
Aalborg Universitet

The Regulation of Superconducting Magnetic Energy Storages with a Neural-Tuned
Fractional Order PID Controller Based on Brain Emotional Learning

Safari, Ashkan; Sorouri, Hoda; Oshnoei, Arman

Published in:
Fractal and Fractional

DOI (link to publication from Publisher):
10.3390/fractalfract8070365

Creative Commons License
CC BY 4.0

Publication date:
2024

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Safari, A., Sorouri, H., & Oshnoei, A. (2024). The Regulation of Superconducting Magnetic Energy Storages with
a Neural-Tuned Fractional Order PID Controller Based on Brain Emotional Learning. Fractal and Fractional,
8(7), Article 365. https://doi.org/10.3390/fractalfract8070365

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.3390/fractalfract8070365
https://vbn.aau.dk/en/publications/a0daf320-644a-4639-bdd3-285e08b74652
https://doi.org/10.3390/fractalfract8070365


Downloaded from vbn.aau.dk on: August 19, 2025



Citation: Safari, A.; Sorouri, H.;

Oshnoei, A. The Regulation of

Superconducting Magnetic Energy

Storages with a Neural-Tuned

Fractional Order PID Controller Based

on Brain Emotional Learning. Fractal

Fract. 2024, 8, 365. https://doi.org/

10.3390/fractalfract8070365

Academic Editor: António Lopes

Received: 16 May 2024

Revised: 10 June 2024

Accepted: 19 June 2024

Published: 21 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

The Regulation of Superconducting Magnetic Energy Storages
with a Neural-Tuned Fractional Order PID Controller Based on
Brain Emotional Learning
Ashkan Safari 1 , Hoda Sorouri 2 and Arman Oshnoei 2,*

1 Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz 5166616471, Iran;
ashkansafari@ieee.org

2 Department of Energy, Aalborg University, 9220 Aalborg, Denmark; hoso@energy.aau.dk
* Correspondence: aros@energy.aau.dk

Abstract: Intelligent control methodologies and artificial intelligence (AI) are essential components
for the efficient management of energy storage modern systems, specifically those utilizing supercon-
ducting magnetic energy storage (SMES). Through the implementation of AI algorithms, SMES units
are able to optimize their operations in real time, thereby maximizing energy efficiency. To have a
more advanced understanding of this issue, DynamoMan is presented in this paper. For use with
SMES systems, DynamoMan, an Artificial Neural Network (ANN)-tuned Fractional Order PID Brain
Emotional Learning-Based Intelligent Controller (ANN-FOPID-BELBIC), has been developed. ANN
tuning is employed to optimize the key settings of the reward/penalty generator of a BELBIC, which
are important for its overall efficacy. Following this, DynamoMan is integrated into the SMES control
system and compared to scenarios in which a BELBIC, PID, PI, and P are utilized. The findings
indicate that DynamoMan performs considerably better than other models, demonstrating robust
and control attributes alongside a considerably reduced period of settling time, especially when
incorporated with the power grid.

Keywords: artificial intelligence; energy storage systems; optimal robust control; neural networks;
parameter tuning; fractional order controller; SMES

1. Introduction

During a time characterized by growing energy demands and a swift shift towards
renewable energy sources, it is crucial to employ intelligent control techniques and precise
adjustments in energy storage systems. SMES is a promising solution due to its ability to
efficiently store large amounts of energy with low losses. The intricate interplay between
tuning parameters and control algorithms in SMES systems ensures seamless integration
with existing power infrastructures while also enhancing the overall performance, depend-
ability, and resilience of the system. To advance the development of renewable energy, it is
essential to enhance intelligent control techniques and tunings in SMES technologies.

From our literature review, we found that modern electrical grids are expected to
benefit from energy storage systems (ESSs), particularly when it comes to integrating
renewable energy sources (RESs) [1]. A number of control schemes have been developed
to maximize the use of ESSs for duties including voltage and frequency control. With an
emphasis on SMES systems specifically, an overview of recent developments in ESS tech-
nology and control methodologies have been presented. SMES’s high efficiency and quick
reaction times make it an appealing choice for effective energy storage [2,3]. SMES stores
energy as a magnetic field, as compared to conventional battery-based storage devices,
which minimizes losses during bidirectional power transfer. SMES is also advantageous
for applications that need rapid power correction because of its quick response times and
long operating lives [4]. Numerous investigations have focused on the utilization of SMES
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in diverse situations related to power systems. For example, SMES has been studied for
frequency regulation tasks, where it manifests a field for maintaining grid stability and
adaptable capacities [5]. SMES is also used in voltage control, particularly in grid-forming
power inverters, where smart control strategies provide resilience to disturbances and
parameter changes [6].

