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Abstract. In this paper we investigate the effectiveness of applying fuzzy con-
trollers to create strong computer player programs in the domain of backgam-
mon.  Fuzzeval, our proposed mechanism, consists of a fuzzy controller that 
dynamically evaluates the perceived strength of the board configurations it re-
ceives.  Fuzzeval employs an evaluation function that adjusts the membership 
functions linked to the linguistic variables employed in the knowledge base.  
The membership functions are aligned to the average crisp input that was suc-
cessfully used in the past winning games.  Fuzzeval mechanisms are adaptive 
and have the simplicity associated with fuzzy controllers.  Our experiments 
show that Fuzzeval improves its performance up to 42% after a match of only 
one hundred backgammon games played against Pubeval, a strong intermediate 
level program. 

Keywords: Fuzzy controller, machine learning, artificial neural networks, 
computer games, reinforcement learning. 

1   Introduction 

Researchers in AI have applied a wide variety of techniques [1,2,3,4,5,7,10] to create 
effective computer programs to play board games.  These techniques vary from the 
database and brute-force approaches, to more sophisticated mechanisms based on 
board pattern classification and artificial neural networks (ANNs). 

Board games, such as chess and backgammon, have been the subject of intense 
study by the AI community.  In the domain of chess, it is feasible to create a very 
strong chess player by applying a combination of brute-force and opening/extended 
book databases, as was shown by Deep Blue’s approach [5].  However, this method-
ology does not work in the domain of backgammon.  Backgammon is a game of strat-
egy and luck [9].  The use of dice in backgammon ensures stochastic variation during 
the play, producing a branching factor of such a scale, that a search is impossible 
beyond three moves.   

A backgammon game can be characterized by two main stages: the contact stage 
where players’ checkers are intermixed and the race stage, where there is no contact 
between players.  The strategies applied at each game stage vary. At contact stage 
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blockades [9] may be used to delay an opponent’s progress. However, at race stage 
what is important is removing most pieces as quickly as possible. 

Reinforcement learning has been applied successfully in board games [1,4].  Rein-
forcement learning seeks to maximize a numerical reward signal in moves that turn 
out to be successful during a trial and error search in a game.  Within this technique, 
each position where a mistake is made is remembered.  The playing strategy changes 
when the mistaken position is encountered again.  In reinforcement learning, evalua-
tion functions are commonly used to estimate the performance quality of an attempted 
trial.  A straightforward solution for learning the weights of an evaluation function is 
to train the program with example positions for which the exact values of the evalua-
tion function are known.  Then, the program learns to adjust the weights to minimize 
the error of the evaluation function for these positions.  Typically this is done by a 
technique similar to the back-propagation training algorithm used in ANN [7]. 

Diverse techniques such as ANN, genetic algorithms and fuzzy logic may be used 
to build effective computer games.  Fuzzy logic, a superset of Boolean logic, supports 
human type reasoning with vague and uncertain concepts.  Fuzzy control, a technique 
derived from the application of fuzzy logic, has been used successfully in a wide 
variety of devices, from washing machines to industrial robots [6].  The main idea of 
fuzzy controllers is to build a model of an expert capable to synthesize, via interpola-
tion, a control law.  A fuzzy controller processes input signals, executes inferences, 
and calculates suitable control outputs.  The inference mechanisms in a fuzzy control-
ler employ a knowledge base consisting of linguistic expressions generated by a de-
signer or expert.  In spite of its conceptual simplicity, little research has explored the 
application of fuzzy logic-based techniques in board games [7,10].   

In this paper we investigate the effectiveness of applying fuzzy controllers in creat-
ing strong players in the domain of backgammon.  Fuzzeval, our proposed mecha-
nism, is an adaptive backgammon player program that combines a fuzzy controller 
with simple reinforcement learning mechanisms.  To evaluate the effectiveness of 
Fuzzeval, three types of experiments were performed.  First, a fuzzy controller built 
with a simple knowledge base was evaluated.  Afterwards, an improved version of the 
same knowledge base was employed.  Finally, a backgammon player designed with 
two ANNs was implemented.  The performance of Fuzzeval and the ANNs was com-
pared when both players were set to play against Pubeval, a strong intermediate level 
player benchmarking program.  Our experimental results show that Fuzzeval learns 
quickly, competing well with Pubeval and the ANNs.  Moreover, the techniques used 
in Fuzzeval may be applied in a broad variety of board games. 

