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A B S T R A C T

Learning to perform procedural motion or manipulation tasks in unstructured or uncertain environments poses
significant challenges for intelligent agents. Although reinforcement learning algorithms have demonstrated
positive results on simple tasks, the hard-to-engineer reward functions and the impractical amount of trial-
and-error iterations these agents require in long-experience streams still present challenges for deployment
in industrially relevant environments. In this regard, interactive reinforcement learning has emerged as
a promising approach to mitigate these limitations, whereby a human supervisor provides evaluative or
corrective feedback to the learning agent during training. However, the requirement of a human-in-the-loop
approach throughout the learning process can be impractical for tasks that span several hours. This study
aims to overcome this limitation by automating the learning process and substituting human feedback with an
artificial supervisor grounded in constraint-based modeling techniques. In contrast to the logical constraints
commonly used for conventional reinforcement learning, constraint-based modeling techniques offer enhanced
adaptability in terms of conceptualizing and modeling the human knowledge of a task. This modeling capability
allows an automated supervisor to acquire a closer approximation to human reasoning by dividing complex
tasks into more manageable components and identifying the associated subtask and contextual cues in which
the agent is involved. The supervisor then adjusts the evaluative and corrective feedback to suit the specific
subtask under consideration. The framework was assessed using three actor-critic agents in a human–robot
interaction environment, demonstrating a sample efficiency improvement of 50% and success rates of ≥95%
in simulation and 90% in real-world implementation.

1. Introduction

Reinforcement learning (RL) methods have achieved promising re-
sults in solving control tasks in unstructured environments [1–3]. How-
ever, previous studies have generally focused on approaches based
on single simple tasks with limited state–action pairs [4]. These sim-
plifications constrain the implementation of these control methods in
high-dimensional real-world settings, such as collaborative robotic ma-
nipulation tasks. For instance, although much research focuses on peg-
in-hole [5,6] or via-point tasks [7,8], collaborative robot tasks should
extend beyond these simplified scenarios to include more complex
procedural tasks. In this regard, hierarchical RL (HRL) methodologies
have emerged as a way to acquire control policies that are capable of
managing tasks characterized by long sequences of experiences. HRL

∗ Corresponding author.
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involves learning both high-level and low-level policies to solve tasks
hierarchically, which allows the agent to operate at multiple levels of
abstraction. However, similar to conventional RL, HRL struggles with
intricate reward engineering tailored to each subtask and suffers from
low sample efficiency due to exploration [9,10], resulting in prolonged
training times.

Rewards can be either sparse [11,12], provided only at the con-
clusion of an episode, or dense [13,14], given at each time step.
Dense rewards offer intermediate feedback to the agent, indicating the
effectiveness of the previous action toward the goal. This intermediate
feedback plays a key role in defining certain problems, especially
when considering long-experience streams. Without such intermedi-
ate feedback, learning would be infeasible in problems with large
exploration spaces. Nonetheless, no guidelines or methodology have
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been established on how to construct dense reward functions, which
often involve complex mathematical functions that may lack straight-
forward interpretability or even affect convergence [15]. In environ-
ments with inherent uncertainty, the reward function must capture the
contextual nuances required to discern the circumstances under which
the agent executes its actions. The same action within a subtask may
yield different evaluations depending on the context in which it occurs.
Consequently, intricate reward functions may lead to unexpected policy
behaviors.

In contrast, RL is characterized by lengthy training times [16],
particularly in tasks with continuous streams of experience. To expedite
learning and avoid starting from scratch, a growing trend is to pro-
vide prior knowledge to the agent, often through demonstrations [17,
18]. These demonstrations can be recorded using human movements,
kinesthetic guidance, or telemanipulation [19]. However, collecting
sufficient demonstrations can be time-consuming and costly. In addi-
tion, the efficacy of these approaches heavily relies on the geometry of
the provided trajectories, potentially limiting the generalizability of the
agent [20].

In contrast to human demonstrations, the interactive RL paradigm
presents an alternative [21]. In this framework, an artificial or human
trainer is included in the RL agent’s learning process. The trainer
leverages task expertise to provide evaluative and corrective feedback
and captures the desired behavior of the agent. This is particularly
helpful in scenarios where defining the reward signal is challenging.
For instance, Knox and Stone [22] introduced the TAMER framework,
which allows task experts without programming expertise to evaluate
the RL agent’s actions as either ‘‘good’’ or ‘‘bad’’ in the Tetris and
mountain car example. In addition, the trainers’ guidance enhances the
sample efficiency of the agent by providing helpful hints. In another
study [23], the human supervisor not only provided feedback in the
form of rewards but also provided guidance messages, which enhanced
both the sample efficiency and the performance of the RL agent in
a computer game. By combining guidance with independent explo-
ration, the potential for generalization can be preserved with minimal
disruption [24].

Nevertheless, currently, all interactive RL approaches applied to
continuous problems involve a human trainer. In scenarios character-
ized by extensive action spaces, tasks that are divisible into subtasks, in-
cluding human-in-the-loop, can be time-consuming and labor-intensive
processes. Moreover, the efficacy of the learning process is signifi-
cantly contingent upon the human trainer’s expertise and potential
biases. Therefore, the provision of ill-suited or misplaced evaluative and
corrective feedback carries the risk of resulting in suboptimal policy
outcomes.

Diverging from existing interactive RL frameworks that rely on
neural network-based artificial trainers, such as other RL policies [25],
which may face challenges in variable or ill-defined settings with
continuous state actions pairs or human-in-the-loop trainers [26], this
study proposes the utilization of an automated supervisor grounded
on constraint-based modeling techniques. These techniques include
qualitative temporal constraints based on Allen’s interval algebra [27],
punctual qualitative temporal constraints, quantitative temporal con-
straints, constraints over specific properties or trajectories, and logical
constraints. Unlike conventional RL frameworks that commonly em-
ploy logical constraints, constraint-based modeling techniques offer
enhanced flexibility in terms of capturing human knowledge in com-
plex procedural tasks. By leveraging such techniques and integrating
them within a system that emulates human cognition, an automated
supervisor akin to human reasoning can be constructed, facilitating the
formalization of human behavioral patterns and understanding in an
interpretable manner. Consequently, the role of the human supervisor is
replaced with an artificial counterpart capable of providing evaluative
and corrective feedback based on the agent’s decision-making process,
even under uncertain circumstances, as a human would. To implement
this supervisor, we leverage and adapt an existing framework designed

to mimic human cognitive processes across three key stages: observing
the environment, interpreting ongoing activities, and assessing their
correctness within the given context, specifically via evaluative and
corrective feedback. The framework is then tested in a human–robot
interaction (HRI) disassembly environment, where the robot is required
to perform a series of subtasks based on the interaction mode between
the human and the robot. The results demonstrate that incorporating
an artificial supervisor into the apprenticeship loop enhances sample
efficiency and performance of different RL agents by approximately
50%.

The primary contributions of this study are as follows:

• an automated interactive RL framework that uses an artificial
supervisor that mimics human cognition and featuring constraint-
based modeling techniques to define and provide evaluative and
corrective feedback;

• abstraction of task complexity into manageable procedural com-
ponents and contexts and;

• conceptualization and modeling of human knowledge, thus elim-
inating the need for human intervention in domains with large
and continuous action spaces.

The remainder of this paper is organized as follows. Section 2 briefly
overviews of related works. In Section 3, a theoretical background
on conventional and interactive RL and the proposed framework is
outlined. Section 4 provides a comprehensive explanation of the frame-
work’s implementation and describes the supervisor’s functions in the
agent’s learning process. Section 5 describes the evaluation task and
presents the results obtained from both simulation and reality. Sec-
tion 6 summarizes the main directions for future research and provides
points for discussion and reflection. Finally, Section 7 concludes with
a summary of the contributions.

2. Related works

Interactive RL is an approach that tailors an external trainer to adapt
key components, such as exploration strategies, of the underlying RL
algorithm, thereby enhancing its performance and reducing training
times for a given task [28]. An external trainer can be an artificial or
a human agent.

When using artificial agents as trainers, RL agents that have previ-
ously learned a control policy are typically employed. In such cases,
the trainer typically provides corrective feedback, meaning that the
supervising agent can intervene by suggesting alternative actions to
the learning agent’s proposed actions. However, according to Cruz
et al. [29], for an RL agent to effectively serve as a trainer, its pol-
icy should have a low standard deviation, indicating a more reliable
distribution of knowledge across states. Achieving such stability in
high-dimensional continuous tasks with complex reward functions is
challenging. Consequently, most studies involving RL agents as trainers
have focused on tasks with discrete action spaces [30].

As a result, interactive RL commonly employs a human-in-the-
loop approach, allowing the trainer to provide both evaluative and
corrective feedback based on elapsed time, state importance, or error
correction [31].

Evaluative feedback treats human input as a form of reward. How-
ever, unlike conventional RL, evaluative feedback accounts for pre-
existing human knowledge or models and adapts them to a particular
context. These rewards can be provided directly by humans or acquired
indirectly. For example, Ritschel and André [32] used human appraisal
as input to provide rewards based on gesture and posture. In contrast,
other studies have explored biological drives. McDuff and Kapoor [33]
used the human’s volumetric blood change in a driving simulator,
and Akinola et al. [34] and Kim et al. [35] used the error-related
potential in robotic navigation and HRI tasks, respectively. However,
acquiring such signals can be time-consuming, and their reliability
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Fig. 1. (a) RL scheme. (b) Interactive RL scheme.

can be affected by external factors, such as background noise. There-
fore, approaches involving a human-in-the-loop trainer often emphasize
corrective feedback.