Control strategies are important in optimizing the performance of SMES systems.
Recent research has focused on intelligent control schemes based on artificial intelligence
techniques such as BEL [7]. These controllers present advantages such as adaptability to
uncertain operating conditions and model-free operation, enhancing the resilience and
efficiency of SMES systems. Moreover, the integration of SMES into power systems re-
quires addressing technical challenges such as coil design, power electronics converters,
and control system design [8,9]. Efforts have been made to develop cost-effective coil de-
signs and efficient power electronic converters to maximize the benefits of SMES in power
applications [10]. The research conducted in [11,12] integrated SMES with power compen-
sation techniques to enhance the dynamic performance of power distribution networks.
By deploying SMES alongside, for example, Distribution Static Synchronous Compensator
(DSTATCOM), these studies aim to extend the range of compensation capabilities while
reducing DC link voltage. The incorporation of advanced control algorithms, such as deep
Q-learning (DQL) and Deep Bayesian Active Learning (DBAL), enables efficient operation
under various loading scenarios, leading to improved power factors, load balancing, and
harmonic elimination. Simulation studies validate the effectiveness of these approaches in
enhancing power quality and meeting regulatory standards.

By examining the correlation between permanent magnets and high-temperature
superconducting (HTS) coils for effective energy storage without the need for power
electronic converters, the work conducted in [13] presents an alternative strategy to SMES.
There are possible benefits to this idea in terms of ease of use, reliability, and energy
economy. In [14], coupled with HESS, the power control method for distributed doubly
fed induction generator (DFIG) systems is proposed in order to address the issues related
to wind power integration. The plan efficiently controls power variations by coordinating
the grid-side converter and HESS, maintaining grid compliance and reducing the impact
of the inherent unpredictability in wind energy generation [15]. The SMH addressed the
issues of grid variations and intermittency in wind power generation by using the special
qualities of superconducting coils to achieve great efficiency and power density. Studies
using analytical modeling and simulation show how SMH may improve the efficiency and
reliability of wind thermal power systems.

An HTS flywheel ESS is presented in [16], including the development of a magnetic
coupler with clutch functionality as a means of minimizing energy loss and self-discharge.
The coupler reduces no-load losses by severing the flywheel from the generator/motor
during energy retention phases, therefore increasing system efficiency. As manifested
in [17], hybrid RESs will become significant in assisting the transition to sustainable energy
sources. Through the integration of PV/wind hybrid systems with hybrid storage systems,
the work intended to enhance system performance and energy quality under a range of
operating situations.

In [18], there is emphasis on the critical role of advanced materials, particularly nano-
materials, in enhancing energy conversion and storage systems. Furthermore, ref. [19]
emphasizes the benefits of HTS-SMES, including its quick response, high efficiency, and
charge–discharge cycles. In order to boost the energy storage density and improve the
utilization rate of HTS tapes, the work presents the idea of connected superconducting
coils (CSCs). Nevertheless, new modular power conditioning systems (MPCSs) and decou-
pling control techniques are proposed to address issues with accurate power and current
management in CSC systems. Analytical methods for calculating mutual inductance pa-
rameters between D-shaped coils used in large toroidal HTS-SMES magnets are taken into
consideration by [20]. On the other hand, the research conducted in [21] analyzes the rising
need for ESS technologies to satisfy customer demands and maintain a balance between
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the electricity supply/demand. ESS needs are expected to quadruple by 2030, necessitating
the need for specialized systems and equipment to meet this need. An analysis was car-
ried out in [22] that focused on the opportunities and difficulties associated with energy
management in shipboard microgrids, with an emphasis on the function of energy storage
systems in enhancing reliability and performance.

