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Larrañaga1

1 Department of Artificial Intelligence, Universidad Politécnica de Madrid, Spain
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Abstract. Mixtures of polynomials (MoPs) are a non-parametric den-
sity estimation technique for hybrid Bayesian networks with continuous
and discrete variables. We propose two methods for learning MoP ap-
proximations of conditional densities from data. Both approaches are
based on learning MoP approximations of the joint density and the
marginal density of the conditioning variables, but they differ as to how
the MoP approximation of the quotient of the two densities is found.
We illustrate the methods using data sampled from a simple Gaussian
Bayesian network. We study and compare the performance of these meth-
ods with the approach for learning mixtures of truncated basis functions
from data.

Keywords: Hybrid Bayesian networks, conditional density estimation,
mixtures of polynomials

1 Introduction

Mixtures of polynomials (MoPs) [1, 2], mixtures of truncated basis functions
(MoTBFs) [3], and mixtures of truncated exponentials (MTEs) [4] have been
proposed as density estimation techniques in hybrid Bayesian networks (BNs)
including both continuous and discrete random variables. These classes of den-
sities are closed under multiplication and marginalization, and they therefore
support exact inference schemes based on the Shenoy-Shafer architecture. Also,
the densities are flexible in the sense that they do not impose any structural
constraints on the model, unlike, e.g., conditional linear Gaussian networks.

Only marginal and conditional MoTBFs appear during inference in hybrid
BNs [5]. Learning MoP, MoTBF and MTE approximations of one-dimensional
densities from data has been studied in [6, 7]. Learning conditional density ap-
proximations has, however, only been given limited attention [7, 8]. The main
difficulty is that the classes of functions above are not closed under division. The
general approach shared by existing methods for learning conditional densities
is that the conditioning variables are discretized, and a one-dimensional approx-
imation of the density of the conditional variable is found for each combination



of the (discretized) values of the conditioning variables. Thus, the estimation of
a conditional density is equivalent to estimating a collection of marginal densi-
ties, where the correlation between the variable and the conditioning variables
is captured by the discretization procedure.

In this paper, we present two new approaches, based on conditional sampling
and interpolation, respectively, for learning MoP approximations of conditional
densities from data. Our approach differs from previous methods in several ways.
As opposed to [1–3], we learn conditional MoPs directly from data without any
parametric assumptions. Also, we do not rely on a discretization of the condi-
tioning variables to capture the correlation among the variables [7, 8]. On the
other hand, our conditional MoPs are not proper conditional densities, hence
posterior distributions established during inference have to be normalized so
that they integrate to 1.

The paper is organized as follows. Section 2 briefly introduces MoPs and
details the two new approaches for learning conditional MoPs. Experimental
results and a comparison with MoTBFs are shown in Sect. 3. Section 4 ends
with conclusions and outlines future work.

2 Learning Conditional Distributions

2.1 Mixtures of Polynomials

Let X = (X1, . . . , Xn) be a multi-dimensional continuous random variable with
probability density fX(x). A MoP approximation of fX(x) over a closed domain
ΩX = [ǫ1, ξ1] × · · · × [ǫn, ξn] ⊂ R

n [1] is an L-piece d-degree piecewise function
of the form

ϕX(x) =

{

poll(x) for x ∈ Al, l = 1, . . . , L,

0 otherwise,

where poll(x) is a multivariate polynomial function with degree d (and order
r = d + 1) and A1, . . . , AL are disjoint hyperrectangles in ΩX, which do not
depend on x, with ΩX = ∪L

l=1Al, Ai ∩ Aj = ∅, i 6= j.
Following the terminology used for BNs, we consider the conditional random

variable X as the child variable and the vector of conditioning random variables
Y = (Y1, . . . , Yn) as the parent variables. Given a sample DX,Y = {(xi,yi)}, i =
1, . . . , N , from the joint density of (X,Y), the aim is to learn a MoP approxi-
mation ϕX|Y(x|y) of the conditional density fX|Y(x|y) of X |Y from DX,Y.