Akkaladevi et al. [36] employed a graphical interface to allow the
human trainer to select actions the robot should perform. However, the
authors discretized the actions based on specific criteria to facilitate
the process, thereby limiting the robot’s performance in a complex HRI
assembly environment. To address this limitation, other studies have
proposed approaches that allow the human trainers to provide correc-
tive feedback within continuous action spaces [37]. Celemin et al. [38]
developed a framework that enabled the human trainer to provide
discrete trend corrections to an agent’s continuous actions during the
learning process. In a more recent study, Chisari et al. [39] proposed
a framework that facilitates both evaluative and corrective feedback
provision in various manipulation tasks. The human trainer provided
evaluative feedback using numerical values assigned via a button-based
interface. Moreover, if the robot executed an erroneous trajectory, the
human trainer could correct its path through teleoperation.

However, these methods rely on constant human supervision during
the learning process of the RL agent. This requirement can become
tedious and time-consuming, especially in complex robotic manipula-
tion tasks that involve long training times and the segmentation of
the process into more manageable subtasks. In addition, inconsistent
advice may lead to suboptimal policies when the human trainer lacks
expertise. This limitation may also arise when advice is provided
at inconsistent time intervals to the RL agent. To the best of our
knowledge, this study is the first to present an automated interac-
tive RL approach for continuous procedural tasks. The incorporation
of this supervisory tool offers distinct advantages over state-of-the-
art approaches. The initial distinction lies in the expansive capacity
of constraint-based modeling techniques compared with conventional
logical constraints, offering humans a broader scope for conceptual-
izing and structuring their knowledge. Integrating this broader range
of constraints into a system grounded in observation, interpretation,
and evaluation enables the emulation of human-like reasoning by the
artificial supervisor, thereby avoiding the need for human oversight of
the agent’s learning process, which can extend over prolonged periods.
In addition, this modeling methodology allows for the definition of
subtasks and contexts through initial, generic, and final constraints.
This approach facilitates the generation of precise evaluative feedback
tailored to the given subtask and its context, which is easily compre-
hensible and interpretable by humans during programming. Finally,
the framework facilitates the provision of targeted corrective feedback
for assessed subtasks and contexts at predefined intervals, thereby
enhancing sample efficiency in large exploration environments.

3. Theoretical framework

3.1. Reinforcement learning

RL [40] is a type of machine learning in which an agent learns to
interact with its environment to maximize the rewards it receives in

the long term. This interaction learning problem is usually modeled as
a Markov Decision Process (MDP).

The MDP defines sequential decision-making as a semi-random
and agent-dependent pathway. It also specifies that decisions made
and executed (actions) influence not only immediate rewards but also
subsequent situations (states) through future rewards. Thus, MDPs com-
prise three elements: the state the agent is in, the action the agent takes,
and the agent’s ultimate goal. In their simplest forms, the elements are
usually represented by the following tuple (1):

[𝑆 , 𝐴, 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), 𝑅(𝑠𝑡, 𝑠𝑡+1, 𝑎𝑡), 𝛾] (1)

where 𝑆 denotes the set of possible states of the agent and 𝐴 is the set
of actions. 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡) is the probability of transition to future state
𝑠𝑡+1, when the agent is in state 𝑠𝑡 and applies action 𝑎𝑡. 𝑅(𝑠𝑡, 𝑠𝑡+1, 𝑎𝑡) is
the reward the agent expects to obtain when it transits from state 𝑠𝑡
to state 𝑠𝑡+1 and it is calculated using the reward function. Finally, 𝛾
is the discount factor of the reward function. Fig. 1a shows the basic
MDP underlying the decision process of any RL agent.

A policy 𝜋(𝑎𝑡|𝑠𝑡) is a mapping between states and probabilities
of selecting each possible action. This process can be defined using
sequence (2) as follows:

𝑠0, 𝑎0, 𝑟0, 𝑠1, 𝑎1, 𝑟1, 𝑠2, 𝑎2, 𝑟2,… (2)

3.1.1. Formal definition of a subtask
In contrast to HRL, where a high-level policy, referred to as the

task policy, 𝜋𝛤 , corresponding to the main long-term horizon 𝛤 , and
a low-level policy, termed the subtask policy, 𝜋𝜔, corresponding to the
subtask 𝜔, are learned, this study proposes a unified control policy
that implicitly comprises both high-level and low-level knowledge.
Nevertheless, we rely on the HRL definition to formalize the subtask
concept [41].

A subtask is a smaller, distinct component typically used to decom-
pose complex tasks. It comprises a set of actions that contribute to
achieving the overarching task, namely, the execution and goal com-
ponents, respectively. Concerning the execution components, a subtask
is defined by an initiation condition 𝐼𝜔 and a termination condition
𝛽𝜔, which are usually associated with a specific set of states or logical
conditions. In addition, regarding the goal components, each subtask is
characterized by its own reward 𝑟𝜔 and a potential subgoal 𝑔𝜔. This
subgoal, which can take the form of a state 𝑠 ∈ 𝑆 or an abstract
representation thereof, among other possibilities, is commonly linked
to the terminal condition 𝛽𝜔.

3.2. Interactive reinforcement learning

Interactive RL includes the integration of external guidance into the
apprenticeship loop. This supportive advice can originate from diverse
sources, including pretrained artificial agents with prior task knowl-
edge, domain experts, or non-expert individuals, and may manifest as
either corrective or evaluative feedback or both (Fig. 1b).

In this context, at each time step, the supervisor receives updates
regarding the state and action taken by the agent. If only corrective
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feedback is provided, the trainer may recommend an alternative action
or a trend to the agent if the agent’s action deviates from its defined
objective. In this scenario, the environment itself bestows the agent
with rewards. Alternatively, when providing evaluative feedback, the
supervisor assigns the agent a numerical reward. Sequences (3) and
(4) depict the interaction sequences when the supervisor provides
evaluative feedback (𝑓𝑒) and corrective feedback (𝑓𝑐) through actions
or trends, respectively.

𝑠0, 𝑎0, 𝑓𝑒0 , 𝑠1, 𝑎𝑐1 , 𝑓𝑒1 , 𝑠2, 𝑎2, 𝑓𝑒2 ,… (3)

𝑠0, 𝑎0, 𝑓𝑒0 , 𝑠1, 𝑎1, 𝑓𝑒1 , 𝑓𝑐1 , 𝑠2, 𝑎2, 𝑓𝑒2 ,… (4)

3.3. Leveraging constraint-based modeling techniques for an intelligent ar-
tificial supervisor

Interactive RL leverages the prior knowledge of a task from an
artificial or human supervisor to accelerate learning. Typically, these
artificial supervisors are derived from pre-existing RL policies, consti-
tuting what is commonly termed teacher–student frameworks. Within
such frameworks, the supervisory policy is limited to providing correc-
tive actions (𝑓𝑐) to the RL agent based on predefined criteria to reduce
exploration space and improve sample efficiency (Fig. 2a). Although
this approach can yield significant gains in tasks characterized by a
finite set of state–action pairs, such as grid worlds [42], its efficacy
is reduced when handling high-dimensional continuous tasks. This
limitation arises from the necessity for an RL policy to exhibit a low
standard deviation to serve as an effective supervisor [29]. However,
in high-dimensional continuous procedural tasks, learned control poli-
cies may be susceptible to environmental stochasticity and random
or epistemic uncertainty, potentially resulting in suboptimal policies.
Consequently, the prevailing method used to enhance sample efficiency
and provide evaluative feedback in scenarios where reward shaping
proves challenging is centered upon integrating human involvement
within the apprenticeship loop of the RL agent.

Human cognition is more flexible than an RL policy. Drawing upon
accumulated life experiences, individuals possess a nuanced under-
standing of how an RL agent should engage with its environment and
the abstraction capacity to conceptualize reward models that may not
be readily expressible through conventional logical constraints in RL
frameworks (Fig. 2a). This is particularly evident in procedural, vari-
able, and uncertain tasks. For example, as illustrated in Fig. 2b, complex
tasks often comprise subtasks delineated by initiation (𝐼𝜔) and termina-
tion conditions (𝛽𝜔). However, these subtasks may overlap, as seen with
Subtasks 2 and 3, or even nest within one another, as exemplified by
Subtask 4. In such scenarios, humans possess the interpretative prowess
necessary to provide evaluative feedback (𝑓𝑒) abstracted from a specific
subtask while considering the agent’s overarching goal. Conversely,
during exploration phases in intricate environments characterized by
high variability and uncertainty, agents may follow trajectories that
make it difficult to immediately classify them as correct or incor-
rect. As shown in Fig. 2c, multiple trajectories may originate from a
common point; however, they diverge in their paths toward a target,
highlighting the challenge of delineating sparse rewards without im-
peding convergence or through overly strict dense rewards hindering
generalization. In contrast, humans can perceptively discern an agent’s
intentions and adaptively provide appropriate rewards, going beyond
the constraints of periodic reward assignment.