This paper is organized as follows.  In next section we briefly describe previous re-
lated work on machine learning mechanisms for board games.  A detailed description 
of Fuzzeval is presented in Section 3.  Fuzzeval’s experimental performance results 
are discussed in Section 4.  Finally, we describe future work and provide our conclu-
sions in Section 5. 

2   Related Work 

The checkers program written by A. Samuel in 1956 [1], featured the first successful 
attempt of doing automatic evaluation function tuning by the use of reinforcement 
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learning.  Susan L.  Epstein also employed reinforcement learning in Hoyle [4], a 
game system that is capable of learning a wide variety of games.  In Hoyle, the posi-
tions encountered in a game are marked as either, “significant” or “dangerous”, 
depending on the result of a search for a better alternative on a loser player’s posi-
tions. Positions identified as “dangerous” are avoided in subsequent games. 

In the domain of backgammon, G. Tesauro [2] achieved a remarkable success with 
TD-Gammon [2].  The evaluation function built in TD-Gammon employs an ANN 
trained by the method of temporal-difference.  This method, which is a variant of 
reinforcement learning, moves the evaluation of a played board closer to the evalua-
tion of a subsequent played board.  In the end, the evaluation of the final winning and 
losing boards are moved closer to one or zero, respectively.  One drawback of this 
approach is that it requires long training times, e.g.  TD-Gammon reached the master 
level after 1,500,000 games of self-playing.  In spite of this fact, neural network-based 
backgammon programs are superior to any other known method to date.  Tesauro also 
created Pubeval, a strong intermediate level backgammon player that is used as a 
benchmark to test other programs.  

Chellapilla and Fogel explored the use of genetic algorithms to evolve a neural 
network that learned by self-play the checkers game.  In the experiment described in 
[3], 30 neural networks were initialized in a random state and then set to play check-
ers against each other.  In each generation, the neural nets played a series of games, 
and a fitness score was assigned according to their performance.  The weights of the 
15 best scoring neural networks were maintained as parents for the next generation.  
This process continued for 250 generations until a capable checkers player finally 
evolved. 

C.T. Sun [7] used a combination of genetic algorithms and fuzzy sets in the domain 
of othello.  In his experiments, a game was divided into several stages characterized 
by a fuzzy set. Afterwards, each stage was encoded into a chromosome structure. 

Azaria and Sipper used genetic programming in the evolution of strategies for 
playing the game of backgammon.  Using this technique, they report in [10] that most 
capable players evolved in 300 generations, after playing around 2,000,000 games.  

Fuzzeval, the approach presented in this paper, differs from previous research work 
by including a combination of simple reinforcement learning mechanisms and a 
Fuzzy controller.  In the next section we provide a detailed description of Fuzzeval. 

PreProcessor Fuzzifier Defuzzifier

Conclusion term
definitions

Rule base

Inference engine

Membership
functions

PreProcessing
Objects

 

Fig. 1. Fuzzeval’s fuzzy controller modules 
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3   Detailed Description of Fuzzeval 

The core of Fuzzeval is a Mamdani type [7] fuzzy controller. This controller is re-
sponsible for grading the perceived strength of the board configurations it receives.  
The fuzzy controller consists of the four main modules illustrated in Figure 1.  The 
PreProcessor module is responsible for reading the crisp linguistic input values de-
scribing a board’s state.  The Fuzzifier module employs membership functions to 
convert the crisp inputs into membership degrees for each linguistic input variable 
and term used.  The membership degrees of all variables are then passed to the Infer-
enceEngine, which calculates the fulfillment of each rule in the rule base.  Finally, the 
Defuzzifier module generates the defuzzified output from the controller.  Fuzzeval 
employs triangular-shaped membership functions, defined by its left, right base 
points, and its maximum central point.  The membership functions declared as vari-
able are tuned using a special function calibrator mechanism.  The calibration mecha-
nism calculates the average crisp inputs to the fuzzy controller for all the winning 
boards stored in a match’s historic record.  Subsequently, all the membership func-
tions associated with the input values are aligned around these average values.  To 
illustrate this process in detail, let us consider a crisp input for a typical linguistic 
variable such as SinglePieces.  The range of this variable varies typically between 0 
and 15.  However, a player who owns more than four single checkers, is likely to be 
hit [9] by its opponent, an undesirable event that may delay his progress.  A typical 
desirable average input value for the variable SinglePieces is around 1.75.  The  
calibration procedure, applied to a membership function consists of moving the  
adjustment point, slightly closer to the target value matching the average crisp input.  
Figure 2 illustrates how Fuzzeval adjusts the membership functions, aligning them 
around the preferred value of 1.75.  The amount of adjustment for a point in a  
membership function is obtained using equation 1. 
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where ∆x is the difference between the average value, obtained from the n winning 
boards, and the current location xc of the adjustable point of a membership function. 
Rate is the learning rate constant, set to 0.1 in our tests.   

