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ABSTRACT

The growth of the global economy has led to noticeable issues of energy crisis and
environmental issues, hence driving the advancement of alternative energy production.
Renewable energy generation may effectively access the power system by utilizing
dispersed access to the power grid. Renewable energy generation exhibits significant
unpredictability and instability, and the inclusion of numerous renewable energy
sources (RESS) leads to substantial alterations in the functioning of the power grid.
Moreover, the unpredictable variability of energy costs and the inconsistent patterns
of controlled loads, such as electric vehicles (EVs), introduce a level of uncertainty to
the functioning of the power system.

Another ongoing energy transition is the integration of different forms of energy.
Multi-energy system (MES), have the potential to yield significant sustainable,
efficient, economic and resiliency benefits. However, intermittent RES generation,
uncertain and heterogeneous load demands, and balance-of-system costs render the
traditional energy analysis methods obsolete.

Acrtificial Intelligence (Al) technology is an important tool to address the above
challenges. As an important branch in the field of computer science, Al technology
aims to realize the self-improvement of computers and the simulation of human
intelligence by refining knowledge and experience from data. Since the knowledge
extracted from data has a certain generalization ability, Al methods can cope with the
uncertainty of the system and enable online decision-making.

Hence, the aim of this thesis is to utilize DRL algorithms to guarantee an efficient and
dependable energy management strategy for the MESs. In Chapter 2, with the
objective of achieving a low-carbon economic dispatch strategy for the electricity-gas
MES, this project takes into account the flexible coordination between the carbon
capture system and power-to-gas units. Chapter 3 investigates a two-timescale energy
management strategy for the residential MES. This strategy utilizes a multi-agent deep
reinforcement learning (MADRL) algorithm to control the internal energy conversion
and external energy trading behaviors. Chapter 4 introduces a decentralized energy
management strategy for multiple MESs. The proposed framework is a bilevel energy
management system. In the bottom layer, a control strategy based on MADRL is used
for the multi-energy microgrid (MG) cluster. In the upper layer, energy routers
determine the optimal energy trading based on feedback from the bottom layer.
Moreover, an energy hub (EH) is a very efficient solution for managing energy in the
MES. EVs have been extensively integrated into the power grid in recent years. Hence,
taking into account that EHs and EVs pertain to distinct entities, a refined MADRL-
based decentralized energy management strategy is suggested to optimize the
revenues of the EV entity and decrease the energy expenses of the EH entity. In
addition, a specialized neural network is employed to address the intricate
uncertainties, hence enhancing the effectiveness of the suggested strategy. Chapter 5
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contains information that is related to the topic. Chapter 6 presents the final findings
of the thesis.

To conduct efficient simulation of the proposed Al-based energy management
strategy, a series of case studies were performed on Python. Specifically, training
datasets come from real-world historical datasets, and Al algorithms are programmed
based on TensorFlow. Besides, algorithm comparison is also conducted to illustrate
the superiority of the proposed method. Simulation results demonstrate that the
proposed strategy can (i) reduce energy costs, (ii) deal with uncertainties, (iii) provide
real-time energy management strategy, and (iv) realize decentralized energy
management for different entities. Besides, the proposed method shifts the
computation from online to offline, which greatly reduces the computation of online
execution and facilitates later applications.
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DANSK RESUME

Med udviklingen af den globale gkonomi bliver problemerne med energimangel og
miljgforurening mere og mere fremtraedende, hvilket fremmer udviklingen af ny
energiproduktion. Vedvarende energiproduktion gennem distribueret adgang til
elnettet er en vigtig made for ny energiproduktion at f adgang til elnettet pa.
Produktionen af vedvarende energi har imidlertid en steerk tilfeldighed og volatilitet,
og adgangen til et stort antal vedvarende energikilder medfarer dybtgdende &ndringer
i driften af elnettet. Derudover medfgrer den stokastiske karakter af energipriser og
svingende adfaerd af kontrollerbare belastninger, herunder elektriske karetgjer (EV),
risiko for driften af energisystemet.

En anden igangvarende energiovergang er integrationen af forskellige energiformer.
Multi-energy system (MES) har potentiale til at give betydelige beredygtige,
effektive, gkonomiske og modstandsdygtige fordele. Periodisk elproduktion, usikre
og heterogene belastningskrav og systembalanceomkostninger ggr de traditionelle
energianalysemetoder foraldede.

Kunstig intelligens (Al) teknologi er et vigtigt redskab til at lgse ovenstdende
udfordringer. Som en vigtig gren inden for datalogi, Al teknologi sigter mod at
realisere selv-forbedring af computere og simulering af menneskelig intelligens ved
at raffinere viden og erfaring fra data. Da viden udvundet fra data har en vis
generaliseringsevne, kan Al-metoder klare usikkerheden i systemets kildebelastning
og muliggare online beslutningstagning.

Formalet med denne afhandling er derfor at anvende Al metoder til at sikre en effektiv
og palidelig energistyringsstrategi for MES. Med henblik herpa starter dette projekt
med en lav CO2-gkonomisk afsendelsesstrategi for elektricitet-gas MES, hvor den
fleksible koordinering mellem kulstofopsamling og el-til-gas-enheder overvejes. Det
relative indhold er praesenteret i kapitel 2. For det andet, for at lgse spargsmalene om
centraliseret energistyring, er en decentraliseret energistyringsstrategi udviklet i en
bolig MES, hvor multi-agent dyb forsteerkning leering (MADRL) metode anvendes til
at regulere den interne energikonvertering og eksterne energihandelsadferd.
Tilsvarende indhold praesenteres i kapitel 3. | kapitel 4, for at undersgge en
decentraliseret ~ energistyringsstrategi  for flere MES, foreslds en bilag
energistyringsstrategi, hvor der foreslds en MADRL-baseret styringsstrategi for den
nederste lag multi-energy mikrogrid klynge, og de gverste lag energi routere
bestemmer den optimale energihandel baseret p& bundlagsinformation feedback.
Endvidere er energihub (EH) en effektiv Igsning til at levere energistyring til MES. |
de senere ar er elektriske karetajer ogsa blevet tilsluttet nettet i stor skala. | betragtning
af, at EH'er og EV'er tilhgrer forskellige enheder, foreslas der derfor en forbedret
MADRL-baseret decentraliseret energistyringsstrategi for at maksimere overskuddet
for EV-enheden og minimere energiomkostningerne for EH-enheden. Desuden
bruges et specifikt neuralt netveerk til at tackle de komplekse usikkerheder, s
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ydeevnen af den foresldede metode forbedres. Det relative indhold er preesenteret i
kapitel 5. Endelig er afhandlingens konklusioner introduceret i kapitel 6.

For at udfare effektiv simulering af den foresldede Al-baserede energistyringsstrategi
blev der udfart en reekke casestudier pa Python. Specielt kommer traeningsdataszt fra
historiske dataseet i virkeligheden, og Al-algoritmer programmeres baseret pé
TensorFlow. Desuden udferes algoritme sammenligning ogsd for at illustrere
overlegenheden af den foresldede metode. Simuleringsresultater viser, at den
foreslaede strategi kan (i) reducere energiomkostningerne, (ii) handtere usikkerheder,
(iii) levere energi i realtid og (iV) realisere decentraliseret energistyring for forskellige
enheder. Desuden skifter den foresldede metode beregningen fra online til offline,
hvilket i hgj grad reducerer beregningen af online udferelse og letter senere
applikationer.

Vil
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CHAPTER 1. INTRODUCTION

1.1. BACKGROUND

Energy, particularly electricity, is the foundation of social and economic development
[1]. In the past, the majority of electricity was generated using fossil fuels, which not
only caused the world energy crisis but also worsened environmental pollution
through their overexploitation [2]. The International Energy Agency (IEA) predicts
that CO, emissions will increase by 130% by 2050, leading to a global average
temperature rise of 6°C [3]. According to the IEA [4], the world's cumulative
photovoltaic (PV) installed capacity was approximately 800 GW. According to the
Global Wind Energy Council [5], the global cumulative wind power installed capacity
was 743 GW at the end of 2020. GWEC also forecasted that an additional 469 GW of
wind power capacity would be added between 2021 and 2025, which would bring the
total installed capacity to over 1.2 TW by the end of 2025. According to statistics from
the Danish Energy Agency, Figure 1-1 shows the gross energy consumption in
Denmark as of 2022 [6]. It is notable that RES accounted for a significant portion,
with wind and solar power alone contributing to nearly 60% of the total electricity
production.
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Figure 1-1 Danish gross energy consumption as of 2021. Source: [6]

However, due to the randomness and intermittency of renewable energy, the issue of
renewable energy integration has become increasingly prominent. Relying solely on
exploiting the existing potential of power systems makes it difficult to overcome the
challenges of renewable energy integration. Currently, different energy systems
operate in isolation with limited coordination, severely affecting the flexibility of
power system operations and failing to fully tap into the potential of these systems.
Therefore, developing theories and methods for multi-energy system (MES)
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integration is an effective way to address the renewable energy integration challenge

(8].

A generalized MES refers to a large-scale system encompassing various energy
systems. This system involves different stages, including energy development,
conversion, storage, transportation, scheduling, control, management, and utilization.
Different types of energy have complex coupling relationship. Natural-gas and
heating networks can also be converted into electricity in various ways. Additionally,
the integration of distributed energy resources (DERs) further enriches the MES, the
structure of which is shown in Figure 1-2. Effective energy management strategies for
MESs can optimizes the use of diverse energy sources, leading to improved overall
efficiency and reduced operational costs. By coordinating different energy carriers
such as electricity, heat, and gas, these strategies enhance system flexibility and
reliability, facilitating the integration of RESs [9]. Additionally, effective
management strategies can support dynamic demand response and reduce
environmental impact, contributing to more sustainable and resilient energy systems
[10].
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Figure 1-2 A typical framework of the MES [J1].
.2. STATE OF THE ART

1.2.1. DEEP REINFORCEMENT LEARNING

Deep reinforcement learning (DRL) combines the feature representation capabilities
of deep learning (DL) with the decision-making abilities of reinforcement learning
(RL). DRL efficiently solves sequential problems by breaking them down into
multiple subproblems and solving them step by step [11]. During the training phase,
the DRL agent embeds knowledge extracted from historical data into a neural network,
enabling online decision-making after deployment. Additionally, with proper design,
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DRL can achieve control without relying on physical models, thereby reducing
control deviations caused by inaccuracies in the physical model [12][13].

DRL’s framework is shown in Figure 1-3. In DRL, the interaction between the agent
and the environment can be described as a Markov Decision Process (MDP). In this
framework, the agent observes the current state of the environment, selects an action
based on the states, and then receives a reward from the environment. The agent’s
objective is to learn a policy that maximizes the cumulative reward over time by
optimizing its actions across different states. This iterative process allows the agent to
adapt and improve its strategy to solve complex optimization problems effectively.

Common DRL algorithms are deep Q-Network (DQN), deep deterministic policy
gradient (DDPG), twin delayed deep deterministic policy gradient (TD3) and soft
actor-critic (SAC). DQN is known for its simplicity and effectiveness in discrete
action spaces, but it struggles with stability and exploration, especially in continuous
action environments. DDPG addresses continuous action spaces by combining actor-
critic methods and deterministic policies, but it often suffers from instability and
overestimation of action values. TD3 improves upon DDPG by using two Q-networks
to reduce overestimation bias and applying delayed policy updates for better stability,
although it can still be sample-inefficient. SAC, on the other hand, introduces entropy
regularization to encourage exploration, making it more robust and stable in complex
environments, but it tends to be computationally expensive due to its soft policy
updates. Each of these algorithms has its strengths and weaknesses, depending on the
environment's state and action spaces.

DRL has been widely used in power system optimization, such as voltage control [14],
demand response [15], and energy storage management [16]. Furthermore, curriculum
learning -based DRL, is effective in solving complex environments, e.g., quantum
control [17], by gradually increasing the difficulty of tasks during training. Combining
transfer learning with DRL allows an agent to leverage knowledge learned from one
task or environment to improve its performance on a related task or in a different
environment, which has been applied in navigation [18] and trading strategies [19].
Combining DRL with graph learning to extract topological features is an advanced
approach that improves decision-making ability of DRL, e.g., distribution network
voltage control [20]. In addition, federated learning-based DRL to address demand
response problems offers a powerful approach to optimize energy consumption
without compromising data privacy [21]. Besides, quantum RL shows superior
performance in computer simulations than classical RL, e.g., better performance on a
large search space, faster learning speed and better balances between exploration and
exploitation [22]. DRL can also integrate with a large language model to realize real-
time optimal power flow, in which some unquantifiable linguistic stipulations can be
directly modeled as objective [23]. Besides, integrating physics-informed rules into
state-of-the-art DRL algorithms enhances the explainability of the obtained results.
This approach has already been applied in power systems [24].
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Figure 1-3 Framework of DRL.

In a multi-agent environment, each agent’s strategy evolves during training, causing
non-stationarity that challenges single-agent DRL algorithms. Multi-agent DRL
(MADRL) algorithms using centralized training and decentralized execution address
this by leveraging the structural differences between actor and critic networks [25].
The framework of the MADRL is shown in Figure 1-4. The critic network, which uses
global information from all agents, helps guide the learning of cooperative strategies.
The actor network, using only local information, is used during execution. This design
maintains environmental stability for each agent and improves the stability of the
training process. MADRL has been used to address multi-robot coordination control
problems [26]. In addition, MADRL can be combined with graph learning to enhance
algorithm performance by learning the topology and node features of the network, e.g.,
voltage control [27]. MADRL can also be applied for adaptive traffic signal control
in the guidance of transfer learning [28], which can improve the scalability of each
agent. In MADRL, multiple agents may have cooperative or competitive relationships.
Through transfer learning, the strategies learned by certain agents can be used as the
foundation for other agents to learn from.
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Figure 1-4 Framework of MADRL.

