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Chapter 8
Centrality Robustness and Link Prediction
in Complex Social Networks

Søren Atmakuri Davidsen and Daniel Ortiz-Arroyo

Abstract This chapter addresses two important issues in social network analysis
that involve uncertainty. Firstly, we present an analysis on the robustness of
centrality measures that extends the work presented in Borgatti et al. using three
types of complex network structures and one real social network. Secondly, we
present a method to predict edges in dynamic social networks. Our experimental
results indicate that the robustness of the centrality measures applied to more
realistic social networks follows a predictable pattern and that the use of temporal
statistics could improve the accuracy achieved on edge prediction.

Introduction

Complex networks are networks which are neither random nor regular. This type of
networks are found in many diverse areas such as social networks, transportation
airlines, biological networks, etc. This chapter focuses on analyzing some of the
properties of complex social networks.

Social Network Analysis (SNA) studies social networks with regard to its
structure, functionality, and efficiency in diffusing information. SNA provides the
link between sociology and graph theory. In SNA, social networks are represented as
graphs, depicting the relations and ties among social actors. The connection between
social networks and computational studies is laid out in [20]. SNA has recently
attracted attention given the popularity of social network sites on the Internet, the
recent worldwide epidemic outbursts, financial fraud scandals, and the coordinated
actions performed by international criminal organizations. The study of these social
networks helps us to understand the dynamics, structuring, and functioning of social
relations.
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Finding central nodes is an important task in SNA that helps analysts to
understand how information is diffused in the network, how command control is
structured, and what is the effect on the network’s structure when such nodes are
removed. However, determining the full structure of a network may not be feasible
in some cases. For instance, criminal organizations try to hide the structure and
hierarchy of their networks from outsiders. Additionally, errors may be introduced
when the network is constructed. Errors produce uncertainty with regard to the true
structure of the network. Two types of uncertainty may be found during network
construction: (1) node uncertainty, i.e., uncertainty of a node existence and (2) edge
uncertainty, i.e., uncertainty about the relation between two nodes.

In [5] Borgatti et al. examined the effect that random errors introduced during
network construction have on the performance of some centrality measures. Borgatti
essentially found that centrality measures are robust in the presence of errors.
However, the networks considered in [5] were random Erdős-Rényi networks. In
this chapter, we have extended that work to study complex social networks that are
not random.

Networks commonly studied in SNA are static, i.e., the models assume that their
structure will not change. Contrarily to static networks, dynamic social networks
change with time. In dynamic networks, nodes and edges are periodically added
or deleted. An example of a dynamic social network is the network of personal
relations that is created during the lifetime of a person. The analysis of dynamic
social networks is a relatively new area of research in SNA.

Dynamic networks can be modeled using temporal graphs. In this chapter, we use
Tang et al.’s temporal network model [22] and extend it to predict when a new edge
is likely to be added to a network. Our experiments show that there is correlation
between: (a) the age of a node and the creation of new edges and (b) last edge
creation time and the creation of new edges. We have applied this knowledge to
the problem of predicting edges in a temporal graph. Our results indicate that when
temporal information is available, it can be used to improve prediction accuracy.

Section “Network Models” introduces the network concepts used in this chapter
and section “Related Work” describes most relevant related work. In section
“Robustness of Centrality Measures in Complex Social Networks,” we examine
the robustness aspect and present experimental results. Section “Edge Prediction in
Temporal Social Networks” examines temporal networks and presents experimental
results on the accuracy of our edge prediction method. Finally, in section “Conclu-
sions and Future Work” we conclude our work and discuss future directions.

Network Models

The most common model of a network is an undirected weighted graph G.V; E; w/,
where V D fv1; v2; : : : ; vng is the set of vertices, E D fe1; e2; : : : ; emg a set
of edges, each edge being a tuple of the two connecting nodes ei D .s; t/, and
w.v; u/ ! Œ0; 1� a function that maps each edge into a weight. The unweighted
network is a special case where 8.v; u/ 2 E : w.v; y/ D 1.
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While networks in some domains can be described as directed graphs, in this
chapter, we will consider only undirected graphs (i.e., for social network analysis,
we consider actors to be reciprocally associated). Formally this means .v; u/ 2 E ,
.u; v/ 2 E .

For simplicity, in the rest of this chapter, we will use indistinctly the terms
network and undirected graph, additionally to edge and link to mean the same
concepts.

The order of a graph is the number of vertices in the graph, jV j. The size is
the maximal number of possible edges in the graph jEj. The number of edges is
jV j.jV j�1/

2
. The density is the proportion of current edges in a graph to all possible

edges that the graph may contain, 2jEj
jV j.jV j�1/

. A graph is complete if its density is 1.
Low-density graphs are called sparse. Nodes are called adjacent if there is an edge
connecting them.

A graph has a path from s (the source node) to t (the target node) if there is
a sequence of edges connecting the nodes, .s; u0/; .u0; u1/; : : : .un�1; t/ through a
finite set of interconnected nodes. The minimum-length path between two nodes
s and t is called the shortest or geodesic path, which we denote p.s; t/ and its
length s.s; t/. A graph is connected if all nodes are joined by a path, 8v; j 2 V W
s.v; u/ < 1. If a graph is not connected, each maximal set of nodes for which a
path exists between all of them is denoted a component. A walk is a path that allows
the same edge to be traversed more than once. If a node v has d adjacent nodes, we
denote d the degree of v, D.v/ D d . A triad is a triangle of three nodes connected
to each other by direct edges. The neighbors of a node we call the neighborhood,
N.v/ D fuj.v; u/ 2 Eg.

An adjacency matrix An�n is a useful representation of a network in which each
element represents an edge (see Eq. 8.1). The adjacency matrix for an undirected
graph is symmetric around the diagonal.

