
Aalborg Universitet

Supervised Reinforcement Learning in Discrete Environment Domains

Jensen, Boris ; Ortiz-Arroyo, Daniel; Cruz-Cortés, Nareli; Rodríguez-Henríquez, Francisco

Published in:
Second World Congress on Nature and Biologically Inspired Computing, NaBIC 2010

DOI (link to publication from Publisher):
10.1109/NABIC.2010.5716276

Publication date:
2011

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Jensen, B., Ortiz-Arroyo, D., Cruz-Cortés, N., & Rodríguez-Henríquez, F. (2011). Supervised Reinforcement
Learning in Discrete Environment Domains. In Second World Congress on Nature and Biologically Inspired
Computing, NaBIC 2010: Proceedings (pp. 215-220). IEEE Press. https://doi.org/10.1109/NABIC.2010.5716276

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -
Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: June 18, 2025

https://doi.org/10.1109/NABIC.2010.5716276
https://vbn.aau.dk/en/publications/d7f7b78e-5ebd-42f0-a625-88bcb38b0ab0
https://doi.org/10.1109/NABIC.2010.5716276

Supervised Reinforcement Learning in Discrete Environment Domains

Boris Jensen, Daniel Ortiz-Arroyo
Computational Intelligence and Security Lab

Department of Electronic Systems
Aalborg University, Denmark

Email: do@es.aau.dk

Nareli Cruz-Cortés
Center for Computing Research

National Politechnique Institute, Mexico
Email: nareli@cic.ipn.mx

Francisco Rodrı́guez-Henrı́quez
Computer Science Department

CINVESTAV-IPN, Mexico
Email: francisco@cs.cinvestav.mx

Abstract—This paper describes a supervised reinforcement
learning-based model for discrete environment domains. The
model was tested within the domain of backgammon game.
Our results show that a supervised actor-critic based learning
model is capable of improving the initial performance and then
eventually reach similar performance levels as those obtained
by TD-Gammon, an artificial neural network player (ANN)
trained by temporal differences.

Keywords-machine learning; reinforcement learning; actor-
critic; automata player

I. INTRODUCTION

In reinforcement learning an agent learns by interacting
with its environment. The environment responds by changing
its state and rewarding the agent with a scalar signal. The
agent performs actions whose goal is to maximize the
cumulative reward over time. This learning model has been
applied successfully in a wide variety of different domains
such as elevator dispatching [1] and backgammon [2] to
name just a few. In the case of backgammon, Gerald Tesauro
created TD-Gammon [2], a computer program built using a
reinforcement learning technique called temporal-difference.
TD-Gammon’s learning mechanism updates a value function
that represents the expected cumulative reward, according to
the following equation:

V (st) = V (st) + α(rt+1 + γV (st+1)− V (st)) (1)

where rt+1 is a reward signal at time t + 1, and V (st),
V (st+1) are value functions of environmental state at time
t and t + 1, γ is the discounting rate and α ∈]0, 1] is the
learning rate. This equation is called the TD(0) algorithm.
The formula can be understood intuitively by realizing that
V (st) and rt+1 + γV (st+1) are both estimates of the
value function V (st) at time t. The only difference is,
that while V (st) is based on an estimate of all the future
rewards, rt+1 + γV (st+1) includes knowledge only of the
first of these rewards. The update of the value function
by an amount (positively) proportional to the difference
(rt+1 +γV (st+1))−V (st) is called the temporal difference
error. The value of V at s = st is adjusted in the direction
of rt+1 + γV (st+1), which is therefore called the target of
the update.

The reward signal is a probabilistic function of the states
st, st+1 and action at. st+1 itself is a probabilistic func-
tion of previous state st and action at, therefore rewards
received could be very atypical. Updating the value function
according to equation 1 will cause V (st) to converge to V π

(value function of policy π) in the mean only if the learning
rate α is sufficiently small, and with probability 1 only if α
decreases with time [3].

Remarkably, TD-Gammon learned good game strategies
after playing millions of training games against itself, even-
tually reaching a level comparable to human master players.
Results of this approach were so successful that some of its
tactics have been adopted by human players. Interestingly,
recent research has shown that the human brain has a similar
mechanism in which dopamine, a neurotransmitter, is used
as the error signal [4].