When SMES are outfitted with Voltage Source Converters (VSCs), a dispersed pattern
of high-frequency PWM voltage is predicted [23]. The purpose of this work is to reduce the
detrimental impacts of this uneven distribution on magnet insulation by proposing a revised
control technique for the power conditioning system (PCS). Instead of high-frequency PWM
voltage, the new approach makes sure that the magnet can tolerate continually varying
DC voltage during SMES charging or discharging. The expanding significance of ESS in
storing and supplying power, especially during peak hours, was discussed in [24]. The
research presents a reliable energy retention system that generates power from solar and
wind energy through the integration of batteries and supercapacitors. Furthermore, SMES’s
potential was demonstrated in [25] through the improvement of grid power quality, due
to its benefits including high power density, quick response times, and minimal energy
loss. However, the conduction and switching losses of power devices may cause the energy
stored in SMES to decrease. The developed work proposed a charging approach using
constant duty cycle PWM to maintain the stored current in SMES at a rated level prior to
grid-connected operation. Because of their inexpensive cost, high critical current density,
low anisotropy, and critical temperature of roughly 40 K, MgB2 tapes and wires are the
subject of much of the work conducted in [26]. The preparation process of MgB2, which is
used to wind coils for the SMES system, is manifested.

The investigation conducted in [27] presents the development of a no-insulation (NI)
REBCO coil system for use in SMES, and a limitation of SMES is anticipated. NI-REBCO
coils, which are intended to achieve both high thermal stability and high current density,
have been proposed as a solution to the poor energy density of SMES. This will allow for a
larger storage density within SMES. Furthermore, ref. [28] illustrates the challenges faced
in integrating RESs into the grid, notably with regard to operational adequacy, stability,
and reliability. Integrating ESS into the power network is one way to handle erratic loads.
In addition, ref. [29] discusses the challenges that conventional power systems have and
provides microgrids as a solution for integrating microgeneration sources close to sites
of consumption. FESS applications are reviewed in [30] for a variety of power system
components, including as integrated energy systems, solar panels, wind turbine power
plants, and coal-fired thermal power units. The researchers also look at hybrid energy
storage systems and flywheel energy storage system arrays, addressing electric trading
markets, configurations, and control methodologies.

In order to address the volatility of RES generation, energy storage technology (EST)
is important [31]. Furthermore, the Dandelion Algorithm (DA) is used in [32] to integrate
distributed BESS in order to improve the performance of an electrical distribution network
(EDN). Using loss sensitivity factors (LSFs) to predetermine the search space for BES
placements, the method uses the DA to find the best locations and sizes. Research on
the effect of capacitor banks’ daily number of switches (NOS) on loss reduction in radial
distribution systems is conducted in [33]. The study splits the day into several time
intervals for capacitor size switching that correspond to the same NOS. Taking into account
pertinent constraints, a Random Forest nonlinear programming model with discontinuous
derivatives (DeepOptaCast) is developed.

Regarding the storage technologies in smart power systems, the challenges associ-
ated with distributed generating systems and RESs are explored in [34] regarding the
market for electrical energy, especially with respect to frequency regulation. A new hybrid
model called FARHAN is provided in [35], which has been developed to address the
challenges associated with electrical load forecasting in smart grids. To effectively schedule
smart grids, including renewable-integrated ones, FARHAN integrates descending neu-
ron attention, long/short-term memory (LSTM), and Markov-simulated neural networks
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(MNNs) to maximize accuracy and analysis time for short-, mid-, and long-term smart grid
planning decisions.

In order to increase the efficiency, this paper presents DynamoMan. It is an online
intelligent adaptive model for optimizing SMES operations. By integrating ANN-based tun-
ing techniques with the robust control capabilities of a BELBIC, precise energy storage and
release are ensured concerning dynamic grid conditions and fluctuating energy demands.

The paper is structured as following: Sections 2 and 3 express the SMES, its modelling,
and the related control strategy structure as DynamoMan, respectively. The simulations,
results, and conclusion are outlined in Sections 4 and 5.