Avu D
�

w.v; u/; if .v; u/ 2 E;

0; otherwise.
(8.1)

A temporal graph is a graph for which there is an ordered sequence of edges
.e1; e2; e3; : : : ; et /, the index of each edge is the edge’s time-stamp, hence the t th
edge we denote et . t.v/ is a function that gives time-stamp when a node v joined the
network, and t.e/ is the time-stamp when edge e joined the network. We use T to
denote the set of time-stamps.

In this chapter, we use Tang et al.’s temporal network model [22]. The model
describes the temporal network as a sequence of states in which each state contains
time-stamps of the events that happen in the network.

The set of observed network states is denoted T , where T D ft0; : : : ; tmaxg. Each
state (represented by its time-stamp t) produces a temporary graph to which nodes
and edges have been added or deleted. See Fig. 8.1 for a visual example.

A function t.e/ yields the time-stamp of the state at which an edge was added
to the network. The final network G.V; E/ is the union of edges from each state
E0 [ : : : [ Et .
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Fig. 8.1 Prototype
visualization of the Tang
temporal network model

In Tang’s model, all nodes are known a priori, i.e., the model does not consider
new nodes entering the network. To model new nodes entering a network, we
propose to augment Tang’s model with a function t.n/ similar to t.e/, which will
allows us to keep track of the time when a node enters the network. We will also
use a subscript t for each of the available functions/sets to indicate that network is at
state that has a time-stamp t , for example, st .v; u/ denotes the length of the geodesic
between v and u at time t .

Related Work

The study of complex networks is today a well-established field. Early work that
defined the small-world network effect [17] and the more recent discovery of
scale-free structures in [1] laid out the groundwork for the study of complex
networks. Several recent surveys on complex networks are available, see for instance
[4, 10, 18].

Only little work on robustness has been done. Borgatti et al. in [5] generate
random graphs to study the performance of centrality measures in the presence
of errors. Borgatti classifies errors into two groups: (1) sampling errors and
(2) misinformation errors. Sampling errors occur when the observed network is only
a partial sample of the true network, i.e., the network misses either nodes or edges.
Misinformation errors occur when a network has additional information compared
to the real network, i.e., the network may have additional nodes or edges.

The experiments cited in [5] show that as expected errors degrade the perfor-
mance of the centrality measures employed. However, degradation occurs in a
predictable way. Hence, if the proportion of errors in a random network could be
estimated, it will be possible to predict the accuracy of the results produced by the
centrality measures.

In relation to link prediction, the discovered properties of complex networks lead
to proposals of generative models that explain the dynamics of network evolution.
For instance, in [23] a generative model for small-world networks was proposed
using random rewirings of a lattice. Moreover, in [2] the preferential attachment
model was suggested to explain how a scale-free structure could emerge.
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Many other properties of complex networks have since then been examined.
Some of them are assortative mixing [18] where types of nodes are taken into
account when selecting edges, the giant component [4, 18] behavior in a network,
community structures [18], and more recently a densifying model described in [15].

Some approaches include in their generative models the use of dynamic infor-
mation such as node age or lifetime. Node age was used to predict the clustering
coefficient of nodes in [12]. In [7] node lifetime is analyzed to propose a model
with decaying degrees. Other research such as those in [8, 9] include using the
visualization of changes to calculate network centralities.

The problem of edge prediction has received recently some attention. The prob-
lem is described with some detail in [16, 24]. In these works, [16] evaluates current
state-of-art methods and [24] creates a classification of the different approaches.
The general classes of link prediction considered in [24] are: (a) Class-1, node-
wise similarity, where similarities between nodes are determined based on their
features, (b) Class-2, topological patterns where similarities between nodes are
determined from the structure of the network (locally or globally), and (c) Class-3,
probabilistic models, where compressed networks of interactions are learned and
used for prediction.

Class-1 has roots in clustering/classification tasks, where we wish to discover
hidden relations between a set of otherwise unrelated nodes. Link prediction for
this class depends on the availability of a feature vector for each node f .v/ D
.f1; f2; : : : ; fn/, and a similarity measure to determine the vectors’ similarity
sim.f .v/; f .u//. Classical measures such as cosine similarity and the Euclidean
distance could be employed. These methods predict a missing edge in the network,
when two nodes with high similarity are found. In network analysis, however, this
approach is not always applicable, but only in models that include latent spaces, or
where physical distance does not matter.

Class-2 employs topological patterns in the network. Some approaches in this
class are based on a local heuristic such as “your close neighbors influence you”.
This is the case described in [16] where a node-proximity measure is developed
to find new neighbors and in [6] where a combination of clustering coefficient and
hierarchical clustering is used.

Class-3 is a classification task, where examples of network interactions are
learned and used for prediction. This approach is described in [11] where a learning
algorithm is applied to select neighbors.

While Class-1 depends on node features being available and Class-3 depends
on having available examples of node interactions, Class-2 depends only on the
network itself. This is a desirable feature, but has some limitations.

Robustness of Centrality Measures in Complex
Social Networks

This section describes a method for evaluating the robustness of the centrality
measures described in Table 8.1 when applied to non random social networks.
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Table 8.1 Commonly used centrality measures and their definition

Measure Definition Notes

Degree centrality CD.v/ D D.v/

n�1

Betweenness centrality CB .v/ D P
u2V

P
z2V guz.v/ guz.v/ D 1 if v 2 p.u; z/

Closeness centrality CC .v/ D P
u2V s.v; u/

Eigenvector centrality xi D 1
�

Pn
jD1 Aij xj rewritten as �x D Ax

Entropy centrality CE.v/ D � Pn
u2V 0

�.u/�log2�.u/ �.v/ D paths.vi /

M
. V 0 is V

without the node v.

