3.3, MADRL 

algorithm is introduced, and case study including deterministic and stochastic studies 

is conducted in Section 3.4. Conclusion is given in Section 3.5. 

3.2. MODEL DESCRIPTION 

The architecture of the RMES is shown in Figure 3-1. Electricity and natural gas can 

be purchased from the electricity grid and gas network through the energy trading 

system. It can also sell any excess electricity that it produces. Rooftop PV panels are 

used to generate electricity. ES can make up for energy shortages by storing extra 

electricity. WE converts electricity into hydrogen. FC uses hydrogen to produce 

electricity and heat, and HB uses hydrogen for heating. Hydrogen can be stored in HT 
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for future needs. GB serves as an auxiliary heat source, using purchased natural gas 

to meet heating requirements. The feasibility of these units has already been 

demonstrated. 

 

Figure 3-1 The architecture of the RMES [J3]. 

3.2.1. TWO-TIMESCALE ENERGY MANAGEMENT FRAMEWORK 

The two-timescale energy management is illustrated in Figure 3-2. At each hour, the 

amounts of natural gas bought from the external gas network and electricity traded 

with the external grid are determined and remain unchanged until the next hour. 

Within each hour, the 15-minute operations of the coupling units are determined. 

 

Figure 3-2 Two-timescale energy management framework [J3]. 

3.2.2. OBJECTIVE FUNCTION 

This objective is to minimize the energy cost, which is outlined as follows: 

Trade in 

Natural Gas

Trade in 

Electricity

Electrical 

Storage

Hydrogen 

Tank

Fuel CellElectrolyser

Natural 

Gas Boiler

Hydrogen 

Boiler

Compressor

PV Panels

Electricity 

loads

Heat loads

Electricity Flow

Natural Gas Flow

Heat Flow

2

,HB t

HQ

2

,FC t

HQ

,WE t

eP

,G t

ngQ

,G t

eP

Trade out 

Electricity

Hydrogen Flow

  =1    =  

…

Level I: Hour-ahead 

energy trading

Level II: Intra-hour 

energy conversion

Hourly forecast (PV 

outputs and loads)

Uncertainties (PV 

outputs and loads)

……

Level I: Operation 

decisions

Level II: Operation 

decisions

… …… …

         

      
   

……

……

  =24 hours

   =1 hour

  



MODELLING AND OPTIMIZATION OF MULTI-ENERGY SYSTEMS OPERATION BASED ON DEEP REINFORCEMENT 
LEARNING 

28 

24
, ,

1

min ( )t G t t G t

e e ng ng

t

F P Q 
=

= +  (3.1) 

where t

e  and 
t

ng  denote the prices of gas and electricity at time t; ,G t

eP  is the traded 

electricity; , 0G t

eP   refers to the action of purchasing electricity from the external 

power grid; and , 0G t

eP   refers to selling electricity on the wholesale market; 
,G t

ngQ  

represents the quantity of gas being exchanged. 

3.2.3. COUPLING UNITS 

The mathematical models of coupling units involved in the RMES are listed as follows: 

2

, ,FC t FC FC t

e e HP Q=   (3.2) 

2

,( )FC FC FC t

h h HQ t Q=   (3.3) 

2

,( )WE WE WE t

H eQ t P=   (3.4) 

, ,GB t GB G t

h ng ngQ Q=   (3.5) 

2 2

, ,HB t HB HB t

h H HQ Q=   (3.6) 

where 
2

,FC t

HQ  represents the hydrogen input, ,FC t

eP  represents the electrical output, and 
FC

e  represents the electricity conversion coefficient for the FC at time t ; ( )FC

hQ t  and 
FC

h  signify the heat output and heat conversion coefficient of the FC, respectively, 

at time t . For the WE at time t , ,WE t

eP  is the electricity input, 
2

( )WE

HQ t  is the hydrogen 

output, and WE  is the conversion coefficient. Eqs. (3.5)-(3.6) describe the 

conversion functions for the GB and HB. Here, ,GB t

hQ  and 
GB

ng  refer to the heat 

generated and the heat conversion coefficient of the GB at time t . For the HB at time 

t , 
2

,HB t

HQ , ,HB t

hQ  and 
2

HB

H  represent the hydrogen input, heat outflow, and hydrogen 

conversion coefficient, respectively. 

The mathematical models of ES charging/discharging are defined as follows: 

,

,

( 0)1 ,

,( 0)
,

( )
ES t

e

ES t
e

Pt t ES t ES

e e e e ch ESP
e dis

I
E E P I t



+


= + − 

 

(3.7) 
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,

2

,
2 2 2 2

2

2

( 0)
1 ,

,( 0)
,

( )
HT t
H

HT t
H

Q
t t HT t HT

H H H H in HTQ
H out

I
E E Q I 




+


= + −

 

(3.8) 

min max,ES ES t ES

e e eP P P   (3.9) 

min max

2 2 2

,HT HT t HT

H H HQ Q Q   (3.10) 

0 t B

e eE E   (3.11) 

2 2
0 t B

H HE E   (3.12) 

Eqs (3.7)-(3.8) illustrate the evolution of energy levels in the ES and HT. ,ES t

eP and 

2

,HT t

HP  indicate the charging/discharging power and hydrogen at time t , respectively. 

,

ES

e ch  and 
,

ES

e dis  represent the charging coefficient and discharging coefficient of the 

ES, respectively. Similarly,
2

,HT t

HQ , 
2 ,

HT

H in  and 
2 ,

HT

H out  represent the hydrogen input, 

hydrogen outflow, and the coefficients for the inflow and outflow of the HT, 

respectively. Eqs. (3.9)-(3.10) establish the constraints on the rate at which electricity 

can be charged and discharged, as well as the limitations on the flow of hydrogen in 

and out at time t . Similarly, equations (3.11) and (3.12) represent the constraints of 

the capacity of ES and HT at time t , where B

eE  and 
2

B

HE  represent the maximum 

capacity of the ES and the HT. 

The energy balance among electricity, hydrogen and heat at time t  is expressed below, 

and more details can be found in [J3]: 

, , , , , ,ES t WE t L t PV t G t FC t

e e e e e eP t P t P P P P t +  + = + +   (3-13) 

2 2 2 2

, , , ,HT t FC t HB t WE t

H H H HQ t Q t Q t Q t +  +  =   (3-14) 

, , , ,L t GB t FC t HB t

h h h hQ Q t Q t Q t=  +  +   (3-15) 

3.3. METHOD INTRODUCTION 

This section presents the proposed MADRL -based residential energy management 

strategy. 
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3.3.1. MARKOV GAME FORMULATION 

The MADRL application for decision-making in energy trading and conversion is 

facilitated through Markov game formulation, which integrates states, actions, and 

rewards [91]. 

1) Environment and agent: The environment is RES. Two agents including an 

energy trading agent and energy conversion agents are set. The energy conversion 

agents are FC, WE and HB, respectively. 

 

2) State: The states of the energy trading agent are load demands and energy tariffs. 

The states of the energy conversion agent are load demands and the excess capacity 

of the HT and ES. 

3) Action: The energy trading agent's actions include the amount of gas and electricity 

purchased. The energy conversion agent's actions are outputs of the FC, HB, and WE. 

4) Reward: The reward function of the energy trading agent at time t  is expressed as 

follows: 

, , ,

, ,

t eco t pen t pen t

et et e et th etr C C C= − − −  (3.16) 

where ,eco t

etC  is the economic cost, and { ,

,

pen t

e etC , ,

,

pen t

th etC } represent penalties for a 

shortage in power and heat supply, respectively. The reward function of the energy 

conversion agent at time t  is defined as follows: 

, ,

, , , ( , , )i t i t t

ec agent ec sys ecr r r i FC WE HB= +   (3.17) 

The system-level reward function is used to solve constraint violations, as presented 

in: 

, , ,

, , , ,( ) / 3t dif t ES t HT t

sys ec sys ec sys ec sys ecr r r r= + +  (3.18) 

where ,

,

dif t

sys ecr  describes energy imbalance of supply and demand, and ,

,

ES t

sys ecr  and ,

,

HT t

sys ecr  

are constraints violations of ES and HT, respectively. Details can be found in [J3]. 

3.3.2. MADRL TRAINING AND EXECUTION 

Figure 3-3 shows the structure of the proposed MADRL-based two-timescale 

residential energy management strategy. During the training phase, each agent needs 

both its specific local measurements and the contribution 
ix  from other agents for 

estimating the Q-value. In the execution phase, the trained actor networks with set 

weights are used for real-time execution, while the critic networks remain inactive. 
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Each hour begins with the upper-level agent implementing its policy ut

eta  as derived 

from its actor network 
*
et , following its specific observation ut

ets . Throughout the 

hour, each energy conversion agents executes its optimal policy 
1: 1

lt

Na −
 as provided by 

its actor network 
*
1: 1N − , based on local observations [92]. The pseudocodes of the 

proposed strategy during the training stage and execution stage are provided in 

Algorithm 1 and Algorithm 2, respectively. Details about the proposed algorithms are 

given in Section 3 in [J3]. 

 

Figure 3-3 Structure of the MADRL-based two-timescale energy management strategy [J3]. 

