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Abstract Global terrestrial water storage anomaly (TWSA) products from the Gravity Recovery and
Climate Experiment (GRACE) and its Follow‐On mission (GRACE/FO) have an approximately three‐month
latency, significantly limiting their operational use in water management and drought monitoring. To address
this challenge, we develop a Bayesian convolutional neural network (BCNN) to predict TWSA fields with
uncertainty estimates during the latency period. The results demonstrate that BCNN provides near‐real‐time
TWSA estimates that closely match GRACE/FO observations, with median correlation coefficients of 0.92–
0.95, Nash‐Sutcliffe efficiencies of 0.81–0.89, and root mean squared errors of 1.79–2.26 cm for one‐ to three‐
month ahead predictions. More importantly, the model advances global hydrological drought monitoring by
enabling detection up to three months before GRACE/FO data availability, with median characterization
mismatches below 16.4%. This breakthrough in early warning capability addresses a fundamental constraint in
satellite‐based hydrological monitoring and offers water resource managers critical lead time to implement
drought mitigation strategies.

Plain Language Summary Monitoring Earth's water resources from space is essential for
understanding droughts and managing water supplies. The Gravity Recovery and Climate Experiment
(GRACE) satellite and its Follow‐On (GRACE/FO) track changes in terrestrial water storage by detecting tiny
variations in Earth's gravity, providing crucial information for water management. However, there's typically a
three‐month delay before this satellite data becomes available due to extensive processing requirements, making
it difficult to respond quickly to developing water challenges. Our study develops a deep learning approach that
predicts water storage changes during this latency period. By integrating historical GRACE/FO observations
with current hydrometeorological data, our method generates reliable estimates of water storage variations in
near‐real‐time and detects hydrological droughts up to three months earlier than conventional GRACE/FO
observations. This advancement helps bridge a long‐standing gap in Earth observation, allowing for more timely
responses to emerging water challenges. As climate change increases the severity and frequency of extreme
hydrological events, our method offers a valuable tool for improving drought preparedness, water management,
and disaster mitigation strategies.

1. Introduction
Terrestrial water storage anomalies (TWSAs), which integrate changes in surface water, snow and ice, canopy
water, soil moisture, and groundwater, offer direct observations of total (land) water availability (Adusumilli
et al., 2019; B. Li et al., 2019). This variable is now designated as an essential climate variable (Zemp et al., 2022),
and its observation, globally, with known uncertainty and low latency is desirable for effective water resource
management and drought mitigation (Mo, Zhong, Forootan, Shi, et al., 2022; Thomas et al., 2014). The Gravity
Recovery and Climate Experiment (GRACE) mission and its successor, GRACE Follow‐On (collectively
GRACE/FO), provide an unprecedented way to monitor the time‐variable Earth's gravity fields, from which the
global‐scale TWSAs can be inferred (Hu et al., 2024; Long et al., 2017; Rodell & Reager, 2023; Wahr
et al., 1998). These TWSA measurements have been widely used as an indicator of hydrological droughts and
flood potentials (e.g., Boergens et al., 2020; Forootan et al., 2019, 2024; Mo, Zhong, Forootan, Shi, et al., 2022;
Reager et al., 2014; Rodell & Li, 2023; Thomas et al., 2014; Zhao et al., 2017). Furthermore, the assimilation of
GRACE/FO TWSA data into land surface models has significantly improved their accuracy and reliability (e.g.,
B. Li et al., 2019; Houborg et al., 2012; Schumacher et al., 2018; van Dijk et al., 2014; Yang et al., 2024).
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A critical limitation in the operational use of GRACE/FO data is the approximately three‐month latency between
observation and data availability. This delay arises from the need for extensive processing, quality control, cross‐
product comparison, and rigorous validation to ensure the consistency and reliability of the final gravity solutions.
Such latency is typical for the three major GRACE/FO Mascon products provided by the Jet Propulsion Labo-
ratory (JPL) (Watkins et al., 2015), the Center for Space Research (Save et al., 2016), and the Goddard Space
Flight Center (Loomis et al., 2019), which are widely used in hydrological applications. The extended latency
period severely impedes real‐time water resource monitoring and hampers timely assessment of hydrological
extremes. For instance, existing GRACE/FO‐based drought indices (Forootan et al., 2019; Thomas et al., 2014;
Zhao et al., 2017) can only characterize historical events, limiting their utility for active drought monitoring and
response.