2.2 Learning Conditional MoPs Using Sampling

The proposed method is based on first obtaining a sample from the conditional
density of X |Y and then learning a conditional MoP density from the sampled
values. Algorithm 1 shows the main steps of the procedure. First, we find a MoP
representation of the joint density ϕX,Y(x,y) (step 1) using the B-spline inter-
polation approach proposed in [6]. Second, we obtain a MoP of the marginal



density of the parents ϕY(y) by marginalization (step 2). Next, we use a sam-
pling algorithm to obtain a sample DX|Y from the conditional density of X |Y
(step 3), where the conditional density values are obtained by evaluating the quo-
tient ϕX,Y(x,y)/ϕY(y). More specifically, we have used a standard Metropolis-
Hastings sampler for the reported experimental results. For the sampling process
we generate uniformly distributed values over ΩY for the parent variables Y,
whereas the proposed distribution for the child variable is a linear Gaussian dis-
tribution N (βTy, σ2), where β is an n-dimensional vector with all components
equal to 1/n. We used σ2 = 0.5 in our experiments. Next, we find an (unnor-
malized) MoP approximation of the conditional density X |Y from DX|Y (step
4). Finally, we apply the partial normalization procedure proposed in [1] to ob-
tain a MoP approximation ϕX|Y(x|y) of the conditional density (steps 5 and 6).
The complexity of the algorithm is dominated by the complexity of the learning
algorithm in [6].

This method has some interesting properties. The B-spline interpolation al-
gorithm for learning MoPs in [6] guarantees that the approximations are con-
tinuous, non-negative and integrate to one. Therefore, the conditional MoPs
obtained with Algorithm 1 are also continuous and non-negative. Continuity is
not required for inference in BNs, but it usually is a desirable property, e.g., for
visualization purposes. The algorithm provides maximum likelihood estimators
of the mixing coefficients of the linear combination of B-splines when learning
MoPs of the joint density (ϕX,Y(x,y)) and the marginal density ϕy(y), hence
the quotient ϕX,Y(x,y)/ϕY(y) corresponds to a maximum likelihood model of
the conditional distribution. It should be noted, though, that this property is
not shared by the final learned model as the partial normalization (steps 5 and
6) does not ensure that the learned MoP is a proper conditional density. There-
fore, the MoP approximations of the posterior densities should be normalized to
integrate to 1.

Algorithm 1.

Inputs:

– DX,Y: A training dataset DX,Y = {(xi,yi)}, i = 1, . . . , N
– r: The order of the MoP

– L: The number of pieces of the MoP

Output: ϕX|Y(x|y). The MoP approximation of the density of X |Y
Steps:

1. Learn a MoP ϕX,Y(x,y) of the joint density of (X,Y) from the dataset

DX,Y using polynomials with order r and L pieces [6].
2. Marginalize out X from ϕX,Y(x,y) to yield a MoP ϕY(y) of the marginal

density of the parent variables Y: ϕY(y) =
∫

ΩX

ϕX,Y(x,y)dx.
3. Use a Metropolis-Hastings algorithm to yield a sample DX|Y with M obser-

vations from the conditional density ϕX,Y(x,y)/ϕY(y).

4. Learn an unnormalized conditional MoP ϕ
(u)
X|Y(x|y) from DX|Y using poly-

nomials with order r and L pieces [6].



5. Compute the partial normalization constant:

c =

∫

ΩX

∫

ΩY

ϕY(y)ϕ
(u)
X|Y(x|y)dydx .

6. Find the partially normalized MoP of the conditional density:

ϕX|Y(x|y) =
1

c
ϕ
(u)
X|Y(x|y) .

We show an example with two variables X and Y . We sampled a training
dataset DX,Y with N = 5000 observations from the two-dimensional Gaussian

density (X,Y ) ∼ N

((

0
0

)

,

(

2 1
1 1

))

. This two-dimensional density corresponds

to a Gaussian BN, where Y ∼ N (0, 1) and X |Y ∼ N (y, 1). Next, we applied
Algorithm 1 to learn the MoP approximation of the conditional density of X |Y .
The domain of the approximation was set to ΩX,Y = [−3, 3] × [−2, 2], which
includes 0.9331 of the total Gaussian density mass. Note that σ2