In spite of its success reinforcement learning still has
some drawbacks. One of its disadvantages is the number of
episodes it takes to reach an acceptable level of performance.
For instance, the version of TD-Gammon that reached master
level was trained by playing 1.5 million games against
itself [5]. Furthermore, applying reinforcement learning may
not be feasible in some domains since the consequences
of not performing initially at certain minimum level may
be undesirable, for instance, when robots learn by inter-
acting in real time with their environment. To overcome
these limitations a new learning scheme called supervised
reinforcement learning was proposed in [6]. In supervised
reinforcement learning, simple heuristics act as a supervisor
of a learner. The supervisor guides the learner until it
reaches an acceptable level of performance. From there the
learner takes control and continues learning on its own. This
strategy retains the good features of reinforcement learning
but prevents the learner from making many mistakes in the
beginning when it has null knowledge about its environment.
Supervised reinforcement learning techniques were proposed
originally for continuous environment domains [7] [6].

This paper describes a supervised reinforcement learning
model that can be applied in discrete environment domains.
Concretely, we have adapted the actor-critic model [7] to
work within the domain of backgammon game. We have
tested our method comparing its performance with a baseline

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 2010 IEEE 215

TD-Gammon player. The paper is organized as follows.
Section II provides a brief overview of related work. Section
III describes our approach with some detail. Section IV
presents some preliminary results and section V presents
our conclusions.

II. RELATED WORK

The fusion between the fields of supervised and reinforce-
ment learning was proposed by Utgoff and Clouse in [6]1.
The authors made the observation, that two fundamental
sources of training information exist: future payoff achieved
by taking actions according to a given policy from a given
state, and the advice from an expert regarding which action
to take, next. Training methods that rely on the future payoff
are called temporal difference methods, while methods rely-
ing on expert advice are called state preference methods. In
state preference methods the goal of the learner is to have
the same preference as the expert when presented with a
set of possible states. Thus, the only thing that matters, is
that the sign of the slope of the learner’s evaluation function
between two states be the same as that of the expert. This
means, that generally infinitely many functions exist that
produce the same control decisions as the expert evaluation
function, making state preference methods very flexible with
regard to incorporating other types of learning information.

Utgoff and Clouse observed that temporal difference
methods and state preference methods are orthogonal. Using
the general model of an evaluation function as a param-
eterized function of the state, state preference methods
attempt to change the parameters of an evaluation function
of the possible next states to obtain the same slope as the
expert. Temporal difference methods, on the other hand, are
concerned with obtaining the correct value for the sequence
of actions experienced by following the current policy. A
state preference and a temporal difference method will be
in conflict to the degree, that the expert is fallible. Therefore
a rule is needed to determine how much to trust the expert.
Another issue is that the expert may not be always available.
Utgoff and Clouse implemented a heuristic where the learner
only asks for supervisor input when the state is poorly
modeled. This happens when most of the parameters of the
utility function are updated as a result of the calculation of
the temporal differences.

In 2004, Rosenstein and Barto [7] adapted the actor-critic
model [3] for supervised reinforcement learning. The actor-
critic model is a general model for reinforcement learning,
where an actor makes decisions about which actions to take,
while the critic learns a utility function of the states by
reinforcement learning, and critizes the actor on the actions
it chooses based on this utility function. This causes the actor
to update its policy. One of the advantages of the actor-critic

1Benbrahim [8] also proposed combining the two ideas around the same
time period

Figure 1. Supervised reinforcement learning using an actor-critic archi-
tecture [7]

Figure 2. Action interpolation between actor and supervisor [7]

model, is that it separates decisions of which action to take,
from the task of constructing the correct utility function.
Based on this separation, Rosenstein and Barto identified 3
ways, in which a supervisor can influence the actions of a
reinforcement learner. Figure 1 shows the 3 ways, which are:
value function shaping for the critic, exploratory advice for
the actor and direct control, in which the supervisor chooses
the actions.

Rosenstein and Barto model is a flexible framework
that interpolates between the actor and the supervisor. The
general structure is shown in Figure 2. The output of both the
actor and supervisor is a one-dimensional continuous scalar
variable. These signals are fed into the gain scheduler unit,
which computes the final output as a weighted average of the
actor and supervisor’s outputs. The weights can be obtained
by an interpolation controlled by the actor that makes it
seek explorative advice from the supervisor, or determined
by the supervisor that uses them to ensure a minimum level
of performance.