Data‐model fusion techniques have demonstrated success in utilizing GRACE/FO data, yet the latency period
poses a persistent challenge for operational applications. For instance, assimilating GRACE/FO data into NASA's
catchment land surface model enhances estimates of individual water storage components, such as groundwater
and soil moisture at different depths (B. Li et al., 2019), enabling more precise monitoring of specific hydrological
conditions. However, during the latency period, models must operate without data assimilation (B. Li et al., 2019;
Houborg et al., 2012; Yang et al., 2024), leading to increased uncertainties and reduced reliability that
compromise decision‐making for water resource management and drought mitigation. While recent machine
learning approaches have attempted to bridge this gap (Lu et al., 2024; F. Li et al., 2024), they focused primarily
on basin‐scale predictions and lack crucial uncertainty quantification.

To address these limitations, we present an integrated deep learning (DL) approach using a Bayesian convolu-
tional neural network (BCNN) to predict grid‐level GRACE/FO TWSA data during the latency period. Our
method combines past GRACE/FO observations with hydrometeorological inputs that have substantially shorter
delays (typically less than one month), enabling near‐real‐time TWSA monitoring. The BCNN framework in-
tegrates convolutional neural networks (Gu et al., 2018; Ronneberger et al., 2015), which are proven effective for
spatial pattern extraction, (Fu et al., 2019; He et al., 2016; G. Huang et al., 2017; Mo et al., 2019; Z. Zhang
et al., 2021), with series stationarization (Y. Liu et al., 2022) to mitigate the inherent nonstationarity issue in
hydrological time series. Furthermore, we employ a Bayesian inference algorithm known as Stein variational
gradient descent (SVGD) (Q. Liu & Wang, 2016) for model training to provide uncertainty‐quantified pre-
dictions. This uncertainty quantification capability, absent in most previous prediction attempts, is crucial for both
water resource monitoring and GRACE/FO data assimilation applications. Through extensive validation, we
demonstrate that our method effectively bridges the GRACE/FO data latency gap and enables timely detection
and characterization of global hydrological droughts.

2. Data and Methods
2.1. GRACE/FO and Hydrometeorological Data

We focus on the global land area that excludes Antarctica and Greenland (60°S–84°N and 180°W–180°E). In this
study, the monthly JPL GRACE/FO Mascon product (Watkins et al., 2015) is used. JPL's processing of the
GRACE/FO data includes various corrections, such as the corrections for glacial isostatic adjustment and the
application of destriping and filtering techniques to minimize correlated errors and noise. These corrections
improve the accuracy of the data, increasing its reliability for hydrological and climatic applications (Watkins
et al., 2015). The monthly TWSA fields, representing anomalies relative to the averaging period of 2004–2009,
reflect variations in the water stored on land. Although the data are provided at a spatial resolution of 0.5° × 0.5°,
their effective resolution is approximately 3° × 3°. For this study, we resample the data in grids of 1° × 1°,
since this resolution is commonly used in hydrological applications.

The precipitation (P), temperature (T), and reanalyzed/simulated TWSA (rTWSA), which are generally well
correlated with variations in terrestrial water storage (Mo, Zhong, Forootan, Shi, et al., 2022; Sun et al., 2019), are
used as auxiliary inputs to the BCNN model for TWSA prediction. Although evapotranspiration and runoff also
influence TWSAs, they are excluded because temperature serves as a proxy for evapotranspiration (Almorox
et al., 2015), and our preliminary tests revealed that runoff has a weaker correlation with TWSA compared to
precipitation and temperature. Here, the ERA5‐Land reanalysis dataset is considered for its good performance
(Muñoz Sabater et al., 2021). To ensure spatial consistency, these data sets are also resampled to the same
1° × 1° grids as those of GRACE/FO TWSA.
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2.2. Bayesian Convolutional Neural Network

The BCNN model for predicting gridded TWSA fields consists of three key components: (a) a convolutional
neural network (Gu et al., 2018) to effectively capture the spatial dependencies in GRACE/FO TWSA and hy-
drometeorological data fields; (b) a series stationarization strategy (Y. Liu et al., 2022) to mitigate the nonsta-
tionary property of time series (e.g., time‐varying mean and variance), thereby enhancing the accuracy of future
predictions; and finally (c) an uncertainty assessment of the TWSA predictions.