Algorithm 1 Offline training of the proposed strategy 

1. Initialize RMES environment 

2. for each episode do 

  2.1. Obtain initial ut

ets  for hourly-ahead trading agent 

2.2. Choose action ut

eta  based on the trading  

2.3. Execute action ut

eta  and obtain the reward ut

etr  

  3.3. for each time step 15lt =  from 1 to 60 / lt  do: 

     3.3.1. Choose action 
1: 1

lt

Na −
 for the energy conversion agents based on its observation 

1: 1
lt

Ns −
 

     3.3.2. Perform action 
1: 1

lt

Na −
 and obtain the reward 

1: 1
lt

Nr −
 and the next state 1

1: 1
lt

Ns
+

−
 

     3.3.3. Store experience in replay buffer 

     3.3.4. Sample a random batch of L transitions from replay buffer 

     3.3.5. for each sampled tuple 

     3.3.6. Update the critic and actor weights based on backpropagation 

     3.3.7. Update the target network weights 

  end for   

end for 

 

Algorithm 2 Online execution of the proposed strategy 

1. Utilize the well-trained weights from the actor networks of all agents 

2. for each episode do 

  2.1. Obtain initial states for hourly-ahead trading agent 

2.2. Choose the trading agent’s *( , )u ut t
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2.3. Execute the trading agent’s action and obtain the reward ut

etr  

  2.4. for each time step 15lt =  from 1 to 60 / lt  do: 

     2.4.1. Choose energy conversion agents’ actions based on its local observation 

     2.4.2. Execute the energy conversion agent’s actions and obtain the reward lt

ecr  for the energy 

conversion agents 

  end for   

end for 

 

3.4. CASE STUDY 

The performance of the MADRL-based two-timescale energy management strategy 

is assessed in this simulation. Training data, including PV generation and residential 

household demand at hourly intervals, are sourced from real-world datasets [93]. 

Information on hourly electricity and natural gas prices is obtained from sources [94], 

[95].  

3.4.1. SIMULATION RESULTS ANALYSIS 

First, the MADRL is implemented in the RMES for a deterministic study. Table 3-1 

introduces various scenarios for the deterministic study, featuring different seasonal 

load profiles and electricity and gas price variations. Figure 3-4 displays the summer 

and winter load curves. Three models of pricing energy are shown in Figure 3-5: The 

three types of prices are PV-EP (peak-valley price), Ex-EP (extreme price), and RT-

EP (real-time pricing). Furthermore, three distinct scenarios are being considered 

regarding gas prices: a baseline case (Ben-GP) in which the gas price remains constant 

at $26/MWh; an extreme case (Ex-GP) where the price is fixed at $50/MWh; and a 

peak-valley scenario (PV-GP) in which the gas price is $20/MWh during non-peak 

hours (7-18) and $30/MWh during peak hours. 

Table 3-1 Different scenarios specifications [J3]. 

Scenarios 
Load profile Price curve 

Electricity Heat Electricity Gas 

Ben Winter Winter RT-EP Ben-GP 

PV-EP Winter Winter PV-EP Ben-GP 

Ex-EP Winter Winter Ex-EP Ben-GP 

Summer Summer Summer RT-EP Ben-GP 

Ex-GP Winter Winter RT-EP Ex-GP 

PV-GP Winter Winter RT-EP PV-GP 
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(a) (b) 

Figure 3-4 Electricity and heat load profiles exhibit seasonal variations: a) Electricity 

demand; b) heat demand [J3]. 

 

Figure 3-5 Electricity price profiles in different market scenarios [J1]. 

1) The benchmark scenario: Figure 3-6 illustrates the supply of heat and electricity 

demands, while Figure 3-7 shows the state of charge (SoC) of ES and HT units. The 

energy trading agent gives GB priority for heating since gas price is cheaper than 

electricity. However, during peak heat demand, GB's output falls short, prompting 

activation of the HB to tap into HT hydrogen. The FC agent remains inactive when 

demands are met. During the electricity price is low, extra power from the grid charges 

the ES and produces hydrogen via WE. ES balances electricity during peak electricity 

prices, while minimal electricity is acquired to meet load demand by the energy 

trading agent, shutting down the WE agent. 

  

(a) (b) 

Figure 3-6 Agent actions in the Ben scenario: a) heat supply; b) electricity supply [J3]. 
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(a) (b) 

Figure 3-7 SoC changes of the HT and ES in case Ben: a) SoC of HT; b) SoC of ES [J3]. 

2) Impact of energy prices: Figure 3-8 illustrates the actions of the energy trading 

and FC agents in the PV-EP and Ex-EP scenarios. In comparison to other scenarios, 

the Ex-EP scenario experiences a surge in the amount of electricity acquired from the 

grid during periods when electricity prices are low. The trading agent opts to sell 

electricity by discharging the ES and working together with the FC agent when power 

prices in the external electricity market surge to $80/MWh. In the PV-EP scenario, 

direct purchases are used to meet the electricity demand between the hours of 0–6 and 

21–23. Moreover, during high daytime electricity prices and load, the FC begins 

supplying power in periods 11-20, while the ES is prioritized for power supply during 

7-10. 

  

(a) (b) 

Figure 3-8 The actions of agents against electricity price trends: a) energy trading agent; 

b) FC agent [J3]. 

The behaviors of the HB and energy trading agents in the PV-GP and Ex-GP scenarios 

are contrasted in Figure 3-9. In Ex-GP, gas purchases from the external network are 

minimal compared to other scenarios, yet occur during periods 7-10 and 19-20 due to 

elevated electricity prices. The HB agent in Ex-GP predominantly handles heat supply 

during peak hours, such as 0-6, 11-18, and 21-23, utilizing hydrogen from the WE as 

it's more cost-effective than buying natural gas, given the lower real-time electricity 

prices. In PV-GP, the HB agent reduces its output during 17-19 as the hydrogen supply 

depletes. Consequently, the energy trading agent opts for natural gas purchases, 

finding it more economical than producing hydrogen with WE when electricity prices 

exceed those of gas. 



CHAPTER 3. MADRL-BASED TWO-TIMESCALE ENERGY MANAGEMENT STRATEGY FOR THE RESIDENTIAL MES 

35 

  

(a) (b) 

Figure 3-9 The actions of HB agents and energy trading under different gas prices: a) 

energy trading agent; b) HB agent [J3]. 

3) Impact of load profile: Table 3-2 compares the energy costs of different load 

profiles. The Ben case incurs an overall energy cost that is 12.45% higher than in the 

Summer Scenario. In the Ben Scenario, the greater heat demand results in elevated 

natural gas procurement. Furthermore, the HB and FC agents opt to provide heat 

during the peak demand hours in the Ben scenario, necessitating extra electricity for 

hydrogen generation. 

Table 3-2 Cost comparison under the Ben and Summer scenarios [J3]. 

Scenarios 
Cost ($) 

Electricity  Natural Gas  

Ben 311.62 559.61 

Summer 297.89 476.91 

3.4.2. ALGORITHM COMPARISION 

The algorithm comparison is conducted in the 50 random scenarios, and the average 

power imbalances are presented in Figure 3-10. The proposed method achieves the 

smallest amount of power imbalance. The MAQ strategy, which is based on Q-

learning and multi-agent system, performs the worst due to the need to discretize both 

state and action spaces. The MADDPG-I strategy does not consider the system-level 

reward, with agents only optimizing their own rewards. The MADDPG-C strategy 

uses the same reward settings as the proposed method but does not account for the 

contributions of other agents when calculating Q-values. Furthermore, the proposed 

strategy has the lowest energy cost and is closest to the theoretical optimum among 

the four strategies. Details about the comparison algorithms are provided in Section 4 

in [J3]. 
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Figure 3-10 Power imbalances of different strategies [J3]. 

Table 3-3 Energy cost and training time of different strategies [J3] 

Method Energy cost ($) Total training time (min) 

MAQ 541 29 

MADDPG-I 493 51 

MADDPG-C 432 46 

Proposed 421 51 

Theoretical benchmark 413 - 

 

3.5. CONCLUSION 

In this chapter, a two-timescale residential energy management strategy based on 

MADRL is proposed to optimize the energy purchase and energy operation costs. 

Deterministic study on different load profiles, gas and electricity prices validates the 

effectiveness of the proposed energy management strategy. Furthermore, the 

superiority and robustness of the proposed strategy is verified compared to other 

MARL strategies on a stochastic study. 
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CHAPTER 4. MADRL-BASED BOTTOM-

UP ENERGY MANAGEMENT 

STRATEGY FOR MULTIPLE MESS 

The contents of Chapter 4 are based on the following two papers: 

J4: B. Zhang,  .  u, A. Ghias, X. Xu, and Z.  hen, “Multi-Agent Deep 

Reinforcement Learning based Distributed Control Architecture for Interconnected 

Multi-Energy MG Energy Management and Optimization,” Energy Conversion and 

Management, vol. 277, no. 116647, Feb. 2023. 

C2: B. Zhang, Z.  hen, and A. Ghias. “A  ata-Driven Approach towards Fast 

Economic  ispatch in  ntegrated Electricity and  atural Gas  ystem”, 2022 the 3rd 

International Conference on Power Engineering (ICPE 2022). 