This model of learning is called supervised actor-critic
reinforcement learning. The critic implements an ordinary
state-value function, using TD(0), i.e. it computes the TD
error δ = rt+1 + γV (st+1 − v(st)) to update both its own
state-value estimates, as well as the actor’s policy.

The gain scheduler combines the actions of the actor and
the supervisor according to an interpolation parameter k that
determines the level of control (or autonomy) of the actor.
Since actions are assumed to be scalars, the composite action
is just a weighted sum of the two actions:

a = kaE + (1− k)aS (2)

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 2010 IEEE 216

where aE is the actor’s exploratory action, and aS is
the supervisor’s action, according to policies πE and πS ,
respectively. The actor has also a greedy policy πA. The
exploratory policy is just this greedy policy with an added
gaussian noise with zero mean. The k value plays an impor-
tant role in choosing the action and in adjusting the policy
of the actor according to the reward received. Assuming that
πA is a parameterized function with parameter vector w, the
equations for updating the actor’s policy are:

w ← w + k∆wRL + (1− k)∆wSL (3)

∆wRL = αδ(aE − aA)∇wπA(s) (4)

∆wSL = α(aS − aA)∇wπA(s) (5)

where ∆wRL,∆wSL are the individual updates of rein-
forcement learning and supervised learning, respectively in
Equation 3 [7]. k is used to interpolate between these two
types of learning. Equation 4 is the actor’s update function
where α is the learning rate, and δ is the TD error from
the critic. The effect of Equation 4 is either to move πA(s)
closer to πE(s), when the reward for the exploratory action
was higher than expected, leading to a positive TD error, or
further away from it, when the TD error is negative. Equation
5 is a gradient decent rule for supervised learning. The effect
is to move πA(s) closer to πS(s), regardless of the reward
received.

III. ADAPTING THE ACTOR-CRITIC MODEL TO
DISCRETE ENVIRONMENTS

The supervised actor-critic model was designed for con-
tinuous domains and assumes that actions are continuous
scalar values. Hence, to work in a discrete environment such
as backgammon game it must be adapted. For instance, given
that actions in backgammon are discrete moves, it is not
possible to use a gain scheduler to produce a weighted sum
of the supervisor and actor’s actions, neither is possible to
subtract actions nor creating an exploratory policy that is a
noisy version of the greedy policy.

To adapt the model we need to find action interpolation
and policy update rules that could emulate the way the
original actor-critic model works. Emulating action interpo-
lation in discrete actions was proposed in [7]. The idea is to
interpret the k value as the probability for the gain scheduler
to choose actor’s action, instead of supervisor’s action. This
is a reasonable discrete approximation of the smooth mixing
of the two actions given that the intent of equations 4 and 5 is
to change the policy according to experience and according
to the advice from the critic. Given that the policy of a
reinforcement learning backgammon agent is implemented
by the state-value function, the above intent translates into
moving the value function in the direction of the received
reward and also in the direction of the supervisor’s value
function.

This puts a restriction on the supervisor’s model: instead
of just emitting actions based on an unknown policy, imple-
mented in an unknown way, the supervisor is now required
to expose a state evaluation format, that should be the same
as that of the actor - a vector of 4 doubles representing the
probabilities of the different outcomes of the game. Given
this fact, one possible implementation for the supervisor is
to create a version of TD-Gammon that stops its training
early. Originally the chosen supervisor was trained for 34500
games, after which it won approximately 34% of the games
against Pubeval, a standard benchmark program.

In the following description we will refer to the combi-
nation of supervisor and actor-critic as an agent. The agent
implements the state-value function as a neural network, so
the update rule described by Eq. 3 is not in its most natural
form for this kind of network. It is more natural to define a
target output value for the state and then let the backprop-
agation mechanism take care of the rest. Interpreting the
intent of the updates in the supervised actor-critic model in
equation 3 we propose using a combined target (ctt) output
for the value function update of our agent calculated as:

ctt = k(st)(rt+1 + V (st+1)) + (1− k(st))(osup(st)) (6)
= k(st)V (st+1) + (1− k(st))(osup(st)) (7)

where osup is the output of the supervisor. In the
backgammon domain, the reward is zero for all state transi-
tions except the last one. This fact is modeled by removing
in Equation 6 the reward term, and letting V (sT+1) (where
T is the time of the final state seen by the agent) be equal to
one of four reward binary vectors, depending on the result
of a game. An encoding of 1000 was used if the agent
wins normally, 0100 if it wins by gammon, 0010 if lost
normally or 0001 if lost a gammon2. For faster learning,
training only started, once a game had finished, and updates
to the estimated value of a state were done when the last
state in the game was reached. In this way, some of the
reward obtained for a game propagated down to the first
state seen already during the training immediately after that
game.