To implement the BCNNmodel, we reorganize each TWSA field as TWSA ∈ RH ×W , whereH × W is the spatial
resolution. This allows convolutional neural networks to effectively extract spatial dependencies from the
sequence of two‐dimensional fields. Specifically, the BCNN model is designed to learn the following input‐
output mapping:

(Xt− p+1:t+k,TWSAt− p+1:t) ̅̅̅̅̅̅̅̅̅̅̅→
fθ(⋅) TWSAt+1:t+k, (1)

where t is the month index, and fθ(⋅) denotes the neural network with trainable parameters θ. The outputs are the
TWSA fields during the k‐month latency period (i.e., TWSAt+ 1:t+ k ∈ Rk×H ×W), the inputs include the TWSA
fields from the past p = 12 months (i.e., TWSAt − p+ 1:t ∈ Rp×H ×W) and the auxiliary hydrometeorological data
during both the past and latency periods (i.e., Xt − p+ 1:t+ k ∈ R( p+ k) ×C×H ×W , where C denotes the number of
auxiliary predictors). In particular, the hydrometeorological data during the latency period is also used as input
because they are typically available.

In series stationarization (Y. Liu et al., 2022), the input sequences (TWSAt − p+ 1:t and Xt − p+ 1:t+ k) are statio-
narized by subtracting the local mean and dividing by the local standard deviation computed within a sliding
window. The BCNN predictions are then transformed back to their original scale by applying the inverse
operation using the mean and standard deviation from the corresponding input TWSA window. This trans-
formation normalizes the scale and ensures approximate stationarity, enabling the model to capture the underlying
patterns in the data more effectively. Additionally, the BCNN model quantifies both epistemic and aleatoric
uncertainties in its predictions by treating the trainable parameters θ as random variables. To infer their posterior
distribution, the SVGD algorithm (Q. Liu &Wang, 2016) is employed to approximate the distribution using a set
of parameter particles: {θi}

ns
i=1. Given an arbitrary input to BCNN, it will produce ns TWSA predictions, from

which the mean and standard deviation can be computed to quantify uncertainties. Further details on the BCNN
architecture, hyperparameter settings, series stationarization strategy, and SVGD training method are provided in
Texts S1–S3 and Figures S1–S3 in Supporting Information S1.

2.3. Training and Testing Data Sets

The GRACE/FO observations from April 2002 to June 2017 and June 2018 to February 2024 are respectively
used to organize training and testing data for BCNN, with any one‐ or two‐month data gaps in the GRACE/FO
missions being filled using cubic interpolation. For each training/testing sample, the input variables include
GRACE/FO TWSA from months (t − 11) to t and auxiliary hydrometeorological inputs from months
(t − 11) to (t + 3) (Figure S4 in Supporting Information S1). The targets are the GRACE/FO TWSAs for the
next three months, that is, (t + 1) to (t + 3). Therefore, the GRACE/FO TWSA fields from June 2019 to
February 2024 are used to evaluate the accuracy of BCNN prediction, using the commonly employed cor-
relation coefficient (R), Nash‐Sutcliffe efficiency (NSE), and root mean squared error (RMSE) metrics (Naser
& Alavi, 2023).