In addition to replicate the results produced by Borgatti in [5] using ER random
networks, we want to analyze the robustness of centrality measures on more realistic
social networks. One way to do this is by synthesizing network structures that
are general models of social networks. Our synthetic networks were selected from
three categories described in the literature. Firstly, we generated scale-free networks
that are used to model collaboration networks using Barabasi’s [3] preferential
attachment model. Secondly, we used the Krebs’ community structures described
in [14] to generate Cliques that model friendship networks and Core/periphery
networks that can be used to model cohesive social groups.

Section “Synthesizing Complex Networks” describes the methods used to
generate the three types of complex networks and section “Experimental Tests”
discusses the results obtained in our experiments.

Synthesizing Complex Networks

Clique networks are networks in which several cliques of tightly connected nodes
are interconnected loosely. Clique networks are synthesized using a parametric
algorithm which groups the nodes of the network into c cliques and then makes
random edge creation dependent on whether two nodes are in the same clique or not
as shown in Eq. 8.3.

re.p/ D
�

1; if rand < p;

0; otherwise,
(8.2)

Aij D
�

re.pc/; if C.vi / D C.vj /;

re.pb/; otherwise,
(8.3)

C.v/ is a function that returns the clique of the node v. re.p/ is a function that
returns 1 (indicating an edge in the adjacency matrix) given a uniform random
probability distribution p. A is the adjacency matrix representing the network. It
is expected that centrality measures in clique networks will behave similarly as
when applied to ER networks. The intuitive reason for this is that the centrality
measures will pick up nodes that are on the edges of many cliques as the most
central. Additionally a clique can be seen as a single node in the network.
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Fig. 8.2 A sample function
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Core/periphery networks are networks in which there is a core of closely
connected nodes and a periphery of loosely connected nodes. Core/periphery
networks were synthesized as a generalization of ER random networks using a
given probability density function P instead of a single probability value p. This
is shown in Eq. 8.4 where A is an adjacency matrix. A sample function for P can be
seen in Fig. 8.2.1

Aij D
�

1; if rand < min.P.i/; P.j //;

0; otherwise,
(8.4)

When errors are introduced into core/periphery networks, it is expected that the
removal of nodes and edges will have less effect on the centrality measures, i.e., the
dense core will provide alternative paths for the periphery nodes. However, when
errors are added to the core, they could have some impact on the centrality measures.

A simple method to synthesize scale-free networks is given in [21]. The method
consists in attaching new nodes at random to previously existing nodes, using the
degree of these previously existing nodes as their probability of attachment. This
method is described by Eq. 8.5.

P vi D D.vi /

Dmax
(8.5)

P vi is the edge creation probability function on node vi , D is the degree of a
node vi , and Dmax is the highest node degree found in the graph.

Intuitively it is expected that centrality measures will perform better in scale-
free networks, given that in its construction few nodes will be very well connected.
These few nodes will likely be picked as central nodes by the centrality measures.
Hence, the probability of introducing errors in these few nodes is small given the
“long tail” of other insignificant nodes. Figure 8.3 shows examples of synthesized
networks.

1It should be noted that this function is dependent on the size of network that has to be generated.
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a b c

Fig. 8.3 Examples of small, n D 15, synthesized networks. (a) Clique network.
(b) Core/periphery network. (c) Scale-free

Experimental Tests

Creating synthetic networks is very convenient for experimental purposes. However,
it is also important to use real social networks and see how they perform in the
presence of errors when compared to synthetic networks. The terrorist network
collected by Krebs [13] was chosen as an example of a real network in our
experiments. The network has 62 nodes and 155 edges with a density of 0:08 and is
shown as Fig. 4 in [13]. The errors introduced to the network are randomly chosen
at each iteration.

We performed three types of experiments to determine: (1) the robustness of
centrality measures on random complex networks, (2) the robustness of centrality
measures using a real network, and (3) the robustness of entropy as a centrality
measure

In [5] five different measures are used to determine the accuracy of the
measurements obtained in the network containing errors when compared to an error-
free (true) network. These measures are:

1. Top 1 – considers only the top node, i.e., the most central node in the true network
is also the most central in the network with errors introduced.

2. Top 3 – considers the top 3 nodes, i.e., the most central node in the true network
is among the three most central in the network with errors introduced.

3. Top 10% – considers the top 0.1 of nodes, i.e., the most central node in the true
network is in the top 10% of the most central nodes in the network with errors
introduced.

4. Overlap – considers Jaccard’s similarity measure between top 10% nodes, i.e.,
the overlap between the top 10% nodes in the true network and the top 10%
nodes in the network with errors introduced.

5. R2 – considers Pearson correlation, i.e., the correlation between the centralities
of the true network and the centralities of the network with errors introduced.

In this chapter, we will use the same measurements of accuracy.
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Fig. 8.4 Scatter plots of the average betweenness accuracy as a function of error. Betweenness
measures for core/periphery network of size 50, and a density of 0.40. Legend: � top 1, � top 3,
� top 10%, � overlap, � R2. (a) Edge addition. (b) Edge removal. (c) Node addition. (d) Node
removal

Experiments with Synthetic Complex Networks

Synthetic complex graphs were created and tests were conducted with each of the
complex topologies previously mentioned. Due to lack of space, we only report the
results of our experiments using graphs of size n D 50, but we have performed other
tests with graph sizes of 10, 25, 50, and 100 nodes, obtaining similar results.

Additionally, in all of our experiments, we used only the betweenness centrality
measure. This measure was chosen because it is a global measure and because it
was also used in [5]. However, we have conducted experiments using betweenness,
closeness, and eigenvector centrality obtaining similar accuracies. It is important to
remark that contraily to other measures, degree centrality is easily affected by local
changes in the graphs; hence, it is a less predictive measure.