4.1. INTRODUCTION 

Previous contents have only considered energy management strategies for individual 

MESs and have not addressed cooperation between multiple MESs. The EI concept 

enabled by ERs facilitates energy-sharing among MESs. However, conventional EI 

energy management framework is top-down and centralized, which is susceptible to 

the single-point failure and heavy computational burden. This chapter presents a 

MADRL-based bottom-up EI framework to solve these issues. Section 4.2 presents 

the mathematical model of the investigated EI system. The proposed MADRL-based 

bottom-up energy management strategy is provided in Section 4.3. Case study is 

conducted in Section 4.4. Conclusion is given in Section 4.5. 

4.2. SYSTEM DESCRIPTION 

4.2.1. SYSTEM ARCHITECTURE 

As depicted in Figure 4-1, the EI system comprises two layers: a bottom layer 

consisting of several MGs, each linked to a local ER, and an upper layer where the 

ER network connects with the main grid. To achieve cost minimization, each MGs, 

based on its local data, calculates and reports its power exchange amount. The ERs at 

the upper layer utilize the power exchange data from the MGs to assess energy 

transactions with the main grid and efficiently manage power distribution among 

themselves. 
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Figure 4-1 The architecture of double-layer EI system [J4]. 

The platform for local energy management is known as local energy management 

(LEM). Every MG, indicated by MGi, has a different composition. A residential MES, 

for instance, can include heat and electricity demands in addition to HT, FC, WE, 

distributed generator (DG), and ES system. The structures of residential, commercial, 

and industrial MGs are shown in Figure 4-2. TS is the thermal storage system, HP is 

the heat pump, and CHP is the combined heating and power plant. The mathematical 

models of different MGs can be found in Section 2 in [J4]. 
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Figure 4-2 Three different MGs: (a) residential, (b) commercial, and (c) industrial [J4] 

4.2.2. MODELS OF BOTTOM LAYER AND UPPER LAYER 

4.2.2.1 Bottom Layer 

In the bottom layer, each MG is viewed as a separate entity, focusing on its specific 

objectives over a given time horizon [0, ]T . These objectives encompass achieving a 

balance between energy production and consumption while minimizing operation 

costs: 

1

, , , , , , ,

,

0

( )
T

bottom FC t DG t HT t ES t WE t GB t G t

i i i i i i i i ng

t

J C C C C C C C
=

= + + + + + +
 

(4.1) 

2

, , , , , ,

,

0

( )
T

bottom HP t DG t TS t ES t GB t G t

i i i i i i i ng

t

J C C C C C C
=

= + + + + +
 

(4.2) 

3

, , , , ,

,

0

( )
T

bottom CHP t TS t ES t GB t G t

i i i i i i ng

t

J C C C C C
=

= + + + +
 

(4.3) 

Eqs. (4.1) to (4.3) define the cost functions for residential, commercial, and industrial 

MGs, respectively. The objective function of the 
iMG  in bottom layer is defined as: 

min [ ], . . Eqs.(4.1) (4.3)
i

bottom

u iJ s t −  (4.4) 

where the expectation  describes randomness, and 
iu  is the control variables. The 

constraints include energy converter constraints, energy storage constraints and 

energy balance constraints, which can be found in [J4]. Upon solving the optimization 

problem presented in Eq. (4.4), the power exchange data is ascertained and then 

conveyed to the upper-layer ER network. 

4.2.2.2 Upper Layer 

The upper layer analyzes power exchange data from the bottom layer to determine the 

optimal power allocation between the ERs and the main grid [83]. The objective of 

the upper-layer cost 
upperJ  is defined as: 

, ,

2, , , ,

,( 0) ( 0)
0 ( , )

[ ( ) ( ) ]G t G t
i i

T
upper s t p t G t ER t

e e i ij i jP P
t i i j

J I I P P


  
 

=  

= − +  
 

(4.5) 
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In this context, the initial term denotes the profits from power trading between 
iER

and the main grid at time t . Here, ,s t

e and ,p t

e  denote selling electricity price and 

buying electricity price, respectively, at time t . The second term in Eq. (4.5) relates 

to the transmission cost incurred when ,

,

ER t

i jP  is transmitted over the link between 

iER  and 
jER , where 

ij  is the cost coefficient for this transmission. The constrains 

can be found in [J4]. The optimization objective of the upper layer is shown: 

, ,
,,

min [ ], . . Eq.(4.5) (4.7)G t ER t
i i j

upper

P P
J s t −  (4.6) 

4.3. METHOD INTRODUCTION 

A Markov game is used to formulate the investigated problem. A brief introduction is 

given to the twin delayed deep deterministic policy gradient (TD3) algorithm. Finally, 

a decentralized energy management strategy is presented through the application of 

the multi-agent attention twin delayed deep deterministic policy gradient (MAATD3) 

algorithm.  

4.3.1. MARKOV GAME FORMULATION 

The bottom-layer optimal energy management problem is formulated as a Markov 

game, incorporating state, action, reward, and state transition probabilities for the 

agents. 

1) Environment and Agents: The environment is bottom-layer multiple MGs, and 

each MG is set as an agent. 

2) State: The state set of the bottom-layer MG cluster includes all MG state 

information, represented as 
1 2{ , ,.., }t t t t

ns s s s=  . The states of 
iMG  at the time t  

are PV generation, load demands, SoC and energy prices.  

3) Action: The action set includes all control variables of MGs, denoted as 

1 2{ , ,.., }t t t t

na a a a=  . The actions of the residential MG at time t  are the output of 

WE, FC, GB and DG, the actions of the commercial MG at time t  are the output of 

HP, TS and DG, and the actions of the industrial MG at time t  are the output of CHP 

and TS. 

4) Reward function: The reward set consists of all reward values of MGs, represented 

as 
1 2:{ , ,.., }t t t t

nr r r r  . The reward value at time t  is the negative form of its cost 

function, as given by: 
1 2 3

{ , , }t bottom bottom bottom

i i i ir J J J − − −  
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5) State transition probability: This function 1( | , )t t ts s a−  describes the 

probability of the agent i moving to the next state 1t

is +  after performing an action t

ia  in 

the current state t

is . SoC transition functions can be available. However, the transition 

functions for PV generation, loads and energy prices are not specified.  

6) System problem: The target of the DRL agent is to find the optimal control policy 
*  to maximize the expected total reward across a specific time horizon T, as given 

by: 1

0

: maxP1
T

t

tR r 




 + +

=

 
=  

 
 . To address this, the employed DRL algorithm 

allows for learning from historical data and managing partially observable transition 

functions. 

4.3.2. TD3 ALGORITHM  

TD3 algorithm contains fives parts: experience replay buffer, target networks, double 

networ s, “delayed” policy updates, and target policy smoothing. For training a DNN-

based approximator, an experience replay buffer is employed. This buffer stores a 

substantial number of historical experiences, serving as a dataset. TD3 employs dual 

critic networks, known as "twin" networks, to learn two separate Q-functions. It then 

uses the lower of the two Q-values to minimize the error function, effectively 

addressing the overestimation issue. TD3 ensures the stability of the Q-value by 

updating the policy and target networks less frequently, specifically only after each 

update of the Q-value function. To prevent the policy from becoming brittle due to 

inaccurate approximations of the Q-function for certain actions, it incorporates 

clipped Gaussian noise into the target action. Algorithm details can be found in 

Section 3 in [J4]. 

4.3.3. PROPOSED MAATD3 METHOD  

In the context of multiagent environment, where each MG in the cluster represents an 

agent (resulting in n agents for n MGs), we propose the MAATD3 method to develop 

effective strategies. MAATD3, which blends the multiagent TD3 framework with an 

attention mechanism, adopts a structure with centralized training and decentralized 

execution. This means that while the Q-value is computed centrally, policy execution 

by the agents is decentralized. Furthermore, the critic network incorporates an 

attention mechanism that allows it to selectively integrate relevant information from 

other agents, hence improving the accuracy of its Q-value estimations. 

4.3.3.1 Attention-based Q-Value Estimation 

In earlier MADRL methods, such as MADDPG, the Q-value estimation for agents 

necessitates the inclusion of all agents' states 
1 2{ , ,.., }t t t

ns s s  and actions 
1 2{ , ,.., }t t t

na a a  

as inputs. If we assume that the dimensions of actions and states are identical, the 

input dimension for critics becomes 
i in s a+ , which can lead to a significant 
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computational challenge in policy learning. This challenge escalates as the number of 

states, actions, and agents increases. In addition, the concepts of state and action are 

related to the personal physical characteristics of an agent, such as energy preferences 

and operational portfolios. This poses a challenge in preserving the confidentiality of 

these qualities when other agents compute their Q-values. 

To address this issue, an attention-based Q-value estimation method is proposed. As 

depicted in Figure 4-3, the Q function's input variables for agent i include only its own 

state t

is  and action t

ia , along with the exogenous contributions 
ix  from other agents. 

This method allows for a more efficient and privacy-preserving Q-value estimation. 