3. Results
3.1. Global TWSA Dynamics Monitoring

Figure 1 presents the performance metrics (R, NSE, and RMSE) of BCNN in predicting the original GRACE/FO
TWSA signals during the three‐month latency period, along with their cumulative distributions. For the first
month, BCNN obtains median R, NSE, and RMSE values of 0.95, 0.89, and 1.79 cm, respectively (Figures 1a–
1c). The cumulative distributions (Figures 1j–1l) show that approximately 80% of regions exhibit R > 0.9,
NSE > 0.8, and RMSE < 3 cm. While prediction accuracy gradually decreases over time due to decreasing
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dependency on historical data and increasing system variability (Salinas et al., 2020), BCNN maintains relatively
accurate TWSA estimates with median R of 0.93 and 0.92, median NSE of 0.84 and 0.81, and median RMSE of
2.07 and 2.26 cm for the second and third months, respectively. Spatial analysis indicates challenges in hyperarid
regions, such as the Sahara Desert and the Arabian Peninsula (climate zone distributions shown in Figure S5 in
Supporting Information S1). We summarize boxplots of the R, NSE, and RMSE values in different climate zones
in Figures 1m–1o. R and NSE values in the hyperarid regions are significantly lower compared to other regions.
However, the RMSE values are the lowest in these regions. This can be attributed to the low magnitude and
signal‐to‐noise ratios (Forootan et al., 2012; Humphrey et al., 2016; Mo, Zhong, Forootan, Mehrnegar,
et al., 2022), which make TWSA signals particularly difficult to predict. Furthermore, although the RMSE values
are the highest in humid regions, the high R and NSE values indicate accurate predictions, as the errors remain
small relative to the large magnitudes of TWSA.

To complement the global performance assessment, we evaluate BCNN's predictive capabilities across specific
regions and time periods. Figure 2 compares basin‐averaged TWSA time series from GRACE/FO and BCNN in
six major river basins: the Amazon, Central Europe (merged basin region), Congo, Ganges‐Brahmaputra, Mis-
sissippi, and Yangtze (locations are shown in Figure S6 in Supporting Information S1). These basins were
selected to represent diverse geographical regions and, notably, experienced extreme drought events during the
testing period (Singh et al., 2023; L. Zhang et al., 2023), providing robust test cases for model performance under
challenging conditions. BCNN accurately captures the temporal dynamics of GRACE/FO TWSA signals in all

Figure 1. Performance metrics of the Bayesian convolutional neural network (BCNN) model for predicting the original terrestrial water storage anomaly (TWSA) fields
derived from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow‐On across the testing period (June 2019–February 2024): R (column 1),
Nash‐Sutcliffe efficiency (NSE) (column 2), and root mean squared error (RMSE) (column 3) values for one‐month (row 1), two‐month (row 2), and three‐month (row
3) ahead predictions. The median of metric values in all grids is shown in each subplot. (j)–(l) Cumulative distributions of R, NSE, and RMSE values. (m)–(o) Boxplots
of R, NSE, and RMSE values in hyper‐arid (HA), arid (A), semi‐arid (SA), semi‐humid (SH), and humid (H) regions.
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basins (R ≥ 0.93, NSE ≥ 0.76, RMSE < 2.28 cm during the testing period), successfully modeling the nonsta-
tionary features including declining trends (Figures 2b and 2d), increasing trends (Figure 2c), and irregular
variations (Figures 2e and 2f). As expected, prediction accuracy gradually declines with increasing lead time.
Furthermore, GRACE/FO observations generally fall within the BCNN's 95% confidence interval. Among these
basins, the prediction accuracy is relatively lower for the Congo and Yangtze River basins, with the relative
difference exceeding 10% in some temporal periods. This decreased performance likely reflects increased TWSA
variability in these regions driven by climate change and intensive anthropogenic activities (Y. Huang et al., 2015;
Tourian et al., 2023). Figures S7 and S8 in Supporting Information S1 present BCNN‐predicted TWSA fields for
two representative test samples, alongside GRACE/FO observations, prediction errors, and uncertainties (rep-
resented by 1.96 standard deviations). BCNN successfully captures the spatial patterns of GRACE/FO fields
across all three latency months, with median absolute prediction errors generally below 1.28 cm. Larger errors and
uncertainties occur in humid regions such as the Amazon River Basin (>6 cm). This is consistent with their higher
TWSA signal magnitudes in these regions (Humphrey et al., 2016).