Y = 1 is smaller
than σ2

X = 2, thus the domain ΩY = [−2, 2] is smaller than ΩX . We used the
BIC score to greedily find the number of pieces L and the order r of the MoP. The
conditional MoP learned with Algorithm 1 is shown in Fig. 1(a). The conditional
MoP had L = 16 pieces and order r = 2, i.e., 64 polynomial coefficients. The
true conditional density of X |Y is the linear Gaussian density N (y, 1) shown in
Fig. 1(b). We can see that the conditional MoP in Fig. 1(a) is continuous and
close to the true conditional density. We observe high peaks at the “corners”
of the domain ΩX,Y . These are due to numerical instabilities when evaluating
the quotient ϕX,Y (x, y)/ϕY (y), caused by both the joint and the marginal MoPs
yielding small values (close to zero) at the limits of the approximation domain.

Next, we performed inference based on the conditional MoP learned with
Algorithm 1. Figures 1(c), (d) and (e) show the MoPs (solid) and true (dashed)
posterior densities for Y given three different values for X . The three values
correspond to the percentiles 10, 50 and 90 of X ∼ N (0, 2). Both the MoPs and
the true posterior densities shown in Figs. 1(c), (d) and (e) were normalized in
the domain ΩY so that they integrate to one. We can see that the MoPs of the
posterior densities are also continuous and close to the true posterior densities;
Kullback-Leibler divergence values are reported in Sect. 3.

2.3 Learning Conditional MoPs Using Interpolation

The preliminary empirical results output by Algorithm 1 show that the sampling
approach can produce good approximations. However, it is difficult to control or
guarantee the quality of the approximation due to the partial normalization.

This shortcoming has motivated an alternative method for learning a MoP
approximation of a conditional probability density for X |Y. The main steps of
the procedure are summarized in Algorithm 2. First, we find MoP approxima-
tions of both the joint density of (X,Y) and the marginal density of Y in the
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Fig. 1: (a) Conditional MoP of X |Y learned with Algorithm 1. (b) True condi-
tional density of X |Y ∼ N (y, 1). (c,d,e) MoP approximations (solid) and true
posterior densities (dashed) of Y |X for three values of X .

same way as in Algorithm 1 (steps 1 and 2). Next, we build the conditional MoP
ϕX|Y(x|y) by finding, for each piece poll(x,y) defined in the hyperrectangle Al, a
multidimensional interpolation polynomial of the function given by the quotient
of the joint and the marginal densities ϕX,Y(x,y)/ϕY(y).

Algorithm 2.

Inputs:

– DX,Y: A training dataset DX,Y = {(xi,yi)}, i = 1, . . . , N
– r: The order of the MoP

– L: The number of pieces of the MoP

Output: ϕX|Y(x|y). The MoP approximation of the density of X |Y
Steps:

1. Learn a MoP ϕX,Y(x,y) of the joint density of the variables X and Y from

the dataset DX,Y [6].
2. Marginalize out X from ϕX,Y(x,y) to yield a MoP ϕY(y) of the marginal

density of the parent variables Y: ϕY(y) =
∫

ΩX

ϕX,Y(x,y)dx.



3. For piece poll(x,y), defined in Al, l = 1, . . . , L, in the conditional MoP

ϕX|Y(x|y):
Find a multi-dimensional polynomial approximation of function g(x,y) =
ϕX,Y(x,y)/ϕY(y) using an interpolation method.

We consider two multidimensional interpolation methods, which can be used
to obtain the polynomials of the pieces poll(x,y) in step 3 of Algorithm 2:

– The multidimensional Taylor series expansion (TSE) for a point yields a
polynomial approximation of any differentiable function g. The quotient of
any two functions is differentiable as long as the two functions are also differ-
entiable. In our scenario, polynomials are differentiable functions and, thus,
we can compute the TSE of the quotient of two polynomials. Consequently,
we can use multidimensional TSEs to find a polynomial approximation of
g(x,y) = ϕX,Y(x,y)/ϕY(y) for each piece poll(x,y). We computed these
TSEs of g(x,y) for the midpoint of the hyperrectangle Al.

