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Abstract. The paper presents FMOPSO a multiobjective optimization
method that uses a Particle Swarm Optimization algorithm enhanced
with a Fuzzy Logic-based controller. Our implementation makes use of
a number of fuzzy rules as well as dynamic membership functions to
evaluate search spaces at each iteration. The method works based on
Pareto dominance and was tested using standard benchmark data sets.
Our results show that the proposed method is competitive with other
approaches reported in the literature.

Keywords: Particle Swarm Optimization, Fuzzy Logic, multiobjective
optimization.

1 Introduction

Optimization modeling is one of the most powerful techniques to find optimal
solutions of problems in application areas such as economy, industry, finance,
and others. For instance in economic applications, profit and sales must be max-
imized and cost should be as low as possible [5]. The goal is to find the best
solution x∗ from a set of possible solutions X according to a set of criteria
F = {f1, f2, ..., fn}. This set of criteria is expressed as a mathematical function
named objective function [5].

General optimization (GO) methods are categorized into two main classes:
deterministic and probabilistic methods. The deterministic methods work based
on heuristics, such as adding punishment to escape from local minima. Heuris-
tics use the information currently gathered by the algorithm to help deciding
which solution candidate should be tested next or how the next solution can be
produced [5]. Probabilistic methods estimate probabilities to decide whether the
search should depart from the neighbourhood of a local minimum.

Particle Swarm Optimization is one of the methods that have been proposed
to solve GO problems [6].

Multiobjective optimization algorithms are designed to optimize a set of ob-
jective functions. The simplest methods rely on optimizing the weighted sum
g(x) of all functions (criteria) fi(x) ∈ F [5]. The mathematical foundations for
multiobjective optimization that considers conflicting criteria in a fair way was
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laid by Vilfredo Pareto 110 years ago [5]. Pareto optimization is based on the
definition of domination: a solution x1 dominates (is preferred to) solution x2

((x1 � x2)) if x1 is better than x2 in at least one objective function and not
worse with respect to all other objectives.

A solution x∗ ∈ X is Pareto optimal (belongs to the optimal set X∗) if it is
not dominated by any other solution in the problem space X . In terms of Pareto
optimization, X∗ is called the Pareto optimal set, denoted as P ∗ [6].
The set PF ∗ = {f1(x), f2(x), · · · , fk(x) | x ∈ P ∗ is called Pareto Front PF ∗

Particle Swarm Optimization (PSO) was introduced by R.C. Eberhart and J.
Kennedy in 1995 [6]. PSO is an adaptive, global optimization method which is
based on updating the value of each particle to obtain the best solution. In this
method, each potential solution is called a particle, and each particle has a fitness
value which is calculated by a fitness function. This fitness value is the one that
should be optimized. PSO works by generating some random solutions consisting
of particles, where each particle is iteratively updated with two different values.
One is the best value reached by the particle so far (called local best or lbest),
and the second one is the best value obtained by any particle so far (called global
best or gbest) [7]. Based on these two best values, the velocity of particle p and
its position are updated and then the fitness of the particle is calculated. In this
way an optimal solution may be found after some number of iterations. There
are two different general PSO models, one is called local version and another is
global version [6]. In the local version, each particle flies through the search space
to adjust the velocity according to its best achieved performance so far and the
best performance achieved by the neighbourhood particles. In the global version,
the particle’s velocity is adjusted according to its best achieved performance so
far and the best performance achieved by all particles [2].

The main idea of the algorithm presented in this paper is to break down
the problem to be solved into several simpler ones, and evolve particles to find
Pareto Fronts in smaller spaces. A combination of these fronts constitutes the
final Pareto Front. Fuzzy logic is used in deciding which part of the problem
should be selected for the next iteration. The objective is to use that part, on
which finding the non-dominated particles is more probable.

This paper is organized in the following way. In section 2 some related work is
briefly described. The proposed approach is presented in section 3. The experi-
mental study of the method is described in section 4. The last section summarizes
the paper and presents some conclusions.

2 Related Work

PSO has become a popular optimization method that is widely studied and com-
pared to other approaches. Given that the literature on this subject is extensive,
in this section we present a brief summary of related work.

