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Reliability-Latency-Rate Tradeoff in Low-Latency
Communications with Finite-Blocklength Coding

Lintao Li, Graduate Student Member, IEEE, Wei Chen, Senior Member, IEEE,
Petar Popovski, Fellow, IEEE, and Khaled B. Letaief, Fellow, IEEE

Abstract—Low-latency communication plays an increasingly
important role in delay-sensitive applications by ensuring the
real-time information exchange. However, due to the constraint
on the maximum instantaneous power, guaranteeing bounded
latency is challenging. In this paper, we investigate the reliability-
latency-rate tradeoff in low-latency communication systems with
finite-blocklength coding (FBC). Specifically, we are interested
in the fundamental tradeoff between error probability, delay-
violation probability (DVP), and service rate. Based on the
effective capacity (EC), we present the gain-conservation equa-
tions to characterize the reliability-latency-rate tradeoffs in low-
latency communication systems. In particular, we investigate
the low-latency transmissions over an additive white Gaussian
noise (AWGN) channel and a Nakagami-m fading channel. By
defining the service rate gain, reliability gain, and real-time gain,
we conduct an asymptotic analysis to reveal the fundamental
reliability-latency-rate tradeoff of ultra-reliable and low-latency
communications in the high signal-to-noise-ratio (SNR) regime.
To analytically evaluate and optimize the quality-of-service-
constrained throughput of low-latency communication systems
adopting FBC, an EC-approximation method is conceived to
derive the closed-form expression of that throughput. Our results
may offer some insights into the efficient scheduling of low-
latency wireless communications, in which statistical latency and
reliability metrics are crucial.

Index Terms—Low-latency communications, reliability-
latency-rate tradeoff, finite-blocklength coding, effective
capacity, delay-violation probability

I. INTRODUCTION

With the tremendous development of communication tech-
nologies, the flow of wireless data transmission has experi-
enced an exponential growth in recent years, supported by a
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higher transmission rate and ubiquitous connectivity. Under
this trend, multiple delay-sensitive applications have garnered
significant attention in the fifth-generation (5G) communi-
cation networks. Furthermore, ongoing research on the six-
generation (6G) communication networks indicates that there
will be more stringent requirements for delay and reliability
in 6G applications [1]. As one of the essential requirements
for mission-critical and emerging applications in 5G and 6G,
low-latency communication has been a popular topic under
active consideration in the research community.

In the realm of low-latency communications, ultra-reliable
and low-latency communications (URLLC) represents a typi-
cal application scenario. URLLC aims to achieve an ultra-low
and bounded delay to support mission-critical applications.
For the next-generation URLLC, the latency requirement will
be more stringent [2]. Additionally, providing real-time user
experiences requires communication latency to be tightly con-
trolled or deterministic [3]. However, due to the fading nature
of wireless channels, ensuring a bounded delay is usually
challenging [4], [5]. Furthermore, limited maximum power
brings more difficulty of achieving a bounded delay [6]. As a
result, statistical quality-of-service (QoS) metrics have become
the prevalent choice for assessing reliability and latency in
URLLC [7]. Statistical QoS is typically characterized by the
queue length or delay thresholds and the associated queue
length or delay violation probability [8]. As mentioned in [9],
focusing solely on average-based metrics without considering
the tail behavior of wireless systems makes it difficult to satisfy
the low-latency and reliability requirements. Several studies
have explored the statistical delay in closed-loop control [10]
and edge computing systems [11]. Therefore, incorporating
statistical QoS analysis into URLLC and other low-latency
systems is essential for characterizing performance limits and
optimizing QoS metrics accordingly.

To analyze the QoS of communication systems, the first step
is to formulate a proper model, which takes QoS metrics into
account. In low-latency communications, the primary concern
lies in the probabilities of queue length and delay exceeding
certain thresholds [9], both of which are critical indicators
of QoS performance. To this end, the concepts of effective
bandwidth (EB) and effective capacity (EC) are utilized to
perform asymptotic QoS analysis via a link-layer queuing
model. With the help of EB and EC, the queue-length-violation
probability (QVP) and delay-violation probability (DVP) can
be expressed concisely. EB refers to the minimum constant ser-
vice rate required for a given arrival process to meet the QoS
constraints [12]. EC is the dual concept of EB, representing
the maximum constant source rate that can be supported by the
given service process to meet the QoS requirement [13]. Based
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on EB, EC, and Shannon’s formula, several studies focused
on the performance analysis and resource allocation designs
under statistical QoS constraints in various communication
systems with different channel and arrival models, including
independent Rayleigh fading channel [14], time-correlated
Rayleigh fading channel [15], and Nakagami-m channel [16].
Specifically, the high-SNR slope of EC was analyzed in [14]
under the assumption of infinite blocklength.

With a proper analysis model established, the next step is to
reveal the relationship between rate and reliability in the finite
blocklength (FBL) regime. A commonly quoted requirement
for 5G is achieving a latency of less than 1 ms and a packet
loss probability no greater than 10−5 [7]. To satisfy these
requirements, the assumption that the blocklength shall tend
to infinity has to be revised given the limited bandwidth.
In particular, Shannon’s formula, which is asymptotically
accurate with the infinite blocklength, is not accurate enough
in the FBL regime. Thus, the precise approximation of the
capacity with finite-blocklength coding (FBC) is expected to
play a central role in addressing this problem. A milestone
work [17] analyzed the maximum coding rate in the FBL
regime. The normal approximation was also proposed in [17]
to estimate the maximum coding rate for the AWGN channel
in the FBL regime. This conclusion inspired further studies
into the analysis of the coding rate for various communication
scenarios in the FBL regime, including Gilbert-Elliott channels
[18], quasi-static multiple-antenna fading channels [19], and
coherent block fading channels [20]. Additionally, Lancho,
Koch, and Durisi proposed a high-SNR approximation of the
maximum coding rate in the FBL regime based on unitary
space-time modulation [21]. Under the FBL assumption, the
properties of EC differ from those derived under the infinite
blocklength assumption.

Combining the FBC analysis with the EC-based model,
many studies tried to characterize and optimize the perfor-
mance of low-latency communication systems in terms of
reliability, latency, and rate. There are mainly two lines of
work on this topic. The first line of work utilized EC to
derive the QVP and DVP of the low-latency systems and
then optimized the system performance. The authors of [22]
validated that the DVP derived from EC serves as the upper
bound of the actual DVP for certain types of arrival processes,
even with small delay thresholds. This finding highlighted
the potential applicability of the EC-based model in URLLC
systems. Building on this insight, a joint uplink and downlink
resource configuration problem was formulated in [23], aiming
to enhance the spectrum usage efficiency while maintaining
stringent reliability and latency requirements. In contrast to
these works, another line of research focused on maximizing
EC to improve QoS-constrained throughput in the FBL regime.
EC maximization has been explored in various kinds of fading
channels, including Rayleigh [24], [25], Rician [26], and
Nakagami-m [27], each considering different constraints and
conditions in the FBL regime. In [28], the author calculated
the throughput for a simple automatic repeat request (ARQ)
mechanism in the FBL regime, which was subsequently ap-
plied in [29]. Despite the growing body of research using EC
and FBC for QoS optimization in low-latency systems, the

TABLE I
MAIN NOTATION

Symbol Definition
|h[n]|2 channel power gain

T the number of time slots in a frame
f(·) distribution of |h[n]|2
m, Ω parameters of Nakagami-m fading
γ transmitted SNR
ϵ error probability
N blocklength

Rϵ
N [n] maximum coding rate

R̃ϵ
N [n] normal approximation

G(·, ·) error term of normal approximation
θ QoS exponent

αA(θ) effective bandwidth
αS(θ) effective capacity
Λ(θ) normalized effective capacity
χ queue-length-violation probability
δ delay-violation probability

Ψ(γ) function of γ, lim
γ→+∞

Ψ(γ) = +∞

ϱ revised QoS exponent
s∞ high-SNR slope of normalize EC
ζ service-rate gain
ϖ reliability gain
τ real-time gain

Ξ(·) power allocation scheme

theoretical performance limit of EC in the FBL regime remains
an open problem. Additionally, the presence of the channel
dispersion term in the FBC rate complicates the derivation of
an analytical expression for EC, posing additional challenges
in assessing QoS-constrained throughput and further refining
EC optimization.

As mentioned above, although many works have sought to
optimize the reliability, latency, and service rate in low-latency
systems, there remains a gap in the comprehensive analysis
of the fundamental tradeoff, namely the reliability-latency-
rate tradeoff, in the FBL regime. In our previous work [30],
the gain-conservation equation was derived to characterize
the relationships between the reliability gain, real-time gain,
and service-rate gain. However, [30] only considered bounded
random arrivals, which is equivalent to the deterministic arrival
under the high-SNR assumption. Moreover, the conclusions
in [30] did not account for the influence of high SNR on
the FBC rate. Therefore, there is still a need for a rigorous
analysis of the reliability-latency-rate tradeoff in low-latency
communication systems, particularly with FBC and random
arrivals.

In this paper, we characterize the fundamental tradeoff
between reliability, latency, and rate in low-latency systems
with FBC. Specifically, we begin by analyzing the high-SNR
slope of EC in the FBL regime. We consider two classical
scenarios including transmission over an AWGN channel and
a Nakagami-m fading channel. First, we consider the case in
which the error probability is fixed to determine the service-
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Fig. 1. System Model.

rate gain, defined as the derivative of EC with respect to the
logarithm of the SNR. Based on this result, we further explore
the case in which the error probability is a function of SNR.
The reliability gain and real-time gain are then defined as
the derivatives of logarithms of error probability and DVP
with respect to the logarithm of the SNR. Subsequently, we
derive the revised gain-conservation equations for both AWGN
and fading channels. Additionally, a detailed discussion of
the tradeoff between the error probability and latency is
provided for the AWGN channel. For efficiently evaluating
EC in the FBL regime, we propose a Laplace’s-method-
based EC approximation approach to derive an analytical
expression for EC. Based on the discussion on the fixed-power
allocation scheme, we further extend our analysis to consider
the EC approximation for certain kinds of channel-gain-based
power allocation schemes, with a generalization to systems
incorporating the simple retransmission mechanism.

The rest of this paper is organized as follows. Section II-
A presents the system model, including the physical layer
model and network layer model. Section II-B introduces the
main results of this paper, which are summarized by four
main theorems. In Section III A-C, we provide conclusions
and corresponding analysis for the revised gain-conservation
equations. The tradeoff between the error probability and
latency in the AWGN channel is discussed in Section III-D.
Further, the EC approximation approach is proposed in Section
IV. Numerical results are presented in Section V. Finally, the
conclusion is given in Section VI.

Throughout this paper, u′(x) denotes the first-order deriva-
tive of u(x) for x, while u′′(x) denotes the second-order
derivative. N+ denotes the set of positive natural numbers.
EX{X} is the expectation of random variable X , while
VarX{X} is its variance. For X[n], we omit index n in
the subscripts. e denotes Euler’s number. IN denotes a N -
dimensional identity matrix. For two random variables X

and Y , Cov(X,Y ) denote the covariance between X and Y .
The Gaussian Q-function is Q(x) = 1√

2π

∫∞
x

e−
t2

2 dt, while
Q−1(·) represents the inverse Gaussian Q-function. Γ(s) =∫∞
0

ts−1e−tdt denote the gamma function. Besides, define
the incomplete gamma function as Γ(s, x) =

∫∞
x

ts−1e−tdt,
and the exponential integral function as Ei(x) = −

∫∞
−x

e−t

t dt.
W (·) denotes the Lambert W function [31]. O(·) is the big-O
notation. For two functions f(x) and g(x), f(x) = O(g(x))
holds if there exists a positive real number M and a real
number x0 such that |f(x)| ≤ M |g(x)| for all x ≥ x0.

II. SYSTEM MODEL AND MAIN RESULTS

In this section, we present a system model with FBC,
focusing on the statistical delay performance. To evaluate the
latency performance, we adopt two key metrics: the queue-
length-violation probability (QVP) and delay-violation proba-
bility (DVP). Specifically, we will first describe the system
model in Section II-A, which includes physical layer and
queueing models. Following that, we will introduce the main
results of this paper, summarized in four main theorems in
Section II-B.

A. System Model

As shown in Fig. 1, we focus on a point-to-point low-
latency communication system. The arrival data generated
by the source will be transmitted through the channel. Time
is divided into time slots with equal length T0 = N

B (in
seconds), where B is the bandwidth of this system and N is the
blocklength. Let Tf (in seconds) denote the frame length. Each
frame contains T =

Tf

T0
time slots, where T ∈ N+.1 Let h[n]

1Note that, for the high-mobility or THz communication system, the
channel coherence time is significantly small [32]. Thus, T = 1 also covers
the low-latency scenarios.
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denote the channel coefficient of time slot n. Assume that the
frame duration is equal to the channel coherence time. Thus,
the channel coefficient remains constant within a frame, i.e.,
h[iT + 1] = h[iT + 2] = · · · = h[(i + 1)T ], i = 0, 1, · · · ,
and varies in an independently and identically distributed
(i.i.d.) manner across different frames. With blocklength N ,
the channel output y[n] at the n-th time slot with the input
x[n] can be expressed as

y[n] = h[n]x[n] + z[n], (1)

where z[n] ∼ CN (0, N0IN ) denotes the AWGN. For the
AWGN channel, x[n] ∈ CN and h[n] = 1. For the fading
channel, the probability density function (p.d.f.) of |h[n]|2 is
denoted by f(x), while its cumulative distribution function
(c.d.f.) is denoted by F (x). For a wireless system in a
Nakagami-m fading channel with E|h|2

{
|h[n]|2

}
= Ω, we

have

f(x) =
(m
Ω

)m xm−1

Γ(m)
e−

m
Ω x, x > 0, m ≥ 0.5. (2)

With Ω = 1 and m = 1, the system is in a Rayleigh fading
channel with E|h|2

{
|h[n]|2

}
= 1. For a wireless system with

spatial or frequency diversity κ in Rayleigh fading channels,
the equivalent channel power gain by adopting maximum-ratio
combining can be represented by setting m = κ and Ω = κ.

Next, we introduce the notion of the channel code. In this
paper, we assume that the channel state information (CSI)
is perfectly known at both the receiver and the transmitter
(CSIRT) through the channel estimation and feedback as
shown in Fig. 1.2 ∆N = B∆T channel uses are utilized for
the channel estimation in each frame, which we neglect in this
paper.3 With CSIRT, the transmitter can adaptively determine
the coding rate. Specifically, with h[n] = h, an (Mh, N, γ, ϵ)
code consists of [19]

1) An encoder fh
tx : {1, · · · ,Mh} × h → CN that maps

the message j ∈ {1, · · · ,Mh} and the channel h to a

2To ensure the perfect CSI assumption, either the average power of
pilot symbols should be high, or the pilot length should be large [33]. In
environments with large coherence bandwidth or coherence time, such as
indoor scenarios with small delay and Doppler spread, a large pilot length is
feasible [34], [35]. Additionally, achieving perfect CSIT requires a feedback
path with high-resolution quantization and sufficient SNR to transmit the
CSI accurately and reliably [35]. In latency-constrained systems, available
time resources for transmission is limited. Therefore, using high SNR or
considering systems with a large coherence bandwidth can help maintain the
perfect CSI assumption while adhering to latency constraints.