A. K-values

In [7], the supervised actor-critic model required imple-
menting a function that would provide a state-dependent
value of k, to be used for the actor policy update and the
gain scheduler action interpolation. This function had two
update requirements:

• Visiting a state should raise the value of k for that state.
• Not visiting a state for some time, should cause the
k-value for that state to slowly drop.

The intuition behind the first requirement is that visits
to a state increase the knowledge of the agent about that

2A gammon happens after finishing a game when a losing player was
not able to remove any of its checkers from the board

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 2010 IEEE 217

state, so decisions made about that state can be trusted more
in the future. The second requirement arises because the
actor policy was implemented as a parameterized function.
Given that in these functions the space of parameter values
determines performance, not visiting a state for some time
will generally have the effect of increasing the expected error
of the policy over the observed samples, when compared to
an optimal policy. Therefore, in these cases the supervisor
should be trusted more.

The previous requirements for a state-dependent function
of k were fulfilled in [7] using a variation of the tile encoding
technique described in [3]. The test used 25 tilings over a
2-dimensional input space, but the weights associated with
each tile were not updated according to any gradient descent
method. Instead, the weights of visited tiles were increased
by a small amount, and after each episode, all weights were
multiplied by a factor of 0.999.

Unfortunately, tile coding schemes can not be used in our
case given the large size of the state space of backgammon.
The state representation for a backgammon board, used by
both TD-Gammon and the agent is a 196-dimensional vector.
Following sections describe some other methods we applied
in our experiments.

B. Kanerva Coding

Tile coding of the k function worked well in [7] because
there is a very simple relationship between the weights and
the output that makes easy to implement a gradually decreas-
ing k-value for states that had not been visited for some time.
As discussed in [3], the same simple relationship among
weights and output is also present in the Kanerva coding
method. Hence, we implemented a k function interpolation
based on Kanerva coding.

Designing the Kanerva-based k-function for our agent
required determining the prototype space, how the pro-
totypes should be generated, and how many prototypes
are required. The prototype space is the 196-dimensional
vector, corresponding to the input space for the agent. The
Hamming distance could be used as metric. However, since
the goal is simply to distinguish among the different states,
then a more compact state representation that encodes every
point in only 3 bits can be used. This encoding is shown
in table I3. Since Kanerva coding scheme requires finding
the distance between state representations, this compact
encoding provided faster computations.

When the different dimensions are independent, proto-
types can be generated by generating a random value (within
the set of legal values) for each dimension. Unfortunately,
this approach cannot be used in backgammon because the
sets of legal values are not independent of each other. For
instance, within the 24 dimensions corresponding to the
points of the backgammon board, there cannot be 4 values

3Note that every player has 15 checkers in the beginning of the game

encoding interpretation
000 0 checkers
001 1 opponent checker
010 2 opponent checkers
011 3 or more opponent checkers
100 1 agent checker
101 2 agent checkers
110 3 agent checkers
111 4 or more agent checkers

Table I
KANERVA PROTOTYPE ENCODING

of code 111 from table I, as that would indicate a board
with 16 or more agent’s checkers, which would be illegal. To
overcome this problem, a series of games with 2 platers was
conducted, where they were allowed to choose their moves
randomly. Using this approach, any sample state from any
one of these games is a legal board state that was translated
into a prototype. The set of prototypes should cover many
different states, i.e. the prototypes should not be too similar.
This means that the samples should not come from early
parts of the game, where the states will be likely similar
for all games. Similarly, samples should not come from
consecutive positions in the game. Since random games
tend in the end toward the same type of positions (with
most of the checkers in the opponent’s home table), samples
should not come from late stages of the game. Using these
constraints, we chose every eighth of the first 64 board states
in a game to produce prototypes.

