
Aalborg Universitet

Fuzzeval: A Fuzzy Controller-Based Approach in Adaptive Learning for Backgammon
Game

Heinze, Mikael; Ortiz-Arroyo, Daniel; Larsen, Henrik Legind; Rodriguez-Henriquez, Francisco

Published in:
Lecture Notes on Artificial Intelligence

Publication date:
2005

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Heinze, M., Ortiz-Arroyo, D., Larsen, H. L., & Rodriguez-Henriquez, F. (2005). Fuzzeval: A Fuzzy Controller-
Based Approach in Adaptive Learning for Backgammon Game. In Lecture Notes on Artificial Intelligence: MICAI
2005 - Mexican International Conference on Artificial Intelligence (pp. 224-233). Springer.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://vbn.aau.dk/en/publications/57734160-32a7-11db-8b1e-000ea68e967b

Downloaded from vbn.aau.dk on: June 18, 2025

A. Gelbukh, A. de Albornoz, and H. Terashima (Eds.): MICAI 2005, LNAI 3789, pp. 224 – 233, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Fuzzeval: A Fuzzy Controller-Based Approach
in Adaptive Learning for Backgammon Game

Mikael Heinze1, Daniel Ortiz-Arroyo2, Henrik Legind Larsen2,
and Francisco Rodriguez-Henriquez3

1,2 Computer Science and Engineering Department, Aalborg University,
Esbjerg Denmark

contact@gonex.dk, {do, legind}@cs.aaue.dk
3 Computer Science Section, CINVESTAV, Mexico DF, Mexico

francisco@cs.cinvestav.mx

Abstract. In this paper we investigate the effectiveness of applying fuzzy con-
trollers to create strong computer player programs in the domain of backgam-
mon. Fuzzeval, our proposed mechanism, consists of a fuzzy controller that
dynamically evaluates the perceived strength of the board configurations it re-
ceives. Fuzzeval employs an evaluation function that adjusts the membership
functions linked to the linguistic variables employed in the knowledge base.
The membership functions are aligned to the average crisp input that was suc-
cessfully used in the past winning games. Fuzzeval mechanisms are adaptive
and have the simplicity associated with fuzzy controllers. Our experiments
show that Fuzzeval improves its performance up to 42% after a match of only
one hundred backgammon games played against Pubeval, a strong intermediate
level program.

Keywords: Fuzzy controller, machine learning, artificial neural networks,
computer games, reinforcement learning.

1 Introduction

Researchers in AI have applied a wide variety of techniques [1,2,3,4,5,7,10] to create
effective computer programs to play board games. These techniques vary from the
database and brute-force approaches, to more sophisticated mechanisms based on
board pattern classification and artificial neural networks (ANNs).

Board games, such as chess and backgammon, have been the subject of intense
study by the AI community. In the domain of chess, it is feasible to create a very
strong chess player by applying a combination of brute-force and opening/extended
book databases, as was shown by Deep Blue’s approach [5]. However, this method-
ology does not work in the domain of backgammon. Backgammon is a game of strat-
egy and luck [9]. The use of dice in backgammon ensures stochastic variation during
the play, producing a branching factor of such a scale, that a search is impossible
beyond three moves.

A backgammon game can be characterized by two main stages: the contact stage
where players’ checkers are intermixed and the race stage, where there is no contact
between players. The strategies applied at each game stage vary. At contact stage

 Fuzzeval: A Fuzzy Controller-Based Approach in Adaptive Learning 225

blockades [9] may be used to delay an opponent’s progress. However, at race stage
what is important is removing most pieces as quickly as possible.

Reinforcement learning has been applied successfully in board games [1,4]. Rein-
forcement learning seeks to maximize a numerical reward signal in moves that turn
out to be successful during a trial and error search in a game. Within this technique,
each position where a mistake is made is remembered. The playing strategy changes
when the mistaken position is encountered again. In reinforcement learning, evalua-
tion functions are commonly used to estimate the performance quality of an attempted
trial. A straightforward solution for learning the weights of an evaluation function is
to train the program with example positions for which the exact values of the evalua-
tion function are known. Then, the program learns to adjust the weights to minimize
the error of the evaluation function for these positions. Typically this is done by a
technique similar to the back-propagation training algorithm used in ANN [7].