[3] describes the use of PSO algorithm as a tool to optimize path finding.
Authors use the Mamdani inference fuzzy system to decide when to increase or
decrease the velocity of particles and in which direction the positions of particles
should be changed.
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A new algorithm was introduced in [1] where the search space is divided
according to the best achieved values accumulated in a repository. The algorithm
works based on a hypercube. Then from the chosen hypercube (on the basis of
fitness of all hypercubes) one particle is selected randomly.

POS is combined with Fuzzy Logic in [4], where Fuzzy Logic helps the particle
to improve an existing solution by replacing the low quality links with high
quality links. The local version of PSO model is used to optimize topology design
of distributed local area networks.

PSO and multiobjective optimization (MO) in n-dimensional search space are
discussed in [6]. Authors discuss weighted aggregation approaches such as: Dy-
namic weighted aggregation (DWA), Conventional weighted aggregation (CWA),
Bang-Bang Weighted Aggregation (BWA), Vector Evaluated Genetic Algorithm
(VEGA) and Vector Evaluated Particle Swarm Optimization (VEPSO). Authors
introduced a maximum value for velocity to improve the performance of the ba-
sic PSO by avoiding high increases in velocity values. Another topic discussed in
that paper is the range of values for the basic parameters c1,c2 (connected with
the influence of local and global best solution).

In [8], a new algorithm for two-objective functions in two-dimensional fitness
value space is introduced. Authors assume fixed fitness values of the first objec-
tive function, and try to optimize the second objective function.

Concepts of PSO, neighbourhood topology, multi-objective optimization
(MOO) and leaders in MOO are discussed in [12]. Authors explain how to select
the leader from all non-dominated solutions as a global best solution to guide
the algorithm to get the new particles. Nearest neighbor density estimator and
kernel density estimator are some approaches mentioned in this paper.

3 Multiobjective Particle Swarm Optimization Using
Fuzzy Logic (FMOPSO)

The FMOPSO method is inspired by the ”Divide and conquer” or ”Sub popu-
lation” approach. The main idea of FMOPSO is to break the original problem
down to several parts with less complexity. Then by gathering particles (solu-
tions) from these smaller problems, a better overall solution could be obtained.
The search space is divided into an arbitrary number of major spaces (we use five
major spaces), further, every major space is divided into an arbitrary number
of minor spaces (in our experiments it is also five). To obtain better results, we
combined population and pareto-based approaches. Our algorithm determines
which area has more priority for being selected as a new search space for next it-
eration. For this purpose we make use of a fuzzy controller that evaluates search
spaces at each iteration. In the calculation of velocity and position of a new
particle we use the basic PSO algorithm:

v(i+1) = vi + c1 ∗ r1 ∗ (lbesti − pi) + c2 ∗ r2 ∗ (gbesti − pi)
p(i+1) = pi + v(i+1) (1)
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where c1 = 1.4, c2 = 1.5, r1 , r2 are random value in [0, 1]. Half a range of the
variable is the limit for maximal velocity. When a particle’s velocity is near to
zero, the particle is moved to a different dimension in the n-dimensional search
space. This allows particles to escape from the local optimum. Additionally, we
use two accumulators, named as repository and deleted-repository, thanks to it
the fuzzy controller can check densities of both – non-dominated and dominated
particles. The fuzzy controller decides which search space should be selected to
choose the gbest.

The main steps of FMOPSO. The FMOPSO algorithm is briefly presented
in Algorithm 1. The first step, Initialize parameters, consists of four methods,
Get ranges, Initialize particles, Initialize fitness, and Initialize parts, i.e., major
and minor parts.

In Compute velocity we perform three steps, each has a different strategy
for choosing gbest: (1) select gbest from all gbest achieved so far (if we have
many candidates, one is randomly selected), (2) fuzzy controller looks for the
best search space to get gbest with respect to the density of particles in both
repository and deleted-repository, (3) look for the gbest based on the major part.
Evaluate fitness evaluates the particle’s fitness value (the objective functions).
Update Lbest method updates best position achieved by the considered particle
so far. Evaluate Non-dominated method is used to choose the non-dominated
particle.