Finally, networks were compared using the same values in density and size.
However, in the case of the real network and a random scale-free network, the size
and density of the networks used were not the same.

Core/Periphery Networks

To generate core/periphery networks, the P function shown in Fig. 8.2 was used.
Figure 8.4 and Table 8.2 show that the accuracy obtained for this kind of network
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Table 8.2 Arithmetic mean
of the difference between
measures of an ER network
and a core/periphery network,
calculated for betweenness
centrality, on graphs with 50

nodes, and 0:40 density

Measure Edge add Edge rem Node add Node rem

Top 1 �0.309 0.093 �0.398 0.069
Top 3 �0.370 0.048 �0.576 0.040
Top 10% �0.358 0.046 �0.633 0.037
Overlap �0.241 0.109 �0.302 0.054
R2 �0.278 0.085 �0.123 0.085

has a distinctive difference to that obtained with random ER networks. As expected,
in the case of misinformation (edge and node addition), the accuracy drops quickly
(having an average within Œ�0:633; �0:123�), while in the case of sampling (edge
and node removal), the accuracy is slightly better (within Œ0:037; 0:109�).

Clique Networks

To generate clique networks, the required parameters were set to the following
values: s D 0:28, pc D 0:60, and pb D 0:03. This means that tests were conducted
on networks with three to four cliques. The values for pc and pb were found
experimentally to produce easily visible clique networks. The density of graphs
generated with these settings was found to be 0:20 for comparison with ER networks
of equal density.

As expected Fig. 8.5 and Table 8.3 show that accuracy is similar to that obtained
with random ER networks. These figures show that adding extra nodes or edges has
a negative impact on the accuracy, while in the case of sampling accuracy improves.
However, this variation is small compared to the case of core/periphery networks.
The reason for this could be that an odd size of cliques was used, which could bias
one clique to be more central than others.

Scale-Free Networks

To generate scale-free networks no special parameters are needed. The density of
the networks is shown in Eq. 8.6.

density.n/ D 2.n � 1/

n.n � 1/
(8.6)

Previous figures show that scale-free networks are very robust to errors. Accord-
ing to Barabási and Bonabeau [3], we should expect that scale-free networks be
more robust than random networks, and the experimental results in Fig. 8.6 and
Table 8.4 support this assumption. This indicates that centrality measures applied
to real networks that have scale-free structure will perform well in the presence
of errors.
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Fig. 8.5 Scatter plots of the average betweenness accuracy as a function of error. Betweenness
measures for clique network of size 50, a density of 0:20. Legend: � top 1, � top 3, � top 10%,
� overlap, � R2. (a) Edge addition. (b) Edge removal. (c) Node addition. (d) Node removal

Table 8.3 Arithmetic mean
of the difference between
measures of an ER network
and a clique network,
calculated for betweenness
centrality, on graphs with 50

nodes, and 0:20 density

Measure Edge add Edge rem Node add Node rem

Top 1 �0.092 0.043 �0.145 �0.021
Top 3 �0.116 0.032 �0.235 0.006
Top 10% �0.104 0.033 �0.268 0.002
Overlap �0.082 0.026 �0.122 0.003
R2 �0.132 0.024 �0.071 �0.001

Krebs Terrorist Network

As an example of a real-world network, we have used the Krebs Terrorist Network.
As with the synthesized networks, we have introduced random errors in this net-
work, and compared with random errors in an ER network of same size and density.

As expected Fig. 8.7 shows that the accuracy obtained in this network is better
compared to that obtained with the ER random network in Fig. 8.8. Since it is
difficult to generate a scale-free network with equal size and density as the Krebs
network, the comparison with a scale-free network was made using the results
presented in Fig. 8.6. Table 8.5 shows that the accuracies are very similar, within
Œ�0:103; 0:078�.
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Fig. 8.6 Scatter plots of the average betweenness accuracy as a function of error. Betweenness
measures for scale-free network of size 50, with a density of 0:04. Legend: � Top 1, � Top 3, �
Top 10%, � Overlap, � R2. (a) Edge addition. (b) Edge removal. (c) Node addition. (d) Node
removal

Table 8.4 Arithmetic mean
of the difference between
measures of an ER network
and a scale-free network,
calculated for betweenness
centrality on graphs with 50

nodes, and 0:04 density

Measure Edge add Edge rem Node add Node rem

Top 1 0.355 0.279 0.309 0.189
Top 3 0.251 0.224 0.227 0.099
Top 10% 0.222 0.202 0.212 0.091
Overlap 0.295 0.235 0.267 0.148
R2 0.217 0.243 0.196 0.161

Entropy as Centrality Measure

Our experiments using the entropy measure described in [19] were conducted using
the following parameters: (1) network sizes 2 f10; 25; 50g, (2) network densities
2 f0:05; 0:10; 0:25; 0:50g, and (3) error ratios 2 f0:00; 0:05; 0:10; 0:25; 0:50g.

For each combination, 1,000 ER networks were generated and statistics of the
entropy measure were collected. Figure 8.9 shows the results from these tests. The
experiment shows that the accuracy of entropy under errors declines faster than the
other centrality measures, however it still does so in a predictive way.
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Fig. 8.7 Scatter plots of the average betweenness accuracy as a function of error. Betweenness
measures for Krebs Terrorist network of size 62, with a density of 0:08. Legend: � top 1, � top 3,
� top 10%, � overlap, � R2. (a) Edge addition. (b) Edge removal. (c) Node addition. (d) Node
removal

Figure 8.9 shows the performance of the entropy measure when applied to an
ER graph with a density of 0:05. Figure 8.10 shows that dense graphs produce less
variation in the entropy. At densities larger than 0:05, the variation in centrality
entropy becomes so small that results of the measure are inconclusive in deciding
the most central node. Variation is calculated as the number of different values of
CE.v/ (see Fig. 8.1) found in the test networks.