2. Configuration of the Superconducting Magnetic Energy Storage

SMES technology is an important development in the area of energy storage. This in-
novation is driven by several aspects, including the universal transition towards renewable
energy sources (RESs), the increasing use of electric cars for eco-friendly transportation, and
the liberalization of power markets. These elements are making a considerable change in the
electricity system. The functioning of power systems is being fundamentally transformed
by these developments as renewable energy sources are affecting distribution networks,
causing intermittent power supply and requiring the adoption of storage technologies to
ensure stable operation. SMES, or superconducting magnetic energy storage, utilizes the
unique characteristics of superconducting materials and magnetic fields to efficiently and
rapidly store and release energy, distinguishing it from traditional batteries and capacitors.
This technique has several benefits, such as a high energy density, quick response times,
and almost limitless charge–discharge cycles. The SMES system’s concept and schematic
design are illustrated in Figure 1, based on [36,37].
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The core of SMES systems consists of superconducting coils, as shown in Figure 1a,
often manufactured from materials such as niobium–titanium (Nb-Ti) or niobium–tin
(Nb-Sn). These substances demonstrate the property of superconductivity when they are
cooled below their critical temperature. This enables the flow of electricity through the
coils without any resistance. Applying an electric current to the coils produces a robust
magnetic field, efficiently storing energy as magnetic potential. SMES has several signif-
icant benefits. The powerful magnetic fields generated by superconducting coils offer a
high energy density, allowing for substantial energy storage in a compact area. This makes
it particularly suitable for applications that have limited space, such as urban regions or
vehicle integration. Furthermore, SMES exhibits quick response times, enabling the nearly
immediate discharge of stored energy, which is essential for demanding applications like
grid stability or electric car acceleration. Furthermore, SMES systems possess an extended
operational lifespan as a result of the absence of deterioration observed in conventional bat-
teries. This is made possible by the utilization of superconducting materials, which facilitate
the passage of electric current without any resistance, hence reducing heat generation and
prolonging the system’s functional duration. As a result, the expenses for maintenance are
decreased, and the dependability is improved. Ongoing research is focused on addressing
the challenges related to the scalability and affordability of superconducting materials and
cryogenic cooling systems. The goal is to increase the performance and cost-effectiveness
of these technologies. Figure 1b manifests the schematic transfer function model of SMES
in Lapalace, which demonstrates how the firing angle of the bridge converter regulates the
charging or discharging of the superconducting inductor coil. The output voltage of the
bridge converter of SMES is mathematically formulated as [36]

Ed = 2EoCos(α)− 2IdRc (1)

where Ed, Eo, α, Id, and Rc are the inductor input voltage, open-circuit voltage of the
converter, firing angle, inductor current, and equivalent commuting resistance. To adjust
the voltage, Ed, the incremental change in frequency deviation is utilized. The generator
rotor inertia initially supplies power to the system in the event of a sudden load disturbance.
Consequently, the frequency deviation will become negative, which will compel the SMES
to discharge simultaneously. Since the inductor’s current direction remains constant, the
voltage of the SMES is negative. The incremental changes in superconducting coil voltage
and current are implemented as [36]

∆Ed =
Ko

sTdc + 1
∆ f (2)

∆Id =
1

sL
∆Ed (3)

In which the converter time constant and control loop gain are denoted by Tdc, in
seconds, and Ko, in [kV/Hz]. However, the system should be ensured by a fast current
recovery. Consequently, the variation in inductor current must be detected and incorpo-
rated as a negative feedback signal into the SMES control loop, which makes the final
equation [36]:

∆Ed =
1

sTdc + 1
(Ko∆ f − KI∆Id) (4)

With KI , in [kV/kA], as the negative feedback gain of the system.

3. Proposed Control Strategy of DynamoMan

As with the developed controller in the robust regulation of SMESs, the ANN-FOPID-
BELBIC controller is anticipated. Consequently, the controller is processed by two parts.
In the first part, ANN fine-tunes the target parameters of the BELBIC; then, the fine-
tuned BELBIC outputs the final control signal to control the signal. The greatest benefit
of this work is that there is no need for user-based or offline tuning as the ANN performs
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online action. This feature causes the system to be robust and utilized in a wider range of
applications.

3.1. Brain Emotional Learning-Based Intelligent Controller

The BELBIC is a control system, which was firstly introduced in [38], that takes
inspiration from the emotional learning mechanisms discovered in the human brain [39],
presenting a unique and innovative approach. A BELBIC, unlike traditional controllers
that rely purely on mathematical models and algorithms, incorporates knowledge from
neurology to enhance its ability to adapt and perform effectively in complex and changing
contexts. The concept of a BELBIC is manifested in Figure 2.
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A BELBIC utilizes artificial neurons to replicate crucial emotional areas of the brain,
such as the amygdala and prefrontal cortex, which are well-known for their involvement
in decision-making and the regulation of behavior. By incorporating emotional input into
the control loop, a BELBIC manages uncertainties, nonlinearities, and disturbances, similar
to how humans respond to emotional inputs in real-life settings. Consequently, the red,
green, and purple parts of the brain present the limbic system, brainstem, and the spinal
cord, respectively. The limbic system, which encompasses the amygdala, hippocampus,
and hypothalamus, is essential for the generation and regulation of emotions, the storage
of emotional memories, and the connection between emotions and sensory experiences.
The periaqueductal gray and the locus coeruleus regions of the medulla are responsible for
the integration of these emotional signals and the regulation of physiological responses,
including arousal and heart rate. At the same time, the spinal cord functions as a conduit,
enabling the physical expression of emotions by transmitting sensory information from
the body to the brain and motor commands from the brain to the body. Collectively,
these regions facilitate the perception, processing, and expression of emotions, which
in turn undergird intricate emotional learning and behavior. Moreover, the distinctive
characteristic of a BELBIC is its ability to withstand and recover from challenges, adjust
to different circumstances, and last for a long time. This makes it very suitable for use in
robots, autonomous systems, and industrial processes, especially when traditional control
methods may not be effective. Furthermore, BELBICs show potential for improving human–
machine interaction by allowing computers to recognize and react to human emotions, thus
promoting a more intuitive and adaptable system. Figures 3 and 4 manifest the BELBIC
used in this work.