SinglePieces Few 

0     1.75    4                                        15 

SinglePieces Some SinglePieces Many 

0   1.75     4                                        15 0   1.75    4                                          15 

Fig. 2. Example of adjusted membership functions 

1
 
 
 
 
 
 
 
 

1 1
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Figure 3 shows the move selection mechanism employed in Fuzzeval.  In a game, 
the Board Generator receives the current position of all pieces in a board together 
with the dice values.  With this information, it generates all possible board configura-
tions containing the valid moves that can be made.  The Fuzzy Controller receives a 
board configuration as input and produces an output value that grades the perceived 
strength of that board.  Using the Match History Data Base, the Board Selector mod-
ule discards board configurations that have performed poorly in the past. From those 
that are left, the board receiving the highest score (assigned by the fuzzy controller) is 
selected for playing.  To illustrate Fuzzeval’s processing, let us consider a simple 
example consisting of the linguistic input/output variables and their associated terms 
presented in Table 1. 

 
 

Table 1. Linguistic input variables and terms used by the fuzzy controller 

Linguistic variable Linguistic terms Base variable Type 
SinglePieces Few, Many 0 to 15 pieces Input 
OpponentOnBar Few, Many 0 to 15 pieces Input 
SinglePiecesInHome Few, Many 0 to 6 pieces Input 
BoardStrength Weak, Good -1 and 1 Output 

 
An example rule base defined with the previous linguistic variables is shown be-

low: 

1. If SinglePieces is Many then BoardStrenght Weak 
2. If SinglePieces is Few then BoardStrenght Good 
3. If OpponentOnBar is Few then BoardStrenght Weak 
4. If OpponentOnBar is Many then BoardStrenght Good 
5. If SinglePiecesInHome is Many then BoardStrenght Weak 
6. If SinglePiecesInHome is Few then BoardStrenght Good 
7. if OpponentsOnBar is Many and SinglePiecesInHome is Many then BoardStrenght 

Weak. 
 

Finally, the membership functions associated with the input variables in Table 1 
are expressed mathematically in Table 2. 

  

Fuzzy 
Controller

Board 
Generator  selected 

move 

Match History 
Data Base

current board 
configuration, 
dice values 

Board 
Selector

Fig. 3. Fuzzeval’s move selection mechanism 
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Table 2. Example membership functions 
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The equations in Table 2 describe the fuzzy sets “Many” and “Few” pieces at cer-

tain positions on the board.  Figure 4 shows a board configuration that we will use as 
an example to illustrate how Fuzzeval (playing the dark pieces) calculates the per-
ceived strength of a board in a move that will hit two pieces of its opponent. 

 

   
Fig. 4. Backgammon board example 

Firstly the fuzzy controller’s preprocessor reads the board state, consisting of the 
number and positions of its own pieces and those of the opponent.  These values are 
the crisp inputs to the controller.  Table 3 shows the crisp values obtained from the 
board shown in Figure 4. 

Table 3. Crisp input for each linguistic variable 

Linguistic variable Crisp value 
SinglePieces 3 
OpponentOnBar 2 
SinglePiecesInHome 2 
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After the preprocessing stage, the crisp inputs are converted into their associated 
fuzzy membership degrees.  This step is performed for each different combination of 
linguistic variables and terms.  The membership functions illustrated in Table 2 pro-
duce the membership degrees shown in Table 4. 