Algorithm 1. FMOPSO general algorithm
Initialize parameters();
Update Lbest();
Evaluate Non-dominated();
while i <= max.iteration do

Compute Velocity();
Evaluate fitness();
Update Lbest();
Evaluate Non-dominated();
i = i + 1;

end while
Make report();

Fuzzy Logic Controller. Whole search space is divided into five smaller parts,
and every smaller search subspace is divided into five subsections. The task is
to decide which subsection should be selected for next iteration. This is done
on the basis of evaluating the availability of non-dominated particles in a search
space. Fuzzy controller checks the density of particles in both the repository
and deleted-repository. The interesting area is where the density of dominated
particle is low or medium and the density of non-dominated particle is medium
and high. This is the reason why our fuzzy controller looks at densities in both
repositories.

Membership Functions for Input and Output Variables. Our fuzzy con-
troller uses three fuzzy sets for each of the input variables, Density and No. of
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Fig. 1. Graphical representation of membership function

Particles, for both accumulators – repository and deleted-repository. For variable
Density they are: Low (L), Medium (M), and High (H). For No. Particles : Few
(F), Moderate (MO), and Many (MA).

Five fuzzy sets are defined for output variable Availability of non-dominated
particles: Very High Availability (VHP), High Availability (HP), Medium Avail-
ability (MP), Less Availability (LSP), Very Less Availability (VLSP).

Membership functions are presented in Fig. 1. It is seen in this figure, that
the boundaries of fuzzy sets for variable No. of Particles change with increasing
iterations. In that figure the values of points a, b, c, d in the fuzzy sets are calcu-
lated using a coefficient coefficient = 0.1 ∗ population.size ∗ current.iteration,
in the following way:

a = coefficient,
b = coefficient + coefficient/2,
c = 2 ∗ coefficient + coefficient/2,
d = 3 ∗ coefficient.

Fuzzy Rule Base. We have defined eighteen different fuzzy rules for the con-
troller. They are shown in Table 1. The detailed rules are:

1. If density in dominated set is low or medium and density in non-dominated
set is low and NO.Particles is few, availability is high
2. If density in dominated set is low or medium and density in non-dominated
set is low and NO.Particles is moderate, availability is middle
3. If density in dominated set is low or medium and density in non-dominated
set is low and NO.Particles is many, availability is less
4. If density in dominated set is high and density in non-dominated set is low
and NO.Particles is few, availability is middle
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Table 1. 3-dimensional matrix defining the fuzzy rules: availability depending on den-
sities in the both accumulators

Repository → L M H
Del-rep↓ No.P → F MO MA F MO MA F MO MA

L HP MP LSP HP HP VHP HP VHP VHP

M HP MP LSP MP MP MP MP HP HP

H MP LSP VLSP MP LS VLSP MP MP LSP

5. If density in dominated set is high and density in non-dominated set is low
and NO.Particles is moderate, availability is less
6. If density in dominated set is high and density in non-dominated set is low
and NO.Particles is moderate, availability is very Less
7. If density in dominated set is low and density in non-dominated set is medium
and NO.Particles is few or moderate, availability is very high
8. If density in dominated set is low and density in non-dominated set is medium
and NO.Particles is many, availability is very high
9. If density in dominated set is medium and density in non-dominated set is
medium and NO.Particles is few or moderate or much, availability is middle
10. If density in dominated set is high and density in non-dominated set is
medium and NO.Particles is few, availability is middle
11. If density in dominated set is high and density in non-dominated set is
medium and NO.Particles is moderate, availability is less
12. If density in dominated set is high and density in non-dominated set is
medium and NO.Particles is many, availability is very less
13. If density in dominated set is low and density in non-dominated set is high
and NO.Particles is few, availability is high
14. If density in dominated set is low and density in non-dominated set is high
and NO.Particles is moderate or many, availability is very high
15. If density in dominated set is medium and density in non-dominated set is
high and NO.Particles is few, availability is middle
16. If density in dominated set is medium and density in non-dominated set is
high and NO.Particles is moderate or many, availability is high
17. If density in dominated set is high and density in non-dominated set is high
and NO.Particles is few or moderate, availability is very middle
18. If density in dominated set is high and density in non-dominated set is high
and NO.Particles is many, availability is less

The fuzzy controller fires the applicable rules and calculates the fuzzy output
using Mamdani (max-min) implication technique. To get the crisp value from all
fired rules, the weighted-average defuzzification technique is used.

