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Abstract—Electrochemical battery is the most widely used
energy storage technology, finding its application in various
devices ranging from low power consumer electronics to utility
back-up power. All types of batteries show highly non-linear
behaviour in terms of dependence of internal parameters on
operating conditions, momentary replenishment and a number
of past charge/discharge cycles. A good indicator for the quality
of overall customer service in any battery based application
is the availability and reliability of these informations, as they
point out important runtime variables such as the actual state
of charge (SOC) and state of health (SOH). Therefore, a
modern battery management systems (BMSs) should incorporate
functions that accommodate real time tracking of these non-
linearities. For that purpose, Kalman filter based algorithms
emerged as a convenient solution due to their ability to adapt the
underlying battery model on-line according to internal processes
and measurements. This paper proposes an enhancement of
previously proposed algorithms for estimation of the battery
SOC and internal parameters. The validity of the algorithm is
confirmed through the simulation on experimental data captured
from the lead acid battery stack installed in the real-world remote
telecommunication station.

Index Terms—Lead acid battery, Kalman filter, estimation,
state-of-charge, battery management system.

I. INTRODUCTION

Secondary (rechargeable) batteries are widely used in appli-
cations such as starting, lighting and ignition (SLI), consumer
electronic devices, vehicles and emergency and standby power
supplies. Due to relatively low price and descent character-
istics, the most prevalent technology for today’s stationary
applications is lead-acid, accounting for 69% share of the
worldwide market [1]. As the lifetime of this battery is sensi-
tive to overcharge and deep discharge, over- and under-voltage
circuits were commonly used for protection purposes in the
past [2]. However, with an expansion of control capabilities
in power electronics, multiplex battery managements systems
(BMSs) started to replace former circuits in many applications.

One of the most important tasks within the typical BMS is
a reliable real time determination of the state-of charge (SOC)
[3], [4]. SOC is essentially a ratio between the instantaneous
energy that can be depleted out of battery and maximum
energy that can be stored in it. This operational parameter can

not be directly measured and its assessment relies exclusively
on estimation. An accurate estimate facilitates efficient and
safe operation of the battery by disabling under- and over-
charge conditions.

A good overview and comparative analysis of several dif-
ferent direct and indirect methods for SOC estimation have
been performed in [5]. The indirect strategies are related to
specific measurements of SOC related parameters such as
the specific gravity (only for lead-acid batteries) and internal
resistance. The first one is a convenient way for estimating the
SOC during the discharge process but is somewhat unreliable
during charging as the there is a lag associated with incomplete
mixing of the electrolyte at moderate battery voltages. On the
other hand, the impedance spectroscopy method was found
to be more relevant for SOH estimation as internal resistance
is its most important indicator [6]. Moreover, both kinds of
these measurements were found to be quite expensive and
impractical to implement.

The ampere- or coulomb-counting method, which is based
on the capacity-scaled integration of the battery current is the
most widely used on-line direct strategy. However, it is prone
to several runtime errors related to complete dependence of
the method on the accuracy of current measurement and to
difficulty of on-line assessment of the actual battery capacity.
Also, without an accurate initial SOC, it has no chance for later
correction of the estimate [7]. Thus, in order to achieve more
resilience against the measurement uncertainty, a model of the
particular battery stack, such as the one presented in [8], can
be used for the battery open-circuit voltage (OCV) estimation,
from which the actual SOC can be utterly extracted given that
the SOC vs. OCV relationship is known. However, knowing
that the parameters of the battery model are even in the best
case extracted to a limited range of operating conditions and
that they are changing with the cycle life, it is intuitively
clear that this approach may give false results without regular
calibration.