1.2.2. MES ENERGY MANAGEMENT

1) Electricity-Gas MES Energy Management
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Integrating electricity and natural gas into a MES offers greater flexibility, efficiency,
reliability, and cost-effectiveness [29]. In addition, there is a rising trend in the
integration of carbon capture and storage (CCS) technology into coal-fired power
plants, leading to the development of carbon capture power plants (CCPP) [30].
Power-to-gas (P2G) technology allows the conversion of excess wind power into
synthetic natural gas [31]. Several studies [32]-[34] worked on the availability of fuel,
changes in natural gas prices, the influence of wind energy on the costs of power
operations, and the development of innovative integrated structures for power and
cooling cogeneration systems that offer improved thermal efficiency. Most of these
studies tend to focus on single-plant perspectives to investigate the low-carbon energy
management strategy, often overlooking the coordination between the CCS and P2G
units [35]. The coordination between CCS and P2G can effectively promote the
integration of renewable energy, improve the operational flexibility, and reduce
generation costs.

In addition, investigating the optimal energy management strategy for the electricity-
gas MES is complicated by numerous variables, including fluctuating electricity and
gas consumption, uncertain wind power generation, and fluctuating energy prices.
Complications also arise from the complex coupling relationships of energy flow
models, the lack of network topology, and the intricacies of a non-convex multi-
objective function. Traditionally, energy management strategies for MESs have
heavily depended on programming methods. The methods can be classified into three
primary categories: dynamic programming [36], linear programming [37], and non-
linear programming [38]. However, programming methods require a considerable
amount of time when handling complex systems or uncertainties, which restricts their
scalability in complex systems. Specifically, these methods often require numerous
iterations to find the optimal strategy for a given state. Given the computational time
required for online deployment, programming-based methods are not well-suited for
addressing this problem [39]. Furthermore, to address multiple uncertainties and
enable real-time decision-making, DRL-based energy management strategies have
been proposed to optimize the operation of electricity-gas MES systems [40].

2) Residential MES Energy Management

Globally, residential energy consumption typically accounts for 30% to 40% of total
energy use [41]. This includes heating, cooling, hot water, lighting, and appliances. A
residential MES (RMES) includes both heating and electricity supply for residential
users. The idea of using energy carriers has arisen as a promising framework for future
energy networks [42]. Multi-energy carriers focus on optimizing the interaction
between various energy sources and demands. Users may easily modify their energy
usage and transition between various energy sources using this method [43]. An
effective residential energy management strategy can lead to economic benefits [44],
carbon emission reduction [45], enhancing renewable energy usage [46], maintaining
residential comfort [47], and balancing load curves [48]. Few studies focus on
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residential energy management strategies aimed at addressing both energy trading and
energy conversion. This is because the time scales for these two objectives may differ
significantly, and their integration introduces additional uncertainties, making the
optimization problem more complex.

Energy components in the multi-energy carriers include electrical storage (ES), water
electrolyzers (WE), fuel cell (FC), gas boiler (GB), hydrogen boiler (HB), and
hydrogen tank (HT). ES devices can also be used to make up for energy shortages by
storing extra electrical energy. WE converts electrical energy into hydrogen. This
hydrogen can then be used by FC units to produce electricity and heat [49], by HB for
heating, or stored in HT for future needs. GB serves as an auxiliary heat source, using
purchased natural gas to meet heating requirements.

Hydrogen fuel, noted for its versatility in generating electricity, heating, and powering
electric vehicles, plays a significant role in reducing carbon emissions. With ongoing
corporate investments and the development of hydrogen infrastructure, hydrogen fuel
costs are anticipated to decrease [50], promoting its adoption in residential areas.
However, its use in residential buildings is still emerging. The WE is designed to
convert electrical energy into hydrogen, which can be stored indefinitely, a significant
advantage over other energy storage devices like batteries that require frequent
recharging [51]. The investment cost for WEs is decreasing, and their efficiency is
improving over time [52].

Centralized residential energy management strategies optimize energy costs in various
residential loads and controlling intelligent home appliances for cost minimization
[48]. However, centralized energy management strategies face challenges like single-
point communication failures and operation maintenance costs [53]. In tackling these
challenges, distributed energy management strategies offer an alternative choice,
where each subsystem computes its outcomes with minimal communication with
others [54]. Different extended frameworks for distributed exchange are available.
One direction considers interactions in domestic energy management as a generalized
Nash game, while another uses a distributed model predictive controller to regulate
collective power consumption [55]. However, model predictive controllers rely on
accurate modeling of residential energy systems, which is challenging due to the
complex operational modes and energy coupling relationships involved. In addition,
the distributed methods suffer from communication delays, e.g., consensus-based
methods [56]. Furthermore, data-driven MADRL-based residential energy
management strategies have been proposed to optimize residential energy costs. Since
MADRL-based strategies only require local information during online deployment,
they significantly reduce communication demands [57].

3) Energy Management of Multiple MESs



CHAPTER 1. INTRODUCTION

The shift toward DERs in the modern energy system is steering the electricity sector
away from traditional centralized models. In this context, microgrids (MGs) are
becoming increasingly vital for enhancing renewable energy usage. More advanced
than MGs, multi-energy MGs (MEMGs) are critical for achieving optimal energy
solutions by facilitating coordination among different energy sectors like electricity,
gas, and heating [58],[59]. MEMGs offer a framework to handle the dynamic
interactions and interdependencies among different energy components.

The energy Internet (El), which is defined by its reliance on renewable energy,
decentralized networks, and peer-to-peer connections, is becoming increasingly
popular as an attractive option [60]. In decentralized network, each unit makes
decisions about its energy consumption or production locally, often based on its
specific needs or constraints. It enables the growth and use of many energy sources in
a distributed way, providing significant benefits for the environment, economy, and
resilience. Energy routers (ERS) are essential components within the EI architecture,
similar to internet routers. They facilitate the transmission of both information and
energy across MGs, which is necessary for actual El scenarios [61]. Yet, the
decentralized structure of numerous energy networks and the unpredictability of
DERs provide difficulties in efficiently controlling units due to its complex physical
and communication framework.

Centralized energy management strategies involve a central controller communicating
with MGs for global information and decision-making, which is a top-bottom
framework [62]. Despite its widespread use, this approach has several drawbacks:
high connectivity costs, vulnerability to single-point failures, and significant
computational burdens, especially as more DERs integrate into the system [63]. The
centralized energy management strategy also struggles with high DER penetration and
the need for customized energy interactions, limiting the flexibility of transactions
between consumers and markets [64]. There is a growing interest in implementing
bottom-up energy management schemes, which offer a more practical strategy for
monitoring multiple agent systems (MAS) at both the MG and energy router (ER)
levels [45]. These schemes take into account individual MGs' unique consumer energy
demands and operational costs, aiming to facilitate future energy planning and cost
reduction. For instance, research has demonstrated significant reductions in the
levelized cost of electricity through the utilization of bottom-up approaches [46][47].
Instead of starting with a high-level and centralized perspective, bottom-up methods
begin by optimizing energy usage at the local level—such as households, devices, or
DERs—and then coordinating these local optimizations to achieve broader energy
management goals.

However, these bottom-up energy management strategies encounter challenges due to
their reliance on traditional mathematical models, which necessitate precise parameter
estimation and can be computationally demanding, rendering them unsuitable for real-
time energy management [48]. Current research has examined various distributed
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techniques, such as game theory, the alternate direction method of multipliers
(ADMM), consensus theory, and event-trigger processes, with the purpose of
coordinating MGs [49][50]. These techniques aim to address concerns with energy
trade and congestion management among MGs. However, their reliance on particular
optimization models can lead to complications and possible problems with
convergence owing to nonconvexity. Additionally, they have difficulties in dealing
with the uncertainties related to renewable energy and complicated energy
conversions [51].

4) Energy Management for the MES including EVs

District heating systems involve the centralized production and distribution of thermal
energy through pipelines [52],[53]. The integration of electricity and district heating
systems has been furthered by the electrification of heating devices and the emergence
of energy hubs (EHs). EHs serve as versatile multi-energy carriers, encompassing
energy production, conversion, and storage, and play a flexible role in system
operations and market trading [54]. Additionally, the rise of electric vehicle (EVS)
driven by climate change concerns, air quality improvements, and advancements in
battery technology is reshaping transportation. Global EV sales have skyrocketed
from 12,000 in 2012 to a record 6.6 million in 2021 [69]. The integration of EVs into
the power grid is becoming increasingly important, with projections suggesting a
significant increase in electricity demand [70]. Research indicates that integrating EVs
into MESs can enhance operational flexibility and reduce costs. For instance, research
[71] observed an 8.81% cost decrease by integrating EVs into a MES. Research [72]
examined the optimized scheduling of a zero-carbon MES for the next day, using EVs
to meet the electricity and cooling requirements. Literatures [73][74] further
investigated the economic and emission scheduling in local MESs that include plug-
in EVs. They also studied the optimized planning of MESs that include transportation,
natural gas, and active distribution networks.

The field of EH optimization is expanding, addressing intricate energy
interconnections using methods such as stochastic programming [75]. This study
involves the control of the influence of ES on operational expenses and the
formulation of approaches for dependable and effective energy administration [76]. A
significant amount of academics is now prioritizing the centralized coordination of
EHs and EV Aggregators (EVAGGS) in energy management [77]-[84]. Centralized
methods involve a central entity handling all decision-making processes. While these
methods can minimize energy purchase costs and optimize various objectives, they
face challenges like dependency on perfect communication conditions, privacy
concerns for prosumers, and potential delays in response times, hindering real-time
scheduling [85][86]. In addition, model-based algorithms require accurate modeling
of uncertainties and find it difficult to make real-time decisions during online
deployment. It’s significant to investigate a model-free decentralized energy
management strategy for the MES and EVAGG entities.
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To avoid reliance on precise modeling of the MESs and uncertainties, model-free
DRL methods have been applied into the optimal energy management of EHs and
EVAGGs. For example, Liu et al. [87] and Qiu et al. [88] proposed DQN and DDPG
algorithm to minimize the operation costs in a smart EH, respectively. However, DQN
and DDPG-based strategies are centralized and do not account for the privacy of
different entities. Additionally, DQN is specifically suited for problems with discrete
action and state spaces, and DDPG is sensitive to hyperparameter settings. In addition,
these studies did not use specialized neural networks to handle uncertainty, nor did
they incorporate the system’s safety constraints into the algorithm training.

1.3. THE OBJECTIVES OF THIS THESIS

To tackle the aforementioned challenges, the objectives of this thesis are summarized
as follows:

1) DRL-based low-carbon economic energy management strategy for the
electricity-gas MES.

This thesis develops a data-driven energy management strategy for the electricity-gas
MES. A DRL algorithm is applied to find the optimal low-carbon energy management
strategy. The coordination between P2G and CCS units is investigated.

2) MADRL-based two-timescale energy management strategy for the
residential MES.

This thesis applies an MADRL algorithm to investigate the two-timescale energy
management strategy for the residential MES, where an hourly-ahead energy trading
agent and a 15-min-ahead energy conversion agent are set. The learned strategy can
flexibly adjust unit operations in response to varying load profiles and energy prices.

3) MADRL-based bottom-up energy management strategy for multiple MESs.

This thesis develops a bottom-up energy management framework for the EI network.
The bottom layer is an MG cluster composed of multiple MESs, and an MADRL
algorithm is applied to learn the optimized operation strategies for the MESs. The
upper layer is an ER cluster responsible for energy allocation across MESs.

4) MADRL-based decentralized energy management strategy for MESs and
EVAGG.

This thesis presents a DRL-based energy management strategy for the grid-connected
MG with EVs. Furthermore, this thesis develops a decentralized energy management
strategy for the EH and EVGAA entities, where each entity can make decisions based
on local measurements.
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The relationships between the above four parts are shown in the Figure 1-5.
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Figure 1-5 The contents of the thesis

As discussed earlier, modern MESs are complex and broad, which includes integrated
energy networks, residential MESs, El network including multiple MESs, and the
MES interacting with other entities (e.g., EVAGG). Therefore, this thesis focuses on
developing characterized energy management strategies for different types of MESs.

Specifically, Chapter 2 focuses on hourly-level low-carbon economic operation in an
electricity-gas MES, which is a centralized management strategy. In Chapter 3, we
transition to a residential MES, exploring a two-timescale energy management
strategy to reduce energy costs while using MADRL to create individual strategies for
an energy trading agent and an energy conversion agent. In Chapter 4, we further
consider energy management strategies for an EI composed of multiple MESs,
proposing a bottom-up management framework in a collaborative environment.
Finally, in Chapter 5, we examine a competitive environment with EVAGG entities
and investigate how to develop decentralized energy management strategies to
maximize the EVAGGSs’ profits and minimize the energy cost of MESs. The system
modeling of different MESs is provided in each chapter.
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Furthermore, the methodology also follows a progressive approach. It starts with the
single-agent DRL algorithm, moves to the MADRL algorithm, and finally involves
improving the MADRL algorithm to enhance training effectiveness. Since solving
energy management problems with DRL or MADRL requires transforming the
original problem into an MDP or Markov game, the description of MDP or Markov
game is essential. Although this may lead to structural repetition, each description is
different, as it is specific to different energy management problems.

1.4. THESIS OUTLINE

The thesis is written based on the publications in the Ph.D. project, and is presented
in the form of a collection of papers. The contents of this thesis are divided into two
sections: a Report and Selected Publications.

Figure 1-6 outlines the structure of the thesis. Chapter 1 presents the research
background, objectives and contributions. Chapter 2 investigates the low-carbon
economic energy management strategy for the electricity-gas MES, where the
coordination of P2G and CCS units is studied. In Chapter 3, two-timescale energy
management strategy for the residential MES is elaborated to minimize operation cost.
Chapter 4 exhibits a bottom-up energy management strategy for multiple MESs under
the framework of El. In Chapter 5, a decentralized energy management strategy for
MES and EVAGG entities is investigated to maximize their profits. The conclusion
is shown in Chapter 6.

Modelling and Optimization of Multi-Energy Systems
Operation based on Deep Reinforcement Learning

Report Selected Publications

Chapter 1. Introduction

Chapter 2. DRL-based low-carbon energy management

strategy for the electricity-gas MES I, 32

Chapter 3. MADRL-based two-timescale energy 1B.c1
management strategy for the residential MES !