4 Experimental Results

To verify the performance of our method, FMOPSO was run using different bench-
mark data sets and different values of parameters: five test functions (ZDT test
set), 100 iterations, and for five different numbers of particles (5, 25, 50, 75, 100).
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Table 2. ZDT two-objectives problems

Name Problem Type Parameter
Domains

f1(x) = x1

ZDT1 g(x) = 1 + 9
n−1

∑n
i=2 xi Convex [0,1]

h(f1, g) = 1 −
√

f1
g

f1(x) = x1

ZDT2 g(x) = 1 + 9
n−1

∑n
i=2 xi Non-Convex [0,1]

h(f1, g) = 1 − ( f1
g

)2

f1(x) = x1

ZDT3 g(x) = 1 + 9
n−1

∑n
i=2 xi Non-Convex, Dis-

connected
[0,1]

h(f1, g) = 1 −
√

f1
g
− ( f1

g
) sin(10Πf1)

f1(x) = x1

ZDT4 g(x) = 1+10(n−1)+
∑

i = 2n(x2
i −10 cos(4Πxi)) Convex, Multi-

Modal
[0,1]

h(f1, g) = 1 −
√

f1
g

f1(x) = 1 − exp(−4x1) sin6(6Πx1)

ZDT6 g(x) = 1 + 9(
∑10

i=2 xi

9
)0.25 Non-Convex,

Non-uniformally
Spaced

[0,1]

h(f1, g) = 1 − ( f1
g

)2

Zitzler-Deb-Thiele (ZDT) set contains scalable problems according to the num-
ber of decision variables [9,10,11]. ZDT problems contain two objective problems.
Given f1, the second criterion is a composite function f2(x) = g(x)h(f1(x),
g(x)), both objectives should be minimized. Table 2 contains defined 2-dimensional
problems. Three performance metrics were used: Generational distance, Spacing
and Error ratio.

Generational Distance (GD). GD was introduced by Van Veldhuizen and
Lamont [12] to calculate the distance between particles in non-dominated set
generated by the method and the Pareto Optimal set.

GD =

√∑n
i=1 d2

i

n
, di = min

|p∗|
k=1

√
√
√
√

M∑

m=1

(f i
m − f

∗(k)
m )2 (2)

where n is the number of particles in the non-dominated set and di is the Eu-
clidean distance between particle in the non-dominated set and the closest one
from Pareto Optimal set and f

∗(k)
m is the m-th objective value of the k -th mem-

ber of p∗. It is obvious that the smaller values of GD are preferred. GD close to
zero indicates that non-dominated set is a part of Pareto Front.
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Fig. 2. Pareto front produced by FMOPSO for the ZDT set test problem

Spacing (SP). SP was introduced by Schott(1995) [12] to calculate distance
between consecutive solutions from non-dominated set.

S =

√
√
√
√ 1

n

n∑

i=1

(di − d̄)2 d̄ =
n∑

i=1

di

n
(3)

The smaller spacing values are better, they are the standard deviations of dif-
ferent di values.

Error Ratio (ER). ER was introduced by Van Velshuizen [12] to measure the
number of non-dominated particles which are not the member of Pareto Optimal
set.

ER =
∑n

i=1 ei

n
(4)

where ei = 1 if i is not a member of Pareto Optimal set and ei = 0 otherwise.
ER = 0 indicates that all solutions in non-dominated set are members of Pareto
Optimal set. Figure 2 presents the results produced by our method.

Table 3 shows the result of FMOPSO compared to common Evolutionary
Algorithms: NSGA-II real coded, NSGA-II binary coded, SPEA and PAES. In
this table the results displayed correspond to the mean and variance with respect
to the convergence metric.

