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Model Predictive Control for a Thermostatic Controlled System?

Seyed Ehsan Shafiei, Henrik Rasmussen and Jakob Stoustrup

Abstract— This paper proposes a model predictive control
scheme to provide temperature set-points to thermostatic con-
trolled cooling units in refrigeration systems. The control
problem is formulated as a convex programming problem to
minimize the overall operating cost of the system. The foodstuff
temperatures are estimated by reduced order observers and
evaporation temperature is regulated by an algorithmic suction
pressure control scheme. The method is applied to a validated
simulation benchmark. The results show that even with the
thermostatic control valves, there exists significant potential to
reduce the operating cost.

I. INTRODUCTION

Increasing the energy demand, on one hand, and pen-
etration of the intermittent renewable recourses into the
electricity grid, on the other hand, enforce a lot of researches
to cope with the current and the future challenges. Control
theory has been proven to be able to offer strong solutions
for various problems regarding from the production units to
the end-point consumers.

To be able to implement advanced cost efficient con-
trol algorithms, some systems need significant redesigns
like hardware replacements, system reconfiguration, software
changes, etc. Hysteresis controllers that regulate the con-
trollable variables within hysteresis bounds can be found in
various process systems like a thermostatic controller that
regulate the temperature in a cooling unit. So, it would be
more cost effective if we can implement the advanced control
methods without replacing these simple local controllers by
more expensive ones. This paper proposes a solution for such
a control problem in refrigeration systems.

Model predictive control (MPC) has successfully been
applied to refrigeration systems for intending different kinds
of improvements. With hybrid system formulation, MPC was
employed in [1], [2] and [3] to solve the synchronization
problem in display cases that causes wearing of the com-
pressors. Fallahsohi, et al in [4] applied predictive functional
control to minimize the superheat in an evaporator. For multi-
evaporator systems, a decentralized MPC was proposed to
control the cooling capacity of each evaporator [5].

There are also valuable researches that use MPC to reduce
the energy consumption and/or electricity cost. A nonlinear
predictive control scheme was designed in [6] to reduce
the total power consumption of the compressor in a vapor
compression cycle. The cooling capacity is regulated by a
variable speed compressor. But this method cannot be applied
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directly to the refrigeration systems with different cooling
units in which the cooling capacity is regulated by expansion
valves as well. As a thorough study that proposes a MPC
to reduce the operating cost of such systems, we can point
to [7]. But it replaced the hysteresis control valves with the
floating point control ones for implementation. Moreover, the
nonlinear optimization tool employed to handle a nonconvex
cost function imposes a heavy computation burden into the
control system.

This paper proposes a MPC for thermostatic controlled
cooling units in commercial refrigeration systems. To deal
with nonlinear dynamics of the cooling units, the cooling
capacity is treated as a fictitious manipulated variable by
which we can formulate the standard linear system dynamics
for each cooling unit. A simple efficient algorithm, proposed
by the authors in [8], is slightly modified and employed for
set-point control of the suction pressures. The predictions of
the electricity price and the outdoor temperature are used in
the MPC formulation. In order to preserve food temperatures
within the permissible range, a reduced order observer is
designed to estimate those temperatures for each cooling
unit. Finally, the formulated MPC is implemented using a
convex programming on a validated simulation benchmark
including several fridge and freezer display cases.

II. REFRIGERATION SYSTEM

Fig. 1 shows a typical refrigeration system with a booster
configuration. The cooling section consists of a low tem-
perature (LT) section including display cases and low stage
compressor racks (COMP LO), and a medium temperature
section including freezing rooms and high stage compressor
racks (COMP HI). The air temperatures at the evaporator
outlets are considered as controllable variables regulated by
ON/OFF thermostatic control valves (EV MT and EV LT).
A detailed thermodynamic analysis of such a booster con-
figuration is explained in [9].

A. Display Case Dynamics

Considering energy balances, the heat transfers in display
cases are described by the following equations based on a
lumped temperature model.