Illustrated in Figure 3, the thalamus, an essential node, initiates response mecha-
nisms in organisms by receiving sensory input. From that point, impulses divide into
two branches, simultaneously reaching both the amygdala and the sensory cortex, thus
preparing for additional cerebral processing. The cortical area, namely the CX region,
plays a crucial function in examining the incoming signal, interpreting its importance, and
considering its potential consequences. The sensory cortex has a crucial effect in controlling
the distribution of signals between the amygdala and the orbitofrontal cortex, ensuring a
precise balance of neuronal activity. After a complex series of neuronal signals, the sensory
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information in the CX changes and is then transmitted to the amygdala through route
V. The relay mechanism plays a crucial role in the brain processing chain, enabling the
conversion of sensory input into meaningful reactions and behaviors in animals. The
process of the BELBIC begins with receiving input signals from the environment or the
controlled system. These signals are then compared to a reference state to determine the
intended goals. As a result, an emotional reaction is produced by comparing the cur-
rent condition of the system with its emotional state. Subsequently, a reward generator
generates reinforcement signals, which are then fed back into the system by a feedback
mechanism. This loop modifies the controller’s behavior by incorporating earned rewards,
allowing it to acquire knowledge and adjust its actions as time progresses. Consequently,
the controller determines suitable actions by considering the emotional reaction, using
previous encounters to enhance effectiveness and efficiently accomplish desired objectives.
The model inner progress is illustrated in Figure 4, conceptualized from [40].
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This function constitutes the major area for acquiring knowledge within this frame-
work. The amygdala’s processing of rewards and punishments enhances the connection
between the amygdala and the route. E’s brain will elicit an emotional response when
exposed to a similar stimulus again. In contrast, the orbitofrontal cortex computes the
disparity between the expected and real outcomes of a stimulus. The orbitofrontal cor-
tex receives information about the perceived reward or punishment from the amygdala
and sensory cortex. This information has been established in the brain through learning
mechanisms over a period of time. Nevertheless, the organism’s reward or punishment
is determined by the external environment and is a direct reflection of the most recent
rewards or punishments it has encountered. By employing E, the resultant output remains
consistent when these two pieces are properly aligned. On the other hand, the orbitofrontal
cortex controls and manages emotional responses in order to support additional learning.
Therefore, route W is only activated under these specific conditions. In this regard, BELBIC
is conceptualized as [38]

MO = ∑
i

Ai − ∑
i

OCi (5)

where MO and i are the model output and number of inputs, respectively. The amygdala
and orbitofrontal cortex outputs are defined by Ai and OCi, as in [41].

Ai = Vi × SIi (6)

OCi = Wi × SIi (7)
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where Wi, and Vi are the orbitofrontal and amygdala gain parameters, respectively. SIi is
the ith input, assumed by [41].

∆Vi = α × SIi × max

(
0, ES − ∑

i
Ai

)
(8)

∆Wi = β × SIi × (MO − ES) (9)

where α, β ∈ [0, 1] are the amygdala and orbitofrontal cortex learning coefficients, respec-
tively. Additionally, Ath is defined as [41]

Ath = Vth × Max(SIi) (10)

in which Ath is the signal from thalamus to the amygdala. Also, Vth, and ES are the initial
value of the amygdala and stress generation, respectively. Now, by considering the SMES
final characteristics (Equation (4)), the closed loop control signal of the system (u(t)) is
conducted as following:

u(t) = Kpe(t) + Ki

∫
e(t)dt + KeE(t) (11)

T.FFOPID = Kp + KIs−λ + KDsµ (12)