( , ) ( , )
i

t t t t

i i i i iQ s a f e x =
 

(4.7) 

( , )t t t

i i i ie g s a=  

where ( )if   represents a two-layer multilayer perceptron (MLP), and ( )ig   is a one-

layer MLP. The term 
ix  allows agent i to incorporate information from other agents in 

its decision-making process. Although the initial input for 
ix  is derived from other 

agents, a privacy-focused approach involves filtering an implicit feature embedding. 

Additionally, the Q function's input dimension is significantly decreased to | |t t

i ie x+ , 

offering scalability through adjusting the neuron count in the MLP's output layer. 

 

Figure 4-3 The structure of the attention-based Q-value estimation [J4]. 

4.3.3.2 Training and Execution of MAATD3 

Figure 4-4 displays flowchart of the MAATD3 approach. Details about algorithm 

updating can be found in [J4]. During the training phase, each agent's actor network 

executes actions independently without sharing information, relying only on local 
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states as inputs. Conversely, the critic network, employing a centralized approach for 

Q-value estimation, incorporates the implicit embeddings 
ne  of all agents, facilitated 

by an integrated attention mechanism. 

During the execution phase, the well-trained actor networks are used to provide 

decisions for the MG. Throughout each episode, over time intervals [0, ]t T , agent i 

autonomously implements its learned policy. This is based on its specific state t

is  and 

through its own actor network 
*

n
 , embodying a decentralized approach to decision-

making without any information exchange with other agents. The detailed training 

and execution stages are presented in Algorithm 1 and 2, respectively. 

 

Figure 4-4 The framework of MAATD3 [J4]. 

Algorithm 1 Training stage of MAATD3 

1. Initialize weights of networks and bottom-layer MG cluster environment 

2. For each epsiode do 

3. Receive initial states 0 0 0

1{ ,..., }ns s s=  for all agents 

4. For each time step do 

5. Output action 
1:

~ ( | )
n

t ta s   for each agent’s actor network 
1:n   

6. Take actions 
0{ ,..., }t t t

na a a= , return 
tr , and the environment moves to the next state 

1ts +
 

7. Store experience 1( , , , )t t t ts a r s +  into the replay buffer 

8. If experience is stored up then 

9. Sample a batch experience 1{( , , , )}t t t ts a r s +=  from replay buffer 

10. Update the critic’s and actor’s weights based on backpropagation 

11. Update the target critic’s weights via soft updating 

12. End if 

13. End for 

until convergence 
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Algorithm 2 Execution stage of MAATD3 

1. Obtain weights of the well-trained actors 
1:

*

n  

2. For each episode do 

3. Obtains initial states 0 0 0

1{ ,..., }ns s s=  for all agent n  

4.  For each time step do 

5. Output actions 
0{ ,..., }t t t

na a a=  for all agents 

6. Execute actions 
0{ ,..., }t t t

na a a=  in the environment, return 
tr , and the environment moves 

to the next state 
1ts +

 

7. End for 

8. End for 

4.3.4. UPPER-LAYER DISPATCH METHOD  

Every MG operates autonomously at each time step once it has received the well-

trained strategy. Every MG independently calculates the quantity of electricity it 

trades with its local ER and transmits this information to the upper layer. The upper 

layer then uses a convex optimization technique to solve the optimal power dispatch 

problem by combining all of the power exchange data from the MGs. 

4.4. NUMERICAL VERIFICATION 

In this section, the effectiveness of the proposed bottom-up energy management 

strategy is validated based on a specific EI network. 

4.4.1. SIMULATION SETUP 

In the simulation, the bottom-layer MG cluster comprised eight MGs ( 8n = ). The 

configuration of these MGs was as follows: {MG1, MG2, MG3} were categorized as 

residential MGs, {MG4, MG5, MG6} as commercial MGs, and the remaining MGs 

were designated as industrial MGs. The primary goal was to minimize total energy 

costs over a specified time period [0,24 ]h . The control interval was set at 15 minutes, 

and each episode consists of 96 time slots ( {1,2,...,96}t = ). The training dataset 

includes renewable generation and load demands at 15-minute intervals. Residential 

MGs relied on data from residential households [96], commercial MGs used data from 

a commercial warehouse [97], and industrial MGs used data from a power plant [98]. 

The historical dataset was partitioned into a training set and a test set, with a ratio of 

80% for the training set and 20% for the test set.  

4.4.2. OPERATION OF INDIVIDUAL MG 

The operation of MG1, MG5, and MG7 were chosen as typical residential, 

commercial, and industrial MGs, respectively. Figure 4-5 depicts the fluctuations in 
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the SoC and the satisfaction of electricity and heat requirements for each MG in 15-

minute intervals. 

The first column of Figure 4-5 shows the electricity demand supply of the MG. It can 

be seen that to reduce generation costs, ES is prioritized for supplying power. When 

the SoC of the ES reaches its minimum, the DG and CHP units begin to operate. 

During periods of high PV generation, the ES stores excess PV energy. In MG1, the 

WE unit converts surplus PV into hydrogen, which is stored in the HT. In Figure 4-

5(g), due to the limited capacity of the ES, it cannot fully balance the power, forcing 

MG7 to exchange excess PV. 

The second column displays the supply of heat load. In MG1, the heat load is supplied 

by the hydrogen stored in the HT, without purchasing natural gas from the external 

gas grid. Given the high generation costs of the FC, it remains offline. In MG5 and 

MG7, natural gas is purchased and used by the GB to provide heating. 

The third column illustrates the SOC of the ES, HT, and TS. The energy storage 

actively participates in MG operation. When PV generation is low, the ES supplies 

power, and during high PV generation periods, it stores the excess electricity. 

   

(a) (b) (c) 

   
(d) (e) (f) 
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(g) (h) (i) 

Figure 4-5 Figures (a)-(c) presents electricity load upply, heat load supply, and the SOC 

changes of the ES and HT in the residential MG. Figures (d)-(f) details the commercial MG's 

operation results. Figures (g)-(i) presents the industrial MG’s operation results. ED refers to 

electricity demand and HD signifies heat demand [J4]. 

Additionally, Table 4-1 displays the comparative results of three methods with respect 

to operating cost and computation time. The operation costs of the proposed strategy 

are 41% less than those of the optimal power flow (OPF) -based strategy and 9.6% 

less than those of the TD3-based strategy. Furthermore, the computation time of the 

model-free DRL technique is significantly less than that of the model-based OPF 

approach because only the forward propagation of the neural network is needed for 

online testing. The objective of the OPF is to minimize the total generation costs of 

the MG cluster. The performance of the OPF is often constrained by the need to solve 

a series of complex, non-convex equations. TD3 lacks mechanisms to efficiently 

handle multi-agent coordination, which can limit its performance. 

Table 4-1 Operation costs and testing time of different methods [J4]. 

Method Operation costs Online testing time (s)  

Proposed (1.324  0.089)  104 0.0002 

TD3 (1.451  0.121)  104 0.0002 

OPF (1.921  0.328)  104 2.21 

 

4.4.3. SIGNIFICANCE OF THE ATTENTION MECHANISM 

An assessment is conducted on the impact of the attention mechanism in the proposed 

strategy. Figure 4-6 compares the training progress of the attention mechanism-

utilizing algorithm (MAATD3) with the algorithm that does not use it (MATD3). In 

this comparison, MAATD3, represented by the red line, demonstrates quicker 

convergence and attains higher episode rewards compared to the MATD3 algorithm, 

indicated by the blue line. The training findings demonstrate that the attention 

mechanism significantly enhances training efficiency and overall learning quality. It 

achieves this by selectively valuable information from all agents. 
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Figure 4-6 The comparison shows how well the suggested strategy trains both with and 

without the attention mechanism. Shaded areas in the graph indicate the range of immediate 

rewards, which show notable variability, while the dark lines represent the average rewards 

over sets of 10 episodes, providing a clearer visualization of the trend [J4]. 

4.4.4. POWER DISPATCHING ANALYSIS IN THE UPPER LAYER 

Figure 4-7 presents an example of power distribution in the upper layer. It 

demonstrates how the ER network, specifically through ER4 and ER8, engages in 

energy trading with the utility grid. The optimal power dispatching strategy between 

the ERs and the main grid is determined by the upper controller. In this context, to 

simulate stochastic electricity prices, the model employs Geometric Brownian Motion, 

a method often used in modeling stock price processes. 

 

Figure 4-7 The upper layer energy dispatch diagram for the EI scenario, in which every ERi 

is connected to an equivalent MGi. Power distribution and electrical transactions between 

ERs are represented by blue and red dotted arrows, while power exchange with the MG 

cluster is shown by black solid arrows [J4].  

The power flows between ERs and the main grid are depicted in Figure 4-8, together 

with the costs associated with purchasing and selling electricity. Notably, power 

purchases between 08:00 and 18:00 predominantly occur through ER8, where the 

selling price is higher compared to ER4. Conversely, the ER network compensates for 

power deficits by buying electricity through ER4, which offers a lower purchase price. 
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(a) (b) (c) 

Figure 4-8 Geometric Brownian Motion is used to determine the electricity pricing for energy 

purchase and sale, which are displayed in parts (a) and (b). Part (c) shows how power flow 

interacts with the main grid [J4]. 