Diverse techniques such as ANN, genetic algorithms and fuzzy logic may be used
to build effective computer games. Fuzzy logic, a superset of Boolean logic, supports
human type reasoning with vague and uncertain concepts. Fuzzy control, a technique
derived from the application of fuzzy logic, has been used successfully in a wide
variety of devices, from washing machines to industrial robots [6]. The main idea of
fuzzy controllers is to build a model of an expert capable to synthesize, via interpola-
tion, a control law. A fuzzy controller processes input signals, executes inferences,
and calculates suitable control outputs. The inference mechanisms in a fuzzy control-
ler employ a knowledge base consisting of linguistic expressions generated by a de-
signer or expert. In spite of its conceptual simplicity, little research has explored the
application of fuzzy logic-based techniques in board games [7,10].

In this paper we investigate the effectiveness of applying fuzzy controllers in creat-
ing strong players in the domain of backgammon. Fuzzeval, our proposed mecha-
nism, is an adaptive backgammon player program that combines a fuzzy controller
with simple reinforcement learning mechanisms. To evaluate the effectiveness of
Fuzzeval, three types of experiments were performed. First, a fuzzy controller built
with a simple knowledge base was evaluated. Afterwards, an improved version of the
same knowledge base was employed. Finally, a backgammon player designed with
two ANNs was implemented. The performance of Fuzzeval and the ANNs was com-
pared when both players were set to play against Pubeval, a strong intermediate level
player benchmarking program. Our experimental results show that Fuzzeval learns
quickly, competing well with Pubeval and the ANNs. Moreover, the techniques used
in Fuzzeval may be applied in a broad variety of board games.

This paper is organized as follows. In next section we briefly describe previous re-
lated work on machine learning mechanisms for board games. A detailed description
of Fuzzeval is presented in Section 3. Fuzzeval’s experimental performance results
are discussed in Section 4. Finally, we describe future work and provide our conclu-
sions in Section 5.

2 Related Work

The checkers program written by A. Samuel in 1956 [1], featured the first successful
attempt of doing automatic evaluation function tuning by the use of reinforcement

226 M. Heinze et al.

learning. Susan L. Epstein also employed reinforcement learning in Hoyle [4], a
game system that is capable of learning a wide variety of games. In Hoyle, the posi-
tions encountered in a game are marked as either, “significant” or “dangerous”,
depending on the result of a search for a better alternative on a loser player’s posi-
tions. Positions identified as “dangerous” are avoided in subsequent games.

In the domain of backgammon, G. Tesauro [2] achieved a remarkable success with
TD-Gammon [2]. The evaluation function built in TD-Gammon employs an ANN
trained by the method of temporal-difference. This method, which is a variant of
reinforcement learning, moves the evaluation of a played board closer to the evalua-
tion of a subsequent played board. In the end, the evaluation of the final winning and
losing boards are moved closer to one or zero, respectively. One drawback of this
approach is that it requires long training times, e.g. TD-Gammon reached the master
level after 1,500,000 games of self-playing. In spite of this fact, neural network-based
backgammon programs are superior to any other known method to date. Tesauro also
created Pubeval, a strong intermediate level backgammon player that is used as a
benchmark to test other programs.

Chellapilla and Fogel explored the use of genetic algorithms to evolve a neural
network that learned by self-play the checkers game. In the experiment described in
[3], 30 neural networks were initialized in a random state and then set to play check-
ers against each other. In each generation, the neural nets played a series of games,
and a fitness score was assigned according to their performance. The weights of the
15 best scoring neural networks were maintained as parents for the next generation.
This process continued for 250 generations until a capable checkers player finally
evolved.

C.T. Sun [7] used a combination of genetic algorithms and fuzzy sets in the domain
of othello. In his experiments, a game was divided into several stages characterized
by a fuzzy set. Afterwards, each stage was encoded into a chromosome structure.

Azaria and Sipper used genetic programming in the evolution of strategies for
playing the game of backgammon. Using this technique, they report in [10] that most
capable players evolved in 300 generations, after playing around 2,000,000 games.