However, employing a human-in-the-loop approach can be arduous
and time-consuming for the individual. In addition, humans typically,
rely on visual interfaces to provide evaluative and corrective feedback
to agents. In these cases, the evaluation performed by humans is
not based on specific data, and if the simulation is ongoing at the
time of evaluation, there exists a risk of misplacing evaluative or
corrective feedback, potentially resulting in suboptimal policies. Thus,
establishing a method to address the temporal disparities between

the occurrence of events and the issuance of feedback is crucial for
mitigating this risk.

Given these limitations, we suggest replacing human-in-the-loop in-
volvement with an artificial supervisor capable of receiving task-related
knowledge transfer from humans. This supervisor relies on constraint-
based modeling techniques, offering greater flexibility in modeling
human knowledge than with logical constraints alone. These techniques
not only cover logical constraints but also allow the establishment
of (punctual) qualitative and quantitative temporal constraints and
constraints over defined properties or trajectories, thereby addressing
the procedural, variable, and uncertain nature of the subtasks described
previously:

• Temporal qualitative constraints. These constraints employ Allen
interval logic to define temporal relationships among time in-
tervals without requiring numerical quantification of the inter-
vals’ start, end, or duration instants. Example (5) illustrates the
execution of ‘‘Subtask 1’’ immediately following ‘‘Subtask 2’’:

𝑆 𝑢𝑏𝑡𝑎𝑠𝑘1 [𝑚𝑒𝑒𝑡𝑠]𝑆 𝑢𝑏𝑡𝑎𝑠𝑘2 (5)
• Punctual temporal qualitative constraints. These constraints es-

tablish qualitative temporal connections between the initial or
concluding moments of the two intervals. In example (6), ‘‘Subtask
1’’ concludes simultaneously with the beginning of ‘‘Subtask 2’’:

𝑆 𝑢𝑏𝑡𝑎𝑠𝑘1.𝐸 𝑛𝑑 == 𝑆 𝑢𝑏𝑡𝑎𝑠𝑘2.𝑆 𝑡𝑎𝑟𝑡 (6)
• Temporal quantitative constraints. These constraints are used to

set conditions during an interval or the elapsed time between two
intervals. Example (7) shows this type of constraint, where the
time elapsed between the beginning of ‘‘Subtask 1’’ and ‘‘Subtask
2’’ must not exceed 0.001 s:
𝐷 𝑢𝑟𝑎𝑡𝑖𝑜𝑛(𝑆 𝑢𝑏𝑡𝑎𝑠𝑘1.𝑆 𝑡𝑎𝑟𝑡, 𝑆 𝑢𝑏𝑡𝑎𝑠𝑘2.𝑆 𝑡𝑎𝑟𝑡) < 0.001 s (7)

• Constraints on properties. These constraints establish conditions
on the values of the properties of the observations. For instance,
consider an observation denoted as ‘‘Robot ’’ with a property
referring to the value along the x axis of its tool center point
(TCP). For instance, example (8) shows that the TCP value along
the x axis of the robot must exceed 0.2 m.

𝑅𝑜𝑏𝑜𝑡.𝑇 𝐶 𝑃 _𝑥 > 0.2 m (8)
• Constraints on trajectories. These constraints are employed to

assess the probable correctness of a trajectory when the reward
function is challenging to develop. To achieve this, the motion
is modeled using arcs and fuzzy logic. Example (9) shows the
motion path that the TCP should follow. The first constraint
(Arc) regulates the trajectory’s concavity, curvature, and length.
The second constraint (Fuzzy) limits the movement direction,
indicating how similar the movement is to the 26 classes, each
separated by 45◦, into which the movement space is discretized.
For further details on the definition of these constraints, see [43].
𝑅𝑜𝑏𝑜𝑡𝑇 𝐶 𝑃 .𝐴𝑟𝑐(> 90, < 0.5, < 0.2).𝐹 𝑢𝑧𝑧𝑦(≥ 0.0,≥ 0.0,≥ 0.0,

≥ 0.0,≥ 0.0,≥ 0.0,≥ 0.0, ...,≥ 50𝐴𝑁 𝐷 < 100)
(9)

• Logical constraints. These constraints define logical relationships
using AND, OR, and NOT operators. Example (10) specifies that
the TCP value for the robot along the x axis must exceed 0.2 m,
whereas along the y axis, it must exceed 0.1 m.

𝑅𝑜𝑏𝑜𝑡.𝑇 𝐶 𝑃 _𝑥 > 0.2 m𝐴𝑁 𝐷 𝑅𝑜𝑏𝑜𝑡.𝑇 𝐶 𝑃 _𝑦 > 0.1 m (10)

Thus, this study proposes the following hypothesis: ‘‘an artificial
supervisor built upon constraint-based modeling techniques and a system
structured around observation, interpretation, and evaluation phases can
effectively substitute for and replicate the cognitive capabilities of a human in
an interactive RL approach, speeding up the learning process of an RL agent
in variable and uncertain procedural tasks’’. Consequently, we modify
tuple (1) as follows:
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Fig. 2. (a) Expanded interactive RL scheme. (b) Complex task divided into subtasks with nonsequential initiation and termination conditions that require reward shaping. (c) Four
trajectories from a common start, initially identical, with only two successfully reaching the target via distinct paths.

[𝑆 , 𝐴, 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡), 𝛾 , 𝐶 , 𝐹 ] (11)

where 𝐶 represents the set of constraints defined for the artificial
supervisor, and each constraint 𝐶𝑖 involves a subset of 𝑆𝑖 and specifies
the allowable combinations of values for these variables. The artificial
supervisor function, denoted as 𝐹 , is expressed as 𝐹 ∶ 𝑆 ×𝐴 → (𝑓𝑒, 𝑓𝑐 ),
where 𝑓𝑒 is the evaluative feedback indicating the reward or penalty
for a specific subtask and 𝑓𝑐 is the corrective feedback referring to the
corrective action, provided to guide the RL agent’s exploring.

4. Implementation

4.1. Framework overview

The human should be able to conceptualize and formalize their
understanding of the task using constraint-based modeling techniques,
thereby facilitating its transfer to an artificial supervisor within the
apprenticeship loop of the RL agent. To achieve this objective, we
leverage and adapt an established framework known as ULISES.

Previously, this framework was applied to create intelligent learning
systems across diverse virtual reality interactive systems [44], diagnose
human motor skills during procedural tasks [43], and act as an oracle in
testing automated systems. In these applications, ULISES monitors the
entire learning or interaction process, providing an overall evaluation
and instructive feedback upon completion.

In this study, ULISES was adapted for use in the RL context. Here,
the role of the agent involves replicating the behavior of a human
expert to oversee the interactions of an RL agent with its environment.

Consequently, adjustments were made to allow ULISES to provide
corrective and evaluative feedback.

Throughout the learning procedure, the human trainer observes
the environment, interprets the agent’s actions, and issues evaluative
and/or corrective feedback. Similarly, ULISES comprises three basic
levels: observation, interpretation, and diagnosis. The Observation Sub-
system receives the state space 𝑠𝑡 of the RL agent at each time step and
generates a ULISES observation element. Concurrently, the Interpreta-
tion and Diagnosis Subsystems map the agent’s activity into subtasks
and contextual elements, denoted as steps and situations, respectively,
within the framework. Both steps and situations are derived from
ULISES observations. These three elements collectively represent all
learning processes in procedural tasks.

Fig. 3 shows the general framework of ULISES-RL. Throughout the
interaction between the agent and the environment, data, including
the agent’s state 𝑠𝑡 and action space 𝑎𝑡, are transmitted to ULISES.
The cognitive system is established through a tri-tiered abstraction
system to offer a generalized representation of the components needed
for its subsystems. This approach helps create a tailor-made supervi-
sor that is aligned with the specific task under consideration. These
elements specify how ULISES observations are described and inter-
preted and the criteria followed to assess the agent’s actions. In the
domain-specific customization process, specific models for observa-
tion, interpretation, and tasks are generated. The Observation Model
determines communication, and the Task Model resolves the task.

The communication protocol between the different subsystems
within these three levels relies on established conventions involving
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Fig. 3. Overall framework structure. At each time step, the state space 𝑠𝑡 is transmitted to the ULISES supervisor to construct ULISES observations (𝑂𝑒). These observations
represent the steps and situations via constraint-based modeling techniques. At the highest level, relations between steps and situations are defined, with potential solutions for
each step in a given situation. These solutions are also represented through ULISES observations, possibly using additional observations. Based on the correctness of the agent’s
actions, the supervisor provides evaluative and corrective feedback to the RL agent.

subscriptions, requests, and queries, ensuring that information is ex-
changed only when necessary. Eventually, ULISES provides an output
in the form of evaluative (𝑓𝜔𝑒𝑡

) and corrective (𝑓𝜔𝑐𝑡
) feedback, which

is transmitted to the RL agent. For a more comprehensive under-
standing of the individual levels constituting ULISES, a more detailed
explanation is provided in the following sections.