3Note that for short packet communication with extremely small block-
length, the assumption that perfect CSIRT may be unrealistic. Moreover,
analyzing the system with extremely small blocklength requires more effort
to derive a precise expression for the coding rate based on [17].

codeword x = fh
tx(j, h) satisfying

∥x[n]∥2

N0
= Nγ. (3)

2) A decoder ghrx : CN × h → {1, · · · ,Mh} satisfying
Mh∑
j=1

Pr
{
ghrx(x, h) ̸= J |J = j

}
Pr{J = j} ≤ ϵ. (4)

The maximum instantaneous coding rate in time slot n,
which is defined as Rϵ

N [n], with (Mh, N, γ, ϵ) code is thus
defined as

Rϵ
N [n] = sup {log2 Mh :

∀(Mh, N, γ, ϵ) code | h[n] = h} .
(5)

The conclusion in [17], [36] showed that for channels with
capacity C, the instantaneous maximum coding rate (in bits
per N channel uses) with γ, N , and ϵ, can be expressed as

Rϵ
N [n] = NC[n]−

√
NV [n]Q−1(ϵ) +

logN

2
+O (1) , (6)

where V [n] is the channel dispersion, and O(1) is the error
term that is bounded for large N and may be related to γ and
ϵ at the receiver [17].4 For the AWGN channel, we omit the
index n. According to [36], the maximum coding rate (in bits
per N channel uses) for a given ϵ, N , and γ for the AWGN
channel is presented in Eq. (7), which is located at the bottom
of this page. In Eq. (7), we call G(N, γ, ϵ) error term function.
For the given γ and ϵ, G(N, γ, ϵ) satisfies [36]

lim
N→+∞

|G(N, γ, ϵ)| < +∞. (8)

Moreover, given the channel gain |h[n]|2, the maximum
coding rate (in bits per N channel uses) with ϵ, N , and
γ for the fading channel is given in Eq. (9), which is pre-
sented at the bottom of this page. For simplicity, we define
R̃ϵ

N [n] = Rϵ
N [n] − G(N, |h[n]|2γ, ϵ), which is called normal

approximation in [17].
To backlog the packets to be transmitted, an infinite-length

buffer is assumed to be available at the transmitter. Let a[n]
denote the size of the arrival data at the beginning of time
slot n. In this paper, we assume that a[n] follows an arbitrary
stochastic distribution with finite expectation and variance in
this system, and a[n] changes in an i.i.d. manner across differ-
ent time slots. The average size of the arrival data is denoted
by µa, while the variance is denoted by σ2

a. Accordingly, the
accumulated number of the arrival data until time slot M can
be expressed as A[M ] =

∑M
n=1 a[n]. Similarly, s[n] is defined

4Note that there is no existing work presenting a general conclusion on
whether the error term is bounded for γ. We will discuss this in Section II-B.

Rϵ
N = N log2(1 + γ)−

√
N

(
1− 1

(1 + γ)2

)
Q−1(ϵ) log2 e+

log2 N

2
+G(N, γ, ϵ). (7)

Rϵ
N [n] = N log2

(
1 + |h[n]|2γ

)
−

√√√√N

(
1− 1

(1 + |h[n]|2γ)2

)
Q−1(ϵ) log2 e+

log2 N

2
+G

(
N, |h[n]|2γ, ϵ

)
. (9)
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as the size of the service data in time slot n. The average size
of the service data is denoted by µs, while the variance of s[n]
is denoted by σ2

s . The accumulated number of service data
until time slot M can be expressed as S[M ] =

∑M
n=1 s[n].

As shown in Fig. 1, we assume a first-in first-out (FIFO)
policy for serving the backlogged packets. Let Q[n] denote
the length of the queue at the end of time slot n. Then, the
queue length is updated as

Q[n] = (Q[n− 1] + a[n]− s[n])
+
, (10)

where (x)+ = max{0, x}.

Remark 1: In this paper, we primarily focus on the analysis
with CSIRT. There are also some existing conclusions on the
coding rate in the FBL regime with CSIR only. A rigorous
analysis of Rϵ

N in the block fading channel with CSIR for
single-input and single-out (SISO) systems was carried out
in [37]. For real transmitted symbols and noise, an analytical
expression for the dispersion was given in Eqs. (27) and (36) of
[37] under the assumption that each symbol experiences i.i.d.
fading. For simplicity, we omit the index n in this remark. The
dispersion for the real block fading channel is given by

Vr = Var|h|2

(
1

2
log2

(
1 + |h|2γ

))
+

log2 e

2

(
1− E2

|h|2

{
1

1 + |h|2γ

})
.

(11)

Moreover, the dispersion for the complex block fading channel
is given by

Vc = Var|h|2
(
log2

(
1 + |h|2γ

))
+

log2 e

(
1− E2

|h|2

{
1

1 + |h|2γ

})
.

(12)

This conclusion was further generalized in [20], which con-
sidered multiple-input and multiple-output (MIMO) systems
with real transmitted symbols and noise. Additionally, they
considered the case in which Td symbols experience the same
fading. According to Eqs. (16) and (17) in [20], the dispersion
V for a SISO system with a real block fading channel is
represented by Eq. (13), which is presented at the bottom of
this page. In Eq. (13), η1, η2, v∗(1, Td) are defined by Eqs.
(14), (15), and (23) of [20], respectively.

A comparison between the results of [37] and [20] reveals
that the findings in [20] serve as a generalization of [37] for
the real block fading channel. When Td = 1, the results align
with each other. However, for more general cases, such as
Td > 1 in SISO systems or MIMO systems with real block
fading channel, [20] offers additional insights.

B. Effective Bandwidth and Capacity

In this subsection, we will introduce effective bandwidth
(EB) and effective capacity (EC). The essence of EB and
EC is to use large deviation theory (LDT) to characterize the
tail distribution of the length and delay violation probability.
By using the Gartner-Ellis theorem [38] and given a length
threshold L, QVP satisfies

lim
L→+∞

ln
(
supm

{
Pr{Q[m] ≥ L}

})
L

= −θ, (14)

where θ is called QoS exponent, indicating the decay rate of
the tail distribution of the queue length. According to [12], the
EB of the arrival process is defined as

αA(θ) = lim
M→+∞

1

θM
lnEA

{
eθA[M ]

}
. (15)

EB of the arrival process indicates the minimum constant
transmission rate for guaranteeing certain QoS requirements
as shown in Eq. (14). Similarly, according to [13], the EC of
the service process is defined as

αS(θ) = lim
M→+∞

− 1

θM
lnES

{
e−θS[M ]

}
. (16)

EC of the service process refers to the maximum constant
arrival rate that meets the QoS requirements shown in Eq.
(14).

With a given γ, s[n] is i.i.d.. Thus, for T ≥ 1, EC is given
by

αS(θ) = lim
M→+∞

− 1

θM
lnES

{
e−θS[M ]

}
= lim

M→+∞
− 1

θT
· T

M
lnEs

{
e−θ

∑M
T

−1

i=0

∑T
j=1 s[iT+j]

}
=− 1

θT
lnE|h|2

{
e−θTs[n]

}
.

(17)
To simplify the derivation, we normalize the EC by the

blocklength, which is also called effective rate [14]. We let
Λ(γ) denote the normalized EC, which is a function of γ
with a given θ. According to Eq. (17), Λ(γ) of the i.i.d. s[n]
is given by

Λ(γ) = − 1

θNT
lnE|h|2

{
e−θTs[n]

}
= − 1

θNT
lnE|h|2

{
e−θNT

Rϵ
N [n]

N

}
bits/s/Hz.

(18)

Note that the effective rate defined in [14] is equal to Λ(γ)
when T = 1. In this paper, we use Λ(γ) to characterize the
service-rate gain of the low-latency communication systems,
which aligns with [14].

Let Q[∞] denote the steady state of Q[n]. If Q[∞] exists,

Vm =TdVar|h|2

(
1

2
log2

(
1 + |h|2γ

))
+

log22 e

2
E|h|2

{
1− 1

(1 + |h|2γ)2

}
+ γ2

(
η1 −

η2
Td

v∗(1, Td)

)
=TdVar|h|2

(
1

2
log2

(
1 + |h|2γ

))
+

log22 e

2

(
1− E2

|h|2

{
1

1 + |h|2γ

})
.

(13)
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QVP is denoted by χ = Pr{Q[∞] ≥ L}. With a large
threshold L (in bits), χ can be approximated according to Eq.
(14) and [13] as

χ ≃ ηe−θL. (19)

In Eq. (19), η is the probability that the queue is not empty,
which can be approximated by the ratio of µa to µs.5 The
notation a(x) ≃ b(x) means that limx→∞

a(x)
b(x) = 1. In this

paper, we focus on the high-load scenario, i.e., η → 1, which
is more common in emerging applications with the increasing
demand for information exchange [40] and is more likely to
cause the occurrence of extreme events, e.g., queue length and
delay violations. θ is the solution to the following equation
[41]:

αA(θ)− αS(θ) = 0. (20)

Let D[m] denote the delay experienced by the data arriving
at the start of time slot m. The steady state of D[n] is denoted
by D[∞]. If D[∞] exists, DVP is denoted by δ = Pr{D[∞] ≥
Dmax}. With a large delay bound Dmax (in slots), δ in the high
load scenario is approximated as [13], [39]

δ ≃ e−θαA(θ)Dmax . (21)

C. Main Results

In this subsection, we present the main results of this
paper. The main results of this paper can be divided into
two aspects, which refer to the revised gain-conservation
equations with random arrivals in the high-SNR regime and
a Laplace’s-method-based approximation approach for EC.
Detailed analysis and discussions are provided in Sections III
and IV. The structures of Sections III and IV are illustrated in
Fig. 2.

Before presenting the main results, we first introduce
key definitions. We define ζ = lim

γ→+∞
∂Λ(γ)
∂log2 γ as the

QoS-constrained service-rate gain, similar to the concept
of the service-rate gain in [30]. ζ indicates the growth
rate of throughput with respect to log2 γ in the high-
SNR regime. Next, we define the reliability gain ϖ =

5Note that by setting η = 1 we obtain upper bounds of χ and δ defined
below with arbitrary loads [39] Thus, the derived results in this paper can be
seen as a converse analysis for the low-load scenario.

√
2 log2 e lim

γ→+∞

∂
√

− log2 ϵ(γ)√
N∂ log2 γ

, which quantifies the decay rate

of error probability as log2 γ increases in the high-SNR
regime, consistent with the reliability gain proposed in [30].6

We also define the real-time gain τ = − 1
Dmax

∂ log2 δ
∂ log2 γ , which is

analogous to the definition in [30]. τ captures the decay rate
of DVP with increasing log2 γ in the high-SNR regime. We
call τ the real-time gain since real-time usually refers to being
controlled and deterministic [3]. τ represents the decay rate of
the probability of extreme events happening. Alternatively, τ
can also be named differently, e.g., revised diversity gain 7,
low-latency gain, or timeliness gain.

Based on the above definitions of ζ, ϖ, and τ , Theorem 1
presents the high-SNR reliability-latency-rate tradeoff through
revised gain-conservation equations for low-latency systems
with FBC and random arrivals. For simplicity, let ϱ denote
an arbitrarily positive constant, which is named as revised
QoS exponent. The main results and terms related to the gain-
conservation equations are illustrated in Fig. 3.

Theorem 1. Let ϵ ∈ (0, 0.5] be a function of γ with
lim

γ→+∞
ϵ(γ) = 0. Additionally, assume that ϖ is finite,

θN = ϱ, and N = Ψ(γ), where Ψ(γ) satisfies the following
condition:

sup
γ>0

∣∣∣∣∣G
(
Ψ(γ), |h[n]|2γ, ϵ(γ)

)
Ψ(γ)

∣∣∣∣∣ ≤ ν, for all |h[n]|2. (22)

In Eq. (22), ν ≥ 0 is a finite constant.

• For a SISO system over an AWGN channel, the following
relations hold:

ζ + cϖ = 1, and (23)
τ = (θN log2 e) ζ. (24)

By combining Eqs. (23) and (24), we obtain

(1− θN log2 e)ζ + cϖ + τ = 1; (25)

• For a SISO system over a Nakagami-m fading channel,

6Note that the constant
√

2 log2 e aligns with [30] since dispersion term
is treated as a constant in [30]. Omitting this constant does not alter the
conclusions but would modify the coefficient of ϖ in the gain-conservation
equations.

7Diversity gain was initially proposed in [42]. A detailed comparison
between τ and diversity gain is provided in Section III-C.
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the following relations hold:

ζ + cϖ = min

{
1,

m

θNT log2 e

}
, and (26)

τ = (θN log2 e) ζ. (27)

By combining Eqs. (26) and (27), we obtain

(1− θN log2 e)ζ + cϖ + τ

= min

{
1,

m

θNT log2 e

}
.

(28)

In Eqs. (23), (25), (26) and (28), c ∈ [0, 1] is given by

c = lim
γ→+∞

1

1 +
∂
√

Ψ(γ)

∂ log2 γ
log2 γ√
Ψ(γ)

. (29)

Proof: This theorem summarizes the main results in
Section III. The proof of this theorem is derived from the
proofs of Theorem 5, Theorem 6, Lemma 1, and Theorem
7, as detailed in Appendix D, Appendix E, Appendix F, and
Section III-C, respectively.

From the definitions of ζ, ϖ, and τ , we find that these
three gains effectively characterize the performance of com-
munication systems in terms of the service rate, reliability, and
latency under a maximum power constraint. Consequently, this
theorem presents a fundamental tradeoff among the service
rate, reliability, and latency in the high-SNR regime for low-
latency communications. By combining Eqs. (26) and (27),
we derive (28), which allows for a comparison with Eq.
(4) from [30], as they exhibit a similar form. In this work,
we adopt EC to characterize the service-rate and real-time
gains, which is different from the method utilized for the
asymptotic analysis in [30]. The primary difference between

Eqs. (25), (28), and Eq. (4) in [30] results from the influence
of random arrivals. Therefore, Theorem 1 can be regarded as a
generalization of Eq. (4) in [30] for systems with unbounded
random arrivals under a large delay threshold. Furthermore,
[30] lacks a discussion of the assumptions underlying the use
of normal approximation in asymptotic analysis, which are
provided in this paper.

The assumption presented in Eq. (22) can be met with
certain G functions. We provide the discussion on the re-
quirements for G function in the following. For simplicity,
we omit the index n in the subsequent analysis. Additionally,
we let V

(
|h|2γ

)
= (log2 e)

2
(
1−

(
1 + |h|2γ

)−2
)

denote
the dispersion term, which is a function of |h|2γ. In [17],
Polyanskiy, Poor, and Verdú proposed the upper and lower
bounds for Rϵ

N , which are given by 8

NC −
√
NV (|h|2γ)Q−1(ϵ) +O(1) ≤ Rϵ

N

≤ NC −
√

NV (|h|2γ)Q−1(ϵ) +
log2 N

2
+O(1),

(30)
where the upper bound requires

N >

(
2K

(
|h|2γ

)
(1− ϵ)V

3
2 (|h|2γ)

)2

,

and the lower bound requires

N >

(
2K

(
|h|2γ

)
ϵV

3
2 (|h|2γ)

)2

.

8There is a tighter lower bound proposed in [36], which shows that NC−√
NV (|h|2γ)Q−1(ϵ)+ 1

2
log2 N +O(1) ≤ Rϵ

N . However, we do not use
this bound due to the complexity of analyzing the O(1) term in this bound.
Moreover, the lower bound proposed in [18] is sufficient for our analysis.

Rϵ
N ≤ NC +

√
NV (|h|2γ)Q−1(1− ϵ) +

1

2
log2 N + gu

(
|h|2γ, ϵ

)
= R̃ϵ

N +
c1

V (|h|2γ)
+

3

2
log2 V

(
|h|2γ

)
− log2 K

(
|h|2γ

)
.

(31)
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Based on the upper and lower bounds of Rϵ
N , we can derive

the upper and lower bounds of G function, which are denoted
by gu(|h|2γ, ϵ) and gl(N, |h|2γ, ϵ), respectively. Specifically,
according to Eq. (632) in [17], the analytical form of the upper
bound of Rϵ

N is given in Eq. (31), which is presented at the
bottom of the last page.

In Eq. (31), K(·) is defined as

K
(
|h|2γ

)
=c0

(
|h|2γ

1 + |h|2γ

)3

·

Ez


∣∣∣∣∣z2 − 2√

|h|2γ
z − 1

∣∣∣∣∣
3
 ,

(32)

where c0 is a positive constant and z represents a standard
normal variable.

c1 in Eq. (31) is given by

c1 = −2K
(
|h|2γ

)
· min
y∈[1−ϵ−b1,1−ϵ]

dQ−1(y)

dy
, (33)

where b1 is given by

b1 =
2K

(
|h|2γ

)
V

3
2 (|h|2γ)

√(
2K(|h|2γ)

V
3
2 (|h|2γ)(1−ϵ)

)2

+ 1

. (34)

According to Eqs. (650)-(654) in [17], the lower bound
of Rϵ

N is expressed in Eq. (35) (located at the bottom of
this page), where c2 > 0 is a constant. Based on Eqs. (31)
and (35), we can derive the upper and lower bounds of
G(N, |h|2γ, ϵ), respectively. Consequently, the requirements
for Ψ(γ) to satisfy Eq. (22) can be determined using Eqs.
(31) and (35). In Theorems 2 and 3, we present the sufficient
conditions under which Eq. (22) holds for different system
assumptions.