4.5. CONCLUSION 

In this chapter, a bottom-up energy management strategy for the EI network based on 

MADRL is proposed. The EI network is composed of the bottom-layer MG cluster 

and upper-layer ER cluster. A model-free MAATD3 algorithm is applied to achieve 

the optimal energy management strategy for the bottom-layer multiple MES. Each 

MES only requires local measurements to make the optimized decisions, which 

preserve its privacy. Besides, the attention mechanism is used to speed up training by 

selectively utilizing valuable information from other agents. The optimal dispatch in 

the upper layer is determined through convex optimization. Simulation results validate 

the effectiveness of the proposed energy management strategy. 
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CHAPTER 5. MADRL-BASED 

DECENTRALIZED ENERGY 

MANAGEMENT STRATEGY FOR THE 

MES AND EVAGG ENTITIES 

The contents of Chapter 5 are based on the following two papers: 

J5: B. Zhang,  .  u, X. Xu,  .  i, Z. Zhang and Z.  hen, “Physical-Model-Free 

Intelligent Energy Management for a Grid-Connected Hybrid Wind-Microturbine-

PV-E  Energy  ystem via  eep Reinforcement  earning Approach”, Renewable 

Energy, vol. 200, pp. 433-448, 2022.  

J6: B. Zhang,  .  u,  .  ao, A. Ghias, and Z.  hen, “ ovel  ata-Driven 

Decentralized Coordination Model for Electric Vehicle Aggregator and Energy Hub 

Entities in Multi-Energy System Using an Improved Multi-Agent  R  Approach,” 

Applied Energy, vol. 339, no. 120902, Jun. 2023. 

C3: B. Zhang, Z.  hen, X.  u,  .  ao, and  .  u. “A MA  3 -based Voltage 

Control Strategy for Distribution Networks Considering Active and Reactive Power 

Adjustment  osts”, 2022 IEEE International Conference on Power Systems and 

Electrical Technology (PSET 2022). 

5.1. INTRODUCTION 

With the integration of a large number of DERs into MES, the energy interactions 

between various entities and MES, such as EVAGG, cannot be overlooked. These 

entities belong to different stakeholders, creating a competitive environment. This 

chapter focuses on developing decentralized strategies to maximize the profits of 

EVAGG entities and minimize the energy costs of EHs in the MES. The research is 

divided into two parts: The first part optimizes energy management strategies in an 

MES by considering the stochastic behavior of EVs, including charging, departure, 

and arrival times. The second part formulates decentralized strategies for EVAGGs 

and EHs within an MES, ensuring privacy protection so that strategies can be made 

in real-time using only local measurements. 
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5.2. DRL-BASED ENERGY MANAGEMENT STRATEGY FOR THE 
MG INCLUDING EVS 

5.2.1. INTRODUCTION 

Investigating an effective energy management strategy for the renewable-based MG 

presents significant challenges due to the multiple uncertainties. Additionally, the 

rising integration of EVs complicates the situation, rendering traditional model-based 

approaches less effective. This research proposes a model-free DRL-based optimal 

energy management strategy to minimize operation costs while meeting charging 

requirements. The flowchart of this research is presented in Figure 5-1. Section 5.1.2 

gives the mathematical model of the MG with EVs. Section 5.1.3 presents the 

framework of the proposed strategy. Case study is conducted in Section 5.1.4 to 

validate its effectiveness. Conclusion is given in Section 5.1.5. 

 

Figure 5-1 Flowchart of this research [J5]. 
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5.2.2. SYSTEM DESCRIPTION 

1) Objective function  

The grid-connected MG is depicted in Figure 5-2 and comprises DGs, EVs, PV panels, 

load demands, wind turbine (WT) generators, and a battery energy storage system 

(ESS). 

 

Figure 5-2 Structure of the MG system including EVs [J5]. 

The scheduling objectives are to minimize DG generation costs, RE curtailment, and 

transaction costs associated with selling or buying electricity from the main grid. 

2) Constraints  

Many Constraints need to be met in the scheduling model, such as the maximum 

power output of each DG, the charging/discharging power and SoC of the battery ESS, 

the active power exchanged by the main grid, and the charging power and SoC of EVs. 

The mathematical models of the objective function and constraints are listed in [J5]. 

5.2.3. DRL-BASED ENERGY MANAGEMENT STRATEGY 

5.2.3.1 MDP Formulation 

The MDP formulation is presented as follows:  

1) State: The state at time t  consists of ( , , , , , , )WT PV DG ES G EV T

t t t t t t t ts P P P E P S= : 

active power output of WT, PV and DG, SoC of ESS, power exchanged with the grid, 

electricity price and SoC value of EVs, respectively. 

2) Action: The action at time t  consists of ( , , )DG ESS EV

t t t ta P P P=  : the adjustment 

amount of DGs' power generation according to the previous time step, the ESS's 

charging and discharging power, and the EVs' charging and discharging power. 
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3) Reward function: The reward 
tr  at time t  is regarded as the negative form of 

objective function, which is defined as follows: 

( )DG EV G RE

t t t t tr C C C C= − + + +  (5.1) 

where DG

tC  is generation costs of DGs, EV

tC  is EV charging costs, G

tC is the 

transaction cost associated with buying or selling power from the main grid, and RE

tC  

represents incentive benefits of RE consumption. 

4) Transition probability: The SoC values of battery ESS and EVs can be 

determined by the previous SoC values and charging/discharging power. However, 

considering the uncertainties of WT and PV generations, the corresponding state 

transition probability cannot be available. 

5) System problem: The DRL task is to find the optimal control policy 
*  to 

maximize the expected total reward across a specific time horizon T: 

1

0

: maxP1
T

t tR r 




 + +

=

 
=  

 
 . 

5.2.3.2 TD3-based Energy Management Strategy 

Figure 5-3 depicts a detailed flowchart of the TD3-based energy management strategy 

[99]. The details of TD3 algorithm can be found in [J5]. The relationship between the 

TD3 algorithm and the MG system, which serves as the environment, is depicted in 

this flowchart. 
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Figure 5-3 Framework of TD3-based scheduling strategy [J5]. 

Before modifying the DNNs' weights, historical interaction data is stored in the 

experience replay buffer. The buffer selects a random mini-batch for training after it 

has accumulated a particular quantity of data. N-element state features are created and 

preprocessed for every observation time slot. Recurrent neural networks (RNNs) are 

initially supplied with the preprocessed state feature information. The online actor 

network then uses the RNNs' output as input to calculate the current action value. An 

autonomous energy management strategy is constructed for the MG by fine-tuning 

the network weights using the TD3 algorithm. This network offers a real-time strategy 

to get optimal operational performance based on the observed data. Details about 

algorithm updating can be found in Section 3 in [J5]. 

5.2.4. CASE STUDY 

5.2.4.1 Simulation Setup 

The application of a benchmark grid-connected MG system to assess the efficacy of 

the proposed energy management strategy based on the TD3 algorithm is shown in 

Figure 5-4. Historical annual data sources, such as wind power, solar irradiance, 

electricity load, and electricity prices, are chosen as training sets [100], [101]. In 

addition, the behavior of EVs was modeled using a normal distribution, including 

arrival time, departure time, and initial SoC of EVs. 
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Figure 5-4 Configuration of the benchmark MG network [J5]. 

5.2.4.2 Training Performance 

The cumulative reward changes for each episode during the training process for the 

TD3 and DDPG algorithms are compared in Figure 5-5. The TD3 algorithm routinely 

produced better cumulative rewards than the DDPG. In contrast, DDPG exhibited 

unstable learning behavior and failed to converge effectively. This divergence is 

attributed to TD3's implementation of key techniques such as delayed policy updates 

and target policy smoothing, which enhance training stability and efficiency. 

 

Figure 5-5 Comparison of cumulative reward values of TD3 and DDPG algorithms [J5]. 

There are three stages to the training process: convergence, training, and exploration. 

Without changing the DNN parameters, the TD3 agent collects a large amount of 

interaction data from the experience replay buffer during the exploration phase. The 

training phase starts when the replay buffer is filled, and the agent keeps modifying 

the DNN weights to learn an optimized strategy that maximizes cumulative rewards. 
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Reward values stabilize throughout the convergence phase, signifying that the DRL 

agent learns the optimal strategy. 

5.2.4.3 Test Results 

In order to evaluate the efficacy of the suggested TD3-based scheduling approach, a 

one-day performance simulation is conducted for every time slot. Furthermore, the 

simulation test was also conducted based on three consecutive days. 

1) Operation results on a test day 

RESs, such as PV panels and WTs were initially utilized to meet electricity demands. 

During the early hours (00:00–04:00), the strategy leaned towards purchasing surplus 

electricity from the grid to charge the EV and ESS, particularly at 03:00, when 

wholesale electricity prices were lower. Between 05:00 and 09:00, the ESS was 

primarily used to supply power until its energy levels neared the minimum threshold. 

For the peak hours of 10:00–20:00, with higher electricity prices, the strategy shifted 

to using DGs for the remaining electricity loads. Increasing DG output was more cost-

effective than purchasing excess electricity from the grid. It's interesting to note that 

the EV released excess electricity upon arrival at 17:00, negating the need to raise DG 

output. Due to the decreased cost of power, the agent was able to fully charge the EVs 

and ESS in the last hours of 21:00–23:00, which reduced operating expenses. 