4.2. Level I: constructing ULISES observations

The Observation Subsystem of ULISES analyzes the data received
from the simulation environment of the RL agent, namely the state
space 𝑠𝑡, and models them into ULISES observation elements. These
observations, denoted as continuous elements, are generated based
on the number of entities in the RL agent simulation environment.
For instance, in scenarios involving HRI tasks, observations such as
‘‘Robot ’’ (𝑂𝑒1) and ‘‘Human’’ (𝑂𝑒2) are generated. In addition, each
observation can be defined using properties that further characterize its
attributes. The ULISES observation component should not be confused
with observations accessible to the RL agent when interacting with the
environment. In a fully observable MDP, the observations made by the
RL agent correspond to the state space 𝑠𝑡 and are the properties of each
ULISES observation. For example, although the Cartesian coordinates

of a robot across the 𝑥, 𝑦, and 𝑧 axes may serve as observations for
the RL agent, each of these coordinates represents a property within
the ‘‘Robot ’’ observation in ULISES. Fig. 3, at Level I, illustrates how
ULISES observations use the different components that constitute the
state space 𝑠𝑡 to generate their properties.

The state space 𝑠𝑡 data are stored in ULISES memory and can be
harnessed within the supervisor to generate new observations or prop-
erties. This functionality is particularly valuable when the information
received in state space 𝑠𝑡 lacks the observation property required to
establish constraints at higher levels.

The Interpretation and Diagnosis Subsystems leverage the obser-
vation elements to realize the real-time interpretation and diagnosis
of ongoing actions in the simulation environment. These subsystems
provide a framework that can be adapted to any simulation scenario
and to any requirement across any domain. Unlike the Interpretation
and Diagnosis Subsystems, the Observation Subsystem requires domain-
specific integration with the simulation environment. This integration
is essential to account for the state space 𝑆 generated within each
simulation context.

The Observation Subsystem leverages the data gathered by the
listener and observer agents. The listener agents are responsible for
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communicating the simulation engine with the observer agent. In con-
trast, the observation agent encapsulates the Observation Subsystem,
gathering simulation data from listener agents and transforming them
into observations.

Within this level, the Observation Subsystem runs the list of specifi-
cations of the Observation Model and calls the corresponding observers
to check the occurrence at a specific instant. As a result, this subsys-
tem generates new observations when they are detected, extends the
duration of the existing observations, and ends them when they are no
longer observed.

4.3. Level II: interpreting the reinforcement learning agent’s activity and its
context

Once the activity within the learning process is observed, the sub-
sequent stage involves its interpretation. Activity interpretation within
the framework introduces two components: step and situation ele-
ments. The first component encapsulates the attributes necessary for
the Interpretation Subsystem to recognize agent activities, which can
be understood as the different subtasks inherent in a complex task.
The second component outlines the contextual conditions under which
each step or subtask can be executed, namely, the circumstances under
which each step can be active. Returning to the illustrative guiding
example of an HRI task, consider a scenario in which a robot is required
to grasp a part, disassemble it, and then place it in another location. For
safety reasons, the human counterpart is initially positioned behind the
robot until the part is securely grasped. Subsequently, after the robot
successfully grips the part, the human selects either the right or left side
from which the robot can operate. Meanwhile, the robot remains sta-
tionary, awaiting the human’s positioning. Once the human has taken
his/her place, he/she can specify whether he/she intends to cooperate
or collaborate with the robot. In the case of cooperation, both the
human and the robot jointly undertake independent disassembly tasks,
with the robot responsible for detaching the affixed part and depositing
it into a designated container. Conversely, in a collaborative setup, the
human assists the robot in extracting the part, after which the human
places it into the container. In this example, the task can be segmented
into the following steps ‘‘Pick’’, ‘‘Wait ’’, ‘‘Extract ’’, and ‘‘Place’’. At the
same time, the situations might encompass the following: ‘‘Human Be-
hind the Robot ’’, ‘‘Cooperative Human Left ’’, ‘‘Cooperative Human Right ’’,
‘‘Collaborative Human Left ’’, ‘‘Collaborative Human Right ’’, ‘‘Disassembled
Cooperative Human Left ’’, and ‘‘Disassembled Cooperative Human Right ’’.

Similar to HRL, where a subtask is determined by an initiation
condition 𝐼𝜔 and a termination condition 𝛽𝜔, steps and situations are
defined by three sets of constraints: general, start, and end. Initially,
general constraints must be met to detect the occurrence of a step or
situation. The start constraints are assessed to verify the beginning of
the step or situation, whereas the fulfillment of the end constraints
signifies its conclusion, irrespective of the general constraints. A step is
only interpreted when the relevant situation context is presented during
the exploration phase. Both steps and situations encompass continuous
actions and are delineated through various types of constraints. These
constraints are applicable to ULISES observations, situations, and steps
and encompass all types of restrictions defined in Section 3.3.

Within each interpretation cycle, the interpreter systematically eval-
uates steps and situations defined by constraints against a designated
set of ULISES observations, determining their compliance and retaining
the constraint evaluations and corresponding observations in memory.
This record is continuously updated to maintain temporal consistency.
Beyond constraint assessments, the Interpretation Subsystem deter-
mines the interpretation state of a step or situation, simulating the
cognitive processes akin to those of a real domain expert. According
to this schema, the interpreter determines whether an interval is initi-
ated, concluded, or extended, contingent upon the plausible results of
constraint evaluations.

4.4. Level III: evaluating the reinforcement learning agent’s performance

The Diagnosis Subsystem evaluates the actions of the RL agent.
It collects observations generated by the Observation Subsystem and
the interpreted steps and situations from the Interpreter. It is note-
worthy that the Diagnosis Subsystem supports different diagnosis tech-
niques. In this study, the implemented supervisor employs a constraint
satisfaction-based diagnostic approach that is tailored to the features
of the used domains. Specifically, constraint-based modeling provides
a framework to specify the execution of certain actions or behaviors
within ill-defined domains.

The Diagnostic Subsystem adheres to a standardized procedure that
remains agnostic to the specific diagnosis technique employed. Similar
to the Interpretation Subsystem, this subsystem maintains the current
observations by processing the notification messages received from the
Observation Subsystem. These notifications include various updates,
such as ‘‘new observation’’, ‘‘observation pending ’’, ‘‘cancel observation’’,
‘‘update properties’’, ‘‘end observation’’, and ‘‘continue observation’’. Like-
wise, the Interpreter informs the Diagnostic Subsystem of any changes
in the status of the steps and situations. Once this information has been
updated, the Diagnostic Subsystem diagnoses all ongoing situations by
generating and sending feedback. The steps and situations delineated
at the Interpretation level are interlinked with those at the Diagnostic
level. A step can manifest in various situations; similarly, multiple
steps may occur in a single situation. For example, consider the HRI
disassembly task. Fig. 4 illustrates the correlation among the situations
and steps.

At this level, each situation is accompanied by a given set of
associated solutions. A solution entails specifying how the steps should
be solved in the context of the given situation. To diagnose the activity
of the RL agent, both the situation and associated steps must be active.
Each step can comprise one or multiple conditions. The conditions are
enacted through constraints, and their satisfaction or nonsatisfaction
determines whether the supervisor issues a positive or negative reward
to the RL agent. Each condition may carry an associated reward or
penalty contingent upon compliance with the associated constraint. If
multiple conditions cease to be met simultaneously, ULISES consoli-
dates the feedback by sending a single reward or penalty if the rewards
or penalties associated with the conditions are equal. However, if the
rewards or penalties differ, ULISES provides the reward or penalty with
the highest absolute value.

Furthermore, beyond providing evaluative feedback, ULISES can
provide corrective feedback. The supervisor facilitates the evaluation of
the RL agent’s exploration trajectories or trends by analyzing the values
stored in its memory. These data can be employed to determine the
timing of corrective feedback based on a predefined trend consistency
threshold, which can be tailored according to the task requirements.

If the agent’s exploration trend is inadequate, ULISES can provide
evaluative feedback by sending discrete values according to the task.
For tasks with continuous action spaces, ULISES also provides correc-
tive trends through discrete values ranging from −1 to 1 for each of
the action components available to the agent. Here, a value of −1 or 1
signifies a decrease or increase in the action value, respectively, and
a value of 0 indicates that the supervisor refrains from influencing
the agent’s actions. However, it is necessary to consider that for these
exploration trend hints to be effective, the values provided by the
supervisor should be used to adjust the agent’s policy parameters via
gradient updates [37].

5. Experiments

We chose to evaluate the effectiveness of the proposed framework
using a simplified real-world scenario, specifically focusing on the
removal of magnetic gaskets from refrigerator doors in an HRI setting
(Fig. 5a).
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Fig. 4. Interrelations and sequencing of situations and steps in an HRI disassembly task. The task begins with the worker behind the robot for safety, activating the ‘‘Human Behind
the Robot ’’ situation. Two steps occur: the robot picks or grasps the part and then awaits the human’s decision on the working side. When the worker positions himself, the robot
proceeds to ‘‘Extract ’’, which can occur in four situations. If the worker disassembles alone and is to the robot’s right, the ‘‘Extract ’’ step follows the ‘‘Cooperative Human Right ’’
situation. After extraction, the robot places the part in a container on its left, evaluated under the ‘‘Disassembled Cooperative Human Right ’’ situation.