Chapter 4. MADRL-based bottom-up energy

management strategy for multiple MESs thez

Chapter 5. MADRL-based decentralized energy

management strategy for the MES and EVAGG entities 485 38, €8

Chapter 6. Conclusion

Figure 1-6 The outline of this thesis.
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CHAPTER 2. A LOW-CARBON ENERGY
MANAGEMENT STRATEGY FOR THE
ELECTRICITY-GAS MES

The contents of Chapter 2 are based on the following two papers:

J1: B. Zhang, X. Wu, A. Ghias and Z. Chen, “Coordinated Carbon Capture Systems
and Power-to-Gas Dynamic Economic Energy Dispatch Strategy for Electricity-Gas
Coupled Systems considering System Uncertainty: An Improved Soft Actor-Critic
Approach,” Energy, vol. 271, no. 126965, May 2023.

J2: B. Zhang, W. Hu, X. Xu, Z. Zhang and Z. Chen, “Hybrid Data-Driven Method
for Low-Carbon Economic Energy Management Strategy in Electricity-Gas Coupled
Energy Systems based on Transformer Network and Deep Reinforcement Learning,”
Energy, vol. 273, no. 127183, Mar. 2023.

2.1. INTRODUCTION

The high penetration of wind power resulting high randomness and uncertainty pose
significant challenges to investigate low-carbon economic operation strategy for
MESs. Traditional model-based strategies rely on accurate modeling of uncertainties,
which is often difficult to achieve. Therefore, a data-driven low-carbon operation
strategy based on DRL is proposed in this chapter. In Section 2.2, the model of
electricity-gas MES including objective function, constraints and coordination of P2G
and CCS is established. Section 2.3 formulates the investigated problem as MDP, and
presents an improved SAC algorithm with prioritized experience replay (PER). The
effectiveness of the proposed strategy is verified in the simulation in Section 2.4.
Conclusion is given in Section 2.5.

2.2. SYSTEM DESCRIPTION

Figure 2-1 illustrates the structure of the energy management of the electricity-gas
MES, including cyber space and physical space [89],[90]. In the cyber space, energy
information from the electricity-gas MES is collected before making energy
management strategy. In the physical space, the electricity-gas MES is coupled by
multiple components, including GT and P2G. Natural gas demand is met through
purchases from the gas well and P2G. Electrical load is supplied by the main grid,
wind power, CCS, GT, and coal-fired units. The detailed mathematical models can be
found in Section 2 in [J1].
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Figure 2-1 Structure diagram of the electricity-gas MES with P2G and CCPP units [J1].

2.2.1. CCPP OPERATION

CCPP model consists of a fossil fuel unit and a CCS unit. The fossil fuel unit provides
electricity for both the load and the CCS. The electricity consumption of the CCS
includes a fixed consumption and consumption related to CO, processing. The CCS
captures CO; emitted by the fossil fuel unit, with a capture rate of 90%.

2.2.2. P2G OPERATION

The structure of P2G operation is illustrated in Figure 2-2. P2G is a coupling unit
between electricity and gas systems, functioning as both a supply of natural gas and
an electrical load. P2G operation encompasses two main processes: electrolysis and
methanation [69]. H, storage is utilized to provide operation flexibility. The electricity
consumption of P2G is used for water electrolysis, and the heat generated during the
methanation process can be recycled by the CCS, thereby reducing the energy
consumption of the CCS.
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Figure 2-2 Operation scheme of the P2G facility [J1].

2.2.3. COORDINATION BETWEEN CCS AND P2G UNITS

Figure 2-3 details the coordination operation between CCS and P2G units. The
coordination involves carbon capture process and P2G operation. In order to improve
operation flexibility, CO, storage, H, storage and GT units are used. The H; storage
stores excess Ha, which is then utilized by the GT during periods of high electricity
prices to reduce energy expenses.
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Figure 2-3 Coordination model of the P2G and CCS [J1].

The objective function of the low-carbon economic operation is to reduce the overall
cost during [0, T], which is expressed as follows:

.
F=min) C*+C®+C" (2.1)

t=0

where {C*,C®,C"™} are the operation cost, the CO; processing cost and the penalty
cost of wind curtailment. The constraints include unit operation constraints, energy
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storage constraints, and gas and electricity balance constraints. T represents the time
period, and since the goal is to optimize the daily operation cost, T is set to 24.

2.3. METHOD INTRODUCTION

In this section, the studied low-carbon economic operation problem is first formulated
as MDP. Then, an improved SAC algorithm is presented. Finally, the DRL-based
energy management method is proposed.

2.3.1. MDP FORMULATION

The MDP consists of four elements, including state set (S ), action set ( A), reward
function (R ), and state transition function (P ).

1) State: The states s, € S attimeslot + are wind power output, electricity loads and
gas loads.

2) Action: The actions a, e A at time slot + are electricity output of CCPP and gas-

fired generators, the electricity used to capture CO,, the electricity output of GT and
the CH,4 generation of the P2G.

3) Reward function: The reward is defined as the negative form of the objective
function. The Reward r, e R at time slot t is expressed as follows:

L= _(CtoC + thp + thp) (2-2)

4) Transition probability: The state transition probability p represents the
probability of the instant state moves to the next state. The state transition probabilities
of wind power and load demands cannot be determined, but DRL can learn the
relationship between states and actions through interactions with the environment.

5) System problem: The system operation optimization problem is indeed a
stochastic optimization problem, as the dynamics of the MES (such as state transitions
and rewards) involve inherent uncertainty. This uncertainty is captured using an MDP
model, where the solution for the MDP is to find the optimal policy z"(a, |s,) to

T -
maximize the cumulative reward R =" »'"'r,, where J denotes the discount factor
i=t
within [0,1] . The MDP framework allows us to model and solve this stochastic
optimization problem by learning the optimal actions to take in each state to achieve
the highest expected cumulative reward.

16



CHAPTER 2. ALOW-CARBON ENERGY MANAGEMENT STRATEGY FOR THE ELECTRICITY-GAS MES

2.3.2. IMPROVED SAC ALGORITHM

The SAC algorithm based on actor-critic (AC) structure is used to solve the MDP
problem. AC structure consists an actor network and a critic network, which is
presented Figure 2-4. The actor parameterized by ¢ takes the state as input and

outputs the action based on the policy z . The critic network parameterized by 6
outputs the Q value Q(s,,a,) which is used to direct the actor chooses action that has

higher reward. Furthermore, SAC uses two critic networks to solve overestimation of
Q-values, and employs target networks to improve training stability [91],[92].

Environment «—  Actor

Actor Network

Figure 2-4 Structure of the actor-critic network [J1].

The maximum entropy is used to improve exploration and keep the algorithm from
being stuck in local optima, which is expressed as follows:

J(ﬂ)=ZE,,[f(St,at)+aH(ﬂ('|St))] (2.3)

where H(z(-|s,))]=—logz(a |s,) is the entropy item, and « is the entropy
coefficient. The critic and actor networks are updated based on gradient decent.

To improve training efficiency and convergence, PER mechanism is used. PER
assigns higher weights to important samples obtained from the experience replay
buffer, increases the sampling probability of those samples. The probability is
expressed as follows:

5/1

j
L5
k

P = (2.4)

where / denotes the priority control coefficient, and 57 is the weight of sample j.
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The pseudocode of the PER-SAC algorithm is shown in Algorithm 1, and details
about the PER-SAC can be found in Section 3 in [J1]:

Algorithm 1. Pseudocode of PER-SAC algorithm

/[ Start training
1. Initialize critic network, actor network and their target networks, respectively.
2. Initialize experience replay buffer.
3. For each episode, do

/I generate training data.
4. For each time step, do
5. Obtain action g at a given state s _under policy 7.
6. Take action a and obtain reward r,, and environment moves to next states, .
7. Store {s,,a,,I;,S,,,} in experience buffer.
8. End For

/I Train neural networks
9. Sample from experience buffer based on probability p; provided by PER.
10. For each update step, do
11.  Update the critic networks:

6, < 6,—,V,3,(6,) for ie{l 2}
12.  Update the actor network:
P-4V, I.(9)-
13.  Update the entropy coefficient:
a«—a-1,V, I(a).
14.  Update each target network.
O; « 76, + (1*T)§i , p—1p+(1—7)p

15. End For
16. END

2.3.3. PER-SAC -BASED ENERGY MANAGEMENT STRATEGY

The framework of the proposed PER-SAC -based energy management strategy is
shown in Figure 2-5. The environment is the electricity-gas MES, and the system
operator is the DRL agent that determines the operation of controllable units. In the
offline training, PER-SAC algorithm continuously updates network parameters to
maximize cumulative rewards until it eventually converges. When deployed onling,
the actor network fixes its parameters and outputs the real-time decisions. Details
about algorithm updating can be found in Section 3.2.2 in [J1].
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Figure 2-5 Framework of the proposed PER-SAC energy management strategy [J1].
2.4. NUMERICAL SIMULATION

Critic Network 6, Critic Network 6,
Main Target

This simulation validates the effectiveness of the proposed energy management
strategy through the use of real-world historical data.

2.4.1. CASE SETUP

The system example is an urban industrial park. With additional parameter details
given in [J1], Figure 2-6 shows wind power generation and electricity load. Each time
step is one hour, and each episode is one day (24 time steps). Five cases are set: Case
1: MES without CCS and P2G; Case 2: MES with P2G; Case 3: MES with CCS; Case
4: MES with CCS and P2G operating independently; Case 5: Same as Case 4, but with
coordination between CCS and P2G units.

Due to the lack of coordination from P2G, Cases 3 and 4 face a challenge as all
captured CO, needs to be transported and stored, with no efficient accommodation.
Furthermore, in Case 4, the heat produced by the methanation reaction remains unused
by CCS. In addition, in Cases 2 and 4, the production of methane (CH,) involves using
CO, directly obtained from atmosphere, rather than using a CO; storage device.
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Figure 2-6 The training dataset utilized to train the PER-SAC algorithm: (a) Wind power
generation, (b) Electricity load [J1].

2.4.2. ALGORITHM TRAINING

The algorithm parameter settings are detailed in [J1]. The convergence of episodic
average rewards of Case 5 is presented in Figure 2-7. The benchmarks are SAC
algorithm and DQN algorithm. During the training process, DRL agent continuously
adjusts weights of neural networks until the episodic reward reaches a stable state,
indicating that an optimal strategy has been attained. As seen, the PER-SAC algorithm
demonstrates a steadier and quicker average return than SAC. Moreover, due to the
DQN algorithm's limitation to discrete action spaces, it achieves a lower average
return.

Reward Value

w 18 0 5
Episode (x200)

Figure 2-7 The convergence of cumulative rewards per episode in the PER-SAC, SAC and
DQN algorithm [J1].
2.4.3. RESULTS ANALYSIS

A test day which is not included in the training dataset is used to test the well-trained
low-carbon energy management strategy. The test data is shown in Figure 2-8. The
peak values of the gas load, wind generation and electrical load are 1840 kcf , 210
MW and 580 MW, respectively.
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Figure 2-8 Load demand and wind power generation on a test day [J1].

2.4.3.1 Analysis of Wind Power Utilization Results

Wind power utilization results of 5 cases are shown in Figure 2-9. In Case 1, highest
wind curtailment is observed during the early hours (1 to 6) due to the absence of P2G
facility and CCS units for utilizing excess wind energy. While Cases 2 and 3 show a
reduction in wind curtailment compared to Case 1, the complete absorption of surplus
wind power is still not achieved, even with the inclusion of P2G facilities and CCS in
Cases 4 and 5.

—¥— Casel
—o— Case2
Case3
Case 4
50 —*— Case5

Curtailment Power (MW)

01 23 456 7 8 9 1011121314151617 181920 21 22 23
Time slot (h)

Figure 2-9 Wind power curtailment in Cases 1-5 [J1].
2.4.3.2 Operation of CCPP, P2G and GT units
Figure 2-10 displays the operation of CCPP. Between hours 1 and 6, there is a
noticeable decrease in the net power of CCPP for Cases 3-5 compared to Cases 1-2,

primarily due to the CCS. Therefore, approximately 20 MW of wind power is
promptly utilized to provide electricity.
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Figure 2-10 Operation results of CCPP [J1].

Furthermore, the P2G unit operation is shown in Figure 2-11. P2G operates only
during periods of high wind power generation. Since both Case 4 and Case 5 include
CCS, the CCPP will supply more electricity, thereby reducing the input power of P2G
to lower operation costs.

Input power of P2G (MW)

Figure 2-11 Operation of P2G unit in Case 2, 4 and 5 [J1].

Figure 2-12 displays the operation of GT and waste heat utilization in Cases 2, 4, and
5. In Cases 2 and 4, where there's no coordination of P2G and CCS, the produced H;
is directly used for CH,4 synthesis. However, in Case 5, the presence of H, and CO;
storage devices allows for the decoupling of the CH4 synthesis process. Consequently,
Case 5 offers two applications for the produced H, — methane synthesis or electricity
generation through GTs. Notably, during peak electricity demand periods, specifically
hours 15-16 and 20-21, some of the H; is utilized by GTs to produce additional
electricity. To meet the rising gas demands at hours 11, 16, and 19, the Sabatier
reaction is employed to lower gas supply costs. Furthermore, the heat from the
reaction is recycled in the CCS to capture CO, reducing the generation costs for the
CCPP.
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Figure 2-12 Operation of GT and the utilization of waste heat in Case 5 [J1].