Collectively, Kp, Ki, and Ke are the gains for the proportional, integral, and emotional
components, respectively. Kp, Ki of FOPID will be tuned by the ANN during the online
process., As well, the error and emotional signals are symbolized by e(t) and E(t). Accord-
ingly, by combining Equations (4) and (11), the final characteristics function of the closed
loop system is carried by

∆Ed = Kp(∆Ed − ∆E) + Ki

∫
(∆Ed − ∆E)dt + KeE(t) (13)

As a result of (12), the SMES and the load change can be controlled in a smooth way,
utilizing the BELBIC. Also, the Kp, and Ki parameters are tuned by the ANN (Equation (18)).
As the overall closed loop of the system determined, the neural implementations of the
BELBIC can be performed to output the final control signal. Referring to (5–7) and (11):

u(t) = SI(t)
[
α

∫
SI(t)[max(0, ES(t)− A(t)− Ath(t))]dt −β

∫
SI(t)[A(t)− OC(t)− ES(t)]dt

]
(14)

Consequently, SI, and ES are updated to

SI(t) = r1∆ f + r2

∫
∆ f dt (15)

ES(t) = kY1∆ f + k2

∫
∆ f dt + Y3u (16)

In which [r1, r2], and [k1, k2, k3] are the weighting coefficients for SI, and ES inputs,
respectively. These mentioned coefficients are determined to make the BELBIC efficient in
smoothly controlling the system with less overshoot, a reduced settling time, and a fast
steady-state condition. As well, the whole process of SI and ES generation is manifested in
Figure 5.

Based on the process and diagram of the BELBIC utilization, illustrated in Figure 5, N
is the connection weight modulated as

N(t) =
∫

δn(t) dt + n(0) (17)

In which the output of OC(t) is found by the multifaction of N(t) and SI(t).
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3.2. Artificial Neural Network Parameter Tuner

Trial-and-error parameter optimization is an incredibly time-consuming procedure
that necessitates a vast number of selections and numerous computer simulations. Utiliz-
ing concepts including fitness pressure, heredity, and diversity, evolutionary algorithms
provide a more effective substitute for arbitrary trial-and-error approaches. Nevertheless,
guaranteeing a positive reaction becomes a formidable task when the operational threshold
experiences substantial alterations. To enhance the functionalities of the BELBIC, this work
presents a methodology utilizing ANNs to optimize the values of controller parameters.
The objective of this methodology is to improve the adaptability and responsiveness of the
controller in chaotic environments.

Inspired by the structure and operation of biological neural networks in the human
brain, an ANN is a computational model. It is composed of neuronal nodes that are
interconnected and arranged in layers. An ANN generally consists of the following layers:
input (one or more concealed) and output. Input signals are received by individual neurons,
which compute a weighted sum of the sums, apply an activation function to the sum, and
subsequently transmit the output to neurons in the following layer. By adjusting the
weights of connections between neurons in response to labeled datasets (a process known
as training), ANNs are able to recognize patterns, classify data, make predictions, and
perform other tasks. ANNs have demonstrated exceptional proficiency in handling intricate,
nonlinear associations within datasets. They have been implemented in a wide range of
domains, including smart grids, forecasting, control systems, and optimization. ANNs
provide notable benefits over conventional approaches in domains such as optimization
tasks and control systems as they independently optimize parameter values with the goal
of maximizing performance metrics. ANNs have the capability to effectively investigate
the parameter space, detect optimal configurations, and adjust to dynamic environments
by means of iterative training procedures. In addition, developments in deep learning
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architectures have augmented the capabilities of ANNs in solving nonlinear optimization
problems and handling high-dimensional parameter spaces.

Particularly in this work, by dynamically adjusting the BELBIC’s parameters in real-
time, the intelligent neural network increases the system’s resilience to a variety of uncer-
tainties. The inclusion of this adaptive capability enhances the efficacy of the indicated
approach in a more comprehensive spectrum of operational circumstances. Figure 6 depicts
the schematic representation of the ANN supervisory control system utilized to optimize
the calibration of BELBIC parameters. The primary objective of this architecture is to reduce
the variation in the output of the SMES, represented by ∆E, and utilize its derivative as in-
put for the ANN. The ANN generates suitable set points via this procedure; these set points
are subsequently converted into modifications for reward/punishments of the BELBIC
controller. Consequently, the control operation attains robustness and output stability.
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Neurons are the processing units in an ANN that are inherently nonlinear. Three fun-
damental elements comprise each neuron, which includes weights wj =