Building on the groundwork established in our previous study [45],
we conducted a proof-of-concept study focused on the execution of
contact-rich tasks contingent upon the HRI level. To streamline the
complexities associated with the extraction process, we devised two
distinct rigid components: a stationary base affixed to a refrigerator
door and a peg inserted within a corresponding slot and grasped by the
robotic end-effector. The dimensions of the base were 0.2 m × 0.1 m
× 0.03 m, and while those of the slot were 0.2 m × 0.02 m × 0.01 m.
The slot was precisely aligned with the upper surface of the base at a
depth of 0.01 m.

The robot is tasked with extracting the peg in the direction of the
human or in the opposite to his/her location depending on whether
he/she is working ‘‘collaboratively’’ or ‘‘cooperatively’’, respectively, as
depicted in Fig. 5b. To replicate human presence within the simulation
environment, actual measurements of an individual’s upper body were
collected in the laboratory via skeleton tracking. The motion capture
process employed an Intel RealSense L515 camera positioned on the
laboratory ceiling, providing an overhead view of the surroundings, in
conjunction with YOLOv7 pose estimation.1 To introduce a degree of
uncertainty into the simulation environment, we introduced a perturba-
tion to enhance the policy’s adaptability to image capture noise. This
perturbation applied random noise with magnitudes of up to 0.02 m
in the x, y, and z components of key body points within the skeleton.
Likewise, the friction (𝜇) between the base and the peg was randomized
between 0 and 0.1.

In compliance with safety protocols, the human worker initiates the
task while being positioned behind the robot and subsequently selects
a side at a randomized time step (Fig. 5c). Consequently, the robot
waits for the human to act accordingly. As the disassembly begins to
introduce a slightly further increment in the environment’s uncertainty,
the worker may randomly transition from Point 2 to Point 3 or vice
versa. Similarly, a random transition between the HRI modes from ‘‘co-
operative’’ to ‘‘collaborative’’ or vice versa occur. In this demonstration,
the robot is depicted as already grasping the peg at the beginning of the
episode. This task serves as a simplification of the example presented
in Section 4 to explain how the framework works.

1 https://github.com/RizwanMunawar/yolov7-pose-estimation.

Based on the information provided, the intrinsic components of the
RL framework are defined as follows.

State space: The selected observations encompass the robot’s TCP’s
relative position at the current time step with respect to the initial
position across 𝑥, 𝑦, and 𝑧 spatial axes (𝑡𝑐 𝑝𝑟𝑒𝑙𝑥,𝑦,𝑧 ) and its value in the
previous time step (𝑝𝑡𝑐 𝑝𝑟𝑒𝑙𝑥,𝑦,𝑧 ). Using relative positions is recommended
to enhance the agent’s generalization capability by eliminating the
reliance on specific axis configurations. As a result, the disassembly
part does not need to maintain a fixed position. However, for this
particular task, its position was presumed to remain constant owing
to the alignment facilitated by the pistons of the disassembly chain
(Fig. 5a). The collision forces between the peg and the base for all
three spatial axes (𝐹𝑥,𝑦,𝑧) were measured. Furthermore, the state space
included the relative position of each key body point of the human with
respect to the robot’s TCP’s position (𝑗𝑖𝑟𝑒𝑙𝑥,𝑦,𝑧 ). Lastly, the state space
considers four more aspects: the relative position between the target
(where the part is to be placed if working cooperatively) and the robot’s
TCP’s position in the 𝑥 and 𝑦 axes (𝑡𝑎𝑟𝑔 𝑒𝑡𝑟𝑒𝑙𝑥,𝑦 ); the number of complete
time steps relative to the total duration of the episode (𝑡𝑒𝑝); the progress
of peg extraction, expressed as a percentage (𝑝𝑒𝑥𝑡𝑟); and the type of HRI
mode used by the human and robot (𝐻 𝑅𝐼𝑚𝑜𝑑 𝑒). Thus, the state space
𝑆 was defined as follows:
𝑆 = [𝑡𝑐 𝑝𝑟𝑒𝑙𝑥,𝑦,𝑧 , 𝑝𝑡𝑐 𝑝𝑟𝑒𝑙𝑥,𝑦,𝑧 , 𝐹𝑥,𝑦,𝑧, 𝑗𝑖𝑟𝑒𝑙𝑥,𝑦,𝑧 , 𝑡𝑎𝑟𝑔 𝑒𝑡𝑟𝑒𝑙 𝑥,𝑦, 𝑡𝑒𝑝, 𝑝𝑒𝑥𝑡𝑟,

𝐻 𝑅𝐼𝑚𝑜𝑑 𝑒],
(12)

Action space: The choice of an action space significantly affects
the robustness and performance of the learned policy. Employing a
task space approach enables sending the pose commands in Cartesian
coordinates to the robot’s internal controller, potentially enhancing
robustness and expediting the learning process by augmenting sample
efficiency [46]. Therefore, action space 𝐴 is defined as follows:

𝐴 = [𝛥𝑥, 𝛥𝑦], (13)

where 𝛥𝑥 and 𝛥𝑦 are translational motions along the Cartesian x and y
axes, respectively.

5.1. Observation model

The observations and properties used by ULISES are not exclu-
sively reliant on data transmitted from the environment where the
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Fig. 5. (a) Transformation of the actual disassembly line into an HRI environment incorporating the collaborative robot. (b) Depending on whether working on cooperative or
collaborative mode, the robot is tasked with extracting the peg to either the opposite or same side as the worker, respectively. Furthermore, when operating in cooperative mode,
following the extraction, the robot must approach the nearest red cube, which represents the location of the tank where the peg must be deposited. (c) Top view of the simulation
environment. To ensure safety, the worker initiates the task while being positioned behind the robot (Point 1) until the robot successfully grasps the gasket. Subsequently, the
worker randomly selects one side of the robot (Point 2 or Point 3) to operate cooperatively or collaboratively.

Table 1
Observations and properties defined in the HRI disassembly Observation Model.

Observation Properties

Robot TCPPositionX/Y/Z
TCPPreviousPositionX/Y/Z
Velocity
ForceX/Y/Z
TimeStep
Displacement
HRIMode
TargetEuclideanDistance
TrendX/Y

Human 𝑇 𝐹𝑖 X/Y/Z
TFMinEuclideanDistanceX/Y

RobotTCP TCPPositionX/Y/Z

RL agent operates; instead, the supervisor can internally generate
the required information for diagnosis. These observation properties
are stored in memory, facilitating access to subsequent calculations
by the supervisor. Table 1 lists the observations and their corre-
sponding properties for constructing the Observation Model tailored to
the HRI disassembly task. Specifically, the ‘‘Velocity ’’ property repre-
sents the derivative of the TCP position. Furthermore, to compute the
‘‘TargetEuclideanDistance’’, ‘‘TFMinEuclideanDistanceX ’’ and ‘‘TFMinEu-
clideanDistanceY ’’ properties, ULISES calculates the Euclidean distances
between the target location and the robot’s TCP position, and all human
tracking features (TFs) and the robot’s TCP, respectively. Subsequently,
for the minimum Euclidean distance between the human and the robot,
ULISES selects the 𝑥 and 𝑦-components of the nearest TF of the human
worker. Lastly, the ‘‘TrendX ’’ and ‘‘TrendY ’’ properties represent the
derivative computed between the TCP position along the x and y
axes at the current time step and its value from 10-time steps ago,
respectively.

At times, particularly during the exploration phase, a robot’s move-
ments may lack precision, thereby making it difficult to discern its
intent. In cases where these types of imprecise motions occur and the
occurrence or non-occurrence of an observation cannot be definitively
determined, we propose employing a fuzzy logic approach. Specifically,
we generate the fuzzy observation ‘‘RobotTCP’’, which only requires
the position of the TCP in Cartesian coordinates. This observation is
used during the ‘‘Place’’ step, where executing different trajectories
may lead the robot to reach the same target point. ULISES internally
calculates the realized trajectory from the angle, radius, and length of
the motion. For more details, please refer to [43]. This observation is
used at the Interpretation level to capture the intentionality of the RL
agent, thereby facilitating its diagnosis at the Diagnosis level.

5.2. Interpretation model

The HRIMode property is delineated as a floating-point variable
derived from a Boolean value, where 0.0 indicates a ‘‘cooperative’’
interaction and 1.0 indicates a ‘‘collaborative’’ interaction. If operating
in ‘‘cooperative’’ mode, the robot is required to remove the part to the
opposite side of the worker and subsequently deposit it into a trash
receptacle. Conversely, when operating in ‘‘collaborative’’ mode, the
robot is tasked with removing the part toward the worker’s side before
delivering it to the worker. Table A.4 in Appendix A lists the steps and
situations outlined in the Interpretation Model for the task.

5.3. Task model

Table B.5 in Appendix B outlines the task resolution considering
the defined steps and situations. For this task, it was determined that
the corrective action provided by ULISES should be ±0.015 m, based
on the positional trajectories recorded in the ‘‘TrendX ’’ and ‘‘TrendY ’’
properties of the ‘‘Robot ’’ observation.

5.4. Training and evaluation

The proposed framework is universally compatible with any RL
agent. In this study, training was conducted using soft actor-critic
(SAC) [47], deep deterministic policy gradient (DDPG) [48], and prox-
imal policy optimization (PPO) [49], which are the most commonly
employed RL agents in contact-rich manipulation tasks [10].