Theorem 2. Given ϵ ∈ (0, 0.5], the condition proposed in
Eq. (22) is satisfied if Ψ(γ) follows

Ψ(γ) > ς1, for all γ > 0, (36)

where Ψ(γ) may either be bounded or satisfy
limγ→+∞ Ψ(γ) = +∞. ς1 is finite and is given by

ς1 = max
x≥0

{(
2K(x)

(1− ϵ)V
3
2 (x)

)2

,

(
2K(x)

ϵV
3
2 (x)

)2
}
. (37)

Proof: See Appendix A.
From Theorem 2 we find that with a given ϵ, Ψ(γ) can

be set as a constant larger than ς1. Moreover, it can also be
chosen as Ψ(γ) = ς1 + U(γ), where U(x) > 0 for x > 0

and lim
x→+∞

U(x) = +∞. Theorem 2 is used to determine the

forms of Ψ(γ) in Theorem 5 and Corollary 1 in Section III-A.
Furthermore, the proof of Theorem 2 reveals that, for

N > ς1 and a given ϵ, the error term G(N, γ, ϵ) remains
bounded with respect to γ, which provides additional insights
complementary to those in [21]. An important future work is
to further investigate the case where N < ς1.

Theorem 3. Under the assumption that ϵ ∈ (0, 0.5] is a
function of γ and lim

γ→+∞
ϵ(γ) = 0, the condition proposed in

Eq. (22) is satisfied if Ψ(γ) follows
Ψ(γ)ϵ2(γ) > ς2, γ > 0,

limγ→+∞
e

[
Q−1(ϵ(γ))

2

]2
Ψ(γ) < +∞,

lim
γ→+∞

Q−1(ϵ(γ))√
Ψ(γ)

< +∞,

(38)

where ς2 is a finite and positive constant defined as

ς2 = 4max
x≥0

{
K2(x)

V 3(x)

}
. (39)

Proof: See Appendix B.
Theorem 3 outlines the specific requirements for Ψ(γ) under

the conditions that ϵ(γ) ∈ (0, 0.5] and lim
γ→+∞

ϵ(γ) = 0. The

form of Ψ(γ) is related to ϵ(γ). Given a specific form of ϵ(γ),
Ψ(γ) can be formulated according to Eq. (38). For example,

one can let Ψ(γ) = e

[
Q−1(ϵ(γ))

2

]2

+ ς2+1
ϵ2(γ) , which satisfies Eq.

(38). Theorem 3 serves as a foundation for determining the
forms of Ψ(γ) utilized in Theorems 1, 6, 7 and Corollary 2.

In this paper, we define the constant ϱ as the revised QoS
exponent. Different from the definition of θ in Eq. (14), ϱ is
associated with the value of the DVP. We can gain a clearer
understanding of the interpretation of ϱ by presenting the
expression of the DVP. By combining Eqs. (18), (20), and
(21), we obtain

δ ≃ exp

(
Dmax

T
lnE|h|2

{
exp

(
−ϱT

Rϵ
N [n]

N

)})
. (40)

From Eq. (40), we observe that a larger ϱ results in a smaller
δ given γ, Ψ(·), and Dmax. Therefore, the value of ϱ can
represent the QoS requirements for the DVP.

EC is widely utilized in research on low-latency commu-
nications to assess the QoS-constrained throughput of wire-
less systems. However, it is usually challenging to obtain a
closed-form expression of EC, which brings difficulty for the
designs of resource allocation and scheduling strategies aimed
at maximizing EC. In this paper, we propose a Laplace’s-

Rϵ
N ≥ NC +

√
NV (|h|2γ)Q−1(1− ϵ) +

1

2
log2 N + gl(N, γ, ϵ)

= R̃ϵ
N − 1

2
log2 N + log2

K
(
|h|2γ

)
c2V

3
2 (|h|2γ)

− log2

[
2

(
ln 2√
2π

+
2K

(
|h|2γ

)
V

3
2 (|h|2γ)

)]

+
√

NV (|h|2γ)

[
Q−1

(
1− ϵ+

2K
(
|h|2γ

)
√
NV

3
2 (|h|2γ)

)
+Q−1(ϵ)

]
.

(35)
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method-based EC approximation approach, in which normal
approximation is employed to evaluate the maximum coding
rate. Thus, this approximation is applicable when the normal
approximation has satisfying accuracy. For the simplicity of
expression, let

r(x) = log2 (1 + Ξ(x)x)−√
1

N

(
1− 1

(1 + Ξ(x)x)2

)
Q−1(ϵ) log2 e+

log2 N

2N
,

(41)
where x denotes the channel power gain |h[n]|2 in time slot n.
Since |h[n]|2 is i.i.d. across time slots, we omit the argument
for x. The function Ξ(x) denotes the channel-power-gain-
based power allocation scheme. Note that Ξ(x) can also denote
the fixed power allocation by setting Ξ(x) = γ. Besides, let

ℓ =
(

Q−1(ϵ)√
N

)2
.

Theorem 4. For a low-latency communication system that
adopts a power allocation scheme Ξ(x) satisfying Ξ(x) +
dΞ(x)
dx x ≥ 0 with the channel distribution f(·), EC is approxi-

mated using Eq. (42), which is presented at the bottom of this
page. In Eq. (42), x∗ is given by

Ξ(x∗)x∗ =

√
1 +

√
1 + 4ℓ

2
− 1. (43)

For fixed power allocation Ξ(x) = γ, x∗ is given by

x∗ =
1

γ

√1 +
√
1 + 4ℓ

2
− 1

 . (44)

Proof: Theorem 4 summarizes the main results in Section
IV. The proof of this theorem follows from the proofs of
Lemma 2 and Theorem 8 (in Appendix H and I, respectively).

The approximation proposed in Theorem 4 provides a
method to obtain a closed-form expression for EC, which facil-
itates further analysis of the QoS-constrained performance of
low-latency communication systems and allows for theoretical
comparison of different scheduling schemes. The condition
stated in Theorem 4 can be satisfied by various classical
allocation schemes. More detailed discussions on Ξ(x) are
presented in Section IV-B.

III. RELIABILITY-LATENCY-RATE TRADEOFF IN THE
FINITE BLOCKLENGTH REGIME

In this section, we mainly focus on characterizing the
reliability-latency-rate tradeoff in the FBL regime for low-
latency communication systems. In Section III-A, we begin
by deriving the high-SNR slope of EC in the FBL regime
with a fixed error probability, which indicates the service-
rate gain of low-latency communication systems. Based on the
results of the high-SNR slope of EC in the FBL regime, we

further generalize the conclusions to characterize the reliability
gain by representing error probability as a function of SNR in
Section III-B. Finally, in Section III-C, we propose the gain-
conservation equation, which reveals the tradeoff among the
service-rate gain, reliability gain, and real-time gain in the
FBL and high-SNR regimes.

A. High-SNR Slope of EC in the FBL regime

In this subsection, we focus on characterizing the high-SNR
slope of EC in the FBL regime. Specifically, we derive the
high-SNR slope of EC with a given ϵ in both the AWGN and
Nakagami-m fading channels with FBC. The derived conclu-
sions can be viewed as a generalization of the conclusions
in [14]. We then provide corollaries for systems in Rayleigh
fading channels, considering both scenarios with and without
frequency or spatial diversity.

We start our discussion with the FBL-SISO system in an
AWGN channel. Specifically, the high-SNR slope of EC in
the FBL regime is defined as [14]

s∞ = lim
γ→+∞

Λ(γ)

log2 γ
. (45)

We then provide the discussion for the FBL-SISO system in
the AWGN and Nakagami-m fading channels, encompassing
wired communications, satellite communications, and other
typical scenarios in wireless communications. In Theorem 5,
we derive the high-SNR slope of the normalized EC for the
FBL-SISO system in both the AWGN and Nakagami-m fading
channel.

Theorem 5. Under the condition that N = Ψ(γ) satisfies
Theorem 2 for a given ϵ,

• the high-SNR slope of the normalized EC for the FBL-
SISO system in the AWGN channel is s∞ = 1;

• the high-SNR slope of the normalized EC for the FBL-
SISO system in the Nakagami-m fading channel with
m ∈ [0.5,+∞) is given by

ζ =

{
1, 1 ≤ m

θNT log2 e ,
m

θNT log2 e , 1 > m
θNT log2 e .

(46)

Proof: See Appendix D.
In Theorem 5, we derive the value of s∞ for the FBL-SISO

system over AWGN and Nakagami-m fading channels. We
can compare this result with the well-known multiplexing gain
[42]. Multiplexing gain is defined as the ratio of the maximum
coding rate to log2 γ as γ → +∞, which is equal to 1 for the
SISO system. However, the definition of multiplexing gain
does not account for latency requirements. As we mentioned
in Section II-B, ϱ = θN represents the constraint imposed by
DVP, which is one of the key performance indicators of QoS.
A larger θN indicates a stricter QoS constraint, as outlined
in Eq. (40). Consequently, s∞ can be interpreted as a revised
multiplexing gain, which takes the requirements of DVP into

αS(θ) = Nr(x∗)−
ln f(x∗) + 1

2 ln 2π − 1
2 ln |r

′′(x∗)| − 1
2 ln θNT

θT
+O

(
1

θ2T 2N

)
. (42)
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account. Since s∞ considers the gain under the QoS constraint,
it can not be larger than the multiplexing gain, as validated in
Theorem 5.

The results in Theorem 5 demonstrate that for small values
of θN , s∞ of the fading channel is independent of QoS
constraints, which aligns with the analysis in [14] for the
infinite-blocklength case in the Rayleigh fading channel. This
result indicates that when the requirement of DVP is loose, it
does not influence the increasing rate of the QoS-constrained
throughput. Moreover, we find that s∞ of the fading channel
can be smaller than 1, which is also consistent with the
common understanding that the randomness of fading has
a negative influence on the QoS-constrained throughput in
queueing systems.

Based on Theorem 5, we can obtain s∞ for several common
cases. In Corollary 1, we present the s∞ of Rayleigh fading
channels with and without frequency or spatial diversity.

Corollary 1. Under the same assumption used in Theorem
5,

• the high-SNR slope of the normalized EC in the Rayleigh
fading channel is given by

s∞ =

{
1, 1 ≤ 1

θNT log2 e ,
1

θNT log2 e , 1 > 1
θNT log2 e .

(47)

• the high-SNR slope of the normalized EC in Rayleigh
fading channels with frequency or spatial diversity κ by
adopting maximum-ratio combining is given by

s∞ =

{
1, 1 ≤ κ

θNT log2 e ,
κ

θNT log2 e , 1 > κ
θNT log2 e .

(48)

Proof: The results can be obtained directly by setting
m = Ω = 1 and m = Ω = κ from Eq. (46).

In Theorem 5 and Corollary 1, we characterize the high-
SNR slope of the normalized EC in the FBL regime with a
given ϵ. Comparing the results in Theorem 5 and Corollary
1, we find that in the FBL regime, s∞ of the systems with
frequency or spatial diversity is at least as large as that of the
SISO system over a Rayleigh fading channel. For the SISO
system over a Nakagami-m fading channel, s∞ is no smaller
than that of the SISO system over a Rayleigh fading channel
with m ≥ 1. For m ∈ [0.5, 1), s∞ is not larger than that of
the SISO system over a Rayleigh fading channel. Furthermore,
we observe that as κ or m increases, the length of the θN
interval, where s∞ is irrelevant to θN , is larger. According
to [34], m represents the ratio of line-of-sight signal power to
multipath power, with m < 1 indicating more severe fading
than Rayleigh fading and m > 1 indicating less severe fading
than the Rayleigh fading. In summary, the severity of fading
and the degree of spatial or frequency diversity both influence
s∞. Less serve fading and larger spatial or frequency diversity
lead to larger s∞ under a given QoS constraint and ensure that
s∞ remains irrelevant to QoS constraints over a broader range
of θN values.

Remark 2: We can also define s0 as the low-SNR slope of
the normalized EC in the FBL regime. However, identifying
the appropriate denominator in the definition of s0 is crucial.
As far as we know, γ is not a proper choice since it can result

in Λ(γ)
γ → +∞ when γ approaches 0 by adopting a kind

of orthogonal code proposed in Chapter 8.5 of [43]. Once a
proper denominator is determined, we can obtain the upper
bound of s0 by considering the infinite blocklength regime by
leveraging Shannon’s formula. Performing the above analysis
is not trivial, which makes it an important future work.

B. Reliability Gain in the FBL regime

In this subsection, we extend the analysis to the case where
ϵ is a function of γ. Under this assumption, we will refine the
conclusions in Theorem 5. The updated results are summarized
in Theorem 6.

Theorem 6. Assume ϵ ∈ (0, 0.5] is a function of γ and
lim

γ→+∞
ϵ(γ) = 0. Under the assumption that N = Ψ(γ)

satisfies Theorem 3,

• for an FBL-SISO system over an AWGN channel, we
have

lim
γ→+∞

Λ(γ)

log2 γ
+ log2 e lim

γ→+∞

Q−1(ϵ(γ))√
N log2 γ

= 1. (49)

• for an FBL-SISO system over a Nakagami-m fading
channel, we have

lim
γ→+∞

Λ(γ)

log2 γ
+ log2 e lim

γ→+∞

Q−1(ϵ(γ))√
N log2 γ

= min

{
1,

m

θNT log2 e

}
.

(50)

Proof: See Appendix E.
In Theorem 6, we proposed the result of the high-SNR

asymptotic analysis of the EC, which is related to the error
probability. Before characterizing the tradeoff between the
service-rate gain, reliability gain, and real-time gain, we need
to first explore the concept of reliability gain to establish
the link between these metrics. We define the reliability gain

as ϖ =
√

2 log2 e lim
γ→+∞

∂
√

− log2 ϵ(γ)√
N∂ log2 γ

. ϖ is related to the

decay rate of the error probability with respect to log2 γ in
the high-SNR regime, which is consistent with [30]. Using
this definition, we can relate the reliability gain to the second
term on the left-hand side of Eqs. (49) and (50), which is
summarized in Lemma 1.

Lemma 1. For a finite reliability gain ϖ, the following
holds:

lim
γ→+∞

Q−1(ϵ(γ))√
N log2 γ

=
c4

log2 e
ϖ, (51)

where c4 ∈ [0, 1] is given by

c4 = lim
γ→+∞

1

1 +
∂
√

Ψ(γ)

∂ log2 γ
log2 γ√
Ψ(γ)

. (52)

Proof: See Appendix F.
Through Lemma 1, we establish a link between s∞ and

the reliability gain in Eqs. (49) and (50). In Lemma 1, we
mention that c4 ∈ [0, 1]. The value of c4 depends on the
form of Ψ(γ). Specifically, when lim

γ→+∞
log2 γ√
Ψ(γ)

exists and is
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positive, we have c4 = 1
2 . This is due to the fact that in this

case, lim
γ→+∞

Ψ(γ)
log2 γ = lim

γ→+∞
∂
√

Ψ(γ)

∂ log2 γ is finite. Thus, we have

lim
γ→+∞

∂
√
Ψ(γ)

∂ log2 γ

log2 γ√
Ψ(γ)

= lim
γ→+∞

∂
√
Ψ(γ)

∂ log2 γ
lim

γ→+∞

log2 γ√
Ψ(γ)

= lim
γ→+∞

Ψ(γ)

log2 γ
lim

γ→+∞

log2 γ√
Ψ(γ)

=1.

(53)

For lim
γ→+∞

log2 γ√
Ψ(γ)

= 0 or lim
γ→+∞

log2 γ√
Ψ(γ)

= +∞,

lim
γ→+∞

∂
√

Ψ(γ)

∂ log2 γ
log2 γ√
Ψ(γ)

can be 0, +∞, or lie in (0,+∞).

C. Gain-Conservation Equation for Reliability, Real-time, and
Service-Rate Gains

In this subsection, we will propose revised gain-
conservation equations for low-latency communication sys-
tems. In contrast to [30], the revised terms in the gain-
conservation equation account for the influence of random ar-
rivals. Before presenting revised gain-conservation equations,
we first provide the definitions of service-rate and real-time
gains.