On the other hand, real time estimation of the parameters
and states within the battery model that are otherwise difficult
to measure emerged as a potential resolution to aforemen-
tioned problems. To that end, application of the Kalman filter,

joz
Typewritten Text
This is the preprint version of the paper T. Dragicevic, S. Sucic, J. M. Guerrero "Battery state-of-charge and parameter estimation algorithm baed on Kalman filter," Proc. on IEEE EUROCON 2013, pp. 1519-1524.

joz
Typewritten Text

joz
Typewritten Text

joz
Typewritten Text



O
C

V
(S

O
C

)
iBAT,ch

-

Rch

VBAT

+
Hysteresisch

LP 
filter 

Rdis

Hysteresisdis

LP 
filter +

iBAT,dis

Fig. 1. Battery model utilized in Kalman filter.

a minimum mean-square estimator, started to gain considerable
attention for the battery SOC and state-of-health (SOH) esti-
mations [9]–[11]. Its specificity is that it optimally estimates
the states of the dynamical system described by state flow
equations and measurements that are prone to noise.

The basic version of the algorithm operates in a two-step
process:

• Prediction step - The expected output is generated based
on the underlying model where the model inputs and
previous values of the internal model states are accounted.

• Correction step - The calculated output of the model is
compared with output measurements and state estimates
are accordingly updated so as to reduce the difference.
Given that there is a number of states in the model, every
respective state estimate is updated using its associated
weight. The weight of some state estimate determines its
degree of certainty. So, the higher the weight, the estimate
is considered less accurate it is enforced to change more
in the correction step.

The variation of this kind of an algorithm was applied in
this paper as well. The paper is organized as follows. Section
II describes the battery model which is used in the Kalman
filter. Section III presents the conventional dual Kalman filter
for SOC and parameter estimation. Section IV gives the
proposal of estimation enhancement, while the experimental
results are reported in Section V. Finally, Section VI draws
the conclusion.

II. BATTERY MODEL

The first prerequisite for the practical implementation of
the Kalman filter is the existence of a convenient battery
model. Here, the model similar to the one developed in [12] is
utilized. However, in the order to distinguish the charge and
discharge parameters, two separate circuits have been used.
Moreover, due to discrete nature of the Kalman filter, the
differential equations that represent the battery dynamics have
been replaced with the difference equations. The battery model
is shown in Fig. 1, and the features of its constituent parts
are explained below. The SOC is calculated according to the
ampere-counting method as

SOCk+1 = SOCk − η
iBAT,k
CBAT

∆t, (1)

where SOCk is SOC in the previous time step, η is charg-
ing/discharging efficiency, iBAT,k is the battery current, CBAT
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Fig. 2. Typical battery terminal voltage response to a current step.

is the battery nominal capacity and ∆t is a discrete time step.
Then, for every SOC, OCV of the 24 lead acid cell battery
stack is calculated with a linear function OCV(SOC) which
was extracted in the earlier work performed by the author
[13]:

OCV (SOCk) = 0.035582 · SOCk + 47.698. (2)

The instantaneous voltage drop is accounted with separate
charge and discharge resistances, Rch and Rdis, whereas the
transient voltage drop is modelled with a combination of the
first order low pass filter (fast dynamics) and a hysteresis effect
(slow dynamics). The discrete filter can be expressed with the
following state-space representation:{

filt(iBAT,k) = Cffk

fk+1 = Affk +Bf iBAT,k.
(3)

where Af , Bf and Cf are the filter state transition matrix,
state input matrix and state output matrix respectively. The
slow dynamics are modelled with the difference equation in
which the parameter γ points the response speed, while Ahist
gives the hysteresis amplitude:

hk+1 = exp

(
−
∣∣∣∣η · iBAT,k · γ · ∆t

CBAT

∣∣∣∣)
+

(
1 − exp

(
−
∣∣∣∣η · iBAT,k · γ · ∆t

CBAT

∣∣∣∣))Ahist. (4)

The sum of all aforementioned responses gives the battery
terminal voltage which is compared to the actual voltage
measurement in the correction step:

yk = OCV (SOCk) + hk + filt(iBAT,k) −RiBAT,k. (5)

With (5), a typical battery terminal voltage response to a
current step (see. Fig. 2) can be perfectly matched, given that
the selection of associated parameters is correct.

The next step is to show how the features of the Kalman
filter can be exploited in order to accomplish the self tuning
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capability of SOC and the other parameters in presented
model.