 
 

(a) (b) 

Figure 5-6 (a) Output of units for each time slot; (b) Energy variations in ESS and 

remaining energy from EVs [J5]. 

2) Operation results on three consecutive days 

To illustrate the robustness of the TD3-based energy management strategy in real-

time optimization, simulation results from three consecutive days are analyzed, as 

shown in Figure 5-7. Figure 5-7(a) displays the operation of controlled units along 

with fluctuating wholesale electricity prices. Notably, the strategy minimizes costs by 

buying extra electricity from the main grid for charging EVs and ESS during times 
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when electricity prices are low (that is, the 5th, 23–25th, and 47–53rd time slots). On 

the other hand, during periods of high electricity prices (such the 17–18, 39–41, and 

63–65 time slots), the strategy chooses to avoid increasing DG output by using the 

stored energy in EVs for load support. This decision is contingent upon meeting EV 

owners' expected energy needs upon departure. Consequently, despite high prices 

during the 29–32nd time slots, the system preferred buying surplus power over 

depleting EV batteries. Moreover, during the significantly expensive 63–71st time 

slots, generating electricity via DGs was favored over grid purchases to curtail costs. 

Figure 5-7 (b) presents that the ESS's energy is regulated within predefined 

operational bounds. It also ensures that the expected battery levels are maintained 

when EV owners depart, particularly during the 31st and 54th time slots. 

 
(a) 

 
(b) 

Figure 5-7 (a) Power output of the controlled units; (b) fluctuations in the ESS and remaining 

energy from EVs [J5]. 

3) Comparison results with other benchmark methods  

The DRL-based energy management strategy for the MG system was evaluated in 

comparison to the DDPG and particle swarm optimization (PSO)-based optimization. 

The average daily operating costs throughout a 30-day test period served as the 

Arriving Departure Arriving Departure Arriving

BZ1

Departure

Arriving

Arriving

Departure
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primary comparative criterion. The parameters of the TD3 and DDPG algorithms are 

the same. 

The daily expenses spent by each approach during the 30-day test period are displayed 

in Figure 5-8. Quantitative data are shown in Table 5-1, together with typical expenses 

and computation durations. TD3 was a more economical option than the other 

techniques. More specifically, TD3 and DDPG decreased total expenses by 15.27% 

and 11.52%, respectively, in comparison to the PSO-based stochastic method. The 

performance of DDPG is sensitive to hyper-parameters setting, leading to unstable 

training. Because the PSO-based stochastic technique relies on iterative calculations 

to optimize 200 samples, it took the longest to complete. Even while TD3 required 

more training time than DDPG due to its more complex neural architecture, it was 

still within reasonable bounds. 

 

Figure 5-8 Comparison of average daily costs using the TD3, DDPG and PSO [J5]. 

Table 5-1 Comparison of different examined approaches [J5]. 

Method Average cost ($) Improvement 
Time consumed 

(s) 

PSO-based stochastic 

method 
628.65 - 2036.3 

DDPG 556.23 11.52% 61.2 

TD3 532.63 15.27% 72.6 

5.2.5. CONCLUSION 

A model-free DRL-based energy management strategy is investigated in order to 

reduce EV charging expenses and optimize operating profitability. Considering the 

uncertainties associated with RES, the variability of electricity rates, and the changing 

charging habits of EVs, the well-trained TD3 agent, by utilizing DNNs, proficiently 

provides the continuous control of the MG system's components without necessitating 

prior system modeling knowledge. The effectiveness of the proposed energy 

management strategy is validated by the simulation results 
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5.3. MADRL-BASED DECENTRALIZED ENERGY MANAGEMENT 
STRATEGY FOR MESS AND EVAGG 

5.3.1. INTRODUCTION 

The purpose of this research is to investigate decentralized energy management 

strategies for the EVAGG and EH entities in an integrated electricity and district 

heating system (IEDHS). It encounters several challenges: the ownership diversity of 

EHs and EVAGGs fosters a competitive environment within the IEDHS. Second, 

uncertainties like RESs' intermittent nature, electricity prices, and EV users' driving 

behaviors exist. Lastly, because of the nonlinearity in the thermal and power flow 

models in the IEDHS, the operational objective offers a multi-objective, nonlinear 

function that further complicates the problem. Therefore, a data-driven MADRL-

based decentralized energy management strategy is studied. In Section 5.2.2, the 

system model is presented. The proposed decentralized method is given in Section 

5.2.3. Case study is conducted in Section 5.2.4. Conclusion is given in Section 5.2.5. 

5.3.2. MODELLING OF THE MES AND EVAGG ENTITIES 

A comprehensive schematic of the model is shown in Figure 5-9. The EVAGG, which 

can buy and sell electricity on the wholesale market and to an EH while making sure 

that EV users' charging needs are satisfied, is shown on the left side of the diagram. 

The IEDHS is shown with its five main components (the EH entity, the district heating 

network (DHN), and the power distribution network (PDN)). The electricity 

subnetwork is responsible for fulfilling electrical demands, while the heating 

subnetwork meets thermal requirements. The system integrates a CHP unit and a GB, 

which serve as coupling components linking the electricity and heat networks. 

 

Figure 5-9 Architecture of the studied system including EVAGG and EH entities [J6]. 

 

                   

                  

               

          

       

         
      

           
    

    

     

               
       

             

    
      

          
      

                
          

                   

         
      

                          

                
      

        



CHAPTER 5. MADRL-BASED DECENTRALIZED ENERGY MANAGEMENT STRATEGY FOR THE MES AND EVAGG 
ENTITIES 

59 

5.3.2.1 PDN Description 

In this study, DC power flow equations are used to establish the PDN, including the 

DC power flow balance, the constraints of generators, and the constraints of the 

exchanged power. For details can be found in Section 2 in [J6]. 

5.3.2.2 DHN Description 

As depicted in Figure 5-10, the DHN is structured as a dual-layer system, consisting 

of both supply and return networks [102]. Within the DHN, there are three distinct 

types of nodes: Firstly, the source nodes, which are responsible for delivering thermal 

power. Secondly, the load nodes, which utilize this thermal power. And thirdly, 

intermediate nodes, which serve as conduits for transferring thermal power to 

neighbor nodes. The process starts with the water flow in the supply network 

distributing thermal power to each end consumer. The water then recirculates over the 

return network following the exchange of thermal power at the load nodes. Because 

of its dual nature, the DHN usually takes into account both thermal and hydraulic 

models, which represent the interaction between heat transfer and water movement in 

the system. The DHN consists of hydraulic and thermal models, which are detailed in 

Section 2 in [J6]. 

 

Figure 5-10 Thermal flow model in a simplified DHN [J6]. 

5.3.2.3 EVAGG Description 

The EVAGG model aims to optimize its energy expenses, which are expressed as 

follows. These include selling power to EV owners at a fixed prices 
s EVO −

, 

interacting with the wholesale market at a locational marginal price t

u , and 

transacting with the EH entity at contracted hourly price t

con  [103].  
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where 
m  denotes the percent of EV m’s type, and 

EVN  is the number of aggregated 

EVs.  
, ,/

m m

t EH EVA t EVA EH

EV EVP P− −
 indicates that the EVAGG purchases/sells electricity 

from/to the EH entity. 
,

m

t s EVO

EVP −
 represents that the EVAGG sell electricity to EV 

owners. 
, ,/

m m

t b g t s g

EV EVP P− −
 indicates that the EVAGG purchases/sells electricity from/to 

the grid. 

5.3.2.4 Energy hub model 

The EH model consists of WT, PV, CHP, ESS, and a boiler. The EH model trades 

electricity with the wholesale market, collaborates with the EVAGG, and ensures the 

supply of heat and electricity supply.  he E ’s objective function t

EHF  at time t  is 

expressed as below: 

, ,

1

( )
n n n

N
t t t t t b g t s g

EH gas EH u EH EH

n

F Q P P  − −

=

= + −  (5.3) 

where N  is the number of EH models, 
n

t

EHQ  is the gas entering 
nEH  at time t , 

, ,{ , }
n n

t b g t s g

EH EHP P− −
 are electrical energy purchased and sold from and to the wholesale 

market by 
nEH  at time t , and { , }t t

gas u   are nature gas price and electricity price at 

time t . 

5.3.3. IMPROVED MADRL ALGORITHM 

5.3.3.1 Markov Game formulation 

A Markov game is used to formulate the coordination energy management problem 

between the EVAGG and EH entities, which is expressed as follows: 

1) Agents: The EVAGG and each EH are regarded as agents. As a result, a 

competitive dynamic is shown between the EHs and the EVAGG, although 

cooperation between the EHs also occurs in this multiagent environment. 

2) States: The system states 
1 2{ , ,..., }t t t t

Ns s s=  contain state information of all 

agents. The states of EVAGG agent only include its local observation, such as arrival 

time, departure time, SoC and electricity price. The states of EH agent are power 

outputs of WT and PV, load demands, electricity price, gas price, and SoC of the ESS. 