2.4.4. ALGORITHM PERFORMANCE

To validate the generalization and robustness of the proposed strategy, a comparison
analysis of the proposed strategy and scenario analysis (SA) over different forecast
errors is conducted. The description of the SA can be found in Section 4.3 in [J1]. The
prediction errors are generated following the normal distribution. The wind power
profiles for the real-scenario and two prediction scenarios are presented in Figure 2-13.
Cost comparison results for different scenarios over 14 consecutive days are presented
in Figure 2-14. As seen, the operation cost and cumulative cost achieved by the
proposed strategy are closed to the optimal results. The satisfactory results stem from
the fact that DRL learns near-optimal policies from a large amount of historical data.
As a result, DRL performs well in environments where the training and testing sets
exhibit similar random characteristics. In contrast, SA algorithms rely on precise
modeling of uncertainties, making their outcomes highly sensitive to prediction errors
in the deterministic model.
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Figure 2-13 Wind power profiles for the real-scenario and two prediction scenarios [J1].
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Figure 2-14 Cost for 14 test days: (a) operation cost; (b) cumulative cost.

The comparison results of different algorithm are presented in Table 2-1 and Table 2-
2. Case 1 is the benchmark case. The total cost provided by SA method is 0.68% lower
than that of PER-SAC algorithm. SA relies on the accurate uncertainty modeling and
requires too much calculation time, but PER-SAC only requires the forward pass of
the well-trained actor network during online operation, enabling real-time and
continuous decision-making. Since DQN requires discretizing the action space, the
cost results are unsatisfactory.

Table 2-1 Comparative analysis of total cost under different forecast accuracy [J1]

Case Method Cost ($/d) Improvement (%)
Case 1 - 37,198.62 0
PER-SAC 23,514.89 36.78
Case 5 DQN 36,213.65 2.65
SA 23,264.23 37.46
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Table 2-2 Computation performance of different algorithms [J1]

Method Offline training time (s) Online operation time (s)
PER-SAC 341.237 0.039
DQON 221.748 0.048
SA - 1563.851

2.5. CONCLUSION

In this chapter, a DRL-based low-carbon economic energy management strategy for
the electricity-gas MES is investigated. To solve the uncertainties, the studied problem
is first formulated as MDP, and solved by the PER-SAC algorithm. Case study shows
that the controlled units can flexibly adjust their operations to increase wind power
utilization and reduce operation costs. In comparison with other algorithms, the
proposed strategy effectively reduces operation costs and can provide real-time
operation strategy.
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CHAPTER 3. MADRL-BASED TWO-
TIMESCALE ENERGY MANAGEMENT
STRATEGY FOR THE RESIDENTIAL
MES

The contents of Chapter 3 are based on the following two papers:

J3: B. Zhang, X. Xu, W. Hu, and Z. Chen, “Two-Timescale Autonomous Energy
Management Model based on Multi-Agent Deep Reinforcement Learning Approach
for Residential Multicarrier Energy System”, Applied Energy, vol. 351, no. 121777,
Dec. 2023.

C1: B. Zhang, Z. Chen, and A. Ghias. “Deep Reinforcement Learning -based Energy
Management Strategy for a MG with Flexible Loads”, 2023 the 7th International
Conference on Power Energy Systems and Applications (ICOPESA 2023).

3.1. INTRODUCTION

Residential energy use accounts for a significant portion of total energy consumption.
It’s significant to investigate an effective residential energy management strategy to
minimize energy costs. Residential energy management includes internal short-term
energy conversion and external long-term energy trading. However, multiple
uncertainties including long-term and short-term uncertainties make the energy
management complex introducing high-dimension stochastic constraints. It’s difficult
to solve it by using single-agent DRL algorithm. Therefore, this chapter proposes an
MADRL-based two-timescale residential energy management strategy, considering
the hourly-ahead energy trade and the 15-minute-ahead energy operation. Section 3.2
describes the two-timescale energy management problem. In Section 3.3, MADRL
algorithm is introduced, and case study including deterministic and stochastic studies
is conducted in Section 3.4. Conclusion is given in Section 3.5.

3.2. MODEL DESCRIPTION

The architecture of the RMES is shown in Figure 3-1. Electricity and natural gas can
be purchased from the electricity grid and gas network through the energy trading
system. It can also sell any excess electricity that it produces. Rooftop PV panels are
used to generate electricity. ES can make up for energy shortages by storing extra
electricity. WE converts electricity into hydrogen. FC uses hydrogen to produce
electricity and heat, and HB uses hydrogen for heating. Hydrogen can be stored in HT
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for future needs. GB serves as an auxiliary heat source, using purchased natural gas
to meet heating requirements. The feasibility of these units has already been
demonstrated.
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Figure 3-1 The architecture of the RMES [J3].

3.2.1. TWO-TIMESCALE ENERGY MANAGEMENT FRAMEWORK

The two-timescale energy management is illustrated in Figure 3-2. At each hour, the
amounts of natural gas bought from the external gas network and electricity traded
with the external grid are determined and remain unchanged until the next hour.
Within each hour, the 15-minute operations of the coupling units are determined.

Hourly forecast (PV Level I: Operation N7=24 hours
outputs a:d loads) decisions At,=1 hour
Level I: Hour-ahead —
energy trading =1 t =N
) u u=Nr
! £ VR, PN P JV RN S Aty ---->
! 1
! 1 \,«,\, A A
i Y i i 5% %1 B B B e e e R |
Level I1: Intra-hour
energy conversion
4
Uncertainties (PV Level 11: Operation
outputs and loads) decisions

Figure 3-2 Two-timescale energy management framework [J3].

3.2.2. OBJECTIVE FUNCTION

This objective is to minimize the energy cost, which is outlined as follows:

27



MODELLING AND OPTIMIZATION OF MULTI-ENERGY SYSTEMS OPERATION BASED ON DEEP REINFORCEMENT
LEARNING

24
F=min) (4P +2,Q%") (3.1)
t=1

where 2! and /ljg denote the prices of gas and electricity at time t, P®* is the traded
electricity; P®* > 0 refers to the action of purchasing electricity from the external
power grid; and P®* <0 refers to selling electricity on the wholesale market; QnGg’I
represents the quantity of gas being exchanged.

3.2.3. COUPLING UNITS

The mathematical models of coupling units involved in the RMES are listed as follows:

PFC,t — FC ><QFCt (3 2)
() = xQi" (3.3)
h, (O =1"" xP™ (3.4)
o = x Q! (3.5)
HBt _77H2 QHBt (3.6)

where QHCt represents the hydrogen input, P™" represents the electrical output, and

ne¢ represents the electricity conversion coefficient for the FC at time t; Q7 (t) and
ni¢ signify the heat output and heat conversion coefficient of the FC, respectively,
attime {. Forthe WE attime t, Pt is the electricity input, Q" (t) is the hydrogen
output, and "¢ is the conversion coefficient. Egs. (3. 5) (3.6) describe the
conversion functions for the GB and HB. Here, Q' and nGB refer to the heat
generated and the heat conversion coefficient of the GB at time t . For the HB at time
t, ;’f” et and 77 ® represent the hydrogen input, heat outflow, and hydrogen
conversion coeff|C|ent respectively.

The mathematical models of ES charging/discharging are defined as follows:

I
Et+1 Et 4 PESt(I ES <0) )At (3.7)

(PESt >0)77€,Ch
e, dIS
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I(Q:; 1<0)

B =B, Q) (g in =5 —) (3.8)
H,,out

RET <R™<RET (3.9)

Qi <Qilt <™ (3.10)

0<E, <E] (3.11)

0<E, <Ej (3.12)

Egs (3.7)-(3.8) illustrate the evolution of energy levels in the ES and HT. PeES*I and
Pi"* indicate the charging/discharging power and hydrogen at time t, respectively.
nEs, and »= represent the charging coefficient and discharging coefficient of the

e,dis
HT t

ES, respectively. Similarly, Qi'" , 7, ,, and 7

HT
H, ,out

represent the hydrogen input,

hydrogen outflow, and the coefficients for the inflow and outflow of the HT,
respectively. Egs. (3.9)-(3.10) establish the constraints on the rate at which electricity
can be charged and discharged, as well as the limitations on the flow of hydrogen in
and out at time t . Similarly, equations (3.11) and (3.12) represent the constraints of

the capacity of ES and HT at time t, where E? and E,ﬁz represent the maximum
capacity of the ES and the HT.

The energy balance among electricity, hydrogen and heat at time . is expressed below,
and more details can be found in [J3]:

PeES,IAt + PeWE,IAt + PeL,I — PePV,I + PeG,I + PEFC,IAt (3_13)
Q' At+Qi At + QM At = QI At (3-14)
b= Qe At+ QP At + QP At (3-15)

3.3. METHOD INTRODUCTION

This section presents the proposed MADRL -based residential energy management
strategy.
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3.3.1. MARKOV GAME FORMULATION

The MADRL application for decision-making in energy trading and conversion is
facilitated through Markov game formulation, which integrates states, actions, and
rewards [91].

1) Environment and agent: The environment is RES. Two agents including an
energy trading agent and energy conversion agents are set. The energy conversion
agents are FC, WE and HB, respectively.

2) State: The states of the energy trading agent are load demands and energy tariffs.
The states of the energy conversion agent are load demands and the excess capacity
of the HT and ES.

3) Action: The energy trading agent's actions include the amount of gas and electricity
purchased. The energy conversion agent's actions are outputs of the FC, HB, and WE.

4) Reward: The reward function of the energy trading agent at time ¢ is expressed as
follows:

t_ eco,t pen, t pen, t
o = _Cet - Ce,et - Cth,et (316)

where C* is the economic cost, and { cP, cpnt} represent penalties for a

shortage in power and heat supply, respectively. The reward function of the energy
conversion agent at time t is defined as follows:

rt=rt 41! _,ie(FCWE,HB) (3.17)

ec agent,ec sys,ec !

The system-level reward function is used to solve constraint violations, as presented
in:

t dif ,t ES.t HT t
rsys,ec = (rsys,ec + rsys,ec + rsys,ec) / 3 (318)

where r2ft describes energy imbalance of supply and demand, and rESt and r!Tt
yS,ec sys,ec sys,ec

are constraints violations of ES and HT, respectively. Details can be found in [J3].

3.3.2. MADRL TRAINING AND EXECUTION

Figure 3-3 shows the structure of the proposed MADRL-based two-timescale
residential energy management strategy. During the training phase, each agent needs
both its specific local measurements and the contribution x from other agents for
estimating the Q-value. In the execution phase, the trained actor networks with set
weights are used for real-time execution, while the critic networks remain inactive.
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Each hour begins with the upper-level agent implementing its policy a% as derived
from its actor network % , following its specific observation st . Throughout the
hour, each energy conversion agents executes its optimal policy a!,_, as provided by
its actor network u*'* | based on local observations [92]. The pseudocodes of the
proposed strategy during the training stage and execution stage are provided in
Algorithm 1 and Algorithm 2, respectively. Details about the proposed algorithms are
given in Section 3 in [J3].

Proposed MADRL-based Residential Energy Management Centralized Training

Hour-ahead nA | Energyrading 5} ¥V Decentralized Execution
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Figure 3-3 Structure of the MADRL-based two-timescale energy management strategy [J3].

Algorithm 1 Offline training of the proposed strategy

1. Initialize RMES environment
2. for each episode do
2.1. Obtain initial s% for hourly-ahead trading agent
2.2. Choose action aj based on the trading
2.3. Execute action ay and obtain the reward 1
3.3. for each time step t, =15 from 1to 60/ At, do:
3.3.1. Choose action g} for the energy conversion agents based on its observation sfy
3.3.2. Perform action af, , and obtain the reward r} , and the next state sfi*,
3.3.3. Store experience in replay buffer
3.3.4. Sample a random batch of L transitions from replay buffer
3.3.5. for each sampled tuple
3.3.6. Update the critic and actor weights based on backpropagation
3.3.7. Update the target network weights
end for
end for

Algorithm 2 Online execution of the proposed strategy

1. Utilize the well-trained weights from the actor networks of all agents
2. for each episode do

2.1. Obtain initial states for hourly-ahead trading agent

2.2. Choose the trading agent’s a% = u(s%,6;)
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2.3. Execute the trading agent’s action and obtain the reward r
2.4. for each time step t, =15 from 1to 60/ At, do:
2.4.1. Choose energy conversion agents’ actions based on its local observation
2.4.2. Execute the energy conversion agent’s actions and obtain the reward r® for the energy
conversion agents
end for
end for

3.4. CASE STUDY

The performance of the MADRL-based two-timescale energy management strategy
is assessed in this simulation. Training data, including PV generation and residential
household demand at hourly intervals, are sourced from real-world datasets [93].
Information on hourly electricity and natural gas prices is obtained from sources [94],
[95].

3.4.1. SIMULATION RESULTS ANALYSIS

First, the MADRL is implemented in the RMES for a deterministic study. Table 3-1
introduces various scenarios for the deterministic study, featuring different seasonal
load profiles and electricity and gas price variations. Figure 3-4 displays the summer
and winter load curves. Three models of pricing energy are shown in Figure 3-5: The
three types of prices are PV-EP (peak-valley price), Ex-EP (extreme price), and RT-
EP (real-time pricing). Furthermore, three distinct scenarios are being considered
regarding gas prices: a baseline case (Ben-GP) in which the gas price remains constant
at $26/MWh; an extreme case (Ex-GP) where the price is fixed at $50/MWh; and a
peak-valley scenario (PV-GP) in which the gas price is $20/MWh during non-peak
hours (7-18) and $30/MWh during peak hours.

Table 3-1 Different scenarios specifications [J3].

. Load profile Price curve
Scenarios L -
Electricity Heat Electricity Gas

Ben Winter Winter RT-EP Ben-GP
PV-EP Winter Winter PV-EP Ben-GP
Ex-EP Winter Winter Ex-EP Ben-GP
Summer Summer Summer RT-EP Ben-GP
Ex-GP Winter Winter RT-EP Ex-GP
PV-GP Winter Winter RT-EP PV-GP
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Figure 3-4 Electricity and heat load profiles exhibit seasonal variations: a) Electricity
demand; b) heat demand [J3].
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Figure 3-5 Electricity price profiles in different market scenarios [J1].