[
w1j, w2j, . . . , wnj

]
,

an activation function g(j), and a bias parameter φ. In an ANN, the activation function
may be represented by the sign function, tangent sigmoid, or logarithmic sigmoid, among
others. By employing the weighted input and bias, the hidden layer calculates its output,
as mathematically represented, retrieved from [42], in (18):

Hj = g

(
n

∑
i=1

wijui +φ

)
j = 1, 2, . . . , L (18)

where L is the hidden layer number of nodes. Then, the output of the output layer (the
outputs are the Kp, and Ki parameters) can be obtained as follows:

Oc =
[
Kp, Ki

]
=

L

∑
j=1

Hjwjc +φ c = 1, 2, . . . , m (19)

where m is the output layer number of nodes. The learning procedure deals with the
minimization of mean squared error as follows:

E =
1
2

N

∑
r=1

(
∆E − ∆Ere f

)2
(20)

where N is the number of samples and ∆Ere f represents the reference input. The weights
of the ANN are modified via supervised feedback, with the back-propagation algorithm
being employed by the ANN coordinator during the learning process. The error value
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calculated in (20) is utilized as the foundation for revising the ANN weights in accordance
with the methodology delineated subsequently.

wij(k + 1) = wij(k) + ηδu i = 1, 2, . . . , n j = 1, 2, . . . , L (21)

wjc(k + 1) = wjc(k) + ηHjEc j = 1, 2, . . . , L c = 1, 2, . . . , m (22)

It is noted that in Figure 6, the weight vector for the output layer is designated as W2,
while the weight vector for the hidden layer is designated as W1. Ten linear neurons make
up the input layer of the ANN in the suggested ANN-based fine-tuner structure, whereas
forty nonlinear neurons make up the hidden layer. Moreover, the number of neurons in the
ANN’s output layer must match the values of the control variables. In the output layer, the
control variables are implemented as two linear neurons that represent the weights of the
backstepping controller.

Determining the optimal weights for controller optimization through the tuning
process poses a formidable obstacle. Conventional approaches to weight selection by
trial and error are exceptionally laborious and time-intensive, necessitating a considerable
quantity of iterations and comprehensive computer simulations. Evolutionary algorithms
present a more advantageous option by capitalizing on fundamental principles including
fitness pressure, heredity, and variety in order to efficiently traverse the weight space.
Nevertheless, guaranteeing a positive reaction becomes especially arduous in situations
where the operational threshold experiences substantial modifications. Regarding the
tuning process of the model, it is an online process in which the system is not pre-tuned. The
ANN in the model conducts online tuning during the process based on the reward/penalty
function of the system inserted to the ANN. Consequently, this is an advantage of the
model, which requires no pre-tuning and is tuned online for the system.

4. Conducted Simulation Results

In this section of the work, the DynamoMan controller, an ANN-tuned FOPID-BELBIC,
is applied to the SMES, and the results are drawn. The parameters of DynamoMan are set
to achieve optimal control, with α set to 0, β to 0.1, Vinitial to 40, Vth to −20, Winitial to −6,
Ts at 0.01 s, derivative gain Kd to 50, control signal gain Ku to 120, proportional gain Kp to
−0.003832, and Ki to 1.1611 × 10−6, as presented in Table 1. Also, it should be mentioned
that DynamoMan was tested in two different scenarios of ANN-tuned FOPID-BELBIC, and
ANN-tuned BELBIC. The simulation results are manifested by Figures 7–9.

Table 1. The final parameters of DynamoMan.

Parameter Value

α 0
β 0.01

Vinitial 40
Vth −20

Winitial −6
Ts 0.01
Kd 50
Ku 120
Kp −0.003832
Ki 1.1611 × 10−6
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Manifested in Figure 7, the system is applied on different controllers of DynamoMan,
PID, PI, P, and BELBIC. In order to evaluate the results, it is clear that settling time (
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) is
the main factor, since the frequency change should be controlled in the least time to make
the system enter a steady state.
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is near to 1.5 [Sec], higher than DynamoMan by about 0.5 [Sec], which is a considerable
amount; this is when the utilizer makes sure to have the fastest stability over the system,
after frequency change. Regarding the other scenario, the DynamoMan is an ANN-BELBIC,
and the results are illustrated in Figure 8.