Edge Prediction in Temporal Social Networks

The edge prediction problem can be formally describe as: Given a network G.V; E/,
where E represents the observed edges, how likely is that an unobserved edge
.v; u/ 62 E may appear between an arbitrary pair of nodes .v; u/.

Section “Temporal Datasets” describes the datasets used in our edge prediction
experiments. Sections “Static Network Properties” and “Exploring the Dynamics of
the Datasets” describe the static and dynamic parameters that we have used to im-
prove prediction accuracy. Finally, section “Temporal Modeling and Experimental
Results” describes the results of our experiments.
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Fig. 8.8 Scatter plots of the average betweenness accuracy as a function of error. Betweenness
measures for ER network of size 62, with a density of 0:08. Legend: � top 1, � top 3, � top 10%,
� overlap, � R2. (a) Edge addition. (b) Edge removal. (c) Node addition. (d) Node removal

Table 8.5 Arithmetic mean
of the difference between
measures of a scale-free
network with 50 nodes, and a
density of 0:04, and the Krebs
network, calculated for
betweenness centrality

Measure Edge add Edge rem Node add Node rem

Top 1 0.064 0.049 �0.048 0.078
Top 3 0.004 �0.027 �0.099 �0.003
Top 10% 0.000 �0.035 �0.103 �0.005
Overlap 0.073 0.055 �0.065 0.020
R2 �0.043 �0.058 �0.034 �0.029

Temporal Datasets

We have selected four datasets for our experiments using the following criteria:
(1) temporal information must be available, i.e., t.e/ must be known, (2) the dataset
must contain a statistically significant amount of nodes and edges, and (3) the dataset
should be computationally possible to handle.2

Given that the number of datasets publicly available that fit these criteria were
quite limited, we decided to create our own datasets. The dataset that we called

2Practical memory limit for holding adjacency matrices in our computing system is less than
25,000 nodes.
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Fig. 8.9 Scatter plots of the average entropy accuracy as a function of error. Entropy measures for
ER network of size 50, with a density of 0:02. Legend: � top 1, � top 3, � top 10%, � overlap,
� R2. (a) Edge addition. (b) Edge removal. (c) Node addition. (d) Node removal
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Fig. 8.10 Scatter plots of the
entropy variation (y-axis) as a
function of density (x-axis) in
ER networks of size 50.
Legend: � true, � node add,
� node remove, � edge add,
� edge remove

Version2 was obtained from an online IT-news community. The ENRON dataset
was constructed from the corpus of emails that were made publicly available on
the ENRON scandal case. The HepPh dataset is a citation graph of papers from the
High Energy Physics domain. Finally, we created a synthetic dataset called Barabasi
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Table 8.6 Statistics of
datasets, n (number of nodes)
and m (number of edges) are
values from the final graph

Dataset n m Start End T

ENRON 19,211 45,967 1999-01 2002-06 1,264
Version2 3,390 110,147 2007-01 2010-02 1,145
HepPh 21,627 201,259 1992-03 1999-12 2,847
Barabasi 19,218 30,446 2010-03 2012-05 801

generated by the scale-free preferential attachment model. Basic statistics obtained
from these datasets are shown in Table 8.6. In that table, T is the number of days
represented in the dataset.

In the next section, we analyze some network properties that could be used for
edge prediction. Firstly, we look at properties obtained from static networks3 that
will be used as a baseline for evaluation. Secondly, we examine properties which
are based on temporal information.

Static Network Properties

The static properties that we are interested in are: (1) Small-world effect and (2)
Scale-free effect. The small-world effect states that clustering increases as mean
path length decreases. This fact allows us to make edge predictions based on triads
and hops in the network. The scale-free effect states that nodes prefer high-degree
targets when edges are created. This fact allows us to use node degree as an input to
our predictor.

Small-World Effect

The small-world effect [23] appears when the global clustering coefficient is similar
to that of a regular network and the mean geodesic is similar to that of a random
network. This means that edges will be created most likely between nodes that have
a shorter distance between them and that closing triads will appear very frequently,
based on the intuitive principle “friends of my friends are also my friends”.

To model this behavior, we propose to use a probability distribution based on the
number of shared friends (possible triads that we could close) and the likeliness that
two nodes will create an edge through one of the shared friends. This probability
distribution is depicted in Fig. 8.11. Note that we have also included in these plots a
fitness function graph.

The probability distribution used to generate Fig. 8.11 is shown in Eq. 8.8 where
E�.x/ is the set of edges that at time t � 1 have x neighbors in common, nt .u; v/ is

3This approach was used in [16].
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Fig. 8.11 Probability distribution: Closed triads in proportion to number of shared neighbors,
x-axis shows the number of shared neighbors, y-axis shows the probability that end nodes create
an edge. Note: The scale-free dataset was created with only one edge per new node, hence no triads
are closed. (a) ENRON. (b) Version2. (c) HepPh. (d) Scale-free

the number of common neighbors for two nodes v and u and P�.x/ is the probability
that two nodes with x neighbors in common will create a new edge.

nt .u; v/ D jNt.u/ \ Nt .v/j; (8.7)

E�.x/ D fet D .u; v/jnt�1.u; v/ D xg; P�.x/ D jE�.x/jP
i jE�.i/j (8.8)

A second probability we are interested in represents the frequency with which a
node makes contact with nodes outside the “friend of friends” network. Figure 8.12
shows the probability distribution of the frequency with which relations to far-away
nodes in the network are created. We have plotted the probability of linking vs.
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Fig. 8.12 Probability distribution: Network distance between two nodes before a direct edge is
created. x-axis shows distance, y-axis shows the probability of creating new edge at this distance.
(a) ENRON. (b) Version2. (c) HepPh. (d) Barabasi

distance between nodes. In Eq. 8.9, Eh.x/ represents a set of edges et , which at
time t � 1 have distance x (represented by st�1.v; u/ D x). Ph.x/ is the probability
of creating an edge between two nodes at distance x and jEj is the total number of
edges in the graph.