For training and evaluation, the physical environment was repli-
cated using the Omniverse Isaac Sim simulator via the skrl library [50].
All training and evaluation were executed using ULISES on a laptop
equipped with a 2,7 GHz Intel Core i7-10850H CPU. The RL envi-
ronment was run on a separate laptop with a 3,20 GHz Intel Xeon
W-11855M CPU, 128 GB of RAM, and an NVIDIA RTX A5000 GPU
with 24 GB of VRAM. Additional details about the hyperparameters
selected for the agents are presented in Table 2. The agents employ a
two-layer hidden neural architecture that includes 128 and 64 neurons.
Fig. 6 shows the mean and standard deviation of the rewards obtained
over 10 training sessions for each agent when only evaluative feedback
is provided against instances where both evaluative and corrective
feedback are used.

Examining the SAC curves, in cases relying solely on evaluative
feedback, the learning curve stabilized at approximately 120,000 time
steps, and the algorithm converged to a local minimum. However,
the integration of corrective feedback resulted in the stabilization of
the curve occurring approximately 60,000 time steps. This sample
efficiency improvement was also evident in the DDPG curves, where,
with evaluative feedback alone, the learning curve stabilized at ap-
proximately 80,000 time steps and converged to a local minimum.

Knowledge-Based Systems 309 (2025) 112870 

9 



Í. Elguea-Aguinaco et al.

Fig. 6. Mean reward and standard deviation of the rewards perceived by SAC, DDPG, and PPO during the HRI disassembly task simulation training.

Table 2
Choice of hyperparameters for actor-critic agents.

Agent Parameters Value

SAC Memory size
Batch size
Discount factor 𝛾
Learning rate 𝜂
Initial entropy value

15 625
4096
0.99
5 ⋅ 10−4

1

DDPG Memory size
Batch size
Discount factor 𝛾
Learning rate 𝜂
Noise type
𝜃
𝜎
Base scale

15 625
4096
0.99
5 ⋅ 10−4

Ornstein–Uhlenbeck
0.15
0.2
0.1

PPO Rollouts
Learning epochs
𝜖
Mini batches
Discount factor 𝛾
Learning rate 𝜂

2048
16
0.2
512
0.99
5 ⋅ 10−4

By integrating corrective feedback, the learning process stabilized at
approximately 40,000 time steps, indicating a notable acceleration of
convergence by approximately 50% for both actor-critic agents. In
addition, the RL agents demonstrated enhanced performance, obtaining
a higher mean reward value, and achieving better results when exe-
cuting the entire task. Finally, for the PPO agent, the learning process
continued for 200,000 time steps when only the evaluative feedback
was used. In contrast, with the combination of evaluative and corrective
feedback, the curve stabilized at approximately 60,000 time steps.

Nonetheless, the noise evident in the SAC learning curve when
corrective feedback was integrated is worth highlighting compared
with the more stable curve observed with evaluative feedback alone.
These fluctuations may stem from the corrective feedback provided by
ULISES. By providing a predefined and empirically selected numerical
value as corrective action for both components within the agent’s action
space, there exists a possibility that these actions may not always be
optimally suited to the states they are intended for. Consequently,
although these recommendations may enhance the sample efficiency,
they can disrupt the convergence of the algorithm. This observation
prompts us to consider how ULISES provides corrective actions. One
possible approach involves the artificial supervisor becoming aware
of this scenario and gradually reducing its corrective intervention as
the RL agent acquires more knowledge. Alternatively, as mentioned
in Section 4.4, another viable option could involve the supervisor
imparting directional cues rather than precise numerical values.

Despite these considerations, 10 evaluations were conducted with
each agent using the best neural weights derived from the best learning
curves. Each evaluation included 200,000 time steps. The average

success rates of 97.3%, 86.5% and 94.8% were achieved for SAC,
DDPG, and PPO, respectively.

5.5. Experiments on a real system

The performance of the learned policy was evaluated using a KUKA
LBR Iiwa robot (Fig. 7). The framework [51] was used to deploy the
RL control policy in a real-world setting. To ensure safe disassembly
and provide safety measures against potential collisions with humans, a
compliance controller operating in the end-effector position space was
implemented. If the threshold of 𝐹𝑚𝑎𝑥 = 3 N was exceeded, the robot
entered a safety stop.

Evaluations were conducted using SAC weights because they
demonstrated the best performance in the simulation. For this purpose,
two pairs of disassembly parts, each with tolerances of 10−3 and
5 × 10−4 m, influencing the friction during the extraction, were used.
Twenty extraction attempts were performed for each type of part under
varying conditions. These conditions included the worker’s position
(left, right, or transitioning between sides) and nature of the interaction
between the worker and the robot (cooperative, collaborative, or
transitioning between these modes). Table 3 presents the results of
these evaluations for each part and condition. The policy achieved a
disassembly success rate of 91.88%. However, the task success rate
decreased slightly during transitions between the two HRI modes or
when moving from one side to the other. In cases of significant human
movement, the skeleton tracking system occasionally misidentifies the
robot’s joints as those of a human. This misidentification can lead to a
policy of executing motions based on the robot’s location rather than a
person’s. To address this issue, a more sophisticated monitoring system
should be implemented. The simulation and experimental results are
available at https://youtu.be/94Hnh0PluxU.

Despite these minor limitations, the results demonstrate the ef-
fectiveness of the proposed framework. Compared with our previous
study [45], in which the robot performed only peg extraction coop-
eratively, the success rate remained largely unaffected and, in some
instances, even improved. For example, with the 10−3 m tolerance
part, the success rate in our previous study was 95%, whereas in this
case, it was 93.75%. However, as the tolerance decreased, such as with
the 5 × 10−4 m part, the previous study showed a decline to 84.5%,
whereas in the current study, the success rate remained higher at 90%.
In the previous study, the reward function was a complex mathematical
expression; however, these findings suggest that using simpler binary
rewards, combined with corrective feedback, can improve sample effi-
ciency and agent performance. Nonetheless, these tests are still far from
simulating the complexity of a real disassembly plant, so further task
complexity is required before transitioning to production environments.

6. Discussion

The research and application of RL in robotics have experienced
exponential growth in recent years; however, its full potential remains
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Fig. 7. Real-world experiments showcasing cooperative and collaborative subtasks: (a) subtask ‘‘Wait ’’; (b) subtask ‘‘Extract ’’ working cooperatively; (c) subtask ‘‘Place’’ working
cooperatively; (d) subtask ‘‘Extract ’’ working collaboratively; (e) subtask ‘‘Place’’ working collaboratively.

Table 3
Evaluations on a real system involving the disassembly of parts with varying tolerances, performed cooperatively and collaboratively, with the worker positioned to either the left
or right of the robot or moving between both sides.

Tolerance
between parts

Coop. Col. Coop.- Col. Col.- Coop.

L R L-R R-L L R L-R R-L L R L R

10−3 m (19/20)
95%

(20/20)
100%

(18/20)
90%

(18/20)
90%

(20/20)
100%

(20/20)
100%

(19/20)
95%

(19/20)
95%

(18/20)
90%

(19/20)
95%

(17/20)
85%

(18/20)
95%

5 × 10−4 m (19/20)
95%

(18/20)
90%

(18/20)
90%

(17/20)
85%

(20/20)
100%

(20/20)
100%

(16/20)
80%

(19/20)
95%

(17/20)
85%

(18/20)
90%

(17/20)
85%

(17/20)
85%

Interaction level: Cooperative (Coop.), Collaborative (Col.). Worker location relative to the robot: left side (L), right side (R), from left to right side (L-R), from right to left
side (R-L).

largely untapped. Much of the current research in this field has fo-
cused on basic manipulation or motion planning tasks, which are not
feasible in complex industrial environments. To equip robots with the
capabilities required for such contexts, it is necessary to enable them to
chain together various subtasks effectively, thereby enabling the perfor-
mance of more intricate operations. Achieving this objective hinges on
exploring two active lines of research in this machine learning control
technique, namely reward shaping and sample efficiency [9,10].

In this regard, interactive RL is a promising alternative. This
paradigm integrates an external artificial or human supervisor into
the learning loop of RL agents. In particular, in scenarios involving
continuous action-space pairs, current studies tend to adopt human-in-
the-loop approaches. Humans leverage their cognitive capabilities and
the models generated from their life experiences to provide evaluative
and corrective feedback as appropriate. However, prolonged learn-
ing sessions that span hours render human supervision impractical.
Consequently, this study proposes a shift away from human-in-the-
loop setups to employing an artificial supervisor using constraint-based
modeling techniques. This approach offers greater flexibility in terms
of encapsulating human cognition than conventional RL, which relies
on logical constraints. By abstracting complex tasks into manageable
subtasks and contexts, the artificial supervisor facilitates the specifica-
tion of rewards, penalties, and corrective actions for the RL agent in
uncertain environments.

The proposed interactive RL framework employs an adapted version
of the ULISES framework, which was initially designed for tutoring
and testing tasks. Comprising three hierarchical levels (observation,
interpretation, and diagnosis), ULISES provides human-like reason-
ing capabilities: observing the environment, interpreting events, and
providing rewards or penalties based on evaluations. The proposed
framework allows any instructional designer to define rewards without
programming knowledge. To validate the framework’s efficacy, a proce-
dural disassembly task (segmented into subtasks) within an HRI work

environment was tested. The artificial supervisor provided evaluative
and corrective feedback to improve the sample efficiency and increase
the mean cumulative task reward by approximately 50%. Despite the
promising outcomes, this study identified several avenues for future
research.