Fuzzeval, the approach presented in this paper, differs from previous research work
by including a combination of simple reinforcement learning mechanisms and a
Fuzzy controller. In the next section we provide a detailed description of Fuzzeval.

PreProcessor Fuzzifier Defuzzifier

Conclusion term
definitions

Rule base

Inference engine

Membership
functions

PreProcessing
Objects

Fig. 1. Fuzzeval’s fuzzy controller modules

 Fuzzeval: A Fuzzy Controller-Based Approach in Adaptive Learning 227

3 Detailed Description of Fuzzeval

The core of Fuzzeval is a Mamdani type [7] fuzzy controller. This controller is re-
sponsible for grading the perceived strength of the board configurations it receives.
The fuzzy controller consists of the four main modules illustrated in Figure 1. The
PreProcessor module is responsible for reading the crisp linguistic input values de-
scribing a board’s state. The Fuzzifier module employs membership functions to
convert the crisp inputs into membership degrees for each linguistic input variable
and term used. The membership degrees of all variables are then passed to the Infer-
enceEngine, which calculates the fulfillment of each rule in the rule base. Finally, the
Defuzzifier module generates the defuzzified output from the controller. Fuzzeval
employs triangular-shaped membership functions, defined by its left, right base
points, and its maximum central point. The membership functions declared as vari-
able are tuned using a special function calibrator mechanism. The calibration mecha-
nism calculates the average crisp inputs to the fuzzy controller for all the winning
boards stored in a match’s historic record. Subsequently, all the membership func-
tions associated with the input values are aligned around these average values. To
illustrate this process in detail, let us consider a crisp input for a typical linguistic
variable such as SinglePieces. The range of this variable varies typically between 0
and 15. However, a player who owns more than four single checkers, is likely to be
hit [9] by its opponent, an undesirable event that may delay his progress. A typical
desirable average input value for the variable SinglePieces is around 1.75. The
calibration procedure, applied to a membership function consists of moving the
adjustment point, slightly closer to the target value matching the average crisp input.
Figure 2 illustrates how Fuzzeval adjusts the membership functions, aligning them
around the preferred value of 1.75. The amount of adjustment for a point in a
membership function is obtained using equation 1.

xratex
n

x
ratejustAmountToAd c

n
i

∆⋅=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
−⋅=

∑

(1)

where ∆x is the difference between the average value, obtained from the n winning
boards, and the current location xc of the adjustable point of a membership function.
Rate is the learning rate constant, set to 0.1 in our tests.

SinglePieces Few

0 1.75 4 15

SinglePieces Some SinglePieces Many

0 1.75 4 15 0 1.75 4 15

Fig. 2. Example of adjusted membership functions

1

1 1

228 M. Heinze et al.

Figure 3 shows the move selection mechanism employed in Fuzzeval. In a game,
the Board Generator receives the current position of all pieces in a board together
with the dice values. With this information, it generates all possible board configura-
tions containing the valid moves that can be made. The Fuzzy Controller receives a
board configuration as input and produces an output value that grades the perceived
strength of that board. Using the Match History Data Base, the Board Selector mod-
ule discards board configurations that have performed poorly in the past. From those
that are left, the board receiving the highest score (assigned by the fuzzy controller) is
selected for playing. To illustrate Fuzzeval’s processing, let us consider a simple
example consisting of the linguistic input/output variables and their associated terms
presented in Table 1.

Table 1. Linguistic input variables and terms used by the fuzzy controller

Linguistic variable Linguistic terms Base variable Type
SinglePieces Few, Many 0 to 15 pieces Input
OpponentOnBar Few, Many 0 to 15 pieces Input
SinglePiecesInHome Few, Many 0 to 6 pieces Input
BoardStrength Weak, Good -1 and 1 Output

An example rule base defined with the previous linguistic variables is shown be-

low:

1. If SinglePieces is Many then BoardStrenght Weak
2. If SinglePieces is Few then BoardStrenght Good
3. If OpponentOnBar is Few then BoardStrenght Weak
4. If OpponentOnBar is Many then BoardStrenght Good
5. If SinglePiecesInHome is Many then BoardStrenght Weak
6. If SinglePiecesInHome is Few then BoardStrenght Good
7. if OpponentsOnBar is Many and SinglePiecesInHome is Many then BoardStrenght

Weak.