III. KALMAN FILTER

As already stated before, the parameters of the model vary
with changes in operating conditions and with the life-cycle
of the battery. Therefore, for obtaining the correct estimate
of SOC, also the estimates of underlying model parameters
should be accurate. To that end, Plett has developed a Kalman
filter based simultaneous state and parameter estimation con-
cept in a series of three papers [14]–[16]. In his work, he split
the state and parameter estimation time-line into two frames,
where SOC was the representative of the rapidly changing
frame, while the parameters such as internal resistances and
hysteresis comprised the slowly varying frame 1. The algo-
rithm was embedded in two separate sections in order to
maintain a limited dimensions of associated state-transition
matrices, with each one of them accommodating one frame.
The basic flowchart of the algorithm is shown in Fig. 3, where
black arrows indicate the off-line design process, while the
blue arrows indicate the states and parameters flow during the
on-line operation.

The basic principle of operation is to calculate a new SOC
in every time step with the equation (1) and then to adapt
it according to (5), using the momentary estimates. Finally,
the slowly varying parameters are updated as well using the
previous estimate of SOC, as they would remain constant if
new SOC estimate is used.

A detailed overview of the process flow within the dual
Kalman filter is shown in Fig. 4, while the underlying calcu-
lation is depicted in the set of equations from (7) to (21). One
can note that the subscript − in the set of equations indicates
the value of the estimate during an intermediate step, while
the subscript + indicates its the final value. These equations
can be linked with the battery model shown in Fig. 1. So, the
momentary SOC estimate is contained in the xk variable. The
parameter vector is Θ, and it contains the current estimates of
internal resistances, the hysteresis amplitude and the hysteresis
time constant:

Θ = [RchRdisAhist γ]. (6)

1The meaning of the term frame is related to the speed of parameter
adaptation.

Process update
(SOC)

Measurement 
correction

(SOC)

Process update
(parameters)

Measurement 
correction

(parameters)

SOC+
k-1

SOC+
k

Θ-
k SOC-

k VoltagekCurrentk

Θ+
k

Θ+
k-1

Currentk-1

∑+
SOC,k-1

∑+
SOC,k

∑+
Θ,k-1

∑+
Θ,k

Fig. 4. Block diagram of the dual extended Kalman filter. Here, the black
lines represent the flow of parameters and SOC estimates, while the red lines
represent covariances.

The function that incorporates the coulomb counting is
f(xk, uk,Θk), while g(xk, uk,Θk) calculates the battery ter-
minal voltage according to (5). The variable uk comprises
the battery current iBAT,k. Apart from propagation of the
estimates, also the associated covariances, Σxk

and ΣΘk
, are

updated in every time step. They are used for calculation of
the respective Kalman gain matrices, shown in equations (16)
and (19) respectively.

A step by step evaluation of the procedure is as follows.
Given the initial values of SOC and other model parameters,
represented in (10) and (11), the parameter transition was
chosen as the first step (see equation (12)). There, the regular
time update was omitted due to in-existence of predictable
variations of the parameters. So, in order to accommodate
the slow parameter variation, only the parameter uncertainty
was included by adding a covariance matrix Σr, which is
driven by the independent noise rk. This step is followed by
the SOC time-transition step, shown in (14), and associated
calculation of the SOC covariance from (15). In this case,
apart from adding the associated covariance matrix Σω , the
overall covariance calculation also includes the algebra with
the state transition matrix Ak−1.

The last two steps, termed as states and parameters mea-
surement updates, comprise the actual adaptation of the pa-
rameters. In these steps, first the corresponding Kalman gains
are computed and then they are used for the adaptation of SOC
and other parameters in order to decrease the error between
the measurement of the battery terminal voltage and the output
of the battery model.