Eh.x/ D fet D .v; u/ j st�1.v; u/ D xg; Ph.x/ D jEh.x/j
jEj (8.9)

It can be noticed from previous figures that the ENRON and HepPh datasets
both follow an exponential decaying function, and the Version2 and Barabasi follow
something that appears to be a bell-curve function. The Version2 dataset shows the
most surprising behavior. In the preferential attachment Barabasi dataset, we would
expect a bell-curve distribution, since selecting target nodes happens randomly
uniformly. However, in the Version2 dataset, it appears that selecting a target also
happens randomly uniformly in the network.
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Scale-Free Effect

The scale-free effect means that the degree distribution follows a power-law function
f .x/ D ax�k, which is true for our datasets with k D Œ�0:99; 2:01�. However,
what we are interested in is the probability that will indicate how likely a node v is
to be attached to another node with a given degree. This probability is calculated in
Eq. 8.12. Pd .x/ is the probability that a target node with a degree x will create a
new edge. Ed .x; t/ is the set of edges created where the target node has degree x at
time t ; Vd .x; t/ is the set of nodes available with a degree of x at time t ; and Md .x/

is the number of edges created where the target node has degree x in proportion to
how many nodes are available in the network with a degree x. Finally, MD is the
sum of all Md .x/ for all x.

Ed .x; t/ D fet D .u; v/jDt�1.v/ D xg; (8.10)

Vd .x; t/ D fvt jDt .v/ D xg; (8.11)

Md .x/ D
P

t jEd .x; t/jP
t jVd .x; t/j ; Pd .x/ D Md .x/

MD

(8.12)

We observe from Fig. 8.13 that all datasets show heavy bias toward creating
edges in high-degree nodes. For the ENRON and Version2 datasets, our intuition
is that few people tend to communicate very frequently, while the HepPh dataset
has few seminal papers. The Barabasi dataset shows the expected behavior given by
its definition.

Exploring the Dynamics of the Datasets

In [18] and other related works, the dynamics of static networks are thoroughly
examined. Properties such as scale-free preferential attachment, small-world clus-
tering, and density are learned and generative models are proposed to create
synthetic networks with similar properties. However, little work has been reported
in the literature regarding the dynamics of temporal networks. In this section, an
analysis was performed in relation to the temporal aspect of the networks. More
specifically, we have explored these aspects:

1. At what rate are new edges created? In our temporal network model, a node joins
the network, and creates new edges over time. Does this happen in uniformly over
time?

2. Is there a lifetime of nodes? As a node joins the network and creates edges, it
is also deleted at some point. The creation of new edges is uniformly distributed
over time.
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Fig. 8.13 Probability distribution: Degree attachment. x-axis is the degree d and the y-axis the
probability of edge creation for the degree. (a) ENRON. (b) Version2. (c) HepPh. (d) Scale-free

3. Do older nodes create more edges? The preferential attachment model indicates
that old nodes are the ones with the highest degree, and therefore are likely to
create most edges over time.

Last Edge Creation Time

Last edge creation time is the time that has elapsed from the time a node has created
an edge, until the node is connected to a new edge. The intuition used here is that
this property will follow the preferential attachment model where nodes with many
edges will tend to create new edges more often, and nodes with less edges will wait
longer before creating new edges. Figure 8.14 shows the probability distribution
described by Eq. 8.14. In Eq. 8.14, g is the time gap since the last edge was created,
counted as the number of edges at each t , which had a gap g at t � 1.

In Eq. 8.14, g is the time gap since the last edge was created, Eg.x/ is the set of
edges that had a time gap x at t � 1, and EG the set of edges with all different time
gaps at t � 1.
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gt .v/ D t � maxft.e/je D .v; u/g; (8.13)

Eg.x/ D fet D .u; v/jgt�1.u/ D xg; Pg.x/ D jEg.x/j
jEGj (8.14)

We can see that all datasets, except the synthetic Barabasi dataset, conform to
a power-law distribution, where nodes that create edges often will likely continue
doing it and the longer time elapses without new edges are being attached to a
node, the less likely this will happen. This is similar to the way degree distribution
behaves. Therefore, it is not expected that using this effect will give much better
predictions when degree distribution has been already used.

Node Age Edge Creation

The preferential attachment model relies on node degree calcualtions when deciding
when to create new edges. Here we examine if there is also a temporal aspect in this
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type of attachment. The intuitive idea is that old nodes have more “experience”
within the network and therefore they are more likely to build new “relations.”

We propose calculating the mean number of edges created in proportion to a
node’s age, as shown in Eq. 8.15. The numerator is the number of edges created
with age a.4 This is then normalized with the number of nodes that have reached all
ages EA. Figure 8.15 shows the plots obtained with each of the datasets. Note that
a is counted in weeks for this plot, due to the fact that only few very old nodes are
available.