Finally, the membership functions associated with the input variables in Table 1
are expressed mathematically in Table 2.

Fuzzy
Controller

Board
Generator selected

move

Match History
Data Base

current board
configuration,
dice values

Board
Selector

Fig. 3. Fuzzeval’s move selection mechanism

 Fuzzeval: A Fuzzy Controller-Based Approach in Adaptive Learning 229

Table 2. Example membership functions

SinglePieces

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤≤+−

<

=

4)(0

4)(01
4

)(

0)(1

)(

xNumPiecesif

xNumPiecesif
xNumPieces

xNumPiecesif

xFew

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤≤−
<

=

15)(1

15)(1
13

2)(

1)(0

)(

xNumPiecesif

xNumPiecesif
xNumPieces

xNumPiecesif

xMany

OpponentOnBar

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤≤+−

<

=

3)(0

3)(01
3

)(

0)(1

)(

xNumPiecesif

xNumPiecesif
xNumPieces

xNumPiecesif

xFew

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤≤−
<

=

15)(1

15)(1
14

1)(

1)(0

)(

xNumPiecesif

xNumPiecesif
xNumPieces

xNumPiecesif

xMany

SinglePiecesInHome

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤≤+−

<

=

4)(0

4)(01
4

)(

0)(1

)(

xNumPiecesif

xNumPiecesif
xNumPieces

xNumPiecesif

xFew

⎪
⎪
⎩

⎪⎪
⎨

⎧

>

≤≤−
<

=

6)(1

6)(1
5

1)(

1)(0

)(

xNumPiecesif

xNumPiecesif
xNumPieces

xNumPiecesif

xMany

The equations in Table 2 describe the fuzzy sets “Many” and “Few” pieces at cer-

tain positions on the board. Figure 4 shows a board configuration that we will use as
an example to illustrate how Fuzzeval (playing the dark pieces) calculates the per-
ceived strength of a board in a move that will hit two pieces of its opponent.

Fig. 4. Backgammon board example

Firstly the fuzzy controller’s preprocessor reads the board state, consisting of the
number and positions of its own pieces and those of the opponent. These values are
the crisp inputs to the controller. Table 3 shows the crisp values obtained from the
board shown in Figure 4.

Table 3. Crisp input for each linguistic variable

Linguistic variable Crisp value
SinglePieces 3
OpponentOnBar 2
SinglePiecesInHome 2

230 M. Heinze et al.

After the preprocessing stage, the crisp inputs are converted into their associated
fuzzy membership degrees. This step is performed for each different combination of
linguistic variables and terms. The membership functions illustrated in Table 2 pro-
duce the membership degrees shown in Table 4.

Table 4. Fuzzified membership degrees for each linguistic input

Linguistic variable Linguistic term Membership
Few 0.25

SinglePieces
Many 0.077
Few 0.33

OpponentOnBar
Many 0.071
Few 0.5

SinglePiecesInHome
Many 0.2

The degree of fulfillment is now calculated for each of the seven rules in the exam-

ple. The result of this step is illustrated in Table 5.

Table 5. Fulfillment of the seven rules

Rule Fulfillment
If SinglePieces is Many then BoardStrenght Weak 0.077
If SinglePieces is Few then BoardStrenght Good 0.25
If OpponentOnBar is Few then BoardStrenght Weak 0.33
If OpponentOnBar is Many then BoardStrenght Good 0.071
If SinglePiecesInHome is Many then BoardStrenght Weak 0.2
If SinglePiecesInHome is Few then BoardStrenght Good 0.5

 If OpponentsOnBar is Many and SinglePiecesInHome is Many then
BoardStrenght Weak

0.071

Finally, in the defuzzification step, the output of all rules in Table 5 is converted

into a single value. The center of gravity is used for the purpose, as is indicated by
equation 2.

∑
∑=

)(

)(

i

ii

x

xx
u

µ
µ (2)

where xi is the value of the output term and µ(xi) is the degree of fulfillment of each
rule. The last rule in Table 5 uses the T-norm min operator for the and condition.
Using previous equation, jointly with Table 5 and the definition of output terms in
Table 1 (Weak=-1, Good=1), a final score of 0.095 is obtained for the example board
configuration. Fuzzeval performs the evaluation procedure previously described to all
boards received from the board generator module. The defuzzified values, which
represent the strength of each board as perceived by the fuzzy controller, are then
compared; the board receiving the highest score is selected as the best move to play.