The service-rate gain is defined as ζ = lim
γ→+∞

∂Λ(γ)
∂log2 γ , which

is similar to the definition of the service-rate gain presented in
[30]. Note that EC represents the maximum constant source
rate that can be supported by the given service process to
satisfy the statistical queueing requirements [13]. Thus, ζ
indicates the increasing rate of throughput with respect to
log2 γ in the high-SNR regime. According to L’Hospital’s rule
[44], we have

s∞ = lim
γ→+∞

Λ(γ)

log2 γ

= lim
γ→+∞

∂Λ(γ)

∂log2 γ

= ζ.

(54)

Therefore, we can use the conclusions from Theorem 5 to
characterize the service-rate gain ζ.

For the real-time gain, we adopt the same definition as
proposed in [30], which is given by τ = − 1

Dmax

∂ log2 δ
∂ log2 γ . τ

represents the decay rate of DVP as log2 γ increases in the
high-SNR regime.

Based on Theorem 5, Theorem 6, and Lemma 1, we
can then derive revised gain-conversation equations for low-
latency communication systems with random arrivals in the
FBL regime. The results are summarized in Theorem 7.

Theorem 7. In the FBL regime, under the same assumptions
used in Theorem 6,

• for a SISO system over an AWGN channel, we have

ζ + c4ϖ = 1, and (55)
τ = (θN log2 e) ζ. (56)

By combining Eqs. (55) and (56), we obtain

(1− θN log2 e)ζ + c4ϖ + τ = 1; (57)

• for a SISO system over a Nakagami-m fading channel
with a finite ϖ, we have

ζ + c4ϖ = min

{
1,

m

θNT log2 e

}
, and (58)

τ = (θN log2 e) ζ. (59)

By combining Eqs. (58) and (59), we obtain

(1− θN log2 e)ζ+c4ϖ + τ

= min

{
1,

m

θNT log2 e

}
.

(60)

In Eqs. (55), (57), (58), and (60), c4 are defined in Eq.
(52).
Proof: Based on Eqs. (20) and (21), we obtain

ln δ = −θNΛ(γ)Dmax. (61)

Next, by taking the derivative on both sides of Eq. (61), we
have

− 1

Dmax
lim

γ→+∞

∂ log2 δ

∂ log2 γ
= θN log2 e lim

γ→+∞

∂Λ(γ)

∂ log2 γ

= (θN log2 e) ζ.

(62)

By substituting Eqs. (51) and (62) into Eqs. (49), and (50),
we obtain the results shown in Theorem 7.

In Theorem 7, we present revised gain-conservation equa-
tions for low-latency communication systems. There are some
differences between Eq. (60) and Eq. (4) in [30]. First,
the parameter c4 equals 1 in [30]. This is mainly because
[30] lacks a discussion on the conditions under which nor-
mal approximation can be applied for high-SNR asymptotic
analysis. Second, Eq. (60) includes the term θN , which is
absent in [30]. This discrepancy arises because the arrival in
[30] is deterministic. The randomness of the arrival causes
a deterioration in the performance of queueing systems with
respect to DVP and QoS-constrained throughput.

Moreover, we can derive the real-time gain based on The-
orem 5 and Eq. (59) for Nakagami-m fading channels as

τ =

{
θN log2 e, 1 ≤ m

θNT log2 e ,
m
T , 1 > m

θNT log2 e .
(63)

Considering the case in which T = 1, we can interpret τ as a
revised version of diversity gain defined in [42]. The diversity
gain is defined as the ratio of the outage probability to log2 γ
as γ → +∞, which equals m for the Nakagami-m fading
channel. According to L’Hospital’s rule, τ can be treated as
the ratio of DVP to log2 γ as γ → +∞. From Eq. (63), if
1 ≤ m

θNT log2 e , then θN log2 e ≤ m. Consequently, we have
τ ≤ m. The diversity gain proposed in [42] is an upper bound
of τ , as demonstrated in Eq. (64), which is presented at the
bottom of the next page. Thus, we conclude that − 1

Dmax

log2 δ
log2 γ

is not larger than the diversity gain proposed in [42].
Based on Theorem 7, we provide the conclusions for the

Rayleigh fading channel with and without frequency or spatial
diversity without proof in Corollary 2.
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Corollary 2. In the FBL regime, under the assumptions
used in Theorem 6,

• for a SISO system over a Rayleigh fading channel, we
have

ζ + c4ϖ = min

{
1,

1

θNT log2 e

}
, and (65)

τ = (θN log2 e) ζ. (66)

By combining Eqs. (65) and (66), we have

(1− θN log2 e)ζ+c4ϖ + τ

= min

{
1,

1

θNT log2 e

}
.

(67)

• for a system over Rayleigh fading channels with fre-
quency or spatial diversity κ, we have

ζ + c4ϖ = min

{
1,

κ

θNT log2 e

}
, and (68)

τ = (θN log2 e) ζ. (69)

By combining Eqs. (68) and (69), we have

(1− θN log2 e)ζ+c4ϖ + τ

= min

{
1,

κ

θNT log2 e

}
.

(70)

In Eqs. (65), (67), (68), and (70), c4 is the same as in
Eq. (52).

D. ϵ− χ Tradeoff in the AWGN Channel

In this subsection, we will take AWGN as an example
to characterize the ϵ − χ tradeoff through an inequality.
The AWGN channel model is widely employed in wired
communications and satellite communications. With the rapid
development of deep learning technologies, communication
between processing units, which usually belongs to wired
communication, has also raised much attention from both
academia and industry. Therefore, characterizing the perfor-
mance limits of the AWGN channel in the FBL regime is
important. Different from the discussion in Subsections III-A,
III-B, and III-C, we will not adopt the assumptions presented
in Theorem 1 in this subsection.

For the AWGN channel, the DVP is equivalent to QVP since
the service rate is fixed given N , ϵ, and γ. Therefore, we can
choose to use QVP representing the delay performance of the
communication system in the AWGN channel. Similarly, we
use ϵ to evaluate the reliability of the system. Based on these
considerations, we derive the ϵ − χ tradeoff as an inequality
in Corollary 3. With some abuse of notations, we let C =

log2(1 + γ) and V = log22 e
(
1− 1

(1+γ)2

)
in Corollary 3.

Corollary 3. Given γ, N , a large L, and the requirement
χ ≤ χth, we have

ϵ ≥ Q

(
NC + log2 N

2 +G(N, γ, ϵ)− αA

(
− 1

L lnχth

)
√
NV

)
.

(71)
Proof: See Appendix G.

Corollary 3 presents the relationships between ϵ and χ.
In practical applications, we can use these relationships to
determine the appropriate choice of ϵ for a given χth. For the
fading channel, a similar analysis can be performed. However,
it is not trivial, as obtaining the analytical expression for θ
is challenging. With the help of approximation methods and
under certain assumptions, one may derive an analytical or
even closed-form approximation for θ [45]. Subsequently, a
similar expression to Eq. (71) can be derived, which is beyond
the scope of this paper.

IV. EFFECTIVE CAPACITY APPROXIMATION WITH
NORMAL APPROXIMATION

In this section, we present an EC approximation method
for low-latency communication systems. The closed-form ex-
pression of this approximation characterizes the influence of
the channel distribution, error probability, and blocklength on
EC. As shown in Eqs. (19) and (21), there are limitations
in using LDT to determine the QVP and DVP in URLLC
scenarios. However, EC has been widely adopted in various
studies of URLLC to evaluate the QoS-constrained throughput
[24]–[27]. In these studies, the value of the QoS exponent θ is
typically given to represent the QoS requirement, while EC is
employed to quantify the throughput subject to these QoS re-
quirements. Several scheduling schemes for URLLC have been
proposed to maximize EC in these works. Therefore, deriving
a closed-form expression of EC is crucial for further system
optimization. However, it is challenging to derive such a
closed-form expression for EC, which complicates throughput
analysis and the comparison of different scheduling schemes.
To address this issue, we propose a Laplace’s-method-based
approximation for EC in this section. In this subsection, we
set T ≥ 1, which covers the general low-latency scenarios.
Note that we use normal approximation to approximate the
maximum coding rate in this section. Thus, the proposed
approximation can serve as an efficient EC approximation
method for scenarios where normal approximation achieves
satisfactory accuracy.

A. EC Approximation for Fixed-Power Allocation

In this subsection, we start with a simple case in which
the transmitted power remains constant in each time slot.
For low-latency scenarios, the thresholds for queue length L

log2 Pr{D[n] > Dmax} ≥ log2

(
Pr

{
Rϵ

N [n] <
a[n]

Dmax

})Dmax

≥ Dmax log2

(
Pr

{
C[n] <

a[n]

NDmax

})
.

(64)
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and latency Dmax are usually small due to the stringent QoS
requirements [22]. Thus, to achieve extremely small QVP or
DVP, the value of the QoS exponent θ or the revised QoS
exponent θN needs to be large. Consequently, θNT should
have a large value. With this consideration, we begin our
analysis by the fixed-power allocation in Lemma 2. Note that

ℓ =
(

Q−1(ϵ)√
N

)2
, as defined before Theorem 4.

Lemma 2. For a low-latency communication system adopt-
ing fixed-power allocation, EC is approximated using Eq. (72),
which is shown at the bottom of this page. In Eq. (72), r(x)
is defined in Eq. (41), and x∗

1 is given by

x∗
1 =

1

γ

√1 +
√
1 + 4ℓ

2
− 1

 . (73)

Proof: See Appendix H.
In Lemma 2, we provide an approximation of EC for

the fixed-power allocation, which provides a closed-form
expression of EC applicable to arbitrary fading channels.
Additionally, the approximation error is O

(
1

θ2T 2N

)
. Thus, as

mentioned earlier, this approximation performs better in a low-
latency communication system, which we will validate through
numerical calculation in Section V.

B. EC Approximation with Channel-Gain-Based Power Allo-
cation

In this subsection, we will generalize the proposed EC ap-
proximation method for the fixed-power allocation scheme to
certain types of channel-gain-based power allocation schemes.
The conditions for using the proposed approximation are pro-
vided. Moreover, we discuss the applicability of the proposed
approximation for several classical channel-gain-based power
allocation schemes.

Building on Lemma 2, we extend the approximation to more
general power allocation schemes, which we summarize in
Theorem 8.

Theorem 8. For a low-latency communication system which
adopts a channel-gain-based power allocation scheme Ξ(x)

satisfying Ξ(x)+ dΞ(x)
dx x ≥ 0 with a channel distribution f(·),

EC is approximated using Eq. (74), which is presented at the
bottom of this page. In Eq. (74), r(x) is defined in Eq. (41),
and x∗

2 is given by

Ξ(x∗
2)x

∗
2 =

√
1 +

√
1 + 4ℓ

2
− 1. (75)

In Eq. (75), ℓ =
(

Q−1(ϵ)√
N

)2
.

Proof: See Appendix I.

In Theorem 8, we present an EC approximation for a
specific kind of power allocation schemes. Specifically, for the
policies satisfying dΞ(x)

dx ≥ 0, the condition Ξ(x)+ dΞ(x)
dx x ≥ 0

is satisfied. The requirement dΞ(x)
dx ≥ 0 indicates that the

allocated power does not decrease as the channel power gain
increases. This condition holds for certain power allocation
schemes, including the well-established water-filling scheme
[46]. Furthermore, when dΞ(x)

dx ≥ 0, Ξ(x)x is a monotonic
function of x. Consequently, the solution to Eq. (43) can be
efficiently obtained via the binary search algorithm.

A power-control policy designed to maximize EC while ad-
hering to the average power constraint is proposed in [16]. This
policy also complies with the constraints outlined in Theorem
8. Let Ξ1(x) denote the power-control policy introduced in
[16], which can be expressed as

Ξ1(x) =


1

a
1

a2+1
1 (γx)

a2
a2+1

− 1
γx , x ≥ a1

γ ,

0, x < a1

γ ,
(76)

where a1 and a2 are positive constants. a1 is related to the
average power constraint, while a2 is a linear and increasing
function of θ. For x ≥ a1

γ , we have Eq. (77), which is
provided at the bottom of this page. Since a2

a2+1 < 1, it follows
that Ξ1(x) +

dΞ1(x)
dx x ≥ 0 for x > 0, indicating that the

power-control policy proposed in [16] satisfies the condition
of Theorem 8. There are two special cases to consider. When
a2 approaches 0, the power-control policy proposed in [16]
simplifies to the water-filling policy, which has been discussed
above. When a2 approaches infinity, the power-control policy
proposed in [16] becomes channel inversion policy, with which
the rate remains constant over all channel states. In this case,
EC is trivial, as the rate remains fixed.

Although the approximation provided in Theorem 8 can be
applied to policies satisfying Ξ(x)+ dΞ(x)

dx x ≥ 0, its accuracy
can be further enhanced through additional optimization tai-
lored to the specific properties of each policy. For example, in
the water-filling scheme, there exists a channel-gain threshold
hth. If the channel gain falls below this threshold, the allo-
cated power becomes 0, implying that the transmission rate

αS(θ) = Nr(x∗
1)−

ln f(x∗
1) +

1
2 ln 2π − 1

2 ln |r
′′(x∗

1)| − 1
2 ln θNT

θT
+O

(
1

θ2T 2N

)
. (72)

αS(θ) = Nr(x∗
2)−

ln f(x∗
2) +

1
2 ln 2π − 1

2 ln |r
′′(x∗

2)| − 1
2 ln θNT

θT
+O

(
1

θ2T 2N

)
. (74)

Ξ1(x) +
dΞ1(x)

dx
x =

1

a
1

a2+1

1 (γx)
a2

a2+1

− 1

γx
+ x

− a2
a2 + 1

1

a
1

a2+1

1 γ
a2

a2+1

x− a2
a2+1−1 +

1

γ

1

x2

 =
1− a2

a2+1

a
1

a2+1

1 γ
a2

a2+1

x− a2
a2+1 .

(77)
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Fig. 4. s∞ in the Rayleigh fading channel.
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Fig. 5. s∞ in Rayleigh fading channels with κ = 2.

remains constant in the FBL regime when h[n] < hth.9 Let
ξ(θ) = e−θT

log2(N)
2

∫ hth

0
f(x)dx. Based on the above analysis

and Theorem 8, EC can be approximated using Eq. (78), which
is presented at the bottom of this page. For those policies
exhibiting truncated characteristics, Eq. (78) provides a more
accurate approximation of their EC.

For the low-latency system incorporating the retransmission
mechanism, EC is discussed in [28], which differs from the
analysis provided above where no retransmission mechanism
is considered. In [28], a simple ARQ mechanism is assumed.
Under this mechanism, the receiver sends a negative acknowl-
edgment to request the retransmission of the message in case
of an erroneous reception. In Corollary 4, we generalize the
EC approximation to the low-latency communication system
incorporating this ARQ mechanism.

Corollary 4. For a low-latency system utilizing the above
simple ARQ mechanism and a channel-gain-based power
allocation scheme Ξ(x) that satisfies Ξ(x)+ dΞ(x)

dx x ≥ 0, with
channel distribution f(·), EC is approximated using Eq. (79),
which is located at the bottom of this page. In Eq. (79), r(x)
is defined by Eq. (41), and x∗ is given by Eq. (43).

Proof: See Appendix J.

9The actual rate should be zero when γ = 0. However, since we use the
normal approximation as mentioned at the beginning of this section, we let
the rate be equal to log2 N

2
when γ = 0, in line with Eq. (9). This setting

can be easily adjusted by setting the rate to 0 when γ = 0, which does not
affect the accuracy of this approximation.

V. NUMERICAL RESULTS

In this section, we perform numerical calculations to vali-
date the theoretical results and conclusions presented in this
paper. Moreover, the numerical results provide a more visual
explanation of some characteristics of the statistical-delay
performance in low-latency systems operating in the FBL
regime.

First, we validate the conclusions regrading the high-SNR
slopes of EC in the FBL regime, shown in Figs. 4, 5, and 6.
In these figures, we set N = 512, ϵ = 10−5, and T = 1.
In Fig. 4, E|h|2{|h[n]|2} = 1. In Fig. 5, f(x) is an Erlang
distribution with κ = 2 and E|h|2{|h[n]|2} = 2. In Fig. 6, we
set Ω = 1. For the Rayleigh fading case, 1

T log2 e ≈ 0.6931.
From Fig. 4, we find that the slopes of Λ(γ) for θN ≤ 0.6931,
i.e. θ ≤ 0.0014, are almost identical and close to 1, while the
slopes of Λ(γ) for θ > 0.0014 are smaller than 1. Moreover,
for θ > 0.0014, a larger θ leads to a smaller slope of Λ(γ).
Specifically, the slope of Λ(γ) for θ = 0.004 is 0.338 in Fig. 4,
while 1

θNT log2 e with θ = 0.004 equals 0.3385. These results
validate the accuracy of Corollary 1.