1) The benchmark scenario: Figure 3-6 illustrates the supply of heat and electricity
demands, while Figure 3-7 shows the state of charge (SoC) of ES and HT units. The
energy trading agent gives GB priority for heating since gas price is cheaper than
electricity. However, during peak heat demand, GB's output falls short, prompting
activation of the HB to tap into HT hydrogen. The FC agent remains inactive when
demands are met. During the electricity price is low, extra power from the grid charges
the ES and produces hydrogen via WE. ES balances electricity during peak electricity
prices, while minimal electricity is acquired to meet load demand by the energy
trading agent, shutting down the WE agent.
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Figure 3-6 Agent actions in the Ben scenario: a) heat supply; b) electricity supply [J3].
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Figure 3-7 SoC changes of the HT and ES in case Ben: a) SoC of HT; b) SoC of ES [J3].

2) Impact of energy prices: Figure 3-8 illustrates the actions of the energy trading
and FC agents in the PV-EP and Ex-EP scenarios. In comparison to other scenarios,
the Ex-EP scenario experiences a surge in the amount of electricity acquired from the
grid during periods when electricity prices are low. The trading agent opts to sell
electricity by discharging the ES and working together with the FC agent when power
prices in the external electricity market surge to $80/MWh. In the PVV-EP scenario,
direct purchases are used to meet the electricity demand between the hours of 06 and
21-23. Moreover, during high daytime electricity prices and load, the FC begins
supplying power in periods 11-20, while the ES is prioritized for power supply during
7-10.
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Figure 3-8 The actions of agents against electricity price trends: a) energy trading agent;
b) FC agent [J3].

The behaviors of the HB and energy trading agents in the PV-GP and Ex-GP scenarios
are contrasted in Figure 3-9. In Ex-GP, gas purchases from the external network are
minimal compared to other scenarios, yet occur during periods 7-10 and 19-20 due to
elevated electricity prices. The HB agent in Ex-GP predominantly handles heat supply
during peak hours, such as 0-6, 11-18, and 21-23, utilizing hydrogen from the WE as
it's more cost-effective than buying natural gas, given the lower real-time electricity
prices. In PV-GP, the HB agent reduces its output during 17-19 as the hydrogen supply
depletes. Consequently, the energy trading agent opts for natural gas purchases,
finding it more economical than producing hydrogen with WE when electricity prices
exceed those of gas.
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Figure 3-9 The actions of HB agents and energy trading under different gas prices: a)
energy trading agent; b) HB agent [J3].
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3) Impact of load profile: Table 3-2 compares the energy costs of different load
profiles. The Ben case incurs an overall energy cost that is 12.45% higher than in the
Summer Scenario. In the Ben Scenario, the greater heat demand results in elevated
natural gas procurement. Furthermore, the HB and FC agents opt to provide heat
during the peak demand hours in the Ben scenario, necessitating extra electricity for
hydrogen generation.

Table 3-2 Cost comparison under the Ben and Summer scenarios [J3].

Scenarios Cost ($)

Electricity Natural Gas
Ben 311.62 559.61
Summer 297.89 476.91

3.4.2. ALGORITHM COMPARISION

The algorithm comparison is conducted in the 50 random scenarios, and the average
power imbalances are presented in Figure 3-10. The proposed method achieves the
smallest amount of power imbalance. The MAQ strategy, which is based on Q-
learning and multi-agent system, performs the worst due to the need to discretize both
state and action spaces. The MADDPG-I strategy does not consider the system-level
reward, with agents only optimizing their own rewards. The MADDPG-C strategy
uses the same reward settings as the proposed method but does not account for the
contributions of other agents when calculating Q-values. Furthermore, the proposed
strategy has the lowest energy cost and is closest to the theoretical optimum among
the four strategies. Details about the comparison algorithms are provided in Section 4
in [J3].
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Figure 3-10 Power imbalances of different strategies [J3].

Table 3-3 Energy cost and training time of different strategies [J3]

Method Energy cost ($) Total training time (min)
MAQ 541 29
MADDPG-I 493 51
MADDPG-C 432 46
Proposed 421 51
Theoretical benchmark 413 -

3.5. CONCLUSION

In this chapter, a two-timescale residential energy management strategy based on
MADRL is proposed to optimize the energy purchase and energy operation costs.
Deterministic study on different load profiles, gas and electricity prices validates the
effectiveness of the proposed energy management strategy. Furthermore, the
superiority and robustness of the proposed strategy is verified compared to other
MARL strategies on a stochastic study.
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CHAPTER 4. MADRL-BASED BOTTOM-
UP ENERGY MANAGEMENT
STRATEGY FOR MULTIPLE MESS

The contents of Chapter 4 are based on the following two papers:

J4: B. Zhang, W. Hu, A. Ghias, X. Xu, and Z. Chen, “Multi-Agent Deep
Reinforcement Learning based Distributed Control Architecture for Interconnected
Multi-Energy MG Energy Management and Optimization,” Energy Conversion and
Management, vol. 277, no. 116647, Feb. 2023.

C2: B. Zhang, Z. Chen, and A. Ghias. “A Data-Driven Approach towards Fast
Economic Dispatch in Integrated Electricity and Natural Gas System”, 2022 the 3rd
International Conference on Power Engineering (ICPE 2022).

4.1. INTRODUCTION

Previous contents have only considered energy management strategies for individual
MESs and have not addressed cooperation between multiple MESs. The EI concept
enabled by ERs facilitates energy-sharing among MESs. However, conventional El
energy management framework is top-down and centralized, which is susceptible to
the single-point failure and heavy computational burden. This chapter presents a
MADRL-based bottom-up EI framework to solve these issues. Section 4.2 presents
the mathematical model of the investigated El system. The proposed MADRL-based
bottom-up energy management strategy is provided in Section 4.3. Case study is
conducted in Section 4.4. Conclusion is given in Section 4.5.

4.2. SYSTEM DESCRIPTION
4.2.1. SYSTEM ARCHITECTURE

As depicted in Figure 4-1, the El system comprises two layers: a bottom layer
consisting of several MGs, each linked to a local ER, and an upper layer where the
ER network connects with the main grid. To achieve cost minimization, each MGs,
based on its local data, calculates and reports its power exchange amount. The ERs at
the upper layer utilize the power exchange data from the MGs to assess energy
transactions with the main grid and efficiently manage power distribution among
themselves.
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Figure 4-1 The architecture of double-layer EI system [J4].

The platform for local energy management is known as local energy management
(LEM). Every MG, indicated by MG;, has a different composition. A residential MES,
for instance, can include heat and electricity demands in addition to HT, FC, WE,
distributed generator (DG), and ES system. The structures of residential, commercial,
and industrial MGs are shown in Figure 4-2. TS is the thermal storage system, HP is
the heat pump, and CHP is the combined heating and power plant. The mathematical
models of different MGs can be found in Section 2 in [J4].
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Figure 4-2 Three different MGs: (a) residential, (b) commercial, and (c) industrial [J4]

4.2.2. MODELS OF BOTTOM LAYER AND UPPER LAYER

4.2.2.1 Bottom Layer

In the bottom layer, each MG is viewed as a separate entity, focusing on its specific
objectives over a given time horizon [0,T]. These objectives encompass achieving a
balance between energy production and consumption while minimizing operation
costs:

Jill:loltom — i (CiFC,I + CiDG,l + CiHT,I + CiES,t + CiWE,I + CiGB,I + CIGHV;) (4 1)
t=0
J il:ottom — i (CiHF’,t + CiDG,I + CiTS,l + CiES,l + CiGB,t + C|Gn; ) (42)
t=0
J ii)ottom — i (CiCHP,I + CiTS,t + CiES,t + CiGB,t + Cfr;; ) (43)
t=0

Eqgs. (4.1) to (4.3) define the cost functions for residential, commercial, and industrial
MGs, respectively. The objective function of the MG, in bottom layer is defined as:

min,, ., B[J"], st Egs.(4.)-(4.3) (4.4)

where the expectation & describes randomness, and u, is the control variables. The
constraints include energy converter constraints, energy storage constraints and
energy balance constraints, which can be found in [J4]. Upon solving the optimization
problem presented in Eq. (4.4), the power exchange data is ascertained and then
conveyed to the upper-layer ER network.

4.2.2.2 Upper Layer

The upper layer analyzes power exchange data from the bottom layer to determine the
optimal power allocation between the ERs and the main grid [83]. The objective of

the upper-layer cost J*** is defined as:

.
upper S 2
I ST (@ gy~ 8 g P+ Y (R (45)

t=0 ieV (i,))eg
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In this context, the initial term denotes the profits from power trading between ER,
and the main grid at time t. Here, g*and ¢ denote selling electricity price and
buying electricity price, respectively, at time t . The second term in Eq. (4.5) relates
to the transmission cost incurred when p=** is transmitted over the link between
ER, and ER;,where ., isthe cost coefficient for this transmission. The constrains
can be found i |n [J4]. The optlmlzatlon objective of the upper layer is shown:

MiN_c; e E[J""], st Eq.(4.5)—(4.7) (4.6)

4.3. METHOD INTRODUCTION

A Markov game is used to formulate the investigated problem. A brief introduction is
given to the twin delayed deep deterministic policy gradient (TD3) algorithm. Finally,
a decentralized energy management strategy is presented through the application of
the multi-agent attention twin delayed deep deterministic policy gradient (MAATD3)
algorithm.

4.3.1. MARKOV GAME FORMULATION

The bottom-layer optimal energy management problem is formulated as a Markov
game, incorporating state, action, reward, and state transition probabilities for the
agents.

1) Environment and Agents: The environment is bottom-layer multiple MGs, and
each MG is set as an agent.

2) State: The state set of the bottom-layer MG cluster includes all MG state
information, represented as s' ={s;,s;,..,s,} S . The states of MG, at the time ¢

are PV generation, load demands, SoC and energy prices.

3) Action: The action set includes all control variables of MGs, denoted as
a'={al,a,..,a'}e.4 . The actions of the residential MG at time t are the output of
WE, FC, GB and DG, the actions of the commercial MG at time { are the output of

HP, TS and DG, and the actions of the industrial MG at time { are the output of CHP
and TS.

4) Reward function: The reward set consists of all reward values of MGs, represented
as r':{r',r!,..r'}e R . The reward value at time { is the negative form of its cost

function, as given by: K e{=J;"",—J)"", —J;""}
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5) State transition probability: This function P(s'|s'™ a') describes the
probability of the agent i moving to the next state s™* after performing an action & in
the current state 5. SoC transition functions can be available. However, the transition
functions for PV generation, loads and energy prices are not specified.

6) System problem: The target of the DRL agent is to find the optimal control policy
7" to maximize the expected total reward across a specific time horizon T, as given

T

by: P1:maxR, :E|:Zy’r””l:|. To address this, the employed DRL algorithm
4 =0

allows for learning from historical data and managing partially observable transition

functions.

4.3.2. TD3 ALGORITHM

TD3 algorithm contains fives parts: experience replay buffer, target networks, double
networks, “delayed” policy updates, and target policy smoothing. For training a DNN-
based approximator, an experience replay buffer is employed. This buffer stores a
substantial number of historical experiences, serving as a dataset. TD3 employs dual
critic networks, known as "twin" networks, to learn two separate Q-functions. It then
uses the lower of the two Q-values to minimize the error function, effectively
addressing the overestimation issue. TD3 ensures the stability of the Q-value by
updating the policy and target networks less frequently, specifically only after each
update of the Q-value function. To prevent the policy from becoming brittle due to
inaccurate approximations of the Q-function for certain actions, it incorporates
clipped Gaussian noise into the target action. Algorithm details can be found in
Section 3 in [J4].

4.3.3. PROPOSED MAATD3 METHOD

In the context of multiagent environment, where each MG in the cluster represents an
agent (resulting in n agents for n MGs), we propose the MAATD3 method to develop
effective strategies. MAATD3, which blends the multiagent TD3 framework with an
attention mechanism, adopts a structure with centralized training and decentralized
execution. This means that while the Q-value is computed centrally, policy execution
by the agents is decentralized. Furthermore, the critic network incorporates an
attention mechanism that allows it to selectively integrate relevant information from
other agents, hence improving the accuracy of its Q-value estimations.

4.3.3.1 Attention-based Q-Value Estimation
In earlier MADRL methods, such as MADDPG, the Q-value estimation for agents
necessitates the inclusion of all agents' states {s;,s;,..,s.} and actions {a/,a},..,a'}

as inputs. If we assume that the dimensions of actions and states are identical, the
input dimension for critics becomes nls, +4a,] , Which can lead to a significant
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computational challenge in policy learning. This challenge escalates as the number of
states, actions, and agents increases. In addition, the concepts of state and action are
related to the personal physical characteristics of an agent, such as energy preferences
and operational portfolios. This poses a challenge in preserving the confidentiality of
these qualities when other agents compute their Q-values.

To address this issue, an attention-based Q-value estimation method is proposed. As
depicted in Figure 4-3, the Q function's input variables for agent i include only its own
state s' and action &', along with the exogenous contributions x from other agents.

This method allows for a more efficient and privacy-preserving Q-value estimation.

Q, (58 = f,(el, X))
(4.7)
eit = gi(Sit1a1't)

where f,(-) represents a two-layer multilayer perceptron (MLP), and g;(-) is a one-
layer MLP. The term x allows agent i to incorporate information from other agents in
its decision-making process. Although the initial input for x is derived from other

agents, a privacy-focused approach involves filtering an implicit feature embedding.
Additionally, the Q function’s input dimension is significantly decreased to | e/ +x |,

offering scalability through adjusting the neuron count in the MLP's output layer.
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Figure 4-3 The structure of the attention-based Q-value estimation [J4].
4.3.3.2 Training and Execution of MAATD3
Figure 4-4 displays flowchart of the MAATD3 approach. Details about algorithm

updating can be found in [J4]. During the training phase, each agent's actor network
executes actions independently without sharing information, relying only on local
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states as inputs. Conversely, the critic network, employing a centralized approach for
Q-value estimation, incorporates the implicit embeddings e, of all agents, facilitated

by an integrated attention mechanism.