Table 4. Fuzzified membership degrees for each linguistic input 

Linguistic variable Linguistic term Membership 
Few 0.25 

SinglePieces 
Many 0.077 
Few 0.33 

OpponentOnBar 
Many 0.071 
Few 0.5 

SinglePiecesInHome 
Many 0.2 

 
The degree of fulfillment is now calculated for each of the seven rules in the exam-

ple.  The result of this step is illustrated in Table 5. 

Table 5. Fulfillment of the seven rules 

Rule Fulfillment 
If SinglePieces is Many then BoardStrenght Weak 0.077 
If SinglePieces is Few then BoardStrenght Good 0.25 
If OpponentOnBar is Few then BoardStrenght Weak 0.33 
If OpponentOnBar is Many then BoardStrenght Good 0.071 
If SinglePiecesInHome is Many then BoardStrenght Weak 0.2 
If SinglePiecesInHome is Few then BoardStrenght Good 0.5 

 If OpponentsOnBar is Many and SinglePiecesInHome is Many then     
BoardStrenght Weak 

0.071 

 
Finally, in the defuzzification step, the output of all rules in Table 5 is converted 

into a single value.  The center of gravity is used for the purpose, as is indicated by 
equation 2.  
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where xi  is the value of the output term and µ(xi) is the degree of fulfillment of each 
rule.  The last rule in Table 5 uses the T-norm min operator for the and condition.  
Using previous equation, jointly with Table 5 and the definition of output terms in 
Table 1 (Weak=-1, Good=1), a final score of 0.095 is obtained for the example board 
configuration.  Fuzzeval performs the evaluation procedure previously described to all 
boards received from the board generator module.  The defuzzified values, which 
represent the strength of each board as perceived by the fuzzy controller, are then 
compared; the board receiving the highest score is selected as the best move to play.  

4   Discussion of Results 

To test Fuzzeval three experiments were performed. In the first test we employed a 
simple knowledge base similar to the one described in Section 3 but with a total of 15 
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rules.  Using this knowledge base, Fuzzeval was able to learn effective strategies after 
playing only 100 games, achieving a winning rate of around 34% against Pubeval.  In 
the second test, we extended the rule base to include a variety of situations that 
Fuzzeval may encounter in a game.  Table 6 and Table 7, show some examples of the 
linguistic input variables and rules contained in the new knowledge base.  Specifically, 
the rules shown in Table 7 are representative of the contact stage in backgammon.  

Table 6. Some linguistic inputs used in Fuzzeval 

Avoiding blots 

ToBeHitFactor 

Probability of a checker being hit multiplied by a factor 
decided by its location on the board. Values for all single 
pieces are then summed together and then if result is 
greater than 50, rounded to 50. 

SinglePiecesInHome Amount of single pieces in one’s own home board. 
Maintaining blockades 

PointsOwned 
Number of points occupied by two or more of one’s own 
checkers. 

PointsOwnedHome 
Number of points occupied by two or more of one’s own 
checkers within ones home board. 

StrongestConsecutiveBlockade Length of the strongest consecutive blockade. 

Table 7. Some of the fuzzy rules used in Fuzzeval 

Contact 
If SinglePiecesInHome is Few and Contact is True then BoardStrenght Good 
if SinglePiecesInHome is Many and Contact is True then BoardStrenght Weak 
If PointsOwned is Few and Contact is True then BoardStrenght Weak 
if PointsOwned is Many and Contact is True then BoardStrenght Good 
If PointsOwnedHome is Few and Contact is True then BoardStrenght Weak 
if PointsOwnedHome is Many and Contact is True then BoardStrenght Good 
If StrongestConsecutiveBlockade is Short and Contact is True then BoardStrenght Weak 
if StrongestConsecutiveBlockade is Long and Contact is True then BoardStrenght Good 

 
Using the refined rule base, Fuzzeval was able to play more effectively when the 

conditions specified in the rule base occurred in a game.  The full refined knowledge 
base consists of 15 linguistic variables and 30 rules.  With the new knowledge base, 
Fuzzeval improved its performance by an additional 8%, achieving a winning rate of 
approximately 42% against Pubeval in a match of 100 games.  