Next, we discuss the numerical results of the case in which
|h[n]|2 follows an Erlang distribution. In Fig. 5, κ

T log2 e ≈
1.3863. We observe that for θ = 0.002, θN = 1.024 is
larger than 1

T log2 e ≈ 0.6931 in Fig. 4, but smaller than
κ

T log2 e ≈ 1.3863 in Fig. 5. Accordingly, the slope of Λ(γ) for
θ = 0.002 in Fig. 4 differs from the slope of ergodic capacity,
while the slope of Λ(γ) for θ = 0.002 is nearly identical to
the slope of ergodic capacity in Fig. 5. This result highlights
the differences in s∞ performance with and without spatial

αS(θ) = − 1

θN
ln

(
ξ(θ) +

√
2π

θNT |r′′(x∗)|
f(x∗)e−θNTr(x∗)

(
1 +O

(
(θNT )−1

)))
. (78)

αS(θ) = − 1

θT
ln

(
ϵ+ (1− ϵ)

√
2π

θNT |r′′(x∗)|
f(x∗)e−θNTr(x∗)

(
1 +O

(
(θNT )−1

)))
. (79)
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(a) s∞ in the Nakagami-m channel with m = 0.5.
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(b) s∞ in the Nakagami-m channel with m = 2.

Fig. 6. s∞ in the Nakagami-m fading channel.

or frequency diversity in Rayleigh fading channels, further
validating Corollary 1.

In Fig. 6, we present the numerical results for s∞ in the
Nakagami-m fading channel. In Fig. 6(a), m

TN log2 e ≈ 0.3466,
while in Fig. 6(b), m

TN log2 e ≈ 1.3836. The slopes of Λ(γ)
in Figs. 6(a) and 6(b) validate the accuracy of Theorem 5.
Besides, by comparing the results in Figs. 5 and 6(b), we find
that the slopes of Λ(γ) are nearly identical for the same value
of θ. For example, when θ = 0.004, i.e., θN = 2.0480, the
slope of Λ(γ) in Fig. 5 is 0.6731, while it is 0.6704 in Fig.
6(b). This finding further validates the accuracy of Theorem
5 and Corollary 1, as s∞ with κ = 2 and m = 2 are shown
to be identical in both Theorem 5 and Corollary 1.

Additionally, we validate the accuracy of the EC approxima-
tion through numerical calculations. In Fig. 7, we present the
results of the EC approximation for the fixed-power allocation,
where γ = 10 and ϵ = 10−3. The channel is modeled
as a Rayleigh fading channel with E|h|2{|h[n]|2} = 1. The
results with the legend “numerical” are calculated based on
the definition of the EC in Eq. (16), while the results with the
legend “approximation” are obtained from Eq. (72). As shown
in Fig. 7, we find that the approximation results match well
with the numerical results. However, the difference between
the numerical and approximation results with N = 100 and
T = 1 is slightly more evident when θ is small compared to the
other three pairs. This is reasonable since the approximation
error of Laplace’s method is O

(
1

θ2T 2N

)
. From these results,

we see that the approximation in Lemma 2 satisfactorily
approximates the EC in the low-latency scenarios.

Fig. 8 illustrates the results of EC approximation for the
water-filling (WF) policy [46]. To evaluate the performance of
the EC approximation in different channel models, the channel
gain in Fig. 8 is set as |h[n]|2 = |h1[n]|2 + |h2[n]|2, where
|hi[n]|2 follows an exponential distribution with expectation
1. The approximation for the WF policy used here is based
on Eq. (78). As seen in Fig. 8, the approximation results
closely matches the numerical results, which validates our

analysis in Section III-C. Note that, for the WF policy with
the average SNR E|h|2{γ} = 10,10 the average transmission
rate E|h|2{s[n]} ≈ 3932, while for the fixed-power allocation
policy with γ = 10, E|h|2{s[n]} ≈ 3923. This result indicates
that the transmission optimization under the infinite block-
length assumption can improve the average transmission rate
in the FBL regime under certain parameter settings. However,
the result in Fig. 8 also shows that, although the WF policy
leads to a larger average transmission rate compared to the
fixed-power allocation scheme, it does not improve the EC.
Since the EC represents the maximum throughput under the
QVP or DVP constraints, the relatively poorer performance of
the WF policy on the EC highlights the distinction between
maximizing the average transmission rate and maximizing
throughput under statistical QoS constraints.

VI. CONCLUSION

In this paper, we mainly focused on characterizing the
fundamental tradeoff between reliability, latency, and rate for
low-latency systems operating under FBC. Based on the previ-
ous conclusions on the gain-conservation properties for low-
latency systems with deterministic arrival, we extended the
definitions of the reliability gain, real-time gain, and service-
rate gain for the low-latency systems with random arrivals.
By employing EB and EC, we established the connection
between the gain-conservation equation and the influence of
random arrivals. Our analysis, conducted over both AWGN
and Nakagami-m fading channels, provided insights into
service-rate gains for both wired and wireless systems. Then,
the revised gain-conservation equations were derived by in-
corporating service-rate, reliability, and real-time gains. Addi-
tionally, an EC approximation method was proposed to derive
an analytical expression of EC in systems with channel-gain-
based scheduling policies in the FBL regime. The conclusions

10For simplicity, we use γ to denote the SNR of the WF policy, which
should be a random variable related to |h[n]|2.
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Fig. 7. EC approximation for the fixed-power allocation scheme.

proposed in this paper offer a comprehensive characterization
of the fundamental tradeoff between the reliability, latency,
and throughput for low-latency systems with FBC, which will
provide instructions for designing efficient scheduling schemes
for the low-latency systems. Future research directions include
refining the approximations of QVP and DVP with small
thresholds, relaxing the assumptions of the proposed analysis
through tighter bounds or exact expression of the FBC rate,
and developing advanced scheduling schemes based on the
revised gain-conservation equations and the proposed EC ap-
proximation method for low-latency communication systems.

APPENDIX A
PROOF OF THEOREM 2

According to Eqs. (31) and (35), we derive Eqs. (80) and
(81), which are provided at the bottom of the next page.

Since |h|2 and γ are independent, the product |h|2γ can
be zero, finite, or approach positive infinity. Hence, we have
to consider all possible cases of |h|2γ. The essence of this
proof is to demonstrate that G(N, |h|2γ, ϵ) remains bounded
regardless of the value of |h|2γ. The proof is divided into
four parts. We let ϑ > 0 denote an arbitrarily small constant.
The first part is the proof for |h|2γ → 0, i.e., |h|2γ ∈ [0, ϑ).
The second part is the proof for a bounded Ψ(γ) and |h|2γ ∈
[ϑ,+∞). The third part is the proof for lim

γ→+∞
Ψ(γ) = +∞

and |h|2γ ∈ [ϑ,+∞). Finally, we will summarize the proof

in the fourth subsection. To apply the bounds shown in Eqs.
(80) and (81), we assume that

N > max

{(
2K(|h|2γ)

(1− ϵ)V
3
2 (|h|2γ)

)2

,

(
2K(|h|2γ)
ϵV

3
2 (|h|2γ)

)2
}
.

(82)
The validity of Eq. (82) is established in the fourth part.

A. Proof for |h|2γ → 0, i.e., |h|2γ ∈ [0, ϑ)

The analysis of the case where |h|2γ → 0 is grounded in
its physical significance. The proof in this subsection is to
demonstrate that G(N, |h|2γ, ϵ) remains bounded as |h|2γ →
0. When |h|2γ ∈→ 0, it is clear that R̃ϵ

N is bounded according
to Eq. (9). Since we can not obtain an unbounded rate with a
finite received SNR, the coding rate R̃ϵ

N+G(N, |h|2γ, ϵ) must
also be bounded as |h|2γ → 0. Consequently, G(N, |h|2γ, ϵ)
must remain bounded when |h|2γ → 0. This result implies
that |G(N, |h|2γ, ϵ)| ≤ u1 when |h|2γ → 0, where u1 is a
positive constant.

B. Proof for a Bounded Ψ(γ) and |h|2γ ∈ [ϑ,+∞)

We use the upper and lower bounds to demonstrate that
G(N, |h|2γ, ϵ) remains bounded as |h|2γ → +∞. We start the
analysis with the upper bound gu(|h|2γ, ϵ). According to Eq.
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(32), K
(
|h|2γ

)
is finite for a given finite |h|2γ ∈ [ϑ,+∞).

As |h|2γ → +∞, γ
1+γ → 1 and

lim
|h|2γ→+∞

Ez


∣∣∣∣∣z2 − 2√

|h|2γ
z − 1

∣∣∣∣∣
3
 < +∞. (83)

Thus, K
(
|h|2γ

)
remains bounded when |h|2γ ∈ [ϑ,+∞).

Moreover, we have(
1− 1

(1 + ϑ)2

)
(log2 e)

2 ≤ V
(
|h|2γ

)
≤ (log2 e)

2
,

for |h|2γ ∈ [ϑ,+∞). This implies that both K
(
|h|2γ

)
and

V
(
|h|2γ

)
are bounded for |h|2γ ∈ [ϑ,+∞).

Next, we analyze b1. First, we want to show that b1 < 1−ϵ,

i.e.,

2K
(
|h|2γ

)
V

3
2 (|h|2γ)

√(
2K(|h|2γ)

V
3
2 (|h|2γ)(1−ϵ)

)2

+ 1

< 1− ϵ. (84)

By manipulating Eq. (84), it is equivalent to show that the
following inequality holds.

2K
(
|h|2γ

)√
(2K (|h|2γ))2 + V 3 (|h|2γ) (1− ϵ)2

< 1. (85)

Eq. (85) holds since
(
1− 1

(1+ϑ)2

)
(log2 e)

2 ≤ V
(
|h|2γ

)
with |h|2γ ∈ [ϑ,+∞). Hence, 1− ϵ− b1 > 0 indicating that
miny∈[1−ϵ−b1,1−ϵ]

dQ−1(y)
dy is finite. Therefore, c1 is bounded

for |h|2γ ∈ [ϑ,+∞) according to Eq. (33).

Thus, we have proved that for |h|2γ ∈ [ϑ,+∞), every term

gu(|h|2γ, ϵ) =
c1

V (|h|2γ)
+

3

2
log2 V

(
|h|2γ

)
− log2 K

(
|h|2γ

)
. (80)

gl(N, |h|2γ, ϵ) = −1

2
log2 N + log2

K
(
|h|2γ

)
c2V

3
2 (|h|2γ)

− log2

[
2

(
ln 2√
2π

+
2K

(
|h|2γ

)
V

3
2 (|h|2γ)

)]

+
√
NV (|h|2γ)

[
Q−1

(
1− ϵ+

2K
(
|h|2γ

)
√
NV

3
2 (|h|2γ)

)
+Q−1(ϵ)

]
.

(81)
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of gu
(
|h|2γ, ϵ

)
shown in Eq. (80) is finite. Consequently,

|gu
(
|h|2γ, ϵ

)
| ≤ u2 for |h|2γ ∈ [ϑ,+∞), where u2 is a

positive constant.
Then, we will analyze gl(N, |h|2γ, ϵ). We consider two

cases. Following a similar approach to the analysis of
gu
(
|h|2γ, ϵ

)
, every term in gl(N, |h|2γ, ϵ) is finite for |h|2γ ∈

[ϑ,+∞). This result implies that
∣∣gl(N, |h|2γ, ϵ)

∣∣ ≤ u3, where
u3 is a positive constant.

In summary, we have proved that both |gu
(
|h|2γ, ϵ

)
| and

|gl(N, |h|2γ, ϵ)| are bounded for |h|2γ ∈ [ϑ,+∞) and a
bounded Ψ(γ). Since gl(N, |h|2γ, ϵ) ≤ G(N, |h|2γ, ϵ) ≤
gu(|h|2γ, ϵ), it follows that |G(N, |h|2γ, ϵ)| ≤ max{u2, u3}
for |h|2γ ∈ [ϑ,+∞).

Combining the results from the last subsection with those
of this subsection, we have proved that

|G(N, |h|2γ, ϵ)| ≤ max{u1, u2, u3}, |h|2γ ∈ [0,+∞),
(86)

holds for a given ϵ, a bounded Ψ(γ), and an N satisfying Eq.
(82). With a bounded Ψ(γ), Eq. (86) ensures that Eq. (22) is
satisfied. Therefore, to satisfy the condition in Eq. (22) with
a given ϵ and a bounded Ψ(γ), it is sufficient to ensure that
Eq. (82) is fulfilled.

C. Proof for lim
γ→+∞

Ψ(γ) = +∞ and |h|2γ ∈ [ϑ,+∞)

Since the upper bound is independent of N , the only
difference between this subsection and the last subsection
lies in the analysis of the lower bound gl(N, |h|2γ, ϵ). For
|h|2γ ∈ [0, ϑ), the proof is the same as that presented in Sub-
section A. Therefore, the focus is placed on |h|2γ ∈ [ϑ,+∞).
When lim

γ→+∞
Ψ(γ) = +∞, two terms in gl(N, |h|2γ, ϵ) are

unbounded. The unbounded terms are − 1
2 log2 Ψ(γ) and√

Ψ(γ)V (|h|2γ)

[
Q−1(ϵ(γ))+

Q−1

(
1− ϵ(γ) +

2K
(
|h|2γ

)√
Ψ(γ)V

3
2 (|h|2γ)

)]
.

Since lim
γ→+∞

Ψ(γ) = +∞, it follows that

lim
γ→+∞

− 1
2 log2 Ψ(γ)

Ψ(γ)
= 0. (87)

Next, we consider the term shown in Eq. (87). By per-
forming a Taylor-series expansion of the inverse Gaussian Q-
function around 1 − ϵ, we obtain Eq. (88), which appears at
the bottom of this page. Consequently, for the lower bound
gl(Ψ(γ), |h|2γ, ϵ(γ)), any Ψ(γ) that satisfies lim

γ→+∞
Ψ(γ) =

+∞ can ensure lim
γ→+∞

gl(Ψ(γ),|h|2γ,ϵ(γ))
Ψ(γ) = 0. Given that the

upper bound is also bounded, we have lim
γ→+∞

gu(|h|2γ,ϵ)
Ψ(γ) = 0.

Since we use the upper and lower bounds, it is essential to
verify that Eq. (82) holds. Thus, we have demonstrated that,
with a Ψ(γ) satisfying Eq. (82) and lim

γ→+∞
Ψ(γ) = +∞, Eq.

(22) holds.

D. Summary of the Proof

From the above proof, we find that whether Ψ(γ) is bounded
or lim

γ→+∞
Ψ(γ) = +∞, Eq. (82) is sufficient to ensure that Eq.

(22) holds for a given ϵ. For the convenience of expression,
we define

ς1 = max
x≥0

{(
2K(x)

(1− ϵ)V
3
2 (x)

)2

,

(
2K(x)

ϵV
3
2 (x)

)2
}
. (89)

Therefore, to ensure that Eq. (82) holds for a given ϵ, we can
choose a Ψ(γ) satisfying

Ψ(γ) > ς1. (90)

To establish the validity of Eq. (90), we have to prove that

ς1 is bounded. It is equivalent to proving that
(

2K(x)

V
3
2 (x)

)2

is

bounded on the interval [0,+∞). For
(

2K(x)

V
3
2 (x)

)2

, we have

shown that its value is bounded for both x → +∞ and finite
x. As x → 0, we have

lim
x→0

2K(x)

V
3
2 (x)

=
2c0

(log2 e)
3
lim
x→0

x3Ez

{∣∣∣z2 − 2√
x
z − 1

∣∣∣3}
(1 + x)3

(
1− 1

(1+x)2

) 3
2

=
2c0

(log2 e)
3
lim
x→0

x
3
2

(x+ 2)
3
2

(
u4x

− 3
2 + o

(
x− 3

2

))
=u5,

(91)

lim
γ→+∞

√
Ψ(γ)V (|h|2γ)

[
Q−1

(
1− ϵ+

2K(|h|2γ)√
Ψ(γ)V

3
2 (|h|2γ)

)
+Q−1(ϵ)

]
Ψ(γ)

= lim
γ→+∞

√
Ψ(γ)V (|h|2γ)

[
Q−1 (1− ϵ) +Q−1(ϵ) +O

(
2K(|h|2γ)√

Ψ(γ)V
3
2 (|h|2γ)

)]
Ψ(γ)

= lim
γ→+∞

√
Ψ(γ)V (|h|2γ)O

(
2K(|h|2γ)√

Ψ(γ)V
3
2 (|h|2γ)

)
Ψ(γ)

=0.