Regarding Figure 8, both scenarios are applied on the system. Consequently, both have
overshoot at initial moments, which is originated from the dynamics, as well as the nature
of the system when it interacts with the electricity grid. The overshoot at initial moments
originates from the time that the storage charges the grid. Consequently, discharging occurs
in the storage that causes deviation and change in frequency. So, this overshoot should be
terminated at that moment, not proceeded further. However,
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17 for the BELBIC, PID, and PI, respectively. In the scenario implementing DynamoMan,
there is considerably better performance. In this regard, the utilized parameters of the
ANN-FIPID-BELBIC are anticipated in Figure 9.

As illustrated in Figure 9a, the system parameters of [W, V] for DynamoMan and
BELBIC are presented. Regarding [W, Vth], the same theory of overshoot from the grid
interactions and changes occurred; however, the performance of DynamoMan was overall
better than the other scenario in relation to
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the ANN-tuned parameters of DynamoMan in Ki, and Kp. In sequence, both parameters
achieved a steady state considerably fast, and their effect is shown in the final output
response of the system. In order to handle the overshoot, occurring at the initial moments
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of grid interactions, Ki raised to −1 × 10−6; conversely, Kp decreased to −5 × 10−3 at initial
moments—this handles the overshoot caused by the changes in the grid interactions and
makes the system perform smoothly in a reduced settling time and robust manner. As the
BELBIC is working based on the reward/penalty performed by the feedback of the system
output, Figure 10 depicts the reward/penalty profile of both scenarios.

Fractal Fract. 2024, 8, x FOR PEER REVIEW 15 of 19 
 

 

 
(a) 

 
(b) 

Figure 9. (a) Controller parameters in both scenarios, and (b) ANN-tuned parameters in Dyna-
moMan. 

Manifested in Figure 7, the system is applied on different controllers of DynamoMan, 
PID, PI, P, and BELBIC. In order to evaluate the results, it is clear that settling time (ℐ) is 
the main factor, since the frequency change should be controlled in the least time to make 
the system enter a steady state. ℐ is determined, and mirrored by a dashed line on the 
plots. Consequently, ℐ is around 1 [Sec] for the DynamoMan. Regarding the others, ℐ is 
near to 1.5 [Sec], higher than DynamoMan by about 0.5 [Sec], which is a considerable 
amount; this is when the utilizer makes sure to have the fastest stability over the system, 
after frequency change. Regarding the other scenario, the DynamoMan is an ANN-
BELBIC, and the results are illustrated in Figure 8. 

Figure 9. (a) Controller parameters in both scenarios, and (b) ANN-tuned parameters in DynamoMan.

As shown in Figure 10, the generated profile for rewards and penalties indicates that
DynamoMan obtained superior rewards in order to maintain stable and robust control
of the grid, with the value ranging from 0 to 250. In contrast, it is incapable of handling
changes in the system’s grid interaction in the second scenario, as it received a −3000
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penalty for output performance at the outset, which conceptualizes the system’s harder-to-
smooth control. As well, the comparison between the performance of different models is
presented in Table 2, demonstrating that DynamoMan obtained better results than other
models in a reduced settling time.
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5. Conclusions

As intelligent control methods are becoming considerably important in energy storage
systems, as is their integration with grids, DynamoMan is investigated in this paper. By em-
ploying ANN tuning to optimize FOPID-BELBIC parameters, DynamoMan demonstrates
superior performance in comparison to traditional BELBIC methodologies in smooth and
robust control perspectives. The parameters of DynamoMan are tuned in order to maximize
its efficiency: α is held constant at 0 and β is configured to 0.1. The Vth is defined as −20,
while the Vinitial is set to 40. Additionally, the Ts is established at 0.01 s, and the Winitial is
specified as −6. In addition, the controller features include a Ki of 1.1611 × 10−5, Kd of −50,
and a Ku of 120. The Kp is −0.003832. It is noted that DynamoMan handles the overshoot
that arises from the grid integration of the SMES. The performance of DynamoMan in
SMES control applications in terms of settling time (
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Future directions for the application of BELBIC and AI models in energy storage systems
include the optimization of charge and discharge cycles, the enhancement of predictive
maintenance, and the enhancement of defect detection. Energy storage systems can more
accurately predict energy demand and supply, facilitate the integration of renewable en-
ergy sources, and assure grid stability by combining BELBICs with AI-driven predictive
analytics. This combination has the potential to develop energy storage solutions that are
more intelligent, autonomous, and resilient, thereby facilitating the transition to sustainable
and decarbonized energy systems.
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