Ea.x/ D fe D .u; v/jt.e/ � t.u/ D xg; Pa.x/ D jEa.x/j
jEAj (8.15)

Figure 8.15 shows that we can fit the data of all datasets with an exponential
function with different features. ENRON and Version2 datasets have a slightly
increasing curve. The Version2 dataset is consistently increasing. This means that

4t .e/ is the time-stamp when edge e was created, and t .u/ the time-stamp when u joined the
network.
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older nodes are more likely to create new edges. Contrarily, the ENRON dataset is
generally increasing, except in the oldest nodes. This means that the older a node
gets, the more likely it will create new edges, except, if the node is among the
oldest. The HepPh dataset, on the other hand, shows a slightly decreasing behavior,
but with strong bias to oldest nodes. The intuition for this behavior is that in citation
networks, a few old seminal papers will be referenced very often, while in general
other papers will be forgotten over time (and thus receive less new edges).

The Barabasi dataset shows an almost straight line, which is what we would
expect since the model depends only on the degree.

In summary, all the previous graphs show that we can create either linear, power-
law, or exponential functions for the following probability distributions:

• P�.x/ probability of creating an edge given x possible triads between two nodes,
where x for two nodes is calculated as shown in Eq. 8.7

• Ph.x/ probability of creating an edge given the distance x between two nodes,
where x for two nodes is st .u; v/

• Pd .x/ probability of creating an edge on a given target node’s degree, where x

for a target node is Dt .v/

• Pg.x/ probability of creating an edge given the target node’s last edge creation
x, where x is the gap gt .v/ as defined in Eq. 8.13

• Pa.x/ probability of creating an edge on a given target node’s age x, where x is
the age of the target at .u/ D t � t.v/

Temporal Modeling and Experimental Results

In this section, we propose a simple linear regresion model for edge prediction that
uses the statistical features obtained from the analysis we have made on the static
network and the temporal network discussed in sections “Static Network Properties”
and “Exploring the Dynamics of the Datasets”, respectively.

The model employs the scoring function shown in Eq. 8.16, where R is a score
that indicates our degree of belief in an unobserved edge .u; v/; a higher number
indicates higher belief.

score.Gt ; v; u/ ! R: (8.16)

Each unobserved edge is described with a triplet .v; u; w/, where w is the score
and u and v are nodes. The set of predicted edges Ep is then constructed by selecting
edges with highest scores.

Temporal Link Predictor

This section introduces our novel temporal link predictor (tep). The main idea of our
predictor is to extract a ranking function from each of the probability distributions
used and then aggregate the ranking functions to produce a final score.
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Table 8.7 Probability distributions and their fit ranking functions

Actual used ranking function, �.x/

Probability distribution Ranking function ENRON Version2

Triads attachment, P�.x/ �� x�2:17 x�2:20

Distance attachment, Ph.x/ �h e�0:65x 1

Degree attachment, Pd .x/ �d x0:44 x0:48

Edge creation gap Pg.x/ �g x�1:66 x�1:54

Node age activity Pa.x/ �a e0:01x e0:01x

Note: distance attachment ranking function for Version2 is fixed to 1 because of bell-curve shape

Table 8.8 Scoring functions

Name Score-function Comments

tepam ˚am.�d ; ��; �a; �h; �g/

teprd ˚am.�d C 1

rand.n/
; ��; �h; �g/ Use randomness and degree in

target node selection.
tepa ˚am.�a; ��; �h; �g/ Use only age instead of degree.
tepad ˚am.�a C �d ; ��; �h; �g/ Use age or degree.
tepngr ˚am.�a; �d ; ��; �h; 1

rand.t/
/ Use randomness instead of last

edge creation.
teptg ˚am.�a; �d ; �� C �g; �h/ Bias towards triads or last edge

creation.
Adamic/Adar2

P
z2N.v/\N.u/

1
log Dt .z/

�a�g Added temporal for target node.

Adamic/Adar3
P

z2N.v/\N.u/
1

log.Dt .z/�a .at .z//�g .gt .z//
Added temporal for intermediate
node z.

Firstly, for each of the probability distributions that we have used, we extract
a linear ranking function, denoted �.5 Table 8.7 shows the relation between the
probability distributions and the ranking functions for each of the datasets we used
for prediction.

Secondly, we aggregated the ranking functions into a set of scoring functions.
Table 8.8 lists our proposed functions. ˚am is an aggregation function based on
the arithmetic mean and rand.x/ is a random number generator with a uniform
probability distribution. The set contains variations, where special attention was
placed to separate features or randomize a feature. Additionally our method makes
the following two modifications to the Adamic/Adar metric: (1) we apply temporal
information to the intermediate nodes, (2) we apply temporal information to the
target node only.

The main motivation of this simple model is to determine if temporal information
helps to increase overall predictor’s performance.

5This function was found using standard linear least squares method, and the pearson correlation
as fitness function between power fit and exponential fit.
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Other Predictors

In our experiments, additionally to the temporal link predictor, we use two other
models for comparison purposes: (1) a random predictor used as baseline and (2)
the Adamic/Adar measure, which received the best scores in [16].

The Adamic/Adar measure is shown in Eq. 8.17. This equation takes into account
the common neighbors of two nodes .v; u/ and the degree of the common neighbors,
weighted by an importance degree function 1

log D.z/ . We note that D.z/ � 2 and that
nodes with few neighbors are favored. N.v/ is the set of neighbors for v and D.z/
the degree of node z as previously defined.

scoreAA.v; u/ D
X

z2N.v/\N.u/

1

log D.z/
(8.17)

In [16] the Adamic/Adar measure performed the best on the chosen datasets,
when only graph-structural properties were considered.

Experimental Results

We evaluated the proposed temporal link predictor on our two datasets. However,
since our simple linear regression model was not always able to fit the actual
network data, it is expected that for some datasets, its accuraccy will be low.