In our third experiment, a new backgammon player was created, implemented this 
time with ANNs.  The purpose of this experiment was to determine the learning rate 
of the ANNs and the effect of training in their performance when the ANNs were set 
to play against Pubeval.  The ANNs were trained by a combination of temporal dif-
ference and back-propagation algorithms, similarly as it is done in TD-Gammon [2].  
Two ANN were used in this experiment: one trained for the contact stage, and one for 
the race stage.  Both networks consist of an input layer of 196 units, a hidden layer of 
80 units and an output layer of 5 units.  Training was done by self-play, adjusting the 
network weights after the completion of each game.  First, the final winning board 
was adjusted, then the final losing board, then the second last winning board, and the 
second last losing board etc., until the first played board was adjusted as the last one.  
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During training, the temporal difference mechanism was used to calculate the desired 
target output for a board pattern.  The back propagation algorithm made the actual 
adjustment of the network weights so that the actual and desired outputs matched.  In 
this experiment the step-size parameter in the temporal difference calculation was set 
to 0.1, and the networks were adjusted at training stage to get a maximum error of 
between 0.0035 and -0.0035 from the desired target output.   

 
 
 
Figure 5 shows the percentage of winning games achieved by Fuzzeval, while 

playing against Pubeval using a simple and refined rule base.  Fuzzeval was trained at 
same time as it was playing against Pubeval.  Figure 5 also shows the performance 
achieved by the ANNs while playing with Pubeval.  For this last case, the figure indi-
cates how many games of self-playing training were required by the ANN to achieve 
a specific winning rate against Pubeval.  As is shown in the figure, 75,000 and 85,000 
games of training are required by the ANNs to reach the maximum playing level of 
Fuzzeval using a simple and a refined rule base, respectively.  Figure 5 also shows 
that at 400,000 training games the ANNs were beating 59% of time to Pubeval and no 
further improvement was noted after that point. 

5   Future Work and Conclusions 

The experiments reported in this paper show that fuzzy controllers may be used effec-
tively to create strong players in the domain of backgammon.  Fuzzeval’s approach 
differs from other proposed mechanisms [2,3,7] in a number of ways.  Firstly, rein-
forcement learning and fuzzy controllers are combined in Fuzzeval to create a simple 
and effective backgammon player.  Secondly, conversely to methods based on genetic 
algorithms or ANN [2,3,10], Fuzzeval approach is adaptive, i.e. Fuzzeval may be 
retrained after playing a few games.  Thirdly, Fuzzeval mechanisms are simple com-
paratively with the approaches described in [7, 10], based on the application of ge-
netic algorithms and genetic programming in the domain of othello and backgammon 
respectively.  

Fig. 5. Performance of Fuzzeval and ANNs 
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In our experiments, Fuzzeval was able to adjust its playing style, to beat around 
42% of the time to Pubeval.  Fuzzeval reached its best performance after playing only 
100 games.  Comparatively, a more complex mechanism based on ANNs requires 
playing around 85,000 games to reach the effectiveness of Fuzzeval, and 400,000 
games to exceed Fuzeval’s performance by 17%.  Our experiments also show that 
further improvement in Fuzzeval is possible with a more refined knowledge base.  
While the current performance of Fuzzeval is lower than the one obtained with ANNs, 
its combined simplicity and effectiveness makes this approach attractive.  Moreover, 
contrary to approaches based on ANN and evolutionary techniques, Fuzzeval has the 
advantage of allowing humans learn why certain moves were executed. 

One drawback of the fuzzy controller-based approach presented in this paper is ob-
taining the optimum knowledge base.  As it is shown by our experiments, a few sim-
ple rules are likely to provide very good performance.  However, to obtain the best 
performance a refined knowledge base may be more difficult to design.  To overcome 
this problem, we are currently exploring diverse methods to generate automatically 
the fuzzy rules.  Our preliminary experiments have shown that there are correlations 
between pairs of fuzzy rules.  Furthermore, previous performance history of a game 
may be used to select, keep, or discard certain rules.  Finally, for comparison pur-
poses, we are exploring the use of approaches based on ANN and genetic algorithms 
to automatically learn the fuzzy rules. 
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