(88)
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where u4 and u5 are finite constant, and o
(
x− 3

2

)
satisfies

lim
x→0

o
(
x− 3

2

)
x− 3

2
= 0. Thus, we have proved that ς1 is bounded.

The proof is completed.

APPENDIX B
PROOF OF THEOREM 3

For finite |h|2γ, the proof is the same as that in Appendix
A, where both gu(|h|2γ, ϵ(γ)) and gl(Ψ(γ), |h|2γ, ϵ(γ)) are
proved to be bounded. Therefore, in the following proof, we
mainly focus on the analysis for |h|2γ → +∞.

Note that we use the upper and lower bounds in the follow-
ing proof. Therefore, this result is based on the assumption
shown in Eq. (92), which is located at the bottom of this page.

Since ϵ(γ) ∈ (0, 0.5], it follows that 1− ϵ(γ) ≥ ϵ(γ). Thus,
to ensure Eq. (92) holds, it is sufficient to ensure the following
condition:

Ψ(γ) >

(
2K(|h|2γ)

ϵ(γ)V
3
2 (|h|2γ)

)2

. (93)

We define
ς2 = 4max

x≥0

{
K2(x)

V 3(x)

}
.

Similar to the analysis in Eq. (91), ς2 is bounded. Thus, we
can impose the condition Ψ(γ)ϵ2(γ) > ς2 to ensure Eq. (92)
is satisfied. We let Ψ(γ)ϵ2(γ) = (1 + ω)ς2, where ω > 0 is
an arbitrarily positive constant. Then we have

ϵ(γ) =

√
(1 + ω)ς2
Ψ(γ)

. (94)

Eq. (94) will be used in the subsequent analysis.

A. Analysis of gu(|h|2γ, ϵ(γ)) for lim
γ→+∞

ϵ(γ) = 0 and

lim
γ→+∞

Ψ(γ) → +∞

Given that lim
γ→+∞

ϵ(γ) = 0, we have 1 − ϵ(γ) → 1 as

γ → +∞. Thus, according to Eq. (33), c1 → +∞ for γ →
+∞ since dQ−1(y)

dy

∣∣∣
y=1−ϵ(γ)

→ −∞. Except for c1, the other

terms in gu(|h|2γ, ϵ(γ)) remain bounded. Therefore, to ensure
that there exists a finite ν such that lim

γ→+∞

∣∣∣ gu(|h|2γ,ϵ(γ))Ψ(γ)

∣∣∣ ≤ ν

holds, it is equivalent to requiring

lim
γ→+∞

dQ−1(1−ϵ(γ))
dy

Ψ(γ)
< +∞. (95)

By substituting the derivative of inverse Gaussian Q-
function, which is given by

dQ−1(y)

dy
=

[
− 1√

2π
exp

(
−
(
Q−1(y)

2

)2
)]−1

,

into Eq. (95), we arrive at the requirement that

lim
γ→+∞

e

(
Q−1(1−ϵ(γ))

2

)2

Ψ(γ)

= lim
γ→+∞

e

(
Q−1(ϵ(γ))

2

)2

Ψ(γ)
< +∞.

(96)

B. Analysis of gl(Ψ(γ), |h|2γ, ϵ(γ)) for lim
γ→+∞

ϵ(γ) = 0 and

lim
γ→+∞

Ψ(γ) → +∞

Given that lim
γ→+∞

ϵ(γ) = 0 and lim
γ→+∞

Ψ(γ) → +∞, the

two terms in Eq. (81) are unbounded, which are the same
as those mentioned in Appendix A. The term − 1

2 log2 Ψ(γ)
follows Eq. (87) without changes. For simplicity, we define
H(γ, |h|2γ, ϵ(γ)) in Eq. (97), which is located at the bottom of
this page, to represent another unbounded term. Since Q−1(x)

is a decreasing function and
2K(|h|2γ)√

Ψ(γ)V
3
2 (|h|2γ)

> 0, we obtain

Eq. (98), which is also located at the bottom of this page.
From Eq. (98), we have

lim
γ→+∞

H(γ, |h|2γ, ϵ(γ))
Ψ(γ)

≤ 0. (99)

We have proved that the upper bound of
lim

γ→+∞
H(γ,|h|2γ,ϵ(γ))

Ψ(γ) is finite. Next, we demonstrate

the condition under which the lower bound of
lim

γ→+∞
H(γ,|h|2γ,ϵ(γ))

Ψ(γ) is finite. According to Eq. (94)

and the definition of ς2, we derive Eq. (100) at the bottom
of the next page. Based on Eq. (100), we obtain Eq. (101),
which is also located at the bottom of the next page.

We will provide the proof of

lim
γ→+∞

Q−1
(√

ς2
Ψ(γ) (

√
1+ω−1)

)
√

Ψ(γ)
= 0 in Appendix C. Thus,

lim
γ→+∞

H(γ,|h|2γ,ϵ(γ))
Ψ(γ) < +∞ holds if

lim
γ→+∞

Q−1(ϵ(γ))√
Ψ(γ)

< +∞. (102)

Ψ(γ) > max

{(
2K(|h|2γ)

(1− ϵ(γ))V
3
2 (|h|2γ)

)2

,

(
2K(|h|2γ)

ϵ(γ)V
3
2 (|h|2γ)

)2
}
. (92)

H(γ, |h|2γ, ϵ(γ)) =
√
Ψ(γ)V (|h|2γ)

[
Q−1

(
1− ϵ(γ) +

2K
(
|h|2γ

)√
Ψ(γ)V

3
2 (|h|2γ)

)
+Q−1(ϵ(γ))

]
. (97)

Q−1

(
1− ϵ(γ) +

2K
(
|h|2γ

)√
Ψ(γ)V

3
2 (|h|2γ)

)
+Q−1(ϵ(γ)) ≤ Q−1 (1− ϵ(γ)) +Q−1(ϵ(γ)) = 0. (98)
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Thus, if Eq. (102) holds, we have

lim
γ→+∞

∣∣∣∣gl(Ψ(γ), |h|2γ, ϵ(γ))
Ψ(γ)

∣∣∣∣ ≤ ν.

Therefore, if Eqs. (96), (102), and Ψ(γ)ϵ2(γ) > ς2 hold,
the condition stated in Eq. (22) is satisfied. The proof is
completed.

APPENDIX C

PROOF OF lim
γ→+∞

Q−1
(√

ς2
Ψ(γ) (

√
1+ω−1)

)
√

Ψ(γ)
= 0

Since Ψ(γ)ϵ2(γ) = (1 + ω)ς2, we have√
ς2

Ψ(γ)

(√
1 + ω − 1

)
< ϵ(γ) < 1

2 . Thus, we obtain

lim
γ→+∞

Q−1
(√

ς2
Ψ(γ) (

√
1+ω−1)

)
√

Ψ(γ)
≥ 0. To apply the

squeeze theorem, we then need to demonstrate that

lim
γ→+∞

Q−1
(√

ς2
Ψ(γ) (

√
1+ω−1)

)
√

Ψ(γ)
≤ 0. For simplicity, we

define ω1 =
√
ς2
(√

1 + ω − 1
)

in the following proof. Let
Q−1 (v) = x, which implies v = Q(x). Based on Mills’ ratio,
for x > 0, we obtain that

1√
2π

x

1 + x2
e−

x2

2 ≤ v ≤ 1√
2π

1

x
e−

x2

2 . (103)

Then, we have

x2 + lnx2 ≤ −2 ln
(√

2πv
)
. (104)

Let us introduce the Lambert W function W (·). W (v) is
the solution of yey = v. Based on W (·), we can transform

Eq. (104) into

−

√
W

(
v−2

2π

)
≤ x ≤

√
W

(
v−2

2π

)
. (105)

Since ω1√
Ψ(γ)

< 1
2 , we obtain the following relationships

from Eq. (105):

0 < Q−1

(
ω1√
Ψ(γ)

)
<

√
W

(
Ψ(γ)

2πω2
1

)
. (106)

Based on Eq. (106), we obtain Eq. (107), which is presented
at the bottom of this page. Eq. (107a) holds because, according
to [31], for y > e, the Lambert W function satisfies the
following inequalities:

W (y) ≥ ln y − ln ln y +
ln ln y

2 ln y
, (108)

and
W (y) ≤ ln y − ln ln y +

e

e− 1

ln ln y

ln y
. (109)

Based on Eqs. (108) and (109), we find that for y > e, the
following equation holds:

lim
y→+∞

√
W (y)√
log2 y

=
1√
log2 e

. (110)

Since Ψ(γ)
2πω2

1
approaches +∞ with γ → +∞, we can apply

Eq. (110) into Eq. (107a). The proof is completed.

Q−1

(
1− ϵ(γ) +

2K
(
|h|2γ

)√
Ψ(γ)V

3
2 (|h|2γ)

)
≥ Q−1

(
1−

√
ς2

Ψ(γ)

(√
1 + ω − 1

))
= −Q−1

(√
ς2

Ψ(γ)

(√
1 + ω − 1

))
.

(100)

lim
γ→+∞

√
Ψ(γ)V (|h|2γ)

[
Q−1

(
1− ϵ(γ) +

2K(|h|2γ)√
Ψ(γ)V

3
2 (|h|2γ)

)
+Q−1(ϵ(γ))

]
Ψ(γ)

≥ lim
γ→+∞

−Q−1

(√
ς2

Ψ(γ)

(√
1 + ω − 1

))
+Q−1(ϵ(γ))√

Ψ(γ)
.

(101)

lim
γ→+∞

Q−1

(
ω1√
Ψ(γ)

)
√
Ψ(γ)

≤ lim
γ→+∞

√
W
(

Ψ(γ)
2πω2

1

)
√
Ψ(γ)

=
1√
log2 e

lim
γ→+∞

√
log2 Ψ(γ)− log2 2πω

2
1√

Ψ(γ)
(107a)

=
1√
log2 e

lim
γ→+∞

√
log2 Ψ(γ)

Ψ(γ)

= 0.
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APPENDIX D
PROOF OF THEOREM 5

Based on the definition of s∞ proposed in Eq. (45) and
R̃ϵ

N [n] = Rϵ
N [n]−G(N, |h[n]|2γ), we obtain Eq. (111) at the

bottom of this page.
Since N = Ψ(γ) and Nθ = ϱ, we have θ = ϱ

Ψ(γ) . As
discussed in Section II, if Ψ(γ) satisfies the conditions of
Theorem 2, Eq. (22) holds for a given ϵ. Thus, the following
inequality holds:∣∣θG(N, |h[n]|2γ)

∣∣ = ∣∣∣∣ϱG(N, |h[n]|2γ)
Ψ(γ)

∣∣∣∣ ≤ ϱν. (112)

From Eq. (112), we obtain that c5 ≤ e−TθG(N,|h[n]|2γ) ≤
c6, where c5 and c6 are positive constants. Under the above
conditions, we obtain

s∞ = − 1

θNT
lim

γ→+∞

lnE|h|2
{
e−TθR̃ϵ

N [n]
}

log2 γ
. (113)

From Eq. (113), it is obvious that s∞ = 1 for the AWGN
channel. For the Nakagami-m fading channel, we obtain Eq.
(114), which is presented at the bottom of this page.

We will utilize Eq. (114) to carry out the following proof.
The following proof is divided into four parts. We analyze the
upper bound of s∞ for m ≥ 1 in the first part, followed by its
lower bound in the second part. Next, we present the upper and
lower bounds of s∞ for m ∈ [0.5, 1) in the third and fourth

part, respectively. For simplicity, we let β =
√
NQ−1(ϵ) log2 e

in the proofs of this paper.

A. Upper bound of s∞ for m ≥ 1

For m ≥ 1, we first derive the upper bound of s∞. Since
Rϵ[n] ≤ N log2

(
1 + |h[n]|2γ

)
, we derive Eq. (115), which is

presented at the bottom of this page.
1) 1 < m

θNT log2 e :
For 1 < m

θNT log2 e , we find that Eq. (116), which is
presented at the bottom of this page, holds.

According to [14], 0 <
∫∞
0

zae−xdx < ∞ if a >
−1. Since in this case m > θNT log2 e, we obtain
m − θNT log2 e − 1 > −1. Therefore, the integral∫∞
0

(
1
γ + x

)−θNT log2 e

xm−1e−
m
Ω xdx is bounded by a finite

constant. Thus, under the condition 1 < m
θNT log2 e , Eq. (115)

can be further expressed as

s∞ ≤ lim
γ→+∞

log2 N

2N
− 1

θNT
lim

γ→+∞

−θNT log2 e ln γ

log2 γ

= 1.
(117)

Eq. (117) holds because

lim
γ→+∞

log2 N

N
= lim

γ→+∞

log2 Ψ(γ)

2Ψ(γ)
= 0.

is valid under the condition that lim
γ→+∞

Ψ(γ) = +∞.

s∞ = − 1

θNT
lim

γ→+∞

lnE|h|2
{
e−TθRϵ

N [n]
}

log2 γ

= − 1

θNT
lim

γ→+∞

lnE|h|2
{
e−Tθ(Rϵ

N [n]−R̃ϵ
N [n])e−TθR̃ϵ

N [n]
}

log2 γ

= − 1

θNT
lim

γ→+∞

lnE|h|2
{
e−TθR̃ϵ

N [n]e−TθG(Ψ(γ),|h[n]|2γ)
}

log2 γ
.

(111)

s∞ = − 1

θNT
lim

γ→+∞

ln
∫∞
0

(1 + γx)−θNT log2 ee
θT

√
N

(
1− 1

(1+γx)2

)
Q−1(ϵ) log2 e−θT

log2 N
2
(
m
Ω

)m xm−1

Γ(m) e
−m

Ω xdx

log2 γ

= − 1

θNT
lim

γ→+∞

ln
∫∞
0

(1 + γx)−θNT log2 ee
θT

√
N

(
1− 1

(1+γx)2

)
Q−1(ϵ) log2 e−θT

log2 N
2

xm−1e−
m
Ω xdx

log2 γ
.

(114)

s∞ ≤ − 1

θNT
lim

γ→+∞

ln
[∫∞

0
(1 + γx)−θNT log2 e

(
m
Ω

)m
e−θT

log2 N
2 xm−1e−

m
Ω xdx

]
log2 γ

= − 1

θNT
lim

γ→+∞

ln

[
e−θT

log2 N
2 γ−θNT log2 e

∫∞
0

(
1
γ + x

)−θNT log2 e

xm−1e−
m
Ω xdx

]
log2 γ

.

(115)

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e

xm−1e−
m
Ω xdx ≤

∫ ∞

0

xm−θNT log2 e−1e−
m
Ω xdx

=

(
Ω

m

)m−θNT log2 e ∫ ∞

0

tm−θNT log2 e−1e−tdt.

(116)
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2) 1 > m
θNT log2 e :

For 1 > m
θNT log2 e , we focus on the integral∫ ∞

0

(
1

γ
+ x

)−θNT log2 e

xm−1e−
m
Ω xdx.

This yields Eq. (118), which is shown at the bottom of this
page. Eq. (118a) holds because x

1
γ +x

an increasing function

for x ∈
[
1
γ ,∞

)
.

By substituting Eq. (118b) into Eq. (115), we arrive at Eq.
(119), which is presented at the bottom of this page. Eq. (119a)
holds because according to [47], the following inequality holds
for s < 0:

lim
x→0

Γ(s, x)

xs
= −1

s
. (120)

3) 1 = m
θNT log2 e :

For 1 = m
θNT log2 e , we have

Γ

(
m− θNT log2 e,

2m

Ωγ

)
= E1

(
2m

Ωγ

)
.