MCp f oods
dTf oods

dt
=−Q̇ f oods/cr (1)

MCpcr
dTcr

dt
= Q̇load + Q̇ f oods/cr − Q̇e (2)

Where MCp denotes the corresponding mass multiplied by
the heat capacity, and Tcr is the controllable air temperature
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Fig. 1. Basic layout of a typical supermarket refrigeration system with
booster configuration.

inside the cooling unit. Q̇ f oods/cr is the heat transfer from
food to cooled air,

Q̇ f oods/cr =UA f oods/cr(Tf oods −Tcr), (3)

Q̇load is the heat load due to indoor temperature, Tindoor,

Q̇load =UAload(Tindoor −Tcr), (4)

and Q̇e is the heat transfer from cooled air to the circulated
refrigerant,

Q̇e = ṁr(hoe −hie), (5)

where UA is the overall heat transfer coefficient, hoe and hie
are enthalpies at the outlet and the inlet of the evaporators
which are nonlinear functions of the evaporation temperature
(or equivalently suction pressure). The term ṁr denotes the
mass flow of refrigerant into the evaporator described by the
following equation:

ṁr = OD KvA
√

2ρsuc(Prec −Psuc)105 (6)

where OD stands for the opening degree of the valve with
value between 0 (closed) to 1 (fully opened), Prec and
Psuc are receiver and suction pressures in [bar], ρsuc is the
density of the circulating refrigerant, and KvA denotes a
constant characterizing the valve [10]. However, in case of
thermostatic control, OD is only 0 or 1.

There is also a superheat controller operating on the valve
when the valve state is ON (OD = 1). From the energy con-
sumption point of view, and also regarding the control design
in a supervisory level, the superheat control dynamics are
negligible. So, here we have assumed a constant superheat
degree for the model as explained by the authors in [11].

B. Power Consumption and COP

The electrical power consumption of each compressor
bank is calculated by

Ẇc =
1

ηme
ṁre f (ho,c −hi,c), (7)

where ṁre f is the total mass flows into the compressor,
and ho,c and hi,c are the enthalpies at the outlet and inlet
of the compressor bank. These enthalpies are nonlinear
functions of the refrigerant pressure and temperature at the
calculation point. The constant ηme indicates overall me-
chanical/electrical efficiency considering mechanical friction
losses and electrical losses [12]. The outlet enthalpy is
computed by

ho,c = hi,c +
1

ηis
(his −hi,c), (8)

in which his is the outlet enthalpy when the compression pro-
cess is isentropic, and ηis is the related isentropic efficiency
given by [13] (neglecting higher order terms),

ηis = c0 + c1( fc/100)+ c2(Pc,o/Psuc), (9)

where fc is the virtual compressor frequency (total capacity)
of the compressor rack in percentage, Pc,o is the pressure at
compressor outlet, and ci are constant coefficients.

The total coefficient of performance (COP) is defined
as the ratio of total cooling capacity over the total power
consumption of the compressors.

COP =
Q̇e,tot

Ẇc,tot
(10)

The COP is calculated by

COP =
xMT (hoe,MT −hie,MT )+ xLT (hoe,LT −hie,LT )

1
ηMT

(his,MT −hi,c,MT )+
xLT
ηLT

(his,LT −hi,c,LT )
, (11)

where indices MT and LT relate the calculated values
to the medium and low temperature sections, respectively.
Parameters xMT and xLT are the ratio of refrigerant mass
flow of MT and LT evaporators to the total flow rate, and
ηMT = ηme,MT ηis,MT and ηLT = ηme,LT ηis,LT .

III. SET-POINT CONTROL

In the control structure illustrated in Fig. 2, the distributed
controllers are responsible for regulating controllable vari-
ables to the values provided by the set-point control unit.
Distributed controllers consist of thermostatic and PI con-
trollers regulating the temperatures and compressors speeds,
respectively. So, the desired set-points are the air tempera-
tures of display cases and the suction pressures of LT and
MT sections.

In general, providing optimal set-points for both the suc-
tion pressure and the display cases temperatures leads to
solve a nonconvex optimization problem which imposes a
heavy computational burden. To avoid this nonconvexity, we
use a simple algorithm presented in [8] for the pressure set-
points, and a new MPC scheme using convex programing
for the temperature set-points. This leads to a nearly optimal
solution.
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Fig. 2. Set-point control structure for refrigeration systems.