We consider predicting edges a function f .Gt�1; l/ ! f.u; v/ W to appear in Gt g,
where l is the number of new edges to be predicted for Gt and Gt�1 is the graph
before time t . The experiments were performed as follows: for each t in T , a
network Gt�1 was constructed, then the set of new edges Et that will be added
to Gt was determined. Then, a the size of the set Et is used as the number of new
edges that will be predicted. Ea will represent the set of new edges actually created
between Gt�1 and Gt .

Table 8.9 shows the output of our evaluation on edge prediction using the
ENRON and Version2 datasets.

Using the tep predictor, each feature was disabled one by one, in order to evaluate
its final influence on the final results. These results are shown in Table 8.9 as
tepnofeat where feat is the name of disabled feature. A lower number here means
that a feature has more influence, and a higher number less influence, compared to
tepam, which includes all features.

It can be noticed that in general the performance obtained was poor. However,
this is consistent with the results obtained by [16], given that edge prediction is
a hard problem. The results obtained by our predictor when compared with those
obtained by the Adamic/Adar method are not consistent. For the ENRON dataset,
the performance of our method is better and for the Version2 dataset performance is
worse.
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Table 8.9 Link prediction results on ENRON and Version2 datasets.
random is the random predictor, tep is the edge predictor presented here.
Index is relative to tepam. The highlighted elements are: (1) best overall for
the dataset; (2) best tep for the dataset

ENRON Version2

Predictor Ep \ Ea % Index Ep \ Ea % Index

Random 15 0.04 0.01 968 1.41 0.14
Adamic/Adar 720 2.13 0.59 9,230 13.46 1.31
tepam 1,212 3.59 1.00 7,067 10.30 1.00
teprd 766 2.27 0.63 6,941 10.12 0.98
tepa 369 1.09 0.30 4,027 5.87 0.57
tepad 459 1.36 0.38 4,669 6.81 0.66
tepngr 344 1.02 0.28 3,162 4.61 0.45
teptg 458 1.36 0.38 4,669 6.81 0.66
Adamic/Adar2 747 2.21 0.62 4,979 7.26 0.70
Adamic/Adar3 1,381 4.09 1.14 5,707 8.32 0.81
tepnonodeage 973 2.88 0.80 6,812 9.93 0.96
tepnotriads 951 2.82 0.78 5,474 7.98 0.77
tepnodistance 1,243 3.68 1.03 7,069 10.31 1.00
tepnolastedge 1,070 3.17 0.88 7,030 10.25 0.99
tepnodegree 1,206 3.58 1.00 8,778 12.80 1.24

As a summary our results indicate the following:

• All measures used outperform the random predictor. However, the random
predictor performs better on the Version2 dataset.

• There is not big difference in which aggregation operator was used.
• Prediction precision on the Version2 dataset is higher when random features are

introduced. Random, teprd, and tepngr perform better on the Version2 dataset than
the ENRON dataset when random features are used.

• Using the distance feature �h does not show good results. It has little or worse
effect in both cases.

• The Version2 dataset is less sensitive to not including some features in our
predictor, while the ENRON dataset requires as many features as possible.

• The improvement over the Adamic/Adar method is small. However, the
Adamic/Adar method has the highest performance on both datasets.

• For the tests performed with features disabled, we determined that the most
important features are (in ranked order): (1) ENRON – triads, node age, last edge
creation, degree, and distance; (2) Version2 – triads, node age, last edge creation,
distance, and degree.

It can be noticed that in all cases, using temporal information will increase the
precision. However, a deeper analysis needs to be done to determine which method
should be used on a given network.
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Conclusions and Future Work

In this chapter, we have analyzed the robustness of centrality measures when errors
are introduced in the construction of a complex social network. Our results extend
the work performed in [5] by considering non random networks. In the replication of
Borgatti’s et al. experiments, we observed some discrepancies with our results. This
may be due to the slightly different methodologies employed. However, we obtained
the same linear predictability in the centrality measures that is described in [5].

Our experiments employed generative models of complex social networks and
one real social network. One limitation of generative models is that while the
methods for producing complex networks allow constructing networks of any size,
they do not allow constructing networks with arbitrary density.

In the second contribution of this chapter, several datasets have been analyzed
to obtain temporal and static features that were used in our model to predict edges
in a dynamic network. Our predictive model was based on simple linear regression.
The model was evaluated with two different datasets of real social networks. Our
experiments show that incorporating temporal information can improve precision in
prediction. This fact indicates that learning other temporal features may improve the
prediction furthermore.

Our prediction model only considers predicting new edges, not if some current
edges will be deleted. Changing our model to incorporate this type of prediction
may improve its performance.

In our experiments, the time T was defined as 1-day intervals, and the effect of
changing this parameter was not investigated. We splitted time into time stamps as
was done in [16]; half of the time-stamps were used for learning and the other half
for prediction. However, given the nature of the datasets at hand it could happen that
the initial construction phase of the network (that is used for learning) had different
dynamics than the establized phase (where the predictions are made). This issue
needs further investigations.

The evaluation of our edge predictor was done under the assumption that the past
behavior that was not included in the dataset will not have any effect in predictor’s
performance. In [15] it was shown that missing part of the past do not affect in
predicting the evolution of a network’s diameter.

We noticed that the random predictor performs much better in the Version2
dataset used. It is interesting to note that the Adamic/Adar predictor performs also
better on this same dataset. Contrarily, our method performs better on the ENRON
dataset. This could be an indication that the Version2 dataset is more random in its
structure than the ENRON dataset.

The simple model used in our predictor considers few correlations between
features. However, in some type of networks, features are dependent, for instance
node lifetime and the degree of the node. Other supervised machine learning
methods such as naive bayes could also be incorporated in our preditor to improve
its accuracy. Finally, we plan to apply our predictor on more datasets to obtain a
more complete characterization of its performance.
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