By substituting this equation and Eq. (118b) into Eq. (115),
we arrive at Eq. (121), which is shown at the bottom of this
page. Eq. (121a) holds because, as demonstrated in [48], the
following inequality holds:

E1(x) >
1

2
e−x ln

(
1 +

2

x

)
, x > 0. (122)

Thus, we have completed the proof for the upper bound of
s∞ for m ≥ 1.

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e

xm−1e−
m
Ω xdx

=

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e+m−1

·

(
x

1
γ + x

)m−1

e−
m
Ω xdx

≥
∫ ∞

1
γ

(
1

γ
+ x

)−θNT log2 e+m−1(
1

2

)m−1

e−
m
Ω xdx (118a)

=

(
1

2

)m−1 (m
Ω

)θNT log2 e−m

e
m
γΩΓ

(
m− θNT log2 e,

2m

Ωγ

)
. (118b)

s∞ ≤ − 1

θNT
lim

γ→+∞

ln
[
e−θT

log2 N
2 γ−θNT log2 e

(
1
2

)m−1 (m
Ω

)θNT log2 e−m
e

m
γΩΓ

(
m− θNT log2 e,

2m
Ωγ

)]
log2 γ

= − 1

θNT
lim

γ→+∞

ln

[
e−θT

log2 N
2 γ−m

(
1
2

)θNT log2 e−1
e

m
γΩ

Γ(m−θNT log2 e, 2mΩγ )
( 2m

Ωγ )
m−θNT log2 e

]
log2 γ

= − 1

θNT

 lim
γ→+∞

−m ln γ

log2 γ
+ lim

γ→+∞

ln

[
Γ(m−θNT log2 e, 2mΩγ )
( 2m

Ωγ )
m−θNT log2 e

]
log2 γ

+ lim
γ→+∞

m

Ωγ log2 γ

+ lim
γ→+∞

log2 N

2N

= − 1

θNT

(
lim

γ→+∞

−m ln γ

log2 γ
+ lim

γ→+∞

m

Ωγ log2 γ

)
(119a)

=
m

θNT log2 e
. (119b)

s∞ ≤ − 1

θNT
lim

γ→+∞

ln
[
e−θT

log2 N
2 γ−θNT log2 e

(
1
2

)m−1 (m
Ω

)θNT log2 e−m
e

m
γΩE1

(
2m
Ωγ

)]
log2 γ

≤ − 1

θNT
lim

γ→+∞

ln
[
e−θT

log2 N
2 γ−θNT log2 e

(
1
2

)m
e−

m
Ωγ ln

(
1 + Ωγ

m

)]
log2 γ

(121a)

= − 1

θNT

 lim
γ→+∞

−θNT log2 e ln γ

log2 γ
− lim

γ→+∞

m

Ωγ log2 γ
+ lim

γ→+∞

ln ln
(
1 + Ωγ

m

)
log2 γ

+ lim
γ→+∞

log2 N

2N

= 1.
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B. Lower bound of s∞ for m ≥ 1

Since
√
1− x ≤ 1 holds for x ∈ (0, 1), the lower bound

of s∞ in the Nakagami-m fading channel is derived in Eq.
(123), shown at the bottom of this page. Eq. (123b) holds
since m ≥ 1 and 1

γ + x > x for x > 0. Since m
Ω is a finite

constant, we have
lim

γ→+∞

m

Ωγ
= 0.

Based on Eq. (123), we will divide the following discussion
into two parts regrading the value of m

θNT log2 e .
1) 1 < m

θNT log2 e :
According to [49], for s ∈ (0, 1]∪[2,+∞), Γ(s, x) satisfies

Γ(s, x) <
(x+ vs)

s − xs

vss
e−x, (124)

where vs = Γ(s+ 1)
1

s−1 > 0. For simplicity, we define

c7 = Γ(m+ 1− θNT log2 e)
1

m−1−θNT log2 e .

Based on Eq. (124), for m − θNT log2 e ∈ (0, 1] ∪ [2,∞),
we obtain Eq. (125), which is presented at the bottom of this
page. Eq. (125a) holds because

lim
γ→+∞

ln
[(
1 + c7Ω

m γ
)m−θNT log2 e − 1

]
(m− θNT log2 e) ln

(
1 + c7Ω

m γ
) = 1, (126)

where c7 > 0 and m − θNT log2 e > 0. Eq. (125b) holds

because lim
γ→+∞

ln(1+ c7Ω
m γ)

ln γ = 1.

For m − θNT log2 e ∈ (1, 2), we focus on the integral in
Eq. (123a). When m − θNT log2 e ∈ (1, 2), the condition
θNT log2 e < m holds. Therefore, we find that the integral∫∞
0

(
1
γ + x

)−θNT log2 e

xm−1e−
m
Ω xdx is bounded by a finite

constant according to Eq. (116). Thus, we obtain Eq. (127),
which is presented at the bottom of this page.

2) 1 ≥ m
θNT log2 e :

For m − θNT log2 e < 0, we obtain Eq. (128), which is

s∞ ≥ − 1

θNT
lim

γ→+∞

ln
[
e−θT

log2 N
2

∫∞
0

(1 + γx)−θNT log2 eeθTβ−θT
log2 N

2 xm−1e−
m
Ω xdx

]
log2 γ

= − 1

θNT
lim

γ→+∞

ln

[
e−θT

log2 N
2 γ−θNT log2 eeθTβ

∫∞
0

(
1
γ + x

)−θNT log2 e

xm−1e−
m
Ω xdx

]
log2 γ

(123a)

≥ − 1

θNT
lim

γ→+∞

ln

[
e−θT

log2 N
2 γ−θNT log2 eeθTβ

∫∞
0

(
1
γ + x

)−θNT log2 e+m−1

e−
m
Ω xdx

]
log2 γ

(123b)

= − 1

θNT
lim

γ→+∞

ln
[
e−θT

log2 N
2 γ−θNT log2 eeθTβ

(
m
Ω

)θNT log2 e−m
e

m
γΩΓ

(
m− θNT log2 e,

m
Ωγ

)]
log2 γ

.

s∞ ≥ − 1

θNT
lim

γ→+∞

ln

[
e−θT

log2 N
2 γ−θNT log2 eeθTβ

(
m
Ω

)θNT log2 e−m ( m
Ωγ +c7)

m−θNT log2 e−( m
Ωγ )

m−θNT log2 e

c7(m−θNT log2 e)

]
log2 γ

= − 1

θNT

(
lim

γ→+∞

ln
[
γ−meθTβ

(
(1 + c7Ω

m γ)m−θNT log2 e − 1
)]

log2 γ
− lim

γ→+∞

ln [c7 (m− θNT log2 e)]

log2 γ

)

= − 1

θNT
lim

γ→+∞

−m ln γ

log2 γ
− lim

γ→+∞

β

N log2 γ
− m− θNT log2 e

θNT
lim

γ→+∞

ln
(
1 + c7Ω

m γ
)

log2 γ
(125a)

= 1. (125b)

s∞ ≥ − 1

θNT
lim

γ→+∞

−θNT log2 e ln γ

log2 γ
− lim

γ→+∞

β

N log2 γ
+ lim

γ→+∞

log2 N

2N

= 1.

(127)

s∞ ≥ − 1

θNT
lim

γ→+∞

ln

[
e−θT

log2 N
2 γ−meθTβe

m
Ωγ

Γ(m−θNT log2 e, m
Ωγ )

( m
Ωγ )

m−θNT log2 e

]
log2 γ

= − 1

θNT

(
− lim

γ→+∞

m ln γ

log2 γ
+ lim

γ→+∞

θTβ

log2 γ
+ lim

γ→+∞

m

Ωγ log2 γ

)
+ lim

γ→+∞

log2 N

2N
(128a)

=
m

θNT log2 e
.
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presented at the bottom of the last page. Eq. (128a) holds
according to Eq. (120).

3) 1 = m
θNT log2 e :

For m− θNT log2 e = 0, we have

Γ

(
m− θNT log2 e,

m

Ωγ

)
= E1

(
m

Ωγ

)
.

Based on Eq. (123), we obtain Eq. (129), which is presented
at the bottom of this page. Eq. (129a) holds because according
to [48], the following inequality holds:

E1(x) < e−x ln

(
1 +

1

x

)
, x > 0. (130)

Therefore, according to the squeeze theorem, we have
completed the proof for m ≥ 1 based on the results shown in
Eqs. (117), (119), (121), (125), (128), and (129).

C. Upper bound of s∞ for m ∈ [0.5, 1)

For 0.5 ≤ m < 1, there are some differences from the
previous proofs for m ≥ 1. The differences mainly lie in the
proof for the upper bound when 1 > m

θNT log2 e and the lower
bound.

For the upper bound when 1 ≤ m
θNT log2 e , the proof follows

the same reasoning as presented in Eqs. (117) and (121). In
contrast, for the upper bound with 1 > m

θNT log2 e , Eq. (118)

is changed into∫ ∞

0

(
1

γ
+ x

)−θNT log2 e

xm−1e−
m
Ω xdx

=

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e+m−1(
1

γx
+ 1

)1−m

e−
m
Ω xdx

≥
∫ ∞

0

(
1

γ
+ x

)−θNT log2 e+m−1

e−
m
Ω xdx (131a)

=
(m
Ω

)θNT log2 e−m

e
m
Ωγ Γ

(
m− θNT log2 e,

m

Ωγ

)
.

Eq. (131a) holds because 1 − m > 0 and 1 + 1
γx > 1 for

x > 0.
Then, by substituting Eq. (131) into Eq. (115), we derive

Eq. (132), which is presented at the bottom of this page. Eq.
(132a) holds because m− θNT log2 e < 0, which allows the
application of Eq. (120).

D. Lower Bound of s∞ for m ∈ [0.5, 1)

Next, we focus on the lower bound of s∞ for 0.5 ≤ m < 1.
The essence of this part of the proof remains the scaling of the

integral
∫∞
0

(
1
γ + x

)−θNT log2 e

xm−1e−
m
Ω xdx. According to

Eq. (123), the lower bound of s∞ is given in Eq. (133), located
at the bottom of this page.

1) 1 < m
θNT log2 e :

For 1 < m
θNT log2 e , we transform Eq. (133) into Eq. (134),

which is presented at the bottom of the next page. Eq. (134)

s∞ ≥ − 1

θNT
lim

γ→+∞

ln
[
e−θT

log2 N
2 γ−θNT log2 eeθTβ

(
m
Ω

)θNT log2 e−m
e

m
γΩE1

(
m
Ωγ

)]
log2 γ

≥ − 1

θNT
lim

γ→+∞

ln
[
e−θT

log2 N
2 γ−θNT log2 eeθTβ

(
m
Ω

)θNT log2 e−m
ln
(
1 + Ωγ

m

)]
log2 γ

(129a)

= − 1

θNT

 lim
γ→+∞

−θNT log2 e ln γ

log2 γ
+ lim

γ→+∞

θTβ

log2 γ
+ lim

γ→+∞

ln ln
(
1 + Ωγ

m

)
log2 γ

+ lim
γ→+∞

log2 N

2N
(129b)

= 1.

s∞ ≤ − 1

θNT
lim

γ→+∞

ln
[
e−θT

log2 N
2 γ−θNT log2 e

(
m
Ω

)θNT log2 e−m
e

m
Ωγ Γ

(
m− θNT log2 e,

m
Ωγ

)]
log2 γ

= − 1

θNT
lim

γ→+∞

ln

[
e−θT

log2 N
2 γ−me

m
Ωγ

Γ(m−θNT log2 e, m
Ωγ )

( m
Ωγ )

m−θNT log2 e

]
log2 γ

= − 1

θNT

(
lim

γ→+∞

−m ln γ

log2 γ
+ lim

γ→+∞

m

Ωγ log2 γ

)
+ lim

γ→+∞

log2 N

2N
(132a)

=
m

θNT log2 e
.

s∞ ≥ − 1

θNT
lim

γ→+∞

ln

[
e−θT

log2 N
2 γ−θNT log2 eeθTβ

∫∞
0

(
1
γ + x

)−θNT log2 e

xm−1e−
m
Ω xdx

]
log2 γ

.
(133)
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holds because −θNT log2 e < 0 and 1
γ+x > x. As mentioned

previously,
∫∞
0

zae−xdx < ∞ holds when a > −1. Since in
this case 1 < m

θNT log2 e , we have −θNT log2 e+m−1 > −1.
Thus, in this case the following integral is a finite constant:∫ ∞

0

x−θNT log2 e+m−1e−
m
Ω xdx

=

(
Ω

m

)m−θNT log2 e ∫ ∞

0

tm−θNT log2 e−1e−tdt.

Consequently, we obtain

s∞ ≥ − 1

θNT
lim

γ→+∞

−θNT log2 e ln γ

log2 γ
−

1

N
lim

γ→+∞

β

log2 γ
+ lim

γ→+∞

log2 N

2N

= 1.

(135)

2) 1 ≥ m
θNT log2 e :

For 1 ≥ m
θNT log2 e , we obtain Eq. (136), which is presented

at the bottom of this page. In Eq. (136), Kv(z) denotes the
modified Bessel function of the second kind [48]. Eq. (136a)
holds because in this case, we have m− 1

2 ≥ 0 and x
1
γ +x

≤ 1.
According to [48], for the modified Bessel function of the

second kind Kv(z) with v = 0, we obtain

lim
z→0

K0(z)

− ln(z)
= c8, (137)

where c8 > 0 is a constant.
Based on this conclusion, we transformed Eq. (136) into

Eq. (138), which is presented at the bottom of this page. By
substituting Eq. (138) into Eq. (133), we obtain Eq. (139),
located at the bottom of this page. Eq. (139b) holds according
to Eq. (137). By applying the squeeze theorem, we have
completed the proof for m ∈ [0.5, 1). Thus, we have finished
the proof.

APPENDIX E
PROOF OF THEOREM 6

With the Ψ(γ) satisfying Theorem 3, Eq. (113) still holds.
For the AWGN channel, we can easily obtain

s∞ = lim
γ→+∞

R̃ϵ
N

N log2 γ
(140a)

= 1− log2 e lim
γ→+∞

Q−1 (ϵ(γ))√
N log2 γ

.

For an FBL-SISO system in a Nakagami-m fading channel,
we will prove two inequalities shown in Eqs. (141) and (142),

s∞ ≥ − 1

θNT
lim

γ→+∞

ln
[
e−θT

log2 N
2 γ−θNT log2 eeθTβ

∫∞
0

x−θNT log2 e+m−1e−
m
Ω xdx

]
log2 γ

. (134)

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e

xm−1e−
m
Ω xdx

=

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e+m
(

x
1
γ + x

)m− 1
2

x− 1
2(

1
γ + x

) 1
2

e−
m
Ω xdx

≤
(
1

γ

)−θNT log2 e+m ∫ ∞

0

e−
m
Ω x√

x
(

1
γ + x

)dx (136a)

=γθNT log2 e−me
m

2Ωγ K0

(
m

2Ωγ

)
.

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e

xm−1e−
m
Ω xdx ≤ γθNT log2 e−me

m
2Ωγ ln

(
2Ωγ

m

) K0

(
m

2Ωγ

)
− ln

(
m

2Ωγ

) . (138)

s∞ ≥ − 1

θNT
lim

γ→+∞

ln

[
e−θT

log2 N
2 γ−meθTβe

m
2Ωγ ln

(
2Ωγ
m

)
K0( m

2Ωγ )
− ln( m

2Ωγ )

]
log2 γ

= − 1

θNT
lim

γ→+∞

−m ln γ

log2 γ
+

θTβ

log2 γ
+

ln ln γ

log2 γ
+

ln
K0( m

2Ωγ )
− ln( m

2Ωγ )

log2 γ

+ lim
γ→+∞

log2 N

2N
(139a)

=
m

θNT log2 e
. (139b)
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which are located at the bottom of this page. In Eq. (142), c3 >
0 is an arbitrary constant. Since c3 > 0 can be an arbitrarily
small constant, we obtain Eq. (50) based on Eqs. (141) and
(142).

The derivation of Eq. (141) is based on the derivation of the
lower bounds of s∞ in the proof of Theorem 5. For m ≥ 1,
we can directly obtain Eq. (141) according to Eqs. (125a),
(128a), and (129b). For m ∈ [0.5, 1), we can derive Eq. (141)
according to Eqs. (135) and (139a). Thus, we omit the details
here.