– Lagrange interpolation (LI) finds a polynomial approximation of any func-
tion g. Before finding the LI polynomial, we need to evaluate function g
on a set of interpolation points. In the one-dimensional scenario, Cheby-
shev points are frequently used as interpolation points [9]. However, mul-
tidimensional LI is not a trivial task because it is difficult to find good
interpolation points in a multidimensional space. Some researchers have re-
cently addressed the two-dimensional scenario [9, 10]. To find a conditional
MoP using LI, we first find and evaluate the conditional density function
g(x,y) = ϕX,Y(x,y)/ϕY(y) on the set of interpolation points in Al. Next,
we compute the polynomial poll(x,y) for the piece as the LI polynomial
over the interpolation points defined in Al. Note that other approaches, e.g.,
kernel-based conditional estimation methods, can also be used to evaluate
the conditional density g(x,y) on the set of interpolation points.

Compared with Algorithm 1, there are some apparent (dis)advantages. First,
the conditional MoPs produced by Algorithm 2 are not necessarily continuous.
Second, interpolation methods cannot in general ensure non-negativity, although
LI can be used to ensure it by increasing the order of the polynomials. On
the other hand, the learning method in Algorithm 2 does not need a partial
normalization step. Thus, if the polynomial approximations are close to the
conditional density ϕX,Y(x,y)/ϕY(y), then the conditional MoP using these
polynomial interpolations is expected to be close to normalized. As a result, we
can more directly control the quality of the approximation by varying the degree
of the polynomials and the number of hyperrectangles.

We applied Algorithm 2 to the example in Fig. 1. We used the two-dimensional
LI method over the Padua points in [10] to compute the polynomials poll(x,y)
of the conditional MoP, see Fig. 2(a). The conditional MoP with the highest
BIC score had L = 16 pieces and order r = 3, i.e., 144 polynomial coefficients.
We observe that the conditional MoP in Fig. 2(a) is not continuous. Also, the
MoPs of the posterior density in Figs. 2(c), (d) and (e) are not continuous either;
Kullback-Leibler divergence values are reported in Sect. 3.
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Fig. 2: (a) Conditional MoP of X |Y learned with Algorithm 2. (b) True condi-
tional density of X |Y ∼ N (y, 1). (c,d,e) MoP approximations (solid) and true
posterior densities (dashed) of Y |X for three values of X .

3 A Comparison with MoTBFs

In this section, we compare the approaches proposed in this paper with the
method proposed in [7] for learning conditional MoTBFs from data. Figure 3
shows the MoTBFs of the conditional (a) and the posterior (c,d,e) densities
approximated using the data in Figs. 1 and 2. The conditional MoTBF had
L = 6 pieces and each piece defined a MoP with at most six parameters. MoTBF
approximations of conditional densities are obtained by discretizing the parent
variables and fitting a one-dimensional MoTBF for each combination of the
discrete values of the parents. Compared with the two learning methods proposed
in Algorithms 1 and 2, the method in [7] captures the correlation between the
parent variables and the child variable through the discretization instead of
directly in the functional polynomial expressions.

If there is a weak correlation between the child and parent variables, then
the conditional MoTBF approach is expected to yield approximations with few
pieces. On the other hand, as the variables become more strongly correlated, ad-
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Fig. 3: (a) Conditional MoTBF of X |Y learned with the approach in [7]. (b) True
conditional density of X |Y ∼ N (y, 1). (c,d,e) MoTBF approximations (solid)
and true posterior densities (dashed) of Y |X for three values of X .

ditional subintervals will be introduced by the learning algorithm. The MoTBF
learning algorithm does not rely on a discretization of the child variable, but
it rather approximates the density using a higher-order polynomial/exponential
function. In contrast, Algorithms 1 and 2 yield conditional MoPs with more
pieces because the domain of approximation ΩX,Y is split into hyperrectangles
in all the dimensions. However, with the finer-grained division of the domain into
hyperrectangles, the polynomial functions of the conditional MoPs will usually
have a low order.