4 Discussion of Results

To test Fuzzeval three experiments were performed. In the first test we employed a
simple knowledge base similar to the one described in Section 3 but with a total of 15

 Fuzzeval: A Fuzzy Controller-Based Approach in Adaptive Learning 231

rules. Using this knowledge base, Fuzzeval was able to learn effective strategies after
playing only 100 games, achieving a winning rate of around 34% against Pubeval. In
the second test, we extended the rule base to include a variety of situations that
Fuzzeval may encounter in a game. Table 6 and Table 7, show some examples of the
linguistic input variables and rules contained in the new knowledge base. Specifically,
the rules shown in Table 7 are representative of the contact stage in backgammon.

Table 6. Some linguistic inputs used in Fuzzeval

Avoiding blots

ToBeHitFactor

Probability of a checker being hit multiplied by a factor
decided by its location on the board. Values for all single
pieces are then summed together and then if result is
greater than 50, rounded to 50.

SinglePiecesInHome Amount of single pieces in one’s own home board.
Maintaining blockades

PointsOwned
Number of points occupied by two or more of one’s own
checkers.

PointsOwnedHome
Number of points occupied by two or more of one’s own
checkers within ones home board.

StrongestConsecutiveBlockade Length of the strongest consecutive blockade.

Table 7. Some of the fuzzy rules used in Fuzzeval

Contact
If SinglePiecesInHome is Few and Contact is True then BoardStrenght Good
if SinglePiecesInHome is Many and Contact is True then BoardStrenght Weak
If PointsOwned is Few and Contact is True then BoardStrenght Weak
if PointsOwned is Many and Contact is True then BoardStrenght Good
If PointsOwnedHome is Few and Contact is True then BoardStrenght Weak
if PointsOwnedHome is Many and Contact is True then BoardStrenght Good
If StrongestConsecutiveBlockade is Short and Contact is True then BoardStrenght Weak
if StrongestConsecutiveBlockade is Long and Contact is True then BoardStrenght Good

Using the refined rule base, Fuzzeval was able to play more effectively when the

conditions specified in the rule base occurred in a game. The full refined knowledge
base consists of 15 linguistic variables and 30 rules. With the new knowledge base,
Fuzzeval improved its performance by an additional 8%, achieving a winning rate of
approximately 42% against Pubeval in a match of 100 games.

In our third experiment, a new backgammon player was created, implemented this
time with ANNs. The purpose of this experiment was to determine the learning rate
of the ANNs and the effect of training in their performance when the ANNs were set
to play against Pubeval. The ANNs were trained by a combination of temporal dif-
ference and back-propagation algorithms, similarly as it is done in TD-Gammon [2].
Two ANN were used in this experiment: one trained for the contact stage, and one for
the race stage. Both networks consist of an input layer of 196 units, a hidden layer of
80 units and an output layer of 5 units. Training was done by self-play, adjusting the
network weights after the completion of each game. First, the final winning board
was adjusted, then the final losing board, then the second last winning board, and the
second last losing board etc., until the first played board was adjusted as the last one.

232 M. Heinze et al.

During training, the temporal difference mechanism was used to calculate the desired
target output for a board pattern. The back propagation algorithm made the actual
adjustment of the network weights so that the actual and desired outputs matched. In
this experiment the step-size parameter in the temporal difference calculation was set
to 0.1, and the networks were adjusted at training stage to get a maximum error of
between 0.0035 and -0.0035 from the desired target output.

Figure 5 shows the percentage of winning games achieved by Fuzzeval, while

playing against Pubeval using a simple and refined rule base. Fuzzeval was trained at
same time as it was playing against Pubeval. Figure 5 also shows the performance
achieved by the ANNs while playing with Pubeval. For this last case, the figure indi-
cates how many games of self-playing training were required by the ANN to achieve
a specific winning rate against Pubeval. As is shown in the figure, 75,000 and 85,000
games of training are required by the ANNs to reach the maximum playing level of
Fuzzeval using a simple and a refined rule base, respectively. Figure 5 also shows
that at 400,000 training games the ANNs were beating 59% of time to Pubeval and no
further improvement was noted after that point.