The derivation of Eq. (142) is based on the derivation of
the upper bounds of s∞. Different from the proof of Theorem
5, we start the proof with the help of

√
1− x ≥ 1−

√
x with

x ∈ (0, 1). We obtain Eq. (143), which is presented at the
bottom of this page.

Since x
x+1 ≤ ln(1 + x) holds for x > 0, we have

1

1 + γx
≤ ln

(
1 +

1

γx

)
.

Therefore, we can transform Eq. (143) into Eq. (144), which
is presented at the bottom of this page. The integral in Eq.
(144) can be further manipulated to obtain Eq. (145), which
is also presented at the bottom of this page.

Note that, as γ → +∞, we have β → +∞. Therefore,
1 −m − θTβ < 0 holds. Based on this condition, we derive
Eq. (146) at the bottom of this page, where c9 is an arbitrarily
positive constant. Based on this result, we obtain Eq. (147),
which is also provided at the bottom of this page.

For 1 > m
θNT log2 e , by combining Eq. (120) with Eq. (147),

we obtain Eq. (148), which is at the bottom of this page. Note
that, since c9 is an arbitrarily positive constant, ln

(
1 + 1

c9

)
is also an arbitrarily positive constant.

lim
γ→+∞

Λ(γ)

log2 γ
+ log2 e lim

γ→+∞

Q−1(ϵ(γ))√
N log2 γ

≥ min

{
1,

m

θNT log2 e

}
. (141)

lim
γ→+∞

Λ(γ)

log2 γ
+ (1− c3) log2 e lim

γ→+∞

Q−1(ϵ(γ))√
N log2 γ

≤ min

{
1,

m

θNT log2 e

}
. (142)

s∞ ≤ − 1

θNT
lim

γ→+∞

e−θT
log2 N

2 ln
[∫∞

0
e−θT(N log2(1+γx)−β(1− 1

1+γx ))
(
m
Ω

)m xm−1

Γ(m) e
−m

Ω xdx
]

log2 γ

= − 1

θNT
lim

γ→+∞

ln

[
γ−θNT log2 eeθTβ

∫∞
0

(
1
γ + x

)−θNT log2 e

xm−1e−(
m
Ω x+ θTβ

1+γx )dx

]
log2 γ

.

(143)

s∞ ≤ − 1

θNT
lim

γ→+∞

ln

[
γ−θNT log2 eeθTβ

∫∞
0

(
1
γ + x

)−θNT log2 e (
1 + 1

γx

)−θTβ

xm−1e−
m
Ω xdx

]
log2 γ

. (144)

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e(
1 +

1

γx

)−θTβ

xm−1e−
m
Ω xdx

=

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e+m−1(
1

γx
+ 1

)1−m−θTβ

e−
m
Ω xdx.

(145)

∫ ∞

0

(
1

γ
+ x

)−θNT log2 e+m−1(
1

γx
+ 1

)1−m−θTβ

e−
m
Ω xdx

≥
(

c9
c9 + 1

)θTβ+m−1 ∫ ∞

c9
γ

(
1

γ
+ x

)−θNT log2 e+m−1

e−
m
Ω xdx

=

(
c9

c9 + 1

)θTβ+m−1 (m
Ω

)θN log2 e−m

e
m
Ωγ Γ

(
m− θNT log2 e,

m(1 + c9)

Ωγ

)
.

(146)

s∞ ≤ − 1

θNT
lim

γ→+∞

ln

[
γ−θNT log2 eeθTβ

(
c9

c9+1

)θTβ+m−1 (
m
Ω

)θN log2 e−m
e

m
Ωγ Γ

(
m− θNT log2 e,

m(1+c9)
Ωγ

)]
log2 γ

. (147)

s∞ ≤ − 1

θNT
lim

γ→+∞

−m ln γ

log2 γ
−
(
1 + ln

c9
c9 + 1

)
lim

γ→+∞

β

N log2 γ

=
m

θNT log2 e
− log2 e

(
1− ln

(
1 +

1

c9

))
lim

γ→+∞

Q−1(ϵ(γ))√
N log2 γ

.

(148)
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For 1 ≤ m
θNT log2 e , we will divide the proof into two parts.

1) 1 ≤ m
θNT log2 e ≤ 1 + 1

θNT log2 e and m
θNT log2 e ≥

1 + 2
θNT log2 e :

The first part is 1 ≤ m
θNT log2 e ≤ 1 + 1

θNT log2 e and
m

θNT log2 e ≥ 1 + 2
θNT log2 e , which implies 0 ≤ m −

θNT log2 e ≤ 1 and m − θNT log2 e ≥ 2. We will utilize
the conclusion that the following inequality holds for x > 0
with s ≤ 1 and s ≥ 2:

Γ(s, x) ≥ e−x(1 + x)s−1.

This can be easily demonstrated using Jensen’s inequality, as
(t+ x)s−1 is a convex function of t with a s ≤ 1 and s ≥ 2.
As a result, we have∫ ∞

x

ys−1e−ydy = e−x

∫ ∞

0

(t+ x)s−1e−tdt

≥ e−x

(∫ ∞

0

(t+ x)e−tdt

)s−1

= e−x(1 + x)s−1.

(149)

Now we have proved that Γ(s, x) ≥ e−x(1 + x)s−1 holds for
s ≤ 1 and s ≥ 2. Therefore, by substituting Eq. (149) into
Eq. (147), we obtain Eq. (150), which appears at the bottom
of this page.

2) 1 + 1
θNT log2 e < m

θNT log2 e < 1 + 2
θNT log2 e :

The second part considers 1 + 1
θNT log2 e < m

θNT log2 e <

1 + 2
θNT log2 e , which implies 1 < m − θNT log2 e < 2. For

Γ(s, x) with 1 < s < 2, according to [49], we have

Γ(s, x) >
(x+ vs)

s − xs

vss
e−x, (151)

where vs is defined after Eq. (124). By substituting Eq.
(151) into Eq. (147), we can derive Eq. (152) using similar
procedures as shown in Eq. (125). Eq. (152) is presented at
the bottom of this page. Now we have completed the proof of
Eq. (142).

APPENDIX F
PROOF OF LEMMA 1

Based on the definition of ϖ, we obtain

lim
γ→+∞

1√
N

∂
√

− log2 ϵ(γ)

∂ log2 γ
= ϖ

√
1

2 log2 e
. (153)

Under the assumption that ϖ is finite, we have

lim
γ→+∞

1√
N

√
− log2 ϵ(γ)

log22 γ
(154a)

= lim
γ→+∞

√
− log2 ϵ(γ)√
N log2 γ

(154b)

= lim
γ→+∞

∂
√

− log2 ϵ(γ)

∂ log2 γ√
N + ∂

√
N

∂ log2 γ log2 γ
(154c)

=ϖ

√
1

2 log2 e
lim

γ→+∞

1

1 + ∂
√
N

∂ log2 γ
log2 γ√

N

.

Eq. (154c) holds according to L’Hospital’s rule. As defined in
Lemma 1, we let

c4 = lim
γ→+∞

1

1 + ∂
√
N

∂ log2 γ
log2 γ√

N

.

Since lim
γ→+∞

Ψ(γ) = +∞, we have

∂
√
N

∂ log2 γ

log2 γ√
N

≥ 0.

Therefore, we conclude that c3 ∈ [0, 1].

Next, we let Q−1(ϵ(γ)) = x, which can also be expressed
as ϵ(γ) = Q(x). According to Eq. (103), we have

x2 + lnx2 ≤ −2 ln
(√

2πϵ(γ)
)
. (155)

By substituting ϵ(γ) for v in Eq. (105), we obtain

−

√
W

(
ϵ−2(γ)

2π

)
≤ x ≤

√
W

(
ϵ−2(γ)

2π

)
. (156)

s∞ ≤ − 1

θNT
lim

γ→+∞

ln

[
γ−θNT log2 eeθTβ

(
c9

c9+1

)θTβ

e−
c9m
Ωγ

(
1 + m(1+c9)

Ωγ

)m−θNT log2 e−1
]

log2 γ

= − 1

θNT
lim

γ→+∞

(
−θNT log2 e ln γ

log2 γ
+

(
1 + ln

c9
c9 + 1

)
θTβ

log2 γ
+ (m− θNT − 1) log2 e

m(1 + c9)

γ log2 γ

)
= 1− log2 e

(
1− ln

(
1 +

1

c9

))
lim

γ→+∞

Q−1(ϵ(γ))√
N log2 γ

.

(150)

s∞ ≤ − 1

θNT
lim

γ→+∞

−m ln γ

log2 γ
−
(
1 + ln

c2
c2 + 1

)
lim

γ→+∞

β

N log2 γ
−
( m

θNT
− 1
)

lim
γ→+∞

ln
(
1 + c1Ω(1+c2)

m γ
)

log2 γ

= 1− log2 e

(
1− ln

(
1 +

1

c2

))
lim

γ→+∞

Q−1(ϵ(γ))√
N log2 γ

.

(152)
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Since x > 0, we have 0 < x ≤
√
W
(

ϵ−2(γ)
2π

)
. Similarly,

based on Eq. (103), we obtain Eq. (157), which is presented
at the bottom of this page.

Based on the definition of W (·) and Eq. (157), we have

x+
1

x
≥

√
W

(
ϵ−2(γ)

2π

)
or

x+
1

x
≤ −

√
W

(
ϵ−2(γ)

2π

)
.

(158)

Since x > 0, we will utilize x + 1
x ≥

√
W
(

ϵ−2(γ)
2π

)
in the

following proof.
Based on Eq. (158), we obtain

lim
γ→+∞

Q−1(ϵ(γ))√
N log2 γ

≤ lim
γ→+∞

√
W
(

ϵ−2(γ)
2π

)
√
N log2 γ

= lim
γ→+∞

√
−2 log2 ϵ(γ)√
N log2 γ

·

√
W
(

ϵ−2(γ)
2π

)
√
−2 log2 ϵ(γ)

=
1√
log2 e

lim
γ→+∞

√
−2 log2 ϵ(γ)

log22 γ
· 1√

N
(159a)

=
c4

log2 e
ϖ. (159b)

Eq. (159a) holds according to Eq. (110). Besides, Eq. (159b)
holds according to Eq. (154).

Similarly, based on Eq. (158), we derive Eq. (160), which
is shown at the bottom of this page. Eq. (160) holds because
as γ → +∞, Q−1(ϵ(γ)) → +∞. Therefore, by applying the
squeeze theorem, we have completed the proof.

APPENDIX G
PROOF OF COROLLARY 3

Based on Lemma 1 in [50], we find that αA(θ) is an
increasing function of θ. Therefore, the inverse function of

αA(·) exists, which is denoted by α−1
A (·). According to Eq.

(20), the θ for the AWGN channel can be expressed as

θ = α−1
A (Rϵ

N ). (161)

From Eq. (19), we know that χ ≤ e−θL. Substituting Eq.
(161) into χ ≤ e−θL ≤ χth, we have

α−1
A (Rϵ

N ) ≥ − 1

L
lnχth. (162)

Since αA(θ) is an increasing function of θ, it follows Rϵ
N ≥

αA

(
− 1

L lnχ
)
. Substituting Eq. (7) into this inequality, we

obtain

NC −
√
NVQ−1(ϵ) +

log2 N

2
+G(N, γ, ϵ)

≥ αA

(
− 1

L
lnχ

)
.

(163)

From Eq. (163), we obtain Eq. (71).

APPENDIX H
PROOF OF LEMMA 2

We put our focus on the expectation term in the definition of
EC. For simplicity, let g(x) = −r(x). The derivative of g(x)
is provided in Eq. (164), which is presented at the bottom of
this page.

we find that (1 + γx)
√

(1 + γx)2 − 1 is an increasing
function of x, which equals 0 when x = 0. Therefore, based
on Eq. (164), there exists a stationary point x∗. When x = x∗,
g′(x) = 0, x < x∗, g′(x) > 0, and x > x∗, g′(x) < 0. x∗

satisfies the following equation:

(1 + γx∗)
√
(1 + γx∗)2 − 1 =

Q−1(ϵ)√
N

. (165)

The stationary point x∗ can be solved from Eq. (165).
Specifically, we have

x∗ =
1

γ

√1 +
√
1 + 4ℓ

2
− 1

 , (166)

which is an interior point of (0,∞). According to Laplace’s
method [51], the integral in the definition of EC can be

(
x+

1

x

)2

+ ln

(
x+

1

x

)2

> x2 + ln

(
x+

1

x

)2

≥ −2 ln
(√

2πϵ(γ)
)
. (157)

lim
γ→+∞

Q−1(ϵ(γ))√
N log2 γ

≥ lim
γ→+∞

√
W
(

ϵ−2(γ)
2π

)
√
N log2 γ

− lim
γ→+∞

1

Q−1(ϵ(γ)) ·
√
N log2 γ

=
c4

log2 e
ϖ.

(160)

g′(x) =
−(ln 2)−1

(
γ(1 + γx)

√
(1 + γx)2 − 1−

√
1
NQ−1(ϵ)γ

)
(1 + γx)3

√(
1− (1 + γx)−2

) . (164)

∫ ∞

0

f(x)e−θNTr(x)dx =

√
2π

θNT |r′′(x∗)|
f(x∗)e−θNTr(x∗)

(
1 +O

(
(θNT )−1

))
. (167)
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expressed as shown in Eq. (167), which is presented at the
bottom of the last page. By substituting Eq. (167) into Eq.
(16), we derive Eq. (72).

APPENDIX I
PROOF OF THEOREM 8

Similar to the proof of Lemma 2, the derivative of g(x)
is given in Eq. (168), where we omit the argument of Ξ for
simplicity. Eq. (168) is presented at the bottom of this page. By
comparing Eqs. (168) and (164), we find that if Ξ+Ξ′x ≥ 0,
the remaining analysis is identical with the proof of Lemma
2. Therefore, we omit the details.

APPENDIX J
PROOF OF COROLLARY 4

According to [28], the EC with the simple ARQ mechanism
that allows for unlimited retransmissions is given by

αS(θ) = − 1

θT
lnEx

{
ϵ+ (1− ϵ)e−θNTr(x)

}
= − 1

θT
ln

(
ϵ+ (1− ϵ)

∫ ∞

0

e−θNTr(x)f(x)dx

)
.

(169)
Similar to the proofs of Lemma 2 and Theorem 8, if the power
allocation scheme satisfies Ξ(x) + dΞ(x)

dx x ≥ 0, the integral∫∞
0

e−θNTr(x)f(x)dx can be approximated as shown in Eq.
(167) using Laplace’s method. By substituting Eq. (167) into
Eq. (169), we obtain Eq. (79).

ACKNOWLEDGMENT

The authors would like to express their gratitude to the
editor and anonymous reviewers for their careful reading
and constructive comments. In particular, we appreciate their
identification of the double-limit issue and their insightful
suggestions on addressing it.

REFERENCES

[1] K. B. Letaief, W. Chen, Y. Shi, J. Zhang, and Y. A. Zhang, “The roadmap
to 6G: AI empowered wireless networks,” IEEE Commun. Mag., vol. 57,
no. 8, pp. 84–90, Aug. 2019.

[2] J. Park, S. Samarakoon, H. Shiri, M. K. Abdel-Aziz, T. Nishio, A.
Elgabli, and M. Bennis, “Extreme ultra-reliable and low-latency com-
munication,” Nat. Electron., no. 5, pp. 133–141, Mar. 2022.

[3] P. Popovski, F. Chiariotti, K. Huang, A. E. Kalør, M. Kountouris,
N. Pappas, and B. Soret, “A perspective on time toward wireless 6G,”
Proc. IEEE, vol. 110, no. 8, pp. 1116–1146, Aug. 2022.

[4] L. Li, W. Chen, and K. B. Letaief, “On power-latency-throughput
tradeoff of diversity enabled delay-bounded communications,” in Proc.
IEEE Int. Conf. Commun. (ICC), Jun. 2023, pp. 2141–2146.

[5] L. Huang, L. Li, and W. Chen, “Diversity enabled wireless transmissions
with random arrivals and hard delay constraints,” in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2023, pp. 634–639.

[6] L. Li, W. Chen, and K. B. Letaief, “Simple bounds on delay-constrained
capacity and delay-violation probability of joint queue and channel-
aware wireless transmissions,” IEEE Trans. Wireless Commun., vol. 22,
no. 4, pp. 2744–2759, Apr. 2023.
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