The first area of future research will involve exploring the frame-
work’s efficacy in more intricate tasks comprising more subtasks. It
would be advisable to analyze how a policy’s learning of initial subtasks
may impact its ability to master subsequent tasks and vice versa. Of
particular interest is the potential influence of the neural network’s
memorization capacity on task performance. In this sense, considering
approaches that incorporate recurrent neural networks or applying the
proposed framework within HRL could offer insights into effectively
addressing these challenges.

Another avenue for future exploration lies in deepening the ability
to model observations using fuzzy logic. Although this study presents a
basic example, we believe that such modeling can be extended to com-
plex environments in which the robot’s trajectories are not intuitively
clear. An example scenario is the disassembly of a real magnetic gasket.
These gaskets usually have varying geometries and adhesion forces. In
these cases, defining a mathematical reward function to guide the robot
learning may not be a straightforward or interpretive task.

Lastly, in continuous state action pair tasks, a shift toward providing
hints rather than specific corrective actions may be advantageous.
Although the proposed framework sends hints, such as +1, −1, or 0,
representing action augmentation, reduction, or further exploration by
the agent, respectively, the current setup only sends specific prede-
fined corrective actions. These predefined actions, albeit suboptimal,
contribute to the noise observed in the curve depicted in Fig. 6. To
allow the RL agent to incorporate these hints, gradient updates are re-
quired to adjust the agent’s policy parameters. Such an implementation
holds significant value, especially considering that human supervisors
typically focus on individual actions [37]. In contrast, ULISES possesses
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the capability to can provide corrective trends for all parameters con-
stituting the agent’s action space, thus offering a more comprehensive
guidance and learning approach.

7. Conclusions

This paper proposes a framework for automated interactive RL that
replaces the need for human-in-the-loop approaches with an artificial
supervisor that features constraint-based modeling techniques. The
supervisor provides evaluative and corrective feedback to the RL agent
during procedural task learning. Unlike conventional RL, which relies
primarily on logical constraints, constraint-based modeling techniques
offer enhanced flexibility in representing human knowledge about a
task. This includes temporal constraints and considerations of proper-
ties represented by fuzzy logic. For its implementation, we leveraged
and adapted the ULISES tool, which was previously used in tutoring and
testing tasks. ULISES emulates human cognitive processes across three
principal stages: observing the environment, interpreting ongoing activ-
ities, and assessing their correctness within a given context. Although
the evaluation of this framework demonstrates promising results in
procedural tasks that are divisible into subtasks, further research efforts
are required to assess its potential in even more complex and realistic
scenarios.
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Appendix A. Interpretation model

This section gathers all the steps and situations, along with their
corresponding constraints, as defined in the Interpretation Model.

Appendix B. Task model

This section presents all the solutions defined for each step and its
corresponding situation in the HRI disassembly task.
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Table A.4
Definition of steps and situations that compose the HRI disassembly interpretation model.

Step(s) Observation(s) Instance(s) Constraint(s)

Wait Human h General:
h.TFMinEuclideanDistanceX < 0.0

Description: As a safety measure, the human remains positioned behind the robot while the part is being grasped. Subsequently, upon grasping the part, the robot is required
to wait for the worker to position him/herself adjacent to the robot. The ‘‘Wait ’’ step stays active while the worker remains behind the robot. Assuming the robot’s location
at the coordinate origin, the human is deemed to be positioned behind the serial manipulator if the value of his/her TF closest to the robot’s TCP in the 𝑥 component is less
than 0.

Extract Robot r General: r.Displacement ≥ −0.11
AND r.Displacement ≤ 0.11

Description: The base, into which the peg is inserted, spans a length of 0.2 m. Given that the peg is centrally aligned and grasped by the robot, a displacement within the
range of −0.1 to 0.1 m is necessary for the peg’s extraction. However, to enable ULISES to diagnose each action at every time step, the step must remain consistently active.
On occasion, an action executed by the RL agent may result in the robot concluding the episode outside these defined limits. Consequently, it becomes necessary to slightly
extend these limits within the Interpretation Model to ensure the step remains active.

Place Robot r Start : r.Displacement ≤ −0.1
OR r.Displacement ≥ 0.1,
General: r.TargetEuclideanDistance >
0.01

Description: In contrast to the ‘‘Wait ’’ and ‘‘Extract ’’ steps, the ‘‘Place’’ step is subject to an initial condition that initiates its activation. Precisely, this step becomes active
upon the completion of the extraction process and persists in this state while the Euclidean distance between the robot TCP and the target point is above 0.01 m.

Situation(s) Observation(s) Instance(s) Constraint(s)

Human
Behind Robot

Human h General:
h.TFMinEuclideanDistanceX < 0.0

Description: The ‘‘Human Behind Robot ’’ situation remains active as long as the human location stays below 0. Assuming the robot is located at the origin of the coordinate
system, during this period, the 𝑥 component of the TF of the human nearest to the robot’s TCP would exhibit a negative value.

Cooperative
Human Left

Robot
Human

r
h

Start :
h.TFMinEuclideanDistanceX > 0.0,
General: r.HRIMode == 0.0 AND
h.TFMinEuclideanDistanceY > 0.0,
End: r.Displacement ≤ −0.11 OR
r.Displacement ≥ 0.11

Description: The variable HRIMode is equal to 0.0, so the robot works cooperatively. The activation of the ‘‘Cooperative Human Left ’’ situation occurs when the 𝑦 component
of the TF nearest to the robot’s TCP registers a positive value, indicating its location to the left of the robot.

(continued on next page)
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Table A.4 (continued).
Step(s) Observation(s) Instance(s) Constraint(s)

Cooperative
Human Right

Robot
Human

r
h

Start :
h.TFMinEuclideanDistanceX > 0.0,
General: r.HRIMode == 0.0 AND
h.TFMinEuclideanDistanceY < 0.0,
End: r.Displacement ≤ −0.11
OR r.Displacement ≥ 0.11

Description: The activation of the ‘‘Cooperative Human Right ’’ situation occurs when HRIMode is equal to 0.0, and the 𝑦 component of the TF nearest to the robot’s TCP
registers a negative value, indicating its location to the right of the robot.

Collaborative
Human Left

Robot
Human

r
h

Start :
h.TFMinEuclideanDistanceX > 0.0,
General: r.HRIMode == 1.0 AND
h.TFMinEuclideanDistanceY > 0.0

Description: The variable HRIMode is equal to 1.0, so the robot is working collaboratively. On the other hand, the 𝑦 component of the TF closest to the robot’s TCP registers
a positive value, indicating that the closest part of the human to the robot’s TCP is to its left.

Collaborative
Human Right

Robot
Human

r
h

Start :
h.TFMinEuclideanDistanceX > 0.0,
General: r.HRIMode == 1.0 AND
h.TFMinEuclideanDistanceY < 0.0

Description: The activation of the ‘‘Collaborative Human Right ’’ situation occurs when HRIMode is equal to 1.0, and the 𝑦 component of the TF nearest to the robot’s TCP
registers a positive value.

Disassembled
Cooperative
Human Left

Robot
Human

r
h

Start :
r.TCPPositionY ≤ −0.1,
General: r.HRIMode == 0.0 AND
h.TFMinEuclideanDistanceY > 0.0

Description: The ‘‘Disassembled Cooperative Human Left ’’ situation becomes active once the part is disassembled to the opposite side of the human and remains under this
status while the HRIMode equals 0.0 and the worker is positioned to the left of the robot.

Disassembled
Cooperative
Human Right

Robot
Human

r
h

Start :
r.TCPPositionY ≥ 0.1,
General: r.HRIMode == 0.0 AND
h.TFMinEuclideanDistanceY < 0.0

Description: The ‘‘Disassembled Cooperative Human Right ’’ situation becomes active once the part is disassembled to the opposite side of the human and remains under this
status while the HRIMode equals 0.0 and the worker is positioned to the right of the robot.

Table B.5
Definition of the HRI disassembly task model.

Situation:
Step

Condition(s) Observation(s) Instance(s) Constraint(s)

Human
Behind
Robot: Wait

Static Robot r r.Velocity == 0.0

Description: While the human maintains a position behind the robot, the robot is required to wait. If the robot refrains from movement, it receives a reward of +1; however,
if it exhibits any non-zero speed, it incurs a penalty of −2.

Cooperative
Human
Left: Extract

TCP
direction

Robot r r.TCPPositionY <
r.TCPPositionPreviousY

Description: In cooperative mode, the robot is tasked with extracting the peg to the opposite side of the human, positioned to its left. The extraction direction of the part is
deemed correct if the value of the robot’s TCP in the 𝑦 component is lower than that in its previous time step. If the TCP value at the current time step is lower than that at
the previous time step, the supervisor assigns a positive reward of +1. Conversely, a penalty of −2 is provided otherwise.

Cooperative
Human
Left: Extract

On time *STEPS::Extract e Duration(e) < 500

Description: One of the objectives of the task is to expedite the extraction process. To achieve this, each episode is allotted 500 time steps. Failure to complete the extraction
within this timeframe incurs a penalty of −50 from the supervisor, prompting an automatic restart of the episode. *Note: The STEPS prefix indicates that the instance is a
step, not an observation.