To determine how many prototypes to generate, it is
necessary to consider the tradeoff between an increased
resolution achieved using a large number of prototypes
and the reduced computational load from using a smaller
numbers of prototypes. The time spent computing a k-value
increases linearly with the number of prototypes, so a large
number of prototypes would make playing a single game
very slow. In the end, samples were taken from 1000 games,
since that resulted in a reasonable game speed. This policy
produced a rather small number of prototypes compared to
the size of the full prototype space. However, each prototype
must be able to generalize to many other states in order to
be useful. To achieve a high degree of generalization, the set
of prototypes activated by a state s is assumed to be the top
5% most similar prototypes, where similarity is the number
of dimensions with the same encoding.

C. Artificial Neural Networks

The k function can be also implemented using ANNs.
A simple way to increase the value of visited states could
be to provide a target of 1, and then use backpropagation.
However, decreasing the state value for states that have not
been visited for a while may be difficult to implement with
ANN. One naive way to implement this requirement would
be to go over all non-visited states and train them with a
target of 0. However, given that the number of unvisited

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 2010 IEEE 218

Figure 3. A trapezoid function

states in a simple game is extremely large, this is not a
feasible solution.

If none of the infrequently visited states are encountered
during a normal game (which by definition is unlikely to
happen), we could implement the k-value by initializing a
ANN to produce a value close to 0 for all inputs, and then
training the ANN for visited states on a target of 1. The
network can be initialized to produce (close to) 0 output
for all states by setting all connection weights to 0 and all
neuron biases to -20 for instance.

D. State Independent Interpolation

If we drop the requirement that the k-value should de-
crease for infrequently visited states, then the values for all
states will rise toward 1 with varying speeds. For the set
of states frequently visited during a normal game, those
speeds may be roughly similar. This suggests a further
simplification i.e. to simply disregard the specific state, and
only vary the k-value as a non-decreasing function of the
number of training episodes. A simple implementation could
be a trapezoid function, that is zero for all training episodes
below some threshold, rises linearly to 1 up to reaching some
other threshold, and stays at 1 for the rest of the training
episodes. This function is shown in Figure 3.

To implement the trapezoid function we need to determine
the left and right thresholds values. Looking at the initial
performance of the baseline TD-Gammon player, it seems
that the actor should be in full control only when its
performance reaches that of the supervisor. Otherwise, the
supervisor may actually hurt the combined performance if it
keeps in control passing this threshold. The performance of
the baseline TD-Gammon shows that to apply this strategy
the right threshold should be roughly 5000 training episodes.
For the left threshold, it is not completely clear, whether
it is better to leave the supervisor in total control for a
while, or whether control should start to transfer to the actor
immediately.

In summary our modified supervised critic-actor learning
mechanism for backgammon was implemented in the fol-
lowing way:

• The actor was implemented as a neural network.
• The combined action is either the actor or the supervi-

sor’s actions, which are partially dependent on k.

• The actor’s neural network is trained on a weighted sum
of the reinforcement target and the supervisor target,
with the weights dependent on k.

• Three different interpolation functions for k were tested
in our experiments: Kanerva, ANN and trapezoid func-
tion.

The next section presents some of the preliminary results
of our approach.

IV. PRELIMINARY RESULTS

The performance results of our agent using 2 different
interpolation functions (ANN and Kanerva) is shown in
Figure 4. Figure 5 shows performance results when a
trapezoid interpolation function is used. The percentage of
winning games in each figure is obtained by making our
agent (or the baseline TD-Gammon player) play against
Pubeval, a standard benchmark program publicly available.
The performance of the agent is measured every 1000 games.
The figures show that, as expected, the agent starts winning
around 34% of the games against pubeval as the supervi-
sor is in full control. The figures also show that agents
implemented using an interpolation function for k based
on either Kanerva coding or ANN are not able to improve
upon the performance of the baseline TD-Gammon. These
results seem to indicate that the interpolation must be heavily
favoring the lower performance supervisor throughout the
training. There are a couple of reasons why this might be
so. For the ANN based interpolation, during training the
gradient for the sigmoid activation function evaluated at -20
is very small which causes that weight increments were also
too small to have any effect during the course of the 100000
training episodes.

For the Kanerva-based interpolation one possible expla-
nation for its low performance could be that the number
of prototypes (approximately 8000), were not sufficient to
capture the complexity of the state space in the backgammon
game. Therefore, with the decision of always activating
the closest 5% of the prototypes, such prototypes would
be randomly activated. With the random activation, the
weight increases due to state visits would spread evenly
among all the protypes. Since none of the prototypes would
consistently receive weight increases, the weight decreasing
factor of 0.999, that was applied to all weights, might have
been enough to keep all of the prototype weights at a low
enough level, in such a way that the supervisor dominated
the interpolation.