During the execution phase, the well-trained actor networks are used to provide
decisions for the MG. Throughout each episode, over time intervals t [0, T], agent i
autonomously implements its Iearned policy. This is based on its specific state s and
through its own actor network 7r¢ , embodying a decentralized approach to deC|5|on-
making without any information exchange with other agents. The detailed training
and execution stages are presented in Algorithm 1 and 2, respectively.

Centralized Training :aj

) 3 @ :Update |

——: Data Flow|

i P L :

VIR S -1 OFLCSCVIES S D : ! a MG Cluster ]
: G T T — MG n Environment 3
L (st ST ‘

Figure 4-4 The framework of MAATD3 [J4].

Algorithm 1 Training stage of MAATD3

1.Initialize weights of networks and bottom-layer MG cluster environment
2.For each epsiode do

3. Receive initial states s° ={s’,...,s’} for all agents

4. For each time step do

5 Output action a* ~ z, (-|s') for each agent’s actor network 7z,

6.  Takeactions a' ={a.,...a}, return r', and the environment moves to the next state s
7 Store experience (s',a',r',s") into the replay buffer

8 If experience is stored up then

9 Sample a batch experience B={(s'.a',r',s"")} from replay buffer
10. Update the critic’s and actor’s weights based on backpropagation
11. Update the target critic’s weights via soft updating

12. Endif

13. End for

until convergence
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Algorithm 2 Execution stage of MAATD3

1.0btain weights of the well-trained actors 7}

2.For each episode do

3. Obtains initial states s°={s?,...,s7} for all agent

4. For each time step do

5. Output actions a' ={a;,...,a,} for all agents

6 Execute actions a' ={a,...,a'} in the environment, return r', and the environment moves
to the next state s'

7. End for

8.End for

4.3.4. UPPER-LAYER DISPATCH METHOD

Every MG operates autonomously at each time step once it has received the well-
trained strategy. Every MG independently calculates the quantity of electricity it
trades with its local ER and transmits this information to the upper layer. The upper
layer then uses a convex optimization technique to solve the optimal power dispatch
problem by combining all of the power exchange data from the MGs.

4.4. NUMERICAL VERIFICATION

In this section, the effectiveness of the proposed bottom-up energy management
strategy is validated based on a specific EI network.

4.4.1. SIMULATION SETUP

In the simulation, the bottom-layer MG cluster comprised eight MGs (N=8). The
configuration of these MGs was as follows: {MG1, MG2, MGs} were categorized as
residential MGs, {MGa4, MGs, MGe} as commercial MGs, and the remaining MGs
were designated as industrial MGs. The primary goal was to minimize total energy
costs over a specified time period [0, 24h]. The control interval was set at 15 minutes,
and each episode consists of 96 time slots (t={12,...,96}). The training dataset
includes renewable generation and load demands at 15-minute intervals. Residential
MGs relied on data from residential households [96], commercial MGs used data from
a commercial warehouse [97], and industrial MGs used data from a power plant [98].
The historical dataset was partitioned into a training set and a test set, with a ratio of
80% for the training set and 20% for the test set.

4.4.2. OPERATION OF INDIVIDUAL MG

The operation of MG1, MG5, and MG7 were chosen as typical residential,
commercial, and industrial MGs, respectively. Figure 4-5 depicts the fluctuations in
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the SoC and the satisfaction of electricity and heat requirements for each MG in 15-
minute intervals.

The first column of Figure 4-5 shows the electricity demand supply of the MG. It can
be seen that to reduce generation costs, ES is prioritized for supplying power. When
the SoC of the ES reaches its minimum, the DG and CHP units begin to operate.
During periods of high PV generation, the ES stores excess PV energy. In MGy, the
WE unit converts surplus PV into hydrogen, which is stored in the HT. In Figure 4-
5(g), due to the limited capacity of the ES, it cannot fully balance the power, forcing
MG?7 to exchange excess PV.

The second column displays the supply of heat load. In MG, the heat load is supplied
by the hydrogen stored in the HT, without purchasing natural gas from the external
gas grid. Given the high generation costs of the FC, it remains offline. In MGs and
MGy, natural gas is purchased and used by the GB to provide heating.

The third column illustrates the SOC of the ES, HT, and TS. The energy storage
actively participates in MG operation. When PV generation is low, the ES supplies
power, and during high PV generation periods, it stores the excess electricity.
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Figure 4-5 Figures (a)-(c) presents electricity load upply, heat load supply, and the SOC
changes of the ES and HT in the residential MG. Figures (d)-(f) details the commercial MG's
operation results. Figures (g)-(i) presents the industrial MG ’s operation results. ED refers to

electricity demand and HD signifies heat demand [J4].

Additionally, Table 4-1 displays the comparative results of three methods with respect
to operating cost and computation time. The operation costs of the proposed strategy
are 41% less than those of the optimal power flow (OPF) -based strategy and 9.6%
less than those of the TD3-based strategy. Furthermore, the computation time of the
model-free DRL technique is significantly less than that of the model-based OPF
approach because only the forward propagation of the neural network is needed for
online testing. The objective of the OPF is to minimize the total generation costs of
the MG cluster. The performance of the OPF is often constrained by the need to solve
a series of complex, non-convex equations. TD3 lacks mechanisms to efficiently
handle multi-agent coordination, which can limit its performance.

Table 4-1 Operation costs and testing time of different methods [J4].

Method Operation costs Online testing time (s)
Proposed (1.32410.089) x 104 0.0002

TD3 (1.45110.121) 104 0.0002

OPF (1.92110.328) » 104 2.21

4.4.3. SIGNIFICANCE OF THE ATTENTION MECHANISM

An assessment is conducted on the impact of the attention mechanism in the proposed
strategy. Figure 4-6 compares the training progress of the attention mechanism-
utilizing algorithm (MAATD3) with the algorithm that does not use it (MATD3). In
this comparison, MAATD3, represented by the red line, demonstrates quicker
convergence and attains higher episode rewards compared to the MATD3 algorithm,
indicated by the blue line. The training findings demonstrate that the attention
mechanism significantly enhances training efficiency and overall learning quality. It
achieves this by selectively valuable information from all agents.
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Figure 4-6 The comparison shows how well the suggested strategy trains both with and
without the attention mechanism. Shaded areas in the graph indicate the range of immediate
rewards, which show notable variability, while the dark lines represent the average rewards

over sets of 10 episodes, providing a clearer visualization of the trend [J4].

4.4.4. POWER DISPATCHING ANALYSIS IN THE UPPER LAYER

Figure 4-7 presents an example of power distribution in the upper layer. It
demonstrates how the ER network, specifically through ER4 and ERs, engages in
energy trading with the utility grid. The optimal power dispatching strategy between
the ERs and the main grid is determined by the upper controller. In this context, to
simulate stochastic electricity prices, the model employs Geometric Brownian Motion,
a method often used in modeling stock price processes.

Figure 4-7 The upper layer energy dispatch diagram for the El scenario, in which every ER;
is connected to an equivalent MGi. Power distribution and electrical transactions between
ERs are represented by blue and red dotted arrows, while power exchange with the MG
cluster is shown by black solid arrows [J4].

The power flows between ERs and the main grid are depicted in Figure 4-8, together
with the costs associated with purchasing and selling electricity. Notably, power
purchases between 08:00 and 18:00 predominantly occur through ERsg, where the
selling price is higher compared to ER4. Conversely, the ER network compensates for
power deficits by buying electricity through ERa4, which offers a lower purchase price.
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Figure 4-8 Geometric Brownian Motion is used to determine the electricity pricing for energy
purchase and sale, which are displayed in parts (a) and (b). Part (c) shows how power flow
interacts with the main grid [J4].

4.5. CONCLUSION

In this chapter, a bottom-up energy management strategy for the EI network based on
MADRL is proposed. The El network is composed of the bottom-layer MG cluster
and upper-layer ER cluster. A model-free MAATD3 algorithm is applied to achieve
the optimal energy management strategy for the bottom-layer multiple MES. Each
MES only requires local measurements to make the optimized decisions, which
preserve its privacy. Besides, the attention mechanism is used to speed up training by
selectively utilizing valuable information from other agents. The optimal dispatch in
the upper layer is determined through convex optimization. Simulation results validate
the effectiveness of the proposed energy management strategy.
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CHAPTER 5. MADRL-BASED
DECENTRALIZED ENERGY
MANAGEMENT STRATEGY FOR THE
MES AND EVAGG ENTITIES

The contents of Chapter 5 are based on the following two papers:

J5: B. Zhang, W. Hu, X. Xu, T. Li, Z. Zhang and Z. Chen, “Physical-Model-Free
Intelligent Energy Management for a Grid-Connected Hybrid Wind-Microturbine-
PV-EV Energy System via Deep Reinforcement Learning Approach”, Renewable
Energy, vol. 200, pp. 433-448, 2022.

J6: B. Zhang, W. Hu, D. Cao, A. Ghias, and Z. Chen, “Novel Data-Driven
Decentralized Coordination Model for Electric Vehicle Aggregator and Energy Hub
Entities in Multi-Energy System Using an Improved Multi-Agent DRL Approach,”
Applied Energy, vol. 339, no. 120902, Jun. 2023.

C3: B. Zhang, Z. Chen, X. Wu, D. Cao, and W. Hu. “A MATD3 -based Voltage
Control Strategy for Distribution Networks Considering Active and Reactive Power
Adjustment Costs”, 2022 IEEE International Conference on Power Systems and
Electrical Technology (PSET 2022).

5.1. INTRODUCTION

With the integration of a large number of DERs into MES, the energy interactions
between various entities and MES, such as EVAGG, cannot be overlooked. These
entities belong to different stakeholders, creating a competitive environment. This
chapter focuses on developing decentralized strategies to maximize the profits of
EVAGG entities and minimize the energy costs of EHs in the MES. The research is
divided into two parts: The first part optimizes energy management strategies in an
MES by considering the stochastic behavior of EVs, including charging, departure,
and arrival times. The second part formulates decentralized strategies for EVAGGs
and EHs within an MES, ensuring privacy protection so that strategies can be made
in real-time using only local measurements.
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5.2. DRL-BASED ENERGY MANAGEMENT STRATEGY FOR THE
MG INCLUDING EVS

5.2.1. INTRODUCTION

Investigating an effective energy management strategy for the renewable-based MG
presents significant challenges due to the multiple uncertainties. Additionally, the
rising integration of EVs complicates the situation, rendering traditional model-based
approaches less effective. This research proposes a model-free DRL-based optimal
energy management strategy to minimize operation costs while meeting charging
requirements. The flowchart of this research is presented in Figure 5-1. Section 5.1.2
gives the mathematical model of the MG with EVs. Section 5.1.3 presents the
framework of the proposed strategy. Case study is conducted in Section 5.1.4 to
validate its effectiveness. Conclusion is given in Section 5.1.5.
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Figure 5-1 Flowchart of this research [J5].
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5.2.2. SYSTEM DESCRIPTION

1) Objective function

The grid-connected MG is depicted in Figure 5-2 and comprises DGs, EVs, PV panels,
load demands, wind turbine (WT) generators, and a battery energy storage system
(ESS).

PV Load

a1 @3

Micro-Grid |

E§=='$| @

Main Grid L @ Battery ESS
20
MG iq‘\‘i FEE
Control Center 3¢ Conventional DG gy
Wind turbine

Figure 5-2 Structure of the MG system including EVs [J5].

The scheduling objectives are to minimize DG generation costs, RE curtailment, and
transaction costs associated with selling or buying electricity from the main grid.

2) Constraints

Many Constraints need to be met in the scheduling model, such as the maximum
power output of each DG, the charging/discharging power and SoC of the battery ESS,
the active power exchanged by the main grid, and the charging power and SoC of EVs.

The mathematical models of the objective function and constraints are listed in [J5].

5.2.3. DRL-BASED ENERGY MANAGEMENT STRATEGY

5.2.3.1 MDP Formulation
The MDP formulation is presented as follows:

1) State: The state at time t consists of s =(P"",RP™ ,R°®,E®,P%, ¢, )" :

active power output of WT, PV and DG, SoC of ESS, power exchanged with the grid,
electricity price and SoC value of EVs, respectively.

2) Action: The action at time t consists of a, = (AR"®,R™°,R¥) : the adjustment

amount of DGs' power generation according to the previous time step, the ESS's
charging and discharging power, and the EVSs' charging and discharging power.
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3) Reward function: The reward r, at time t is regarded as the negative form of
objective function, which is defined as follows:

= _(CtDG + CtEV + CtG) + CtRE (5 1)

where CP°® is generation costs of DGs, CF¥ is EV charging costs, C° is the
transaction cost associated with buying or selling power from the main grid, and C**
represents incentive benefits of RE consumption.

4) Transition probability: The SoC values of battery ESS and EVs can be
determined by the previous SoC values and charging/discharging power. However,
considering the uncertainties of WT and PV generations, the corresponding state
transition probability cannot be available.

5) System problem: The DRL task is to find the optimal control policy 7z~ to
maximize the expected total reward across a specific time horizon T:

-
P1:maxR, :E[Zy’er]

=0
5.2.3.2 TD3-based Energy Management Strategy
Figure 5-3 depicts a detailed flowchart of the TD3-based energy management strategy
[99]. The details of TD3 algorithm can be found in [J5]. The relationship between the

TD3 algorithm and the MG system, which serves as the environment, is depicted in
this flowchart.
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Figure 5-3 Framework of TD3-based scheduling strategy [J5].

Before modifying the DNNs' weights, historical interaction data is stored in the
experience replay buffer. The buffer selects a random mini-batch for training after it
has accumulated a particular quantity of data. N-element state features are created and
preprocessed for every observation time slot. Recurrent neural networks (RNNs) are
initially supplied with the preprocessed state feature information. The online actor
network then uses the RNNs' output as input to calculate the current action value. An
autonomous energy management strategy is constructed for the MG by fine-tuning
the network weights using the TD3 algorithm. This network offers a real-time strategy
to get optimal operational performance based on the observed data. Details about
algorithm updating can be found in Section 3 in [J5].