Cooperative
Human
Left: Extract

Safety
distance

Human h h.MinEuclideanDistance
> 0.15

Description: In HRI settings, ensuring human safety takes precedence. When the robot operates in ‘‘cooperative’’ mode, the extraction must proceed toward the opposite side
of the worker to prevent potential collisions. Consequently, if the extraction direction is incorrect and the distance between the robot’s TCP and the closest part of the
human’s body falls below 0.15 m, the supervisor issues a negative reward of −50, prompting the automatic restart of the episode.

Cooperative
Human
Left: Extract

Incorrect
disassembly

Robot r r.Displacement < 0.1

Description: In the ‘‘cooperative’’ mode, if the extraction is carried out towards the side of the human, it is deemed an erroneous disassembly. In such cases, the supervisor
issues a negative reward of −50, and the episode is restarted.

(continued on next page)
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Table B.5 (continued).
Situation:
Step

Condition(s) Observation(s) Instance(s) Constraint(s)

Cooperative
Human
Left: Extract

Correct
disassembly

Robot
STEPS::Extract
STEPS::Place

r
e
p

r.Displacement ≥ −0.1
AND e [overlaps] p

Description: In the ‘‘cooperative’’ mode, if the extraction is performed towards the opposite side of the human, it is considered a correct disassembly. In such instances, the
supervisor provides a reward of +20, and the episode continues with the ‘‘Place’’ step.

Cooperative
Human
Right: Extract

TCP
direction

Robot r r.TCPPositionY >
r.TCPPositionPreviousY

Description: In the ‘‘cooperative’’ mode with the human positioned on the right, the extraction direction is deemed correct if the 𝑦 component of the robot’s TCP in the
current time step is greater than that of the previous time step. If this happens, the supervisor issues a reward of +1. Conversely, if the condition is not met, a penalty of −2
is provided.

Cooperative
Human
Right: Extract

On time STEPS::
Extract

e Duration(e) < 500

Description: Refer to condition ‘‘On time’’ from ‘‘Cooperative Human Left: Extract ’’.
Cooperative
Human
Right: Extract

Safety
distance

Human h h.MinEuclideanDistance
> 0.15

Description: Refer to condition ‘‘Safety distance’’ from ‘‘Cooperative Human Left: Extract ’’.
Cooperative
Human
Right: Extract

Incorrect
disassembly

Robot r r.Displacement > −0.1

Description: Refer to condition ‘‘Incorrect disassembly ’’ from ‘‘Cooperative Human Left: Extract ’’.
Situation:
Step

Condition(s) Observation(s) Instance(s) Constraint(s)

Cooperative
Human
Right: Extract

Correct
disassembly

Robot
STEPS::Extract
STEPS::Place

r
e
p

r.Displacement ≥ 0.1
AND e [overlaps] p

Description: Refer to condition ‘‘Correct disassembly ’’ from ‘‘Cooperative Human Left: Extract ’’.
Collaborative
Human
Left: Extract

TCP
direction

Robot r TCPPositionY >
r.TCPPositionPreviousY

Description: In ‘‘collaborative’’ mode, the robot is tasked with extracting the peg to the human’s side, located to its left. The extraction direction of the part is deemed correct
if the value of the robot’s TCP in the 𝑦 component is greater than that in its previous time step. If the TCP value at the current time step is higher than that at the previous
time step, the supervisor assigns a positive reward of +1. Conversely, a penalty of −2 is provided otherwise.

Collaborative
Human
Left: Extract

On time STEPS::Extract e Duration(e) < 500

Description: Refer to condition ‘‘On time’’ from ‘‘Cooperative Human Left: Extract ’’.
Collaborative
Human
Left: Extract

Incorrect
disassembly

Robot r r.Displacement > −0.1

Description: In the ‘‘collaborative’’ mode, if the extraction is carried out to the opposite side of the human, it is deemed an erroneous disassembly. In such cases, the
supervisor issues a negative reward of −50, and the episode is restarted.

Collaborative
Human
Left: Extract

Correct
disassembly

Robot r r.Displacement ≥ 0.1

Description: In the ‘‘cooperative’’ mode, if the extraction is performed towards the side of the human, it is considered a correct disassembly. In such instances, the supervisor
provides a reward of +20, and the episode is restarted.

Collaborative
Human
Right: Extract

TCP
direction

Robot r r.TCPPositionY <
r.TCPPositionPreviousY

Description: In the ‘‘collaborative’’ mode with the human positioned on the right, the extraction direction is deemed correct if the 𝑦 component of the robot’s TCP in the
current time step is lower than that of the previous time step. If this happens, the supervisor issues a reward of +1. Conversely, if the condition is not met, a penalty of −2
is provided.

Collaborative
Human
Right: Extract

On time STEPS::Extract e Duration(e) < 500

Description: Refer to condition ‘‘On time’’ from ‘‘Cooperative Human Left: Extract ’’.
(continued on next page)
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Table B.5 (continued).
Situation:
Step

Condition(s) Observation(s) Instance(s) Constraint(s)

Collaborative
Human
Right: Extract

Incorrect
disassembly

Robot r r.Displacement < 0.1

Description: Refer to condition ‘‘Incorrect disassembly ’’ from ‘‘Collaborative Human Left: Extract ’’.
Collaborative
Human
Right: Extract

Correct
disassembly

Robot r r.Displacement ≤ −0.1

Description: Refer to ‘‘Correct disassembly ’’ from ‘‘Collaborative Human Left: Extract ’’.
Disassembled
Cooperative
Human Left:
Place

Approach *FUZZY::
RobotTCP

rtcp rtcp.Arc(>50.0, <0.1, <0.2).
Fuzzy(≥0.0, ≥0.0, ≥0.0,
≥0.0, ≥0.0, ≥0.0, ≥0.0,
≥0.0, ≥0.0, ≥50.0 AND
<100.0, ≥0.0, ≥0.0, ≥0.0,
≥0.0, ≥0.0, ≥0.0, ≥0.0,
≥0.0, ≥0.0, ≥0.0, ≥0.0,
≥0.0, ≥0.0, ≥0.0, ≥0.0,
≥0.0)

Description: After the peg is removed, the robot’s TCP will be approximately at coordinates [0.65, −0.1]. The target location for placing the peg is [0.55, −0.25]. The
Arc(>50.0, <0.1, <0.2) property specifies that the angle should exceed 50 degrees, the radius should be less than 0.1 m, and the linear distance should be less than 0.2 m.
Additionally, the fuzzy membership degree should primarily correspond to the tenth of the twenty-six classes into which the motion space is divided, corresponding to <−1,
−1, 0>. If the trajectory of the robot’s TCP during the ‘‘Place’’ step meets these conditions, the supervisor provides a reward of +1; otherwise, a penalty of −2 is given.
*Note: The FUZZY prefix indicates that the observation is of fuzzy type.

Situation:
Step

Condition(s) Observation(s) Instance(s) Constraint(s)

Disassembled
Cooperative
Human Left:
Place

On time STEPS::Place p Duration(p) < 500

Description: Refer to condition ‘‘On time’’ from ‘‘Cooperative Human Left: Extract ’’.
Disassembled
Cooperative
Human Left:
Place

Reached Robot r r.TargetEuclideanDistance
≤ 0.02

Description: The agent is considered to have reached the target point when the Euclidean distance between the TCP and the target is 0.02 m or less. Upon reaching this
criterion, the supervisor issues a reward of +20 as an acknowledgment of the achievement.

Disassembled
Cooperative
Human Right:
Place

Approach FUZZY::
RobotTCP

rtcp rtcp.Arc(>300.0, <0.1, <0.2).
Fuzzy(≥0.0, ≥0.0, ≥0.0,
≥0.0, ≥0.0, ≥0.0, ≥0.0,
≥50.0 AND <100.0, ≥0.0,
≥0.0, ≥0.0, ≥0.0, ≥0.0,
≥0.0, ≥0.0, ≥0.0, ≥0.0,
≥0.0, ≥0.0, ≥0.0, ≥0.0,
≥0.0, ≥0.0, ≥0.0, ≥0.0,
≥0.0)

Description: After the peg is removed, the robot’s TCP will be approximately at coordinates [0.65, 0.1]. The target location for placing the peg is [0.55, 0.25]. The
Arc(>300.0, <0.1, <0.2) property specifies that the angle should exceed 300◦, the radius should be less than 0.1 m, and the linear distance should be less than 0.2 m.
Additionally, the fuzzy membership degree should primarily correspond to the eighth of the twenty-six classes into which the motion space is divided, corresponding to <-1,
1, 0>. If the trajectory of the robot’s TCP during the ‘‘Place’’ step meets these conditions, the supervisor provides a reward of +1; otherwise, a penalty of −2 is given.

Disassembled
Cooperative
Human Right:
Place

On time STEPS::Place p Duration(p) < 500

Description: Refer to condition ‘‘On time’’ from ‘‘Cooperative Human Left: Extract ’’.
Disassembled
Cooperative
Human Right:
Place

Reached Robot r r.TargetEuclideanDistance
≤ 0.02

Description: Refer to condition ‘‘Reached’’ from ‘‘Disassembled Cooperative Human Left: Place’’.
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