Table 4 shows the result achieved by FMOPSO and other recently presented
MOPSO algorithms: OMPSO, SMPSO, MOPSO-TVAC, MOPSO-TVIW. In
this table the results displayed correspond to the median and IQR indicator
with respect to the Delta metric.
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Table 3. Convergence metric

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

NSGA-II γ̄ 0.033482 0.072391 0.114500 0.513053 0.296564
Real-coded δ2

γ 0.004750 0.031689 0.007940 0.118460 0.013135

NSGA-II γ̄ 0.000894 0.000824 0.043411 3.227636 7.806798
Binary-coded δ2

γ 0 0 0.000042 7.307630 0.001667

SPEA γ̄ 0.001249 0.003043 0.044212 9.513615 0.020166
δ2

γ 0 0.000020 0.000019 11.321067 0.000923

PAES γ̄ 0.082085 0.126276 0.023872 0.854816 0.085469
δ2

γ 0.008679 0.036877 0.00001 0.527238 0.006664

FMOPSO γ̄ 0.00028 0.00000287 0.00060 0.00004 0.00016
δ2

γ 0.00000 0.00000 0.00000 0.00000 0.00000012

Table 4. Delta metric

Algorithm ZDT1 ZDT2 ZDT3 ZDT4 ZDT6

OMOPSO x̄ 7.98e−02 7.46e−02 7.13e−01 8.69e−01 2.90e−01

IQR 1.4e−02 1.6e−02 1.0e−02 5.9e−02 1.1e+00

SMPSO x̄ 7.66e−02 7.33e−02 7.10e−01 9.81e−02 2.83e−01

IQR 1.4e−02 1.6e−02 7.2e−03 1.4e−02 1.2e+00

MOPSO-TVAC x̄ 1.01e−01 8.71e−01 7.81e−01 2.05e−01 1.33e+00

IQR 1.3e−02 1.3e−02 7.1e−02 3.6e−02 5.7e−02

MOHPSO x̄ 1.10e−01 9.01e−02 7.71e−01 9.02e−01 1.29e+00

IQR 2.7e−02 1.9e−02 5.9e−02 1.6e−01 4.3e−02

MOPSO-TVIW x̄ 8.39e−02 7.09e−02 7.12e−01 1.29e−01 1.11e+00

IQR 1.6e−02 2.0e−02 9.5e−03 3.4e−01 1.2e+00

FMOPSO x̄ 1.75e−02 1.75e−02 4.0e−02 1.9e−02 1.5e−3

IQR 3.88e−02 1.2e−03 5.1e−03 4.6e−04 4.1e−04

5 Conclusions and Future Work

We have proposed a new algorithm that combines a population based optimiza-
tion techniques, the Pareto based approach, and a fuzzy controller. The exper-
iments with the ZDT benchmark data sets indicate that FMOPSO approach is
able to find the non-dominated particles that are close to the Pareto Front.

Our modification of PSO lies in adding some fuzzy knowledge to make the
method more intelligent. Thanks to this knowledge FMOPSO decides where the
best area of search space is.

The complexity of the method could be reduced by using sorted balanced
tree (AVL or R & B tree) instead of the current array that is being used. The
complexity of updating repository is currently O(kN2) where N is the size of
swarm and k is the number of objectives. Complexity of the updating process for
all iterations (M) is O(kMN2) [12], where complexity of insertion into AVL tree
is at most O(log(N + 3

2 + log(
√

5) − 3) rebalancing operations and O(log(N +
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3
2 + log(

√
5) − 4) rebalancing operations for deletion, if N is the maximum size

of nodes [13]. The use of this kind of tree will improve the time for updating the
repository.

The approach used in FMOPSO, namely – finding the most promising areas
of search space, i.e., the suitable ranges of particular variables, seems to be good
way for multi-objective optimization methods. For example, the best values of
variables x2, x3, ..., x30 from the range [0,1] in ZDT1 data is zero. The system
should find the best area for these variables by analyzing them with respect to
the given ranges. Searching the promising subspaces at each iteration, on the
basis of history analysis, should allow the method to find very good solutions in
relatively short time. In future work we plan to improve the fuzzy controller to
include a user knowledge base and other fuzzy sets.
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