5.2.4. CASE STUDY

5.2.4.1 Simulation Setup

The application of a benchmark grid-connected MG system to assess the efficacy of
the proposed energy management strategy based on the TD3 algorithm is shown in
Figure 5-4. Historical annual data sources, such as wind power, solar irradiance,
electricity load, and electricity prices, are chosen as training sets [100], [101]. In
addition, the behavior of EVs was modeled using a normal distribution, including
arrival time, departure time, and initial SoC of EVs.
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Figure 5-4 Configuration of the benchmark MG network [J5].

5.2.4.2 Training Performance

The cumulative reward changes for each episode during the training process for the
TD3 and DDPG algorithms are compared in Figure 5-5. The TD3 algorithm routinely
produced better cumulative rewards than the DDPG. In contrast, DDPG exhibited
unstable learning behavior and failed to converge effectively. This divergence is
attributed to TD3's implementation of key techniques such as delayed policy updates
and target policy smoothing, which enhance training stability and efficiency.
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Figure 5-5 Comparison of cumulative reward values of TD3 and DDPG algorithms [J5].

There are three stages to the training process: convergence, training, and exploration.
Without changing the DNN parameters, the TD3 agent collects a large amount of
interaction data from the experience replay buffer during the exploration phase. The
training phase starts when the replay buffer is filled, and the agent keeps modifying
the DNN weights to learn an optimized strategy that maximizes cumulative rewards.
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Reward values stabilize throughout the convergence phase, signifying that the DRL
agent learns the optimal strategy.

5.2.4.3 Test Results

In order to evaluate the efficacy of the suggested TD3-based scheduling approach, a
one-day performance simulation is conducted for every time slot. Furthermore, the
simulation test was also conducted based on three consecutive days.

1) Operation results on a test day

RESs, such as PV panels and WTs were initially utilized to meet electricity demands.
During the early hours (00:00-04:00), the strategy leaned towards purchasing surplus
electricity from the grid to charge the EV and ESS, particularly at 03:00, when
wholesale electricity prices were lower. Between 05:00 and 09:00, the ESS was
primarily used to supply power until its energy levels neared the minimum threshold.

For the peak hours of 10:00-20:00, with higher electricity prices, the strategy shifted
to using DGs for the remaining electricity loads. Increasing DG output was more cost-
effective than purchasing excess electricity from the grid. It's interesting to note that
the EV released excess electricity upon arrival at 17:00, negating the need to raise DG
output. Due to the decreased cost of power, the agent was able to fully charge the EVs
and ESS in the last hours of 21:00-23:00, which reduced operating expenses.
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Figure 5-6 (a) Output of units for each time slot; (b) Energy variations in ESS and
remaining energy from EVs [J5].

2) Operation results on three consecutive days

To illustrate the robustness of the TD3-based energy management strategy in real-
time optimization, simulation results from three consecutive days are analyzed, as
shown in Figure 5-7. Figure 5-7(a) displays the operation of controlled units along
with fluctuating wholesale electricity prices. Notably, the strategy minimizes costs by
buying extra electricity from the main grid for charging EVs and ESS during times
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when electricity prices are low (that is, the 5th, 23-25th, and 47-53rd time slots). On
the other hand, during periods of high electricity prices (such the 17-18, 39-41, and
63-65 time slots), the strategy chooses to avoid increasing DG output by using the
stored energy in EVs for load support. This decision is contingent upon meeting EV
owners' expected energy needs upon departure. Consequently, despite high prices
during the 29-32nd time slots, the system preferred buying surplus power over
depleting EV batteries. Moreover, during the significantly expensive 63—71st time
slots, generating electricity via DGs was favored over grid purchases to curtail costs.

Figure 5-7 (b) presents that the ESS's energy is regulated within predefined
operational bounds. It also ensures that the expected battery levels are maintained
when EV owners depart, particularly during the 31st and 54th time slots.
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Figure 5-7 (a) Power output of the controlled units; (b) fluctuations in the ESS and remaining
energy from EVs [J5].

3) Comparison results with other benchmark methods

The DRL-based energy management strategy for the MG system was evaluated in

comparison to the DDPG and particle swarm optimization (PSO)-based optimization.
The average daily operating costs throughout a 30-day test period served as the
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primary comparative criterion. The parameters of the TD3 and DDPG algorithms are
the same.

The daily expenses spent by each approach during the 30-day test period are displayed
in Figure 5-8. Quantitative data are shown in Table 5-1, together with typical expenses
and computation durations. TD3 was a more economical option than the other
techniques. More specifically, TD3 and DDPG decreased total expenses by 15.27%
and 11.52%, respectively, in comparison to the PSO-based stochastic method. The
performance of DDPG is sensitive to hyper-parameters setting, leading to unstable
training. Because the PSO-based stochastic technique relies on iterative calculations
to optimize 200 samples, it took the longest to complete. Even while TD3 required
more training time than DDPG due to its more complex neural architecture, it was
still within reasonable bounds.

BN PSO-based stochastic method
800 B DDPG
== T3
00 =3 Optimal value

o 1 2 3 4 S 6 7 & 9 W0 1 12 13 14 15 16 17 18 1 20 21 2 23 24 25 26 21 28 B
Days

Figure 5-8 Comparison of average daily costs using the TD3, DDPG and PSO [J5].

Table 5-1 Comparison of different examined approaches [J5].

Time consumed

Method Average cost ($)  Improvement ©)
PSO-based stochastic 628.65 i 2036.3
method

DDPG 556.23 11.52% 61.2
TD3 532.63 15.27% 72.6

5.2.5. CONCLUSION

A model-free DRL-based energy management strategy is investigated in order to
reduce EV charging expenses and optimize operating profitability. Considering the
uncertainties associated with RES, the variability of electricity rates, and the changing
charging habits of EVs, the well-trained TD3 agent, by utilizing DNNs, proficiently
provides the continuous control of the MG system's components without necessitating
prior system modeling knowledge. The effectiveness of the proposed energy
management strategy is validated by the simulation results
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5.3. MADRL-BASED DECENTRALIZED ENERGY MANAGEMENT
STRATEGY FOR MESS AND EVAGG

5.3.1. INTRODUCTION

The purpose of this research is to investigate decentralized energy management
strategies for the EVAGG and EH entities in an integrated electricity and district
heating system (IEDHS). It encounters several challenges: the ownership diversity of
EHs and EVAGGs fosters a competitive environment within the IEDHS. Second,
uncertainties like RESs' intermittent nature, electricity prices, and EV users' driving
behaviors exist. Lastly, because of the nonlinearity in the thermal and power flow
models in the IEDHS, the operational objective offers a multi-objective, nonlinear
function that further complicates the problem. Therefore, a data-driven MADRL-
based decentralized energy management strategy is studied. In Section 5.2.2, the
system model is presented. The proposed decentralized method is given in Section
5.2.3. Case study is conducted in Section 5.2.4. Conclusion is given in Section 5.2.5.

5.3.2. MODELLING OF THE MES AND EVAGG ENTITIES

A comprehensive schematic of the model is shown in Figure 5-9. The EVAGG, which
can buy and sell electricity on the wholesale market and to an EH while making sure
that EV users' charging needs are satisfied, is shown on the left side of the diagram.
The IEDHS is shown with its five main components (the EH entity, the district heating
network (DHN), and the power distribution network (PDN)). The electricity
subnetwork is responsible for fulfilling electrical demands, while the heating
subnetwork meets thermal requirements. The system integrates a CHP unit and a GB,
which serve as coupling components linking the electricity and heat networks.
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Figure 5-9 Architecture of the studied system including EVAGG and EH entities [J6].
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5.3.2.1 PDN Description

In this study, DC power flow equations are used to establish the PDN, including the
DC power flow balance, the constraints of generators, and the constraints of the
exchanged power. For details can be found in Section 2 in [J6].

5.3.2.2 DHN Description

As depicted in Figure 5-10, the DHN is structured as a dual-layer system, consisting
of both supply and return networks [102]. Within the DHN, there are three distinct
types of nodes: Firstly, the source nodes, which are responsible for delivering thermal
power. Secondly, the load nodes, which utilize this thermal power. And thirdly,
intermediate nodes, which serve as conduits for transferring thermal power to
neighbor nodes. The process starts with the water flow in the supply network
distributing thermal power to each end consumer. The water then recirculates over the
return network following the exchange of thermal power at the load nodes. Because
of its dual nature, the DHN usually takes into account both thermal and hydraulic
models, which represent the interaction between heat transfer and water movement in
the system. The DHN consists of hydraulic and thermal models, which are detailed in
Section 2 in [J6].

Load H,
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Figure 5-10 Thermal flow model in a simplified DHN [J6].
5.3.2.3 EVAGG Description

The EVAGG model aims to optimize its energy expenses, which are expressed as
follows. These include selling power to EV owners at a fixed prices ¢, .o -

interacting with the wholesale market at a locational marginal price &' , and
transacting with the EH entity at contracted hourly price &, [103].

M
t t tEH-EVA  pt,EVA-EH LSs-EVO , _t /ptb-g ts-g1(5.2
Feva = Z Ney Ly, {g con (PEV,“ - PEVm )~ S evo PEV,“ +au (PEVm - Pevm ;

m=1
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where y  denotes the percent of EV m’s type, and N, isthe number of aggregated
EVs. Py S /BLY™ indicates that the EVAGG purchases/sells electricity

from/to the EH entity. Pé\',sm‘EVO represents that the EVAGG sell electricity to EV

owners. P59 /PL; ¢ indicates that the EVAGG purchases/sells electricity from/to
the grid.

5.3.2.4 Energy hub model

The EH model consists of WT, PV, CHP, ESS, and a boiler. The EH model trades
electricity with the wholesale market, collaborates with the EVAGG, and ensures the
supply of heat and electricity supply. The EH’s objective function F}, attime ¢ is

expressed as below:

N
I:I;H = Zg;asQltEHn + gltl (PEtI-?n_g - PEtljn_g (53)

n=1

where N is the number of EH models, QEH is the gas entering EH, at time t,
{PE‘Hb 9, P&} are electrical energy purchased and sold from and to the wholesale
market by EH at time ¢, and {¢! ...} are nature gas price and electricity price at
time ¢.

5.3.3. IMPROVED MADRL ALGORITHM

5.3.3.1 Markov Game formulation

A Markov game is used to formulate the coordination energy management problem
between the EVAGG and EH entities, which is expressed as follows:

1) Agents: The EVAGG and each EH are regarded as agents. As a result, a
competitive dynamic is shown between the EHs and the EVAGG, although
cooperation between the EHs also occurs in this multiagent environment.

2) States: The system states S' ={s|,s;,...,sy} contain state information of all

agents. The states of EVAGG agent only include its local observation, such as arrival
time, departure time, SoC and electricity price. The states of EH agent are power
outputs of WT and PV, load demands, electricity price, gas price, and SoC of the ESS.

3) Actions: The EVAGG agent's actions include selling electricity to EV owners,
selling/purchasing electricity to/from the market, and selling/purchasing electricity
to/from the EHs. The EH agent is responsible for purchasing energy from the
wholesale market and operating the boiler, ESS, and CHP.
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4) Reward function: The reward value of the EVAGG agent is defined as

ri,. = —CSTZ,, and the reward function of the EH agent is r!, = -CST,,, .

5) State transition probability: The transition probability of the storage system can
be determined, but the transition probability of uncertainties, such as RESs, load
demands and energy prices, is not available.

6) System problem: The objective of agents is to discover the optimal energy
management strategy in order to maximize the expected cumulative reward within a

T
certain time period T: P1:maxR' = E[Z ;/Tr“”l]
4 7=0

5.3.3.2 Long Short-Term Memory Network

A long short-term memory (LSTM) network is applied to predict the uncertainties of
RESs, load demands and energy price [104]. Figure 5-11 illustrates the internal
configuration of a LSTM unit, which includes a memory cell and three distinct gates:
input, forget, and output. The cell state ¢' , which includes a self-connected recurrent
edge with a constant weight of one, is instrumental in mitigating issues of vanishing
and exploding gradients. Additionally, the roles of the three gates within the LSTM
are pivotal. The forget gate ' and input gate i' regulate the flow of data into the cell
state c', while the output gate manages the data o, flowing into the next layer h'.
The input gate processes current input data X' and the previous time step's hidden
state h*™* using the tanh function. Since the tanh function yields values between 0
and 1, it allows the input gate to ascertain the influence of the current input on the cell
state. Moreover, the forget gate determines the extent to which the previous cell state
is preserved in the current cell state.

Ea
ST LSTM Memory Cell
Input gate
put g B Output gate . E

i 1

\

1

1

1

1

]

e — @ |

fe] e [tEnh] [Fer |

| [ [ | ':El

Figure 5-11 The structure of a LSTM neural network [J6].
5.3.3.3 Safe SAC algorithm

SAC algorithm has been discussed in Section 2.3.2. The actions selected and carried
out by several agents are independent and multi-dimensional in the setting of MADRL
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algorithms. This necessitates the separation of interdependencies within the
optimization-based approach. For example, constraints related to balancing thermal
and electrical demand and supply, as well as those concerning ESSs, might not be
adhered to during the action execution. To accurately represent the physical
constraints of the EH operation, a safety index c'(s',a") isemployed, which is defined

below:
c'(sh,a') =—|AH" |- | AP" | - | AE; | - | AEy, | (5.4)

where {AH", AP'} are imbalance measures of thermal and electrical energy at time
¢, and {AE; ,AE.} are SoC constraint violations of thermal and electrical storage

units at time . . This indicator helps adjust the direction in which the control policy is
updated, contributing to a more stable learning process.

5.3.3.4 Implementation of the proposed method

The design of the DNNs and the procedures involved in executing the proposed
strategy are summed up in Figure 5-12. The DNNS' structure is shown in Figure 5-
12(a). It is observed that the target networks and their corresponding online networks
have the same parameters. PV, wind power, and electrical and heat demands are
among the datasets given into the LSTM network. The variables used here are
normalized. After that, they go viaan LSTM layer and produce a vector. A flattening
layer converts this vector into a longer feature vector. A sigmoid activation function
is used to generate a normalized action value from the actor network, which receives
as input a combination of the LSTM outputs and additional state characteristics as
SoC and energy prices. The actor network’s output layer consists of four neurons for
instant action output, while the critic and safety networks, taking a concatenation of
state and action vectors as input, output the Q-value and C-value respectively through
a single neuron, and the rectified linear units (ReLU) is the activation function [105],
[106]. Further details on the algorithm updates can be found in Section 3 in [J6].