A. Algorithmic Pressure Control

The authors proposed a heuristic algorithm for the pressure
set-point control using the fact that the near optimal pressure
value will be achieved by increasing the suction pressure
until one of the expansion valves is kept almost fully open
[8]. Because of the ON and OFF states of the valves, we
slightly modified the algorithm by taking the moving average
of the opening degree for calculation of the maximum state
between the valves.

A sampling time equal to one minute (for implementing
this static control algorithm) ensures that the compressor
speed is regulated to its steady-state value. Thus, the static
model for the compressors are considered for the simulations
[11]. The upper limit Psuc,max gives a safety margin for the
pressure difference required for circulating the refrigerant.
The lower limit Psuc,min is due to the limitations of the com-
pressor total capacities, and also the safety issues regarding
the high pressure difference.

Algorithm 1 Calculate the set-point value for each suction
pressure

if Psuc < Psuc,max and max(ODavr)< δmax then
Increase the pressure set-point

else if Psuc > Psuc,min and max(ODavr)> δmin then
Decrease the pressure set-point

else
Keep the previous set-point

end

In the above algorithm, ODavr is the moving average
vector of opening degree of the expansion valves, and δmax
and δmin are design parameter.

B. Model Predictive Control

Here, the control objective is to minimize the operating
cost while respecting the imposed constraints. The economic
objective function is simply formulated by the instantaneous
energy cost as multiplication of the real-time electricity price
ep(t) by the power consumption Ẇc,tot at given time t. So, the
energy cost, Jec is computed over the specified time interval
[T0 TN ] as

Jec =
∫ TN

T0

epẆc,totdt. (12)

1) Linear Model and Constraints: Considering Q̇e in (2)
as a fictitious input manipulated variable, we will have a
linear system with the standard form,

ẋ = Ax+B1u+B2d (13)

with the states x =
[
Tf oods Tcr

]T , the input u = Q̇e, and the
disturbance d = Tindoor. The parameters are

A =

−UA f oods/cr
MCp f oods

UA f oods/cr
MCp f oods

UA f oods/cr
MCpcr

−UA f oods/cr+UAload
MCpcr

 , (14)

and

B1 =

[
0
−1

MCpcr

]
, B2 =

[
0

UAload
MCpcr

]
. (15)

System (13) is subjected to the constraints

Tf oods,min ≤ Tf oods ≤ Tf oods,max, (16)

and

0 ≤ Q̇e ≤ Q̇e,max, (17)

where Tf oods,min and Tf oods,max are defined based on the type
of foods in the display cases, and Q̇e,max is calculated from
(5) and (6) by putting OD = 1.

Note that the Q̇e in (17) is not directly applicable to
the system. In [8], a supervisory MPC was formulated by
incorporating the local controllers dynamics in the predictive
model. Here, due the nonlinearity of the thermostatic action,
we cannot formulate the same supervisory MPC. Instead,
we propose a new MPC scheme for this purpose, where the
fictitious input is used to one step prediction of the next
temperature value, and then it is applied as the temperature
set-point to the cooling unit. This practical point will be
addressed in section III-B.3.

2) Estimator Design: In order to estimate the food tem-
perature in each cooling unit, we design a reduced order
observer [14, Ch. 8]. We rewrite (13) as[

ẋ1
ẋ2

]
=

[
a11 a12
a21 a22

][
x1
x2

]
+

[
b11 b12
b21 b22

][
u
d

]
. (18)

The reduced order observer is designed to estimate x1 =
Tf oods with the following estimator equation,

˙̂x1 = Aox̂1 +Bo,1uo +Bo,2d +L(yo −Cox̂1), (19)

where Ao = a11, Bo,1 =
[
a12 b11

]
, uo =

[
x2 u

]T , Bo,2 =
b12, Co = a21, and

yo = ẋ2 −a22x2 −b21u−b22d. (20)

The observer gain L is defined based on the classical pole
placement method. Implementation of the above estimator
needs further considerations explained in [14, Ch. 8].