5 Future Work and Conclusions

The experiments reported in this paper show that fuzzy controllers may be used effec-
tively to create strong players in the domain of backgammon. Fuzzeval’s approach
differs from other proposed mechanisms [2,3,7] in a number of ways. Firstly, rein-
forcement learning and fuzzy controllers are combined in Fuzzeval to create a simple
and effective backgammon player. Secondly, conversely to methods based on genetic
algorithms or ANN [2,3,10], Fuzzeval approach is adaptive, i.e. Fuzzeval may be
retrained after playing a few games. Thirdly, Fuzzeval mechanisms are simple com-
paratively with the approaches described in [7, 10], based on the application of ge-
netic algorithms and genetic programming in the domain of othello and backgammon
respectively.

Fig. 5. Performance of Fuzzeval and ANNs

0%

10%

20%

30%

40%

50%

60%

70%

0
10

0

10
00

0

75
00

0

85
00

0

40
00

00

60
00

00

Games played

W
in

n
in

g
 r

at
e

Fuzzeval-refined

Fuzzeval-simple

ANNs

 Fuzzeval: A Fuzzy Controller-Based Approach in Adaptive Learning 233

In our experiments, Fuzzeval was able to adjust its playing style, to beat around
42% of the time to Pubeval. Fuzzeval reached its best performance after playing only
100 games. Comparatively, a more complex mechanism based on ANNs requires
playing around 85,000 games to reach the effectiveness of Fuzzeval, and 400,000
games to exceed Fuzeval’s performance by 17%. Our experiments also show that
further improvement in Fuzzeval is possible with a more refined knowledge base.
While the current performance of Fuzzeval is lower than the one obtained with ANNs,
its combined simplicity and effectiveness makes this approach attractive. Moreover,
contrary to approaches based on ANN and evolutionary techniques, Fuzzeval has the
advantage of allowing humans learn why certain moves were executed.

One drawback of the fuzzy controller-based approach presented in this paper is ob-
taining the optimum knowledge base. As it is shown by our experiments, a few sim-
ple rules are likely to provide very good performance. However, to obtain the best
performance a refined knowledge base may be more difficult to design. To overcome
this problem, we are currently exploring diverse methods to generate automatically
the fuzzy rules. Our preliminary experiments have shown that there are correlations
between pairs of fuzzy rules. Furthermore, previous performance history of a game
may be used to select, keep, or discard certain rules. Finally, for comparison pur-
poses, we are exploring the use of approaches based on ANN and genetic algorithms
to automatically learn the fuzzy rules.

References

1. A. L. Samuel, “Some studies in machine learning using the game of checkers”. IBM Jour-
nal of research and development 44(1/2): 206-226, 2000.

2. G. Tesauro, “Temporal Difference Learning and TD-Gammon.” Communications of the
ACM 38(3): 58-68, 1995.

3. K. Chellapilla, D. B. Fogel, “Evolving neural networks to play checkers without relaying
on expert knowledge.” IEEE Transactions on Neural Networks 10(6): 1382-1391, 1999.

4. S. L. Epstein, “Learning to play expertly: A tutorial on Hoyle.” Machines that Learn to
Play Games 153-178, 2001.

5. Y. Seirawan, H. A. Simon, T. Munakata, “The implications of Kasparov vs. Deep Blue.”
Communications of the ACM 40(8): 21-25, 1997

6. L.A. Zadeh, "Making computers think like people," IEEE. Spectrum, 8/1984, pp. 26-32.
7. J.S. Jang, C.-T. Sun, and E. Mizutani, Neuro-fuzzy and Soft Computing., Ed. Prentice Hall,

New Jersey 1997
8. Backgammon Rules. http://www.bkgm.com/rules.html
9. Key Concepts in Backgammon. http://www.redtopbg.com/keyconcepts.htm

10. J.P. Azaria and M. Sipper, “GP-Gammon: Using Genetic Programming to Evolve Back-
gammon Players”, Proceedings of 8th European Conference, EuroGP 2005, Lausanne,
Switzerland, March 30 - April 1, 2005.