Figure 2. Basin‐averaged TWSA time series derived from GRACE/FO observations and BCNN's one‐ (column 1) to three‐month (column 3) ahead predictions for the
(a) Amazon, (b) Central Europe, (c) Congo, (d) Ganges‐Brahmaputra, (e) Mississippi, and (f) Yangtze River basins. The training and testing samples span the periods of
April 2003–June 2017 and June 2019–February 2024, respectively. The red shaded area represents the 95% confidence interval of the predictions. The blue shared area

(right y‐axis) depicts the absolute relative difference, calculated as | TWSA − T̂WSA
TWSAmax − TWSAmin

× 100%|, where TWSAmax and TWSAmin are the maximum and minimum
GRACE/FO TWSA values during the testing period, respectively. The values in parentheses indicate predictive accuracy for one‐, two‐, and three‐month lead times during
the testing period.
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The effectiveness of BCNN in effectively extracting and integrating informative features from multiple data
sources for TWSA prediction is illustrated through sensitivity analysis, as detailed in Text S4 and Figure S9 in
Supporting Information S1. This analysis quantifies the relative importance of auxiliary hydrometeorological
predictors (P, T, and rTWSA) in improving prediction accuracy. Results underscore the critical importance of
integrating physically‐based model outputs with meteorological data for GRACE/FO TWSA prediction during
the latency period. We further demonstrate the superiority of BCNN predictions by comparing them with the
widely used ERA5‐Land reanalysis (Muñoz Sabater, 2019) and Noah land surface model (Rodell et al., 2004),
both of which provide open‐loop TWSA estimates during the latency period. Detailed comparison results pre-
sented in Text S5 and Figure S10 in Supporting Information S1 demonstrate BCNN's superior performance.

These results highlight BCNN's potential for accurately filling the GRACE/FO latency period and thus enabling
near‐real‐time monitoring of global TWSA dynamics. In BCNN, a computationally efficient series stationari-
zation strategy (Y. Liu et al., 2022) is employed to alleviate the nonstationarity of TWSA time series. Figure S11
in Supporting Information S1 demonstrates that the exclusion of series stationarization leads to decreased model
performance, with median NSE values dropping from (0.89, 0.84, 0.81) to (0.87, 0.81, 0.78) and median RMSE
values increasing from (1.79, 2.07, 2.26) cm to (1.89, 2.23, 2.37) cm for one‐ to three‐month ahead predictions,
respectively. While our BCNN model effectively predicts TWSAs during the latency period, we recognize that
the temporal out‐of‐sample nature of the prediction task remains a fundamental challenge. The model's reliance
on historical data inherently limits its ability to fully account for unexpected changes in future TWSAs driven by
extreme climate events or anthropogenic activities, leading to decreased performance as the lead time increases.
To mitigate this limitation, future research could explore hybrid approaches integrating state‐of‐the‐art
Transformer‐based temporal prediction models (Chen et al., 2023), which have shown promise in handling
complex temporal dependencies. However, integrating these advanced techniques presents challenges due to
increased model complexity and limited GRACE/FO data availability, highlighting the need for innovative
integration strategies in future work.

3.2. Timely Detection and Characterization of Global Hydrological Droughts

The BCNN‐predicted TWSAs during the GRACE/FO latency period enable the timely detection and charac-
terization of hydrological droughts at a global scale. To demonstrate this capacity, we compare hydrological
droughts characterized by both GRACE/FO and BCNN during the testing period. The drought condition is
identified using the water storage deficit index (WSDI), defined as:

WSDIi,j =
TWSAdetrend

i,j − μi
σi

, (2)

where j denotes the time series index, i = 1,… ,12 is the ith calendar month, TWSAdetrend
i,j is the detrended

TWSA time series, and μi and σi are the mean and standard deviation of the detrended TWSA for month i,
respectively. The linear trend was removed from the original TWSA time series to eliminate biases from long‐
term systematic changes in drought assessments (Humphrey et al., 2016). The discrepancies between BCNN
and GRACE/FO drought characterizations are quantified using a mismatch metric (Saemian et al., 2024), defined
as the percentage of months where drought classifications differ by two or more categories (see Text S6 in
Supporting Information S1). Drought categories are detailed in Table S1 in Supporting Information S1, with
drought conditions defined as WSDI ≤ − 0.5 persisting for three or more consecutive months.