The proposed strategy's execution structure, which consists of decentralized online
execution and centralized offline training, is shown in Figure 5-12(b). By
incorporating information from other agents into the critic network of each agent
during offline training, the strategy becomes more resilient to external uncertainties
even when only local information is available. The critic network is rendered
redundant during online execution, and the actor networks adjust weights to produce
real-time strategy. Based on its learned policy, each agent's distinct actor network uses
its observed data to make decisions in real time in a totally decentralized manner.
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Figure 5-12 Flowchart and structures of the proposed method [J6].

5.3.4. CASE STUDIES

5.3.4.1 Simulation setup

The proposed energy management strategy is applied to an IEDHS. In this context,
one episode is comprised of 24 time steps, with each step representing one hour.
Figure 5-13 presents the topology of the test IEDHS [107]. The IEDHS includes an
IEEE 33-bus PDN, a 4-node DHN, four EH and EVAGG entities. Parameters of the
EH are given in [J6]. The Gaussian distribution N(0.45,0.01) is used to model the

SoC of EVs upon arrival at the parking lot. Arrival time and departure time are
sampled from a uniform distribution from the sets of {6,7,8,9,10,11} and

{15,16,17,18,19, 20}, respectively.
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Figure 5-13 Topology of the test system [J6].
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One-year historical data is selected as the training data, including PV, wind power,
load demand, and energy prices [108][109]. To assess the forecasting accuracy, an
unaltered dataset spanning a continuous 30-day period from the same references is
employed for testing. Figure 5-14 displays a comparison of the forecasted and actual
values. The comparison reveals a close resemblance between the predicted values
(represented by an orange line) and the actual values (shown by a blue line), with only
minor deviations in a few instances of very high peaks. This similarity validates the
effectiveness and accuracy of the LSTM network in making predictions.
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Figure 5-14 Values for predictions derived from a 30-day test dataset: (a) PV generation, (b)
wind power, (c) heat load, and (d) electrical load [J6].

5.3.4.2 Training performance

The Concurrent, MASAC and the proposed algorithm are trained for 10,000 episodes.
Figure 5-15 and Figure 5-16 show the outcomes of this training, which concentrated
on reward convergence and constraint violation. The solid curves in these figures
indicate the mean values of the results; the shaded regions correspond to the standard
deviations. It is noted that the Concurrent method's training performance is unstable,
displaying a significant standard deviation that results in its non-convergent
termination. The non-stationary environment that results from agents updating their
rules individually in the Concurrent approach causes this instability. Conversely, as
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compared to the Concurrent algorithm, the MASAC algorithm, which incorporates an
attention mechanism, exhibits smoother learning behavior and a smaller standard
deviation. This suggests that the non-stationarity difficulties can be efficiently
addressed by centralized training that selectively includes input from other agents.

Out of the three strategies, the proposed algorithm had the lowest standard deviation
and the highest cumulative reward. The integration of the safety network and LSTM
network is credited with this higher performance, as it greatly improves the quality of
the solution.
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Figure 5-15 Comparison of cumulative rewards of different MADRL methods [J6].
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Figure 5-16 Comparison of constraint violations of different MADRL methods [J6].

5.3.4.3 Test results Analysis

Two distinct test scenarios (a summer day and a winter day) are examined. The
summer day scenario is marked by lower load demands, high availability of PV power,
and limited wind power. In contrast, the winter day features higher load demands,
limited PV power, and an abundance of wind power. Figure 5-17(a) and Figure 5-17(b)
in the study illustrate the 24-hour demand profiles for heat and electricity for these
scenarios, while Figure 5-16(c) displays the electricity and gas price trends for the EH
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and EVAGG. Additionally, the specifics of four different EVAGGS, including
variables like arrival time, departure time, and initial SoC, are detailed in Table 3.
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Figure 5-17 (a) The load profiles on the summer day, (b) the load profiles on a winter day,
and (c) the trends in electricity prices and gas prices [J6].

Table 5-2 Parameter settings of the EVs [J6].

Parameters 1 2 3 4
Eev 0.58 0.57 0.22 0.2
AT 5 7 11 8
DT 19 15 18 15

1) EVAGG operation

Figure 5-18 provides the operational activities of four EVAGGs during a typical
winter day. The power transactions between the EVAGG and the wholesale market
are shown in Figure 5-17(a). The EVAGG starts obtaining power from the upper grid
one hour in advance of the EVs pulling into the parking lot. Because of the higher
electricity pricing at that hour, the EVAGG only sells electricity back to the grid once,
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at hour 16. EVs are typically charged in the hours prior to their departure, as shown
in Figure 5-17(b). In order to meet the EH's electricity demands, the EVAGG sells
electricity to the latter between the hours of 07:00 and 14:00, as shown in Figure 5-
17(c). Because the contracted costs for power from the EH are less than the wholesale
market rates, the EVAGG also exhibits a bias for purchasing electricity from the EH.
The charging and discharging behaviors of the combined batteries are displayed in
Figure 5-17(d). There are three primary components to the discharging process:
providing electricity to the EH from 7:00 to 14:00 hours, charging EVs when they
depart the parking lot between 15:00 and 19:00 hours. Electrical energy from the EH
and the wholesale market is used to charge these batteries.
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Figure 5-18 Electrical is traded with the electrical market in (a), sold to EV owners in (b),
exchanged with EH in (c), and the EVAGGs' charging and discharging operations are
handled in (d) [J6].

2) EH operation
Figure 5-19 demonstrates the supply of heat and electricity demands on a winter day,
highlighting the utilization of wind power and PV generation. During off-peak

electricity hours (00:00 to 06:00 h), electricity is bought from the wholesale market
for various purposes including charging batteries and selling to the EVAGG. During
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peak hours (08:00 to 20:00 h), the EH buys electricity from the EVAGG, sells excess
to the market, and relies on the CHP and batteries for load supply. Between 14:00 and
23:00 h, the EH purchases electricity from the market due to CHP's maximum output.
Natural gas, being cheaper than electricity, predominantly fuels the GB and CHP for
heating, with WT being used when gas and electricity prices are close (2-6 h and hour
23). Figure 5-20 outlines the energy management on a summer day. Similar to the
winter day, electricity is purchased early in the day for supporting electric loads and
charging the BSS. When gas is less expensive than electricity, the strategy uses RESs
to satisfy demand, especially when it comes to utilizing GB for heating (09:00-16:00
h). When there is minimal RES availability, a strong demand for electricity, and
relatively low gas prices, the CHP units are used. During times of high demand, ESSs
have a flexible role. Notably, compared to a winter day, a summer day with more PV
generation exhibits greater energy export and less import. Overall, EH's real-time
energy requirements are efficiently managed by the learnt strategy, which adjusts to
varying seasonal conditions. To meet demand, the strategy makes use of RES,
generators, and energy storage devices, proving its efficacy and versatility.
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Figure 5-19 EH operation on a winter day: (a) the strategy employed to satisfy electricity
demand; (b) the strategy used to meet heat demand [J6].
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Figure 5-20 EH operation on a summer day: (a) the strategy employed to satisfy electricity
demand; (b) the strategy used to meet heat demand [J6].

5.3.4.4 Algorithm Comparison

The proposed strategy is compared with two baseline model-based strategies, namely
stochastic-mixed-integer linear programming (MILP) [110] and perfect-MILP [111],
as well as two advanced MADRL algorithm, the Concurrent [112] and MASAC
algorithms, to illustrate the enhanced performance considering the LSTM and safety
networks. Figure 5-21 shows the total daily cost of EHs and total daily profit of
EVAGGs over a test dataset. The average cost, profit, and computation performance
of different algorithms are presented in Table 5-3. It can be seen that the optimization
results of the proposed method are very close to those of the perfect-MILP algorithm,
with the EH cost being 2.01% higher and the EVAGG profit being 2.12% lower than
those of perfect-MILP. However, solving the perfect-MILP algorithm requires precise
modeling of the system. Additionally, compared to MASAC, the proposed method
achieves a 3.06% reduction in EH cost and a 6.82% increase in EVAGG profit. The
proposed algorithm, based on the MASAC algorithm, incorporates LSTM and a
Safety network, thereby improving performance. The Concurrent method can cause
environmental non-stationarity, leading to poor training performance. In terms of
computation time, the proposed method takes longer than MASAC due to its more
complex neural network structure. However, for online deployment, since only
forward propagation of the neural network is required, millisecond-level decision-
making can be achieved. Details about the comparison algorithms can be found in
Section 4 in [J6].
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Figure 5-21 Results obtained by different algorithms over a test dataset: (a) total daily cost of
EH; (b) cumulative daily profit of EVAGG [J6].
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Table 5-3 Cost, profit and computation time of different methods [J6].

Online
. Average daily Average profit Training time .
Algorithms . calculation time
cost of EH ($) of EVAGG (3) (min) ©

Concurrent 103969 7281 503 0.013
MASAC 98662 8012 114 0.024
Proposed 95733 8598 125 0.029
Stochastic-MILP 105035 7265 - 3.685
Perfect-MILP 93846 8784 - 1.379

5.3.5. SUMMARY

This chapter introduces a novel decentralized energy management strategy based on
an improved model-free MADRL. This strategy aims to minimize daily operation
costs for EH entities and maximize daily profit for EVAGGs. The uncertainties are
predicted viaa LSTM network. The coordination between two entities is then modeled
as Markov games, tackled using an MADRL algorithm. In this framework, each EH
or EVAGG entity is chosen as an agent, respectively. The MADRL strategy
incorporates offline centralized training for learning optimal coordinated strategy and
decentralized execution, allowing agents to make real-time decisions based on local
measurement. Additionally, a safety network is utilized to consider equality
constraints, such as balancing demand and supply. The rationality and robustness of
the proposed strategy are evaluated in the simulation.
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CHAPTER 6. CONCLUSION

6.1. SUMMARY

This thesis investigates data-driven energy management strategies for the MESs to
optimize the economic and low-carbon operation considering the uncertainties of RES,
loads, energy prices and EVs’ charging/discharging behaviors. The purpose of this
thesis is to understand complex MES from a data-driven point of view, without
assuming too much prior knowledge.

In Chapter 2, a low-carbon economic energy management strategy for the electricity-
gas MES based on DRL is investigated. The coordination between P2G and CCS units
is considered. The low-carbon economic dispatch problem is formulated as MDP, and
solved by an improved SAC algorithm. Simulations demonstrate that the proposed
strategy achieves faster convergence and a more stable training process compared to
traditional DRL algorithms.

In Chapter 3, a two-timescale energy management strategy based on the MADRL
algorithm is investigated to minimize energy costs of the residential MES. The
strategy considers internal energy conversion and external energy trading for the
residential MES, taking into account the various operational parameters of each MES
component. Simulations in deterministic and stochastic scenarios demonstrate the
effectiveness and superiority of the proposed strategy.

In Chapter 4, an MADRL-based bottom-up energy management strategy is
investigated for multiple MESs, which is composed of the upper-layer ER cluster and
bottom-layer MG cluster. An MADRL algorithm learns the optimal operation strategy
for the bottom-layer MG cluster to minimize energy costs. The optimal energy
allocation is completed in the upper-layer ER cluster. Simulation validates the
effectiveness of the proposed energy management strategy.

In Chapter 5, a decentralized energy management strategy for EH and EVAGG
entities is investigated to reduce the energy costs of the EH and increase the profit of
the EVAGG entity. A LSTM network is used to predict the system uncertainties, and
a safety network is used to ensure the operating constraints. Simulation demonstrates
the effectiveness and superiority of the proposed strategy. Besides, decentralized
execution can safeguard the privacy of various entities.

In summary, this thesis primarily demonstrates the use of DRL to learn an optimal
energy management strategy, aiming to optimize the economic costs of MESs. The
end-to-end nature of DRL effectively addresses the uncertainties and nonlinearities in
MES optimization. In terms of modeling, the focus shifts from centralized energy
management of a single MES to multi-agent decentralized energy management,
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involving multiple MESs or the MES with EVAGG entities. The DRL algorithms are
improved to solve these problems. Additionally, the real-time decision-making
capability of DRL highlights its potential for practical application.

6.2. FUTURE WORK

This Ph.D. project aims to propose DRL-based algorithms to solve energy
management problems at different levels. However, a number of limitations still exist:

e Hyperparameter determination is a necessary process for DRL, and
researchers often need to spend a lot of effort on parameter tuning to get the
optimal model performance. Running experiments manually for parameter
tuning can be used for small models with small parameter sizes, but when
parameter optimization is performed for large models, the manual-only
approach becomes impractical. In the future fast parameter tuning algorithms
can be used with the help of DL models.

o DRL methods rely on big data, and not all domains have the ability to obtain
a large amount of sample data, and the cost of obtaining a large number of
training samples is still high in modern power grids due to the presence of
physical barriers in the energy layer and information barriers in the
information layer. In the future, when the training samples are insufficient,
the opposite idea is utilized to generate pseudo-labels with unlabeled data or
pseudo-data with labels, forming a sample generating network.

e The MES in the operation process may appear the extreme situation, and it
is difficult to ensure the feasibility of the strategy given by the agent. The
model knowledge is embedded in the neural network of DRL to construct a
data-knowledge fusion-driven DRL algorithm, which improves the robust
performance of the DRL control strategy through the embedding of
knowledge.

e The proposed strategy has not been tested in real-time on an actual MES but
is instead based on historical data. This is mainly due to the large scale of the
investigated energy system model, which makes real-world testing
challenging. Therefore, in future work, a physics-informed MADRL
algorithm could be further developed, incorporating the system's physical
constraints into the neural network to enhance the interpretability of the
resulting strategy.
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