3) Actions: The EVAGG agent's actions include selling electricity to EV owners, 

selling/purchasing electricity to/from the market, and selling/purchasing electricity 

to/from the EHs. The EH agent is responsible for purchasing energy from the 

wholesale market and operating the boiler, ESS, and CHP. 
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4) Reward function: The reward value of the EVAGG agent is defined as 
t t

EVA EVAr CST= − , and the reward function of the EH agent is t t

EH EHr CST= − . 

5) State transition probability: The transition probability of the storage system can 

be determined, but the transition probability of uncertainties, such as RESs, load 

demands and energy prices, is not available. 

6) System problem: The objective of agents is to discover the optimal energy 

management strategy in order to maximize the expected cumulative reward within a 

certain time period T: 1

0

: maxP1
T

t tR r 




 + +

=

 
=  

 
 . 

5.3.3.2 Long Short-Term Memory Network 

A long short-term memory (LSTM) network is applied to predict the uncertainties of 

RESs, load demands and energy price [104]. Figure 5-11 illustrates the internal 

configuration of a LSTM unit, which includes a memory cell and three distinct gates: 

input, forget, and output. The cell state 
t

c , which includes a self-connected recurrent 

edge with a constant weight of one, is instrumental in mitigating issues of vanishing 

and exploding gradients. Additionally, the roles of the three gates within the LSTM 

are pivotal. The forget gate t
f  and input gate 

t
i  regulate the flow of data into the cell 

state 
t

c , while the output gate manages the data 
to  flowing into the next layer 

t
h . 

The input gate processes current input data 
t

x  and the previous time step's hidden 

state 
1t−

h  using the tanh function. Since the tanh function yields values between 0 

and 1, it allows the input gate to ascertain the influence of the current input on the cell 

state. Moreover, the forget gate determines the extent to which the previous cell state 

is preserved in the current cell state. 

 

Figure 5-11 The structure of a LSTM neural network [J6]. 

5.3.3.3 Safe SAC algorithm 

SAC algorithm has been discussed in Section 2.3.2. The actions selected and carried 

out by several agents are independent and multi-dimensional in the setting of MADRL 
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algorithms. This necessitates the separation of interdependencies within the 

optimization-based approach. For example, constraints related to balancing thermal 

and electrical demand and supply, as well as those concerning ESSs, might not be 

adhered to during the action execution. To accurately represent the physical 

constraints of the EH operation, a safety index ( , )t t tc s a  is employed, which is defined 

below: 

( , ) | | | | | | | |t t t t t t t

e thc s a H P E E= −  −  −  −   (5.4) 

where { , }t tH P   are imbalance measures of thermal and electrical energy at time 

t , and { , }t t

th eE E   are SoC constraint violations of thermal and electrical storage 

units at time t . This indicator helps adjust the direction in which the control policy is 

updated, contributing to a more stable learning process. 

5.3.3.4 Implementation of the proposed method 

The design of the DNNs and the procedures involved in executing the proposed 

strategy are summed up in Figure 5-12. The DNNs' structure is shown in Figure 5-

12(a). It is observed that the target networks and their corresponding online networks 

have the same parameters. PV, wind power, and electrical and heat demands are 

among the datasets given into the LSTM network. The variables used here are 

normalized. After that, they go via an LSTM layer and produce a vector. A flattening 

layer converts this vector into a longer feature vector. A sigmoid activation function 

is used to generate a normalized action value from the actor network, which receives 

as input a combination of the LSTM outputs and additional state characteristics as 

SoC and energy prices.  he actor networ ’s output layer consists of four neurons for 

instant action output, while the critic and safety networks, taking a concatenation of 

state and action vectors as input, output the Q-value and C-value respectively through 

a single neuron, and the rectified linear units (ReLU) is the activation function [105], 

[106]. Further details on the algorithm updates can be found in Section 3 in [J6]. 

The proposed strategy's execution structure, which consists of decentralized online 

execution and centralized offline training, is shown in Figure 5-12(b). By 

incorporating information from other agents into the critic network of each agent 

during offline training, the strategy becomes more resilient to external uncertainties 

even when only local information is available. The critic network is rendered 

redundant during online execution, and the actor networks adjust weights to produce 

real-time strategy. Based on its learned policy, each agent's distinct actor network uses 

its observed data to make decisions in real time in a totally decentralized manner. 
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Figure 5-12 Flowchart and structures of the proposed method [J6]. 

 

5.3.4. CASE STUDIES 

5.3.4.1 Simulation setup 

The proposed energy management strategy is applied to an IEDHS. In this context, 

one episode is comprised of 24 time steps, with each step representing one hour. 

Figure 5-13 presents the topology of the test IEDHS [107]. The IEDHS includes an 

IEEE 33-bus PDN, a 4-node DHN, four EH and EVAGG entities. Parameters of the 

EH are given in [J6]. The Gaussian distribution (0.45,0.01)N  is used to model the 

SoC of EVs upon arrival at the parking lot. Arrival time and departure time are 

sampled from a uniform distribution from the sets of {6,7,8,9,10,11}  and 

{15,16,17,18,19,20}, respectively. 

 

Figure 5-13 Topology of the test system [J6]. 
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One-year historical data is selected as the training data, including PV, wind power, 

load demand, and energy prices [108][109]. To assess the forecasting accuracy, an 

unaltered dataset spanning a continuous 30-day period from the same references is 

employed for testing. Figure 5-14 displays a comparison of the forecasted and actual 

values. The comparison reveals a close resemblance between the predicted values 

(represented by an orange line) and the actual values (shown by a blue line), with only 

minor deviations in a few instances of very high peaks. This similarity validates the 

effectiveness and accuracy of the LSTM network in making predictions. 

  
(a) (b) 

  

(c) (d) 

Figure 5-14 Values for predictions derived from a 30-day test dataset: (a) PV generation, (b) 

wind power, (c) heat load, and (d) electrical load [J6]. 

5.3.4.2 Training performance 

The Concurrent, MASAC and the proposed algorithm are trained for 10,000 episodes. 

Figure 5-15 and Figure 5-16 show the outcomes of this training, which concentrated 

on reward convergence and constraint violation. The solid curves in these figures 

indicate the mean values of the results; the shaded regions correspond to the standard 

deviations. It is noted that the Concurrent method's training performance is unstable, 

displaying a significant standard deviation that results in its non-convergent 

termination. The non-stationary environment that results from agents updating their 

rules individually in the Concurrent approach causes this instability. Conversely, as 
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compared to the Concurrent algorithm, the MASAC algorithm, which incorporates an 

attention mechanism, exhibits smoother learning behavior and a smaller standard 

deviation. This suggests that the non-stationarity difficulties can be efficiently 

addressed by centralized training that selectively includes input from other agents. 

Out of the three strategies, the proposed algorithm had the lowest standard deviation 

and the highest cumulative reward. The integration of the safety network and LSTM 

network is credited with this higher performance, as it greatly improves the quality of 

the solution. 

 

Figure 5-15 Comparison of cumulative rewards of different MADRL methods [J6]. 

 

Figure 5-16 Comparison of constraint violations of different MADRL methods [J6]. 

5.3.4.3 Test results Analysis 

Two distinct test scenarios (a summer day and a winter day) are examined. The 

summer day scenario is marked by lower load demands, high availability of PV power, 

and limited wind power. In contrast, the winter day features higher load demands, 

limited PV power, and an abundance of wind power. Figure 5-17(a) and Figure 5-17(b) 

in the study illustrate the 24-hour demand profiles for heat and electricity for these 

scenarios, while Figure 5-16(c) displays the electricity and gas price trends for the EH 
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and EVAGG. Additionally, the specifics of four different EVAGGs, including 

variables like arrival time, departure time, and initial SoC, are detailed in Table 3. 

  

(a) (b) 

 
(c) 

Figure 5-17 (a) The load profiles on the summer day, (b) the load profiles on a winter day, 

and (c) the trends in electricity prices and gas prices [J6]. 

Table 5-2 Parameter settings of the EVs [J6]. 

Parameters 1 2 3 4 
ini

EVE
 0.58 0.57 0.22 0.2 

AT  5 7 11 8 

DT  19 15 18 15 

 

1) EVAGG operation 

Figure 5-18 provides the operational activities of four EVAGGs during a typical 

winter day. The power transactions between the EVAGG and the wholesale market 

are shown in Figure 5-17(a). The EVAGG starts obtaining power from the upper grid 

one hour in advance of the EVs pulling into the parking lot. Because of the higher 

electricity pricing at that hour, the EVAGG only sells electricity back to the grid once, 
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at hour 16. EVs are typically charged in the hours prior to their departure, as shown 

in Figure 5-17(b). In order to meet the EH's electricity demands, the EVAGG sells 

electricity to the latter between the hours of 07:00 and 14:00, as shown in Figure 5-

17(c). Because the contracted costs for power from the EH are less than the wholesale 

market rates, the EVAGG also exhibits a bias for purchasing electricity from the EH. 

The charging and discharging behaviors of the combined batteries are displayed in 

Figure 5-17(d). There are three primary components to the discharging process: 

providing electricity to the EH from 7:00 to 14:00 hours, charging EVs when they 

depart the parking lot between 15:00 and 19:00 hours. Electrical energy from the EH 

and the wholesale market is used to charge these batteries. 