3) MPC Design: We use a discrete-time receding horizon
approach, in which at each time step, an optimization prob-
lem is solved over a N-step prediction horizon. The result
consists of the N moves of manipulated variables where the
first one is applied as the MPC control law. So, for this MPC
formulation, we should discretize the multivariable extension
of system (13) with sampling time Ts which results in

x[k+1] = Adx[k]+Bd,1u[k]+Bd,2d[k]. (21)

with the discrete-time system matrices Ad , Bd,1 and Bd,2. The
states are x =

[
x̂T

1 xT
2
]T where x̂1 is the vector of estimated

food temperatures and x2 is the vector of air temperature.
To keep the optimization problem feasible in case of

uncertain loads, the state constraint (22) is changed to the
set of soft constraints

Tmin − ε∆Tf oods ≤ x̂1 ≤ Tmax + ε∆Tf oods
ε ≥ 0 (22)

where the violations from temperature limits are penalized
by adding the term ρε ε to the objective function. ∆Tf oods
and ρε should be defined such that the violation occurs
rarely. To avoid the temperature violation caused by state
estimation error, a safety margin is imposed by defining
Tmin = Tf oods,min +Tsa f e and Tmax = Tf oods,max −Tsa f e.

The cost function (12) is rewritten using (10) as

Jec =
N−1

∑
k=0

∥∥∥∥ep
Q̇e,tot

COP

∥∥∥∥2

2
, (23)

where COP is given by (11), and Q̇e,tot =
m
∑

i=1
Q̇i

e with m

indicating the number of display cases. In the next section,
we will show how we can predict the COP by estimating it
as a linear function depending on outdoor temperature. Now,
the optimization problem is defined as

minimize
Q̇e,ε

Jec + J∆u +ρε ε

subject to system dynamics (21)
state constraints (22)
input constraints (17)

, (24)

with

J∆u =
N−1

∑
k=1

∥∥R∆u
(
Q̇e[k]− Q̇e[k−1]

)∥∥2
2 , (25)

where R∆u is a diagonal matrix of tuning weights. The
above objective function penalizes the rate of change of
cooling capacity to avoid the oscillatory behavior in set-point
commands. The tuning parameters are defined by considering
two opposing objectives: cost and stability. From the cost
point of view, the units (e.g. display cases) with larger costs
of storing energy should be more penalized, and from the
stability point of view, the units with faster dynamics should
be assigned larger values for their corresponding weights in
R∆u.

At each time step a new set of control commands Q̇e are
given by the above MPC. But as mention in section III-B.1,
these commands are not directly applicable to the cooling
units. So we use a predicted states (Tre f ,cr = x2[k + 1]) by

updating (21) using the obtained Q̇e, and then apply them as
temperature set-points to the corresponding cold rooms. The
ON/OFF limits of thermostatic controllers are also set to the
small values around the set-point. The proposed supervisory
MPC is summed up in Algorithm 2.

Algorithm 2 Supervisory MPC including the economic cost
in its objective function

Prediction
Load

COP and Toutdoor from previous horizon
ep and Toutdoor predictions

Compute
COP prediction based on its previous horizon val-
ues and Toutdoor

Solve
minimize

u,ε
Jec + J∆u +ρε ε (over the horizon)

subject to x[k+1] = Adx[k]+Bd,1u[k]+Bd,2d[k]
x̂1 ≥ Tmin − ε∆Tf oods
x̂1 ≤ Tmax + ε∆Tf oods
ε ≥ 0
0 ≤ u ≤ Q̇e,max

Update
u[k] = first move in obtained u
x[k+1] = Adx[k]+Bd,1u[k]+Bd,2d[k]
Tre f ,cr = x2[k+1] where x =

[
x̂1 x2

]T
IV. SIMULATION STUDY

In this section, the proposed method is applied to a high-
fidelity simulation benchmark including 7 fridge display
cases, 4 freezer display cases and cold room, and the two-
stage compressor racks. The details of the model validation
against real data are found in [11]. At first, we apply a
traditional scenario in which the thermostat action occurs
between the upper and the lower temperature limits. For a
fair comparison, the pressure set-points are fixed to the max-
imum values. The designed MPC together with algorithmic
pressure control are applied to the system.

A. Simulation Set-up
The outdoor temperature is obtained from an hourly

measurement with linear interpolation between hours. The
temperature prediction can for example be provided by the
national meteorological institute, sometimes on a commer-
cial basis. One week period of hourly el-spot price was
downloaded from NordPool spot market [15]. Fig. 3 shows
the Toutdoor and ep for 24 hours related to the upcoming
results. In the simulations, we used a normalized version of
the electricity prices and evaluate the results based on the
percentage in reduction of the operating cost.