Figure 3 quantitatively demonstrates BCNN's capability for timely detection and reliable characterization of
hydrological droughts during the GRACE/FO latency period through comprehensive drought mismatch analysis.
Hyper‐arid regions (e.g., the Sahara Desert, Arabian Peninsula and Taklamakan Desert) are excluded due to
BCNN's reduced accuracy in these areas (Section 3.1). For the first delayed month, the mismatches are below 21%
across 90% of the regions (Figure 3d), with a median value of 10.9% (Figure 3a). The median mismatch increases
slightly to 14.5% and 16.4% for the second and third delayed months, respectively (Figures 3b and 3c).
Throughout all latency months, mismatches remain below 30% in more than 90% of regions (Figure 3d). The
superior timeliness and reliability of BCNN are further confirmed through comparative analysis with drought
characterization mismatches from ERA5‐Land reanalysis and Noah land surface model (see Text S5 and Figure
S12 in Supporting Information S1).
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Figure 3. Distribution of disparities between BCNN‐predicted and GRACE/FO‐observed hydrological droughts during the
testing period. The mismatch values represent the percentage of months where BCNN‐identified droughts differ from
GRACE/FO‐identified ones by at least two categories. (a–c) Show the mismatches of BCNN's one‐, two‐, and three‐month
ahead predictions, respectively, while (d) summarizes their cumulative distributions.

Figure 4. The hydrological drought regions identified by the water storage deficit index (WSDI) during October 2023 to December 2023. The first to fourth rows display
results based on the WSDI indicators derived from GRACE/FO data and one‐ (t + 1) to three‐month (t + 3) ahead predictions by the BCNN model, respectively. The
mismatch value represents the percentage of land grids where BCNN‐identified droughts differ from GRACE/FO‐identified droughts by at least two categories.
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Widespread hydrological droughts were documented globally during October‐December 2022 and October‐
December 2023 (Singh et al., 2023; L. Zhang et al., 2023). Figure 4 and Figure S13 in Supporting Informa-
tion S1 demonstrate the BCNN's effectiveness in predicting these established drought events, comparing
GRACE/FO observations with BCNN's one‐ to three‐month ahead predictions for both time periods. BCNN
successfully captures the main spatiotemporal drought patterns identified by GRACE/FO, with spatial mis-
matches consistently below 23% across all months, though minor discrepancies in drought extent and severity are
observed. These results validate the BCNN's capability to detect hydrological droughts up to three months before
GRACE/FO data availability, effectively extending the temporal window for drought identification and
mitigation.

Basin‐scale validation results are presented in Figure S14 in Supporting Information S1, showing basin‐averaged
WSDI time series derived from GRACE/FO and BCNN predictions across six major river basins during the
testing period. The accuracy scores (R ∈ [0.81, 0.95], NSE ∈ [0.65, 0.90]) are lower than those for the original
TWSA time series (Figure 2), reflecting the increased complexity in predicting WSDI signals due to the removal
of trend and seasonal components (Cleveland et al., 1990; Humphrey et al., 2016; Mo, Zhong, Forootan, Shi,
et al., 2022). Despite this challenge, BCNN‐derived WSDI time series show good agreement with GRACE/FO
observations, with the 95% prediction confidence intervals generally encompassing the GRACE/FO
measurements.

The spatial characteristics of BCNN's drought predictions are further examined in Figure S15 in Supporting
Information S1, which compares WSDI fields (excluding non‐drought regions) between GRACE/FO observa-
tions and BCNN predictions for one to three months ahead during a month with extreme drought conditions in the
six river basins. The BCNN‐predicted WSDI fields closely replicate the spatial patterns observed in the GRACE/
FO data, although there are some discrepancies in drought extent and severity, likely attributable to the significant
fluctuations inherent in the WSDI signals (Humphrey et al., 2016; Mo, Zhong, Forootan, Shi, et al., 2022).