In contrast to both the Kanerva-based and neural network-
based interpolation, the simple trapezoid interpolation
worked reasonably well. Figure 5 shows the performance of
our agent with trapezoid interpolations with left thresholds
of 0 and right thresholds of 5000 and 50000. In both cases,
our agent was able to avoid the initial bad performance of
the baseline, although in the case of using a 5000 threshold
the performance did actually fall a bit before the combined

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 2010 IEEE 219

Figure 4. Performance of supervised reinforcement learning using
Kanerva-based interpolation and ANN

learning mode within the agent really started to take off.
Another problem shown in Figure 5 is that the baseline
TD-gammon surpassed our agent’s performance at around
45000 training episodes. The effect of choosing a different
interpolation trapezoid function with a right threshold of
50000 is also shown on Figure 5. This new interpolation
ensures, that the initial drop in performance seen when we
use a shorter right threshold in the trapezoid interpolation
does not occur. However, in this case the baseline surpassed
our agent’s performance much earlier and the agent stayed
at the supervisor’s performance level much longer.

Figure 5. Performance of supervised reinforcement learning using trape-
zoid interpolation, left threshold 0, right threshold 5000 and 50000

We also tested our agent using a better supervisor, with
more expertise. The new supervisor was trained by playing
45000 games. The results in Figure 6 shows that in this
case the supervised actor-critic model was indeed capable
of reaching similar performance levels as the baseline TD-
Gammon and had better initial performance starting winning
around 45% of the games.

V. CONCLUSIONS

This paper has presented a supervised reinforcement
learning method for discrete environments that is capable
of reaching similar levels of performance as a baseline TD-
GAmmon learner, without having its initial bad performance.
We tested our method within the backgammon domain. We
experimented using different interpolation strategies from

Figure 6. Performance of supervised reinforcement learning using a better
supervisor and trapezoid interpolation, left threshold 0, right threshold 5000

which a simple state interpolation ramp function has shown
to obtain the best performance. Our results also show the
importance of two issues: having a supervisor with enough
expertise and increasing learner autonomy at the right pace.
If the learner has control too soon, the performance may
drop initially since the supervisor has not had enough time
to teach. If the supervisor remains in control for too long,
performance will suffer in the longer term, since the learner
is not allowed to learn from experience, and thereby will be
incapable of surpassing the performance of its supervisor.

REFERENCES

[1] R. Crites and A. Barto, “Improving elevator performance using
reinforcement learning,” in Advances in Neural Information
Processing Systems 8. MIT Press, 1996, pp. 1017–1023.

[2] G. Tesauro, “Temporal difference learning and td-gammon,”
Commun. ACM, vol. 38, no. 3, pp. 58–68, 1995.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction (Adaptive Computation and Machine Learning).
The MIT Press, March 1998. [Online]. Available: http:
//webdocs.cs.ualberta.ca/∼sutton/book/ebook/the-book.html

[4] A. Smith, M. Li, S. Becker, and S. Kapur, “Dopamine,
prediction error and associative learning: a model-based
account.” Network, vol. 17, no. 1, pp. 61–84, 2006. [Online].
Available: http://dx.doi.org/10.1080/09548980500361624

[5] G. Tesauro, “Programming backgammon using self-teaching
neural nets,” Artif. Intell., vol. 134, no. 1-2, pp. 181–199, 2002.

[6] P. E. Utgoff and J. A. Clouse, “Two kinds of training informa-
tion for evaluation function learning,” in In Proceedings of the
Ninth Annual Conference on Artificial Intelligence. Morgan
Kaufmann, 1991, pp. 596–600.

[7] M. T. Rosenstein and A. G. Barto, “Supervised actor-critic re-
inforcement learning,” in Learning and Approximate Dynamic
Programming: Scaling Up to the Real World. John Wiley &
Sons, 2004.

[8] H. Benbrahim, “Biped dynamic walking using reinforce-
ment learning,” Ph.D. dissertation, Durham, NH, USA, 1996,
director-Miller,III, W. Thomas.

Proceedings of the World Congress on Nature and Biologically Inspired Computing (NaBIC2010)

978-1-4244-7375-5/10/$26.00 2010 IEEE 220