We empirically compared the results of Algorithm 1, Algorithm 2 (using both
TSE and LI) and the method proposed in [7]. We sampled ten datasets for each
sample size (N = 25, 500, 2500, 5000) from the Gaussian BN, where Y ∼ N (0, 1)
and X |Y ∼ N (y, 1). We used Algorithms 1 and 2 as part of a greedy search
procedure. We started by considering one interval for each dimension (L = 1)
and order r = 2 (linear polynomials). Then, we increased either the number
of intervals to 2 (L = 4) or the order of the polynomials to r = 3. Finally,
we chose the MoP with the highest BIC score out of the two MoPs (increasing



Table 1: Mean Kullback-Leibler divergences between the MoP approximations
and the true posterior densities for ten datasets sampled from the BN, where
Y ∼ N (0, 1) and X |Y ∼ N (y, 1). The best results for each sample size are
highlighted in bold. Statistically significant differences at α = 0.05 are shown
with symbols ∗, †, ‡, ⋆.
N Y |X = x Alg. 1 (∗) Alg. 2 TSE (†) Alg. 2 LI (‡) MoTBF (⋆)

25
X =-1.81 0.5032 †⋆ 0.7297 0.3487 ∗†⋆ 0.7084 †
X =0.00 0.0746 ‡⋆ 0.0745 ∗‡⋆ 0.1510 0.0939 ‡
X =1.81 0.4952 †‡⋆ 0.7297 ‡ 1.4582 0.7084 †‡

500
X =-1.81 0.4194 0.2321 ∗‡ 0.3161 ∗ 0.2191 ∗‡
X =0.00 0.0239 †‡⋆ 0.0646 ⋆ 0.0453 †⋆ 0.0950
X =1.81 0.4141 0.2311 ∗‡ 0.3701 ∗ 0.2170 ∗‡

2500
X =-1.81 0.1045 0.0850 0.1128 0.0728 ∗‡
X =0.00 0.0387 0.0441 0.0097 ∗†⋆ 0.0272 ∗†
X =1.81 0.0984 0.0978 0.1041 0.0695 ∗‡

5000
X =-1.81 0.0575 0.0413 0.0341 ∗ 0.0308 ∗
X =0.00 0.0196 0.0262 0.0221 0.0210
X =1.81 0.0556 0.0425 0.0383 0.0322 ∗

either L or r) and iterated until there was no further increase in the BIC score.
Table 1 shows the mean Kullback-Leibler divergences between the MoPs and
the true posterior densities Y |X for three values of X in the ten repetitions. We
applied a paired Wilcoxon signed-rank test and report statistically significant
differences at a significance level α = 0.05. The null hypothesis is that the two
methods perform similarly. The alternative hypothesis is that the algorithm in
the column outperforms the algorithm shown with a symbol: ∗ for Alg. 1, †
for Alg. 2 with TSE, ‡ for Alg. 2 with LI, and ⋆ for conditional MoTBFs. For
instance, a ⋆ in the column corresponding to Alg. 1 in Table 1 shows that Alg. 1
significantly outperformed MoTBFs for a given value of N and X . Algorithms 1
and 2 yielded competitive results against conditional MoTBFs.

4 Conclusion

We have presented two methods for learning MoP approximations of the con-
ditional density of X |Y from data. Both methods are based on finding MoP
approximations of the joint density ϕX,Y(x,y) and the marginal density of the
parents ϕY(y). Thus, the first method obtains a sample from the conditional
density ϕX,Y(x,y)/ϕY(y) using a Metropolis-Hastings algorithm, from which
it learns the conditional MoP ϕX|Y(x|y). The second method obtains a MoP
of the conditional density ϕX,Y(x,y)/ϕY(y) using a multidimensional interpo-
lation technique. Multidimensional TSE and LI were considered and evaluated.
The approaches were empirically studied and compared with MoTBFs using a
dataset sampled from a Gaussian BN. As opposed to previous research on ap-
proximating conditional densities, the proposed approaches rely only on data



without assuming any prior knowledge on the generating parametric density.
Also, continuous parents do not need to be discretized.

In this paper, the same number of intervals were used for learning the MoPs
of the joint and the conditional densities. Also, equal-width intervals [ǫi, ξi] are
considered in each dimension, and the hyperrectangles Al have the same size. In
the future, we intend to study how to automatically find appropriate values for
the order r, the number of pieces L, and the limits [ǫi, ξi] of the hyperrectangles
defining each one of the MoPs. This should reduce the number of pieces required
to find good MoP approximations. We also intend to use these approaches in
more complex BNs. This involves considering other problems, e.g., BN structure
learning. Finally, we intend to thoroughly compare these methods with MTE
and MoTBF approaches.
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