  

(a) (b) 

  
(c) (d) 

Figure 5-18 Electrical is traded with the electrical market in (a), sold to EV owners in (b), 

exchanged with EH in (c), and the EVAGGs' charging and discharging operations are 

handled in (d) [J6].  

2) EH operation 

Figure 5-19 demonstrates the supply of heat and electricity demands on a winter day, 

highlighting the utilization of wind power and PV generation. During off-peak 

electricity hours (00:00 to 06:00 h), electricity is bought from the wholesale market 

for various purposes including charging batteries and selling to the EVAGG. During 
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peak hours (08:00 to 20:00 h), the EH buys electricity from the EVAGG, sells excess 

to the market, and relies on the CHP and batteries for load supply. Between 14:00 and 

23:00 h, the EH purchases electricity from the market due to CHP's maximum output. 

Natural gas, being cheaper than electricity, predominantly fuels the GB and CHP for 

heating, with WT being used when gas and electricity prices are close (2-6 h and hour 

23). Figure 5-20 outlines the energy management on a summer day. Similar to the 

winter day, electricity is purchased early in the day for supporting electric loads and 

charging the BSS. When gas is less expensive than electricity, the strategy uses RESs 

to satisfy demand, especially when it comes to utilizing GB for heating (09:00–16:00 

h). When there is minimal RES availability, a strong demand for electricity, and 

relatively low gas prices, the CHP units are used. During times of high demand, ESSs 

have a flexible role. Notably, compared to a winter day, a summer day with more PV 

generation exhibits greater energy export and less import. Overall, EH's real-time 

energy requirements are efficiently managed by the learnt strategy, which adjusts to 

varying seasonal conditions. To meet demand, the strategy makes use of RES, 

generators, and energy storage devices, proving its efficacy and versatility. 

  

(a) (b) 

Figure 5-19 EH operation on a winter day: (a) the strategy employed to satisfy electricity 

demand; (b) the strategy used to meet heat demand [J6]. 

  

(a) (b) 
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Figure 5-20 EH operation on a summer day: (a) the strategy employed to satisfy electricity 

demand; (b) the strategy used to meet heat demand [J6]. 

 

5.3.4.4 Algorithm Comparison 

The proposed strategy is compared with two baseline model-based strategies, namely 

stochastic-mixed-integer linear programming (MILP) [110] and perfect-MILP [111], 

as well as two advanced MADRL algorithm, the Concurrent [112] and MASAC 

algorithms, to illustrate the enhanced performance considering the LSTM and safety 

networks. Figure 5-21 shows the total daily cost of EHs and total daily profit of 

EVAGGs over a test dataset. The average cost, profit, and computation performance 

of different algorithms are presented in Table 5-3. It can be seen that the optimization 

results of the proposed method are very close to those of the perfect-MILP algorithm, 

with the EH cost being 2.01% higher and the EVAGG profit being 2.12% lower than 

those of perfect-MILP. However, solving the perfect-MILP algorithm requires precise 

modeling of the system. Additionally, compared to MASAC, the proposed method 

achieves a 3.06% reduction in EH cost and a 6.82% increase in EVAGG profit. The 

proposed algorithm, based on the MASAC algorithm, incorporates LSTM and a 

Safety network, thereby improving performance. The Concurrent method can cause 

environmental non-stationarity, leading to poor training performance. In terms of 

computation time, the proposed method takes longer than MASAC due to its more 

complex neural network structure. However, for online deployment, since only 

forward propagation of the neural network is required, millisecond-level decision-

making can be achieved. Details about the comparison algorithms can be found in 

Section 4 in [J6]. 

  

(a) (b) 

Figure 5-21 Results obtained by different algorithms over a test dataset: (a) total daily cost of 

EH; (b) cumulative daily profit of EVAGG [J6]. 
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Table 5-3 Cost, profit and computation time of different methods [J6]. 

Algorithms 
Average daily 

cost of EH ($) 

Average profit 

of EVAGG ($) 

Training time 

(min)  

Online 

calculation time 

(s) 

Concurrent 103969 7281 503 0.013 

MASAC 98662 8012 114 0.024 

Proposed 95733 8598 125 0.029 

Stochastic-MILP 105035 7265 - 3.685 

Perfect-MILP  93846 8784 - 1.379 

 

5.3.5. SUMMARY 

This chapter introduces a novel decentralized energy management strategy based on 

an improved model-free MADRL. This strategy aims to minimize daily operation 

costs for EH entities and maximize daily profit for EVAGGs. The uncertainties are 

predicted via a LSTM network. The coordination between two entities is then modeled 

as Markov games, tackled using an MADRL algorithm. In this framework, each EH 

or EVAGG entity is chosen as an agent, respectively. The MADRL strategy 

incorporates offline centralized training for learning optimal coordinated strategy and 

decentralized execution, allowing agents to make real-time decisions based on local 

measurement. Additionally, a safety network is utilized to consider equality 

constraints, such as balancing demand and supply. The rationality and robustness of 

the proposed strategy are evaluated in the simulation. 
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CHAPTER 6. CONCLUSION 

6.1. SUMMARY 

This thesis investigates data-driven energy management strategies for the MESs to 

optimize the economic and low-carbon operation considering the uncertainties of RES, 

loads, energy prices and EVs’ charging/discharging behaviors. The purpose of this 

thesis is to understand complex MES from a data-driven point of view, without 

assuming too much prior knowledge. 

In Chapter 2, a low-carbon economic energy management strategy for the electricity-

gas MES based on DRL is investigated. The coordination between P2G and CCS units 

is considered. The low-carbon economic dispatch problem is formulated as MDP, and 

solved by an improved SAC algorithm. Simulations demonstrate that the proposed 

strategy achieves faster convergence and a more stable training process compared to 

traditional DRL algorithms. 

In Chapter 3, a two-timescale energy management strategy based on the MADRL 

algorithm is investigated to minimize energy costs of the residential MES. The 

strategy considers internal energy conversion and external energy trading for the 

residential MES, taking into account the various operational parameters of each MES 

component. Simulations in deterministic and stochastic scenarios demonstrate the 

effectiveness and superiority of the proposed strategy. 

In Chapter 4, an MADRL-based bottom-up energy management strategy is 

investigated for multiple MESs, which is composed of the upper-layer ER cluster and 

bottom-layer MG cluster. An MADRL algorithm learns the optimal operation strategy 

for the bottom-layer MG cluster to minimize energy costs. The optimal energy 

allocation is completed in the upper-layer ER cluster. Simulation validates the 

effectiveness of the proposed energy management strategy. 

In Chapter 5, a decentralized energy management strategy for EH and EVAGG 

entities is investigated to reduce the energy costs of the EH and increase the profit of 

the EVAGG entity. A LSTM network is used to predict the system uncertainties, and 

a safety network is used to ensure the operating constraints. Simulation demonstrates 

the effectiveness and superiority of the proposed strategy. Besides, decentralized 

execution can safeguard the privacy of various entities. 

In summary, this thesis primarily demonstrates the use of DRL to learn an optimal 

energy management strategy, aiming to optimize the economic costs of MESs. The 

end-to-end nature of DRL effectively addresses the uncertainties and nonlinearities in 

MES optimization. In terms of modeling, the focus shifts from centralized energy 

management of a single MES to multi-agent decentralized energy management, 
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involving multiple MESs or the MES with EVAGG entities. The DRL algorithms are 

improved to solve these problems. Additionally, the real-time decision-making 

capability of DRL highlights its potential for practical application. 

6.2. FUTURE WORK 

This Ph.D. project aims to propose DRL-based algorithms to solve energy 

management problems at different levels. However, a number of limitations still exist: 

• Hyperparameter determination is a necessary process for DRL, and 

researchers often need to spend a lot of effort on parameter tuning to get the 

optimal model performance. Running experiments manually for parameter 

tuning can be used for small models with small parameter sizes, but when 

parameter optimization is performed for large models, the manual-only 

approach becomes impractical. In the future fast parameter tuning algorithms 

can be used with the help of DL models. 

 

• DRL methods rely on big data, and not all domains have the ability to obtain 

a large amount of sample data, and the cost of obtaining a large number of 

training samples is still high in modern power grids due to the presence of 

physical barriers in the energy layer and information barriers in the 

information layer. In the future, when the training samples are insufficient, 

the opposite idea is utilized to generate pseudo-labels with unlabeled data or 

pseudo-data with labels, forming a sample generating network. 

 

• The MES in the operation process may appear the extreme situation, and it 

is difficult to ensure the feasibility of the strategy given by the agent. The 

model knowledge is embedded in the neural network of DRL to construct a 

data-knowledge fusion-driven DRL algorithm, which improves the robust 

performance of the DRL control strategy through the embedding of 

knowledge. 

 

• The proposed strategy has not been tested in real-time on an actual MES but 

is instead based on historical data. This is mainly due to the large scale of the 

investigated energy system model, which makes real-world testing 

challenging. Therefore, in future work, a physics-informed MADRL 

algorithm could be further developed, incorporating the system's physical 

constraints into the neural network to enhance the interpretability of the 

resulting strategy. 
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