4. Discussion and Conclusions
Our study proposes BCNN, a novel DL framework that addresses a fundamental limitation in satellite‐based
hydrological monitoring: the approximately three‐month data latency of GRACE/FO missions. This innova-
tion enables near‐real‐time monitoring of global water availability and hydrological droughts that would other-
wise remain unidentified during this crucial period. Our comprehensive evaluation demonstrates BCNN's reliable
performance in predicting global TWSAs with uncertainty estimates, achieving median grid‐level metrics of R∈
[0.92, 95], NSE ∈ [0.81, 89], and RMSE ∈ [1.79, 2.26] cm across the three‐month latency period. The model's
effectiveness extends to timely drought characterization, with consistently low median mismatches (10.9%,
14.5%, and 16.4%) over the three‐month latency period, confirming its capability to reliably track hydrological
drought dynamics and substantially mitigate the impact of GRACE/FO data delays.

BCNN's robust performance stems from two key innovations: the convolutional neural networks' capacity to
extract informative features from multi‐source image data, and the implementation of series stationarization to
alleviate TWSA time series non‐stationarity. Our analysis reveals that BCNN clearly outperforms traditional
open‐loop estimates from reanalysis data sets and land surface models during the GRACE/FO latency period.
Notably, incorporating these open‐loop estimates alongside meteorological predictors (P and T) as BCNN's in-
puts substantially enhances prediction accuracy, particularly in relatively humid regions characterized by high
hydroclimatic variability.

In summary, this study presents several major advances in operational hydrology and environmental monitoring.

• Global operational hydrology advancement: BCNN bridges the critical latency gap in GRACE/FO data,
enabling near‐real‐time monitoring of water availability and droughts up to three months ahead of conven-
tional satellite observations. This breakthrough enhances proactive water resource management and drought
mitigation strategies worldwide, particularly benefiting climate‐vulnerable regions where early warning
systems can significantly reduce socioeconomic impacts.

• Synergy between data‐driven and physical modeling: By incorporating model‐derived open‐loop TWSA
estimates as inputs, our BCNN framework demonstrates how DL can leverage physical modeling insights to
enhance prediction accuracy. This synergy extends further, as BCNN's near‐real‐time predictions could be
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assimilated into hydrological and land surface models, enhancing a deeper integration between DL and
process‐based hydrology that advances both fields.

• Scalability and flexibility: The BCNN framework's data‐driven nature makes it adaptable to various hydro-
logical and environmental applications where latency filling is crucial, extending its utility beyond TWSA
prediction. Furthermore, its capacity to generate uncertainty estimates enhances its utility for both risk
analysis and data assimilation processes.

While BCNN demonstrates robust performance, several avenues for enhancement remain. Integration of
emerging DL techniques, such as attention mechanisms and physics‐informed learning (Chen et al., 2023), could
further improve prediction accuracy. Additionally, extending the framework to forecast future TWSAs and hy-
drological droughts beyond the GRACE/FO observation period represents a promising direction for future
research. These advancements would strengthen our ability to predict and manage global water resources in an era
of increasing climate variability and hydrological events.

Acronyms
BCNN Autoregressive Bayesian convolutional neural network

GRACE/FO Gravity Recovery and Climate Experiment and its Follow‐On

NSE Nash–Sutcliffe Efficiency

R Correlation coefficient

RMSE Root mean squared error

SVGD Stein variational gradient descent

TWSA Terrestrial water storage anomaly

WSD Water storage deficit

WSDI Water storage deficit index

Data Availability Statement
The JPL GRACE/FO Mascon and ERA5‐Land data sets used in this study are publicly available at Wiese
et al. (2023) andMuñoz Sabater (2019), respectively. The Python codes for the proposed DLmethod are available
at Mo et al. (2025), as well as on GitHub: https://github.com/njujinchun/DL4TWSA and https://github.com/
aaugeodesy/DL4TWSA.
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