The estimator is designed as a digital observer with
sampling time of 1 min where the observer poles are selected
as follows.

Po = [0.99, 0.995, 0.99, 0.99, 0.99, 0.99, 0.9, ...
0.999, 0.5, 0.999, 0.1]
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Because of the slow dynamics of the cooling parts, the
MPC sampling time is set to 15 min. A 24 h prediction
horizon is considered which needs N = 96 samples for
implementation. The tuning parameters are ρε = 5 and

R∆u = diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.05, 0.1, ...
0.0025, 0.01, 0.0025, 0.01),

with the first 7 elements for the fridge and the last 4 for the
freezer units. The safety temperatures are chosen as Tsa f e =
0.5 ◦C for display cases and Tsa f e = 1 ◦C for freezing rooms.
A 5 min moving average as well as γOD = 0.9 are used for
the implementation of Algorithm 1. To solve the optimization
problem (24) we used CVX, a package for specifying and
solving convex programs [16], [17].

B. Simulation Results

Power consumption of the compressors, resulted from
applying the traditional scenario explained before, is depicted
in Fig. 4. The total energy consumption and corresponding
electricity cost are Etot = 64 [kWh] and ec = 32.5.The air
and food temperatures of the first and third fridge display
cases are provided in Fig. 5 for a 6 h period. The trends are
similar for the other units.
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Fig. 4. Power consumption in case of traditional fixed set-point control.

Fig. 6 shows the power consumption after applying the
designed MPC together with Algorithm 1. The energy con-
sumption and operating cost are Etot = 50 [kWh] and ec =
21.4 (34% reduction) which are considerable reductions.
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Fig. 5. Air temperatures of the first and third fridge display cases, Tdc,
and the corresponding food temperatures. Dashed red lines indicate the
temperature limits.

The actual food temperatures for fridge units are illustrated
in Fig. 7. The details of the COP prediction with correlation
to the outdoor temperature are explained in [8]. As can be
seen from Fig. 3, around 3 h both ep and Toutdoor are low
(the COP is high), so the supervisory control starts storing
energy by lowering the temperatures while respecting the
imposed constraints. Around 15 h, ep is low but Toutdoor is
high (the COP is low), but the proposed control can handle
this trade-off very well by storing some amount of energy
in an optimal fashion.
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Fig. 6. Power consumption after applying MPC (Algorithm 2) together
with algorithmic suction pressure control (Algorithm 1).
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The suction pressures for both low and medium tempera-
ture sections regulated by low and high stage compressor
banks are shown in Fig. 8. The pressure related to MT



units is kept at the maximum level. It is because there is
not a quick change in display case set-points that causes a
quick variation in cooling capacity. Thus, the moving average
of opening degree of the related valves do not exceed the
decision value (γOD = 0.9). On the other hand, the pressure
related to LT units is decreased by quickly increasing the
request for cooling capacity due to quickly lowering the
freezing room temperatures by MPC.
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Fig. 8. Suction pressures of two LT and MT sections resulted from applying
Algorithm 1.

The state estimation results given by the reduced order
observer are provided in Fig. 9 for display cases 1, 3 and 7,
and freezing rooms 1, 2 and 4. Some temperature plots show
perfect estimations and a small (0.5 ◦C) estimation error is
seen in the second freezing room. The imposed safety margin
in MPC state constraints can very well prevent the constraint
violation in the presence of such estimation errors.
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Fig. 9. Estimation of the food temperatures by reduced order observer.
The imposed safety margin prevent the violation of temperature constraints
due to the estimation error.

V. CONCLUSIONS

This paper presented a set-point control method for re-
ducing the overall operating cost of a refrigeration system. A
model predictive control algorithm was proposed to set-point
control of the thermostatic controlled cooling units. In order
to preserve food temperatures within the permissible range, a
reduced order estimator was designed to estimate those tem-
peratures. The formulated MPC was implemented by convex
programming. Moreover, a simple and efficient algorithm
was used for set-point control of the suction pressures. A
considerable 34% cost reduction was obtained by applying
the designed algorithms to a large scale refrigeration system
including several display cases and freezing rooms.
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