The duality of Kalman filter implies a careful integration
of the equations from both frames into a single filter. The
order of execution of equations arising from both frames must
be set so that the adaptation of SOC and parameters takes
place without mutual infighting. As both adaptations occur on
a principle of tuning the model according to the measured
output, change of SOC in one way may induce the change of
parameters to the other way, if designed incorrectly. Therefore,
the correction step of SOC was given a priority over parameter
correction. Moreover, in order to further decouple the dual
tuning procedure, the adaptation of parameters was set to take



place using the calculation with the SOC estimate from the
previous step.

SUMMARY OF THE DUAL KALMAN FILTER

Process description:
xk+1 = f(xk, uk,Θk) + ωk, Θk+1 = Θk + rk (7)

and
yk = g(xk, uk,Θk) + vk, dk = g(xk, uk,Θk) + ek (8)

The state matrices are obtained via linearisation :

Ak−1 =
∂f(xk−1, uk−1,Θ

−
k )

∂xk−1
, Cxk =

∂g(xk, uk,Θ
−
k )

∂xk
,

CΘ
k =

∂g(x−k , uk,Θ)

∂Θ
(9)

Initialization:

Θ+
0 = E(Θ0), ΣΘ+

0
= E[(Θ0 − Θ+

0 )(Θ0 − Θ+
0 )T ] (10)

x+
0 = E(x0), Σx+

0
= E[(x0 − x+

0 )(x0 − x+
0 )T ] (11)

Calculation procedure:
P1: Parameters time update

Θ−
k = Θ+

k−1 (12)

ΣΘ−
k

= ΣΘ+
k−1

+ Σr (13)

S1: State time update

x−k = f(x−k−1, uk−1,Θ
−
k ) (14)

Σx−
k

= Ak−1Σx+
k−1

ATk−1 + Σω (15)

S2: State measurement update

Lxk = Σ−
x,k(Cxk )T [CxkΣ−

x,k(Cxk )T + Σv]
−1 (16)

x+
k = x−k + Lxk[yk − g(x−k , uk,Θ

−
k )] (17)

Σ+
x,k = (I − LxkC

x
k )Σ−

x,k (18)

P2: Parameters measurement update

LΘ
k = Σ−

Θ,k(CΘ
k )T [CΘ

k Σ−
Θ,k(CΘ

k )T + Σe]
−1 (19)

Θ+
k = Θ−

k + LΘ
k [yk − g(x−k , uk,Θ

−
k )] (20)

Σ+
Θ,k = (I − LΘ

k C
Θ
k )Σ−

Θ,k (21)

After the representation of equations of the dual Kalman fil-
ter, one should note that this Kalman filter should incorporate
the term Extended as the model of the system which is tracked
is non-linear due to transient hysteresis term. Therefore, as
the Kalman filter in this form implies linear state transitions,
some of the equations must be linearised, as shown in (9).
Having in mind that the linearisation of the first and second
term is straightforward (The function f(xk, uk,Θk) essentially
describes the coulomb counting and its derivative over SOC is
equal to unity. On the other hand, the function g(xk, uk,Θk)
describes the battery terminal voltage. As the only variable
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Fig. 5. Illustration of rapid changes in battery charging current that impact
the internal resistance term (This excerpt correspond to around 8h and 45
minutes from Fig. 7).

dependant on SOC is OCV, having a linear dependence, the
associated derivative is constant and indicates the slope of the
OCV vs. SOC curve), only the derivative of g(xk, uk,Θk)
along the Θ requires somewhat tedious algebra:

dg(xk, uk,Θ)

dΘ
=
∂g(xk, uk,Θ)

∂Θ
+
∂g(xk, uk,Θ)

∂xk

dxk
dΘ

, (22)

where the derivation of g along xk is always equal to unity
while

∂g(xk, uk,Θ)

∂Θ
= [−icharge − idischarge 0 0] (23)

and
dxk
dΘ

=
∂f(xk−1, uk−1,Θ)

∂Θ
+
∂f(xk−1, uk−1,Θ)

∂xk−1

dxk−1

dΘ
.

(24)
If the term exp

(
−
∣∣∣η·iBAT,k·γ·∆t

CBAT

∣∣∣) from (4) is replaced with
Fik, the partial derivative of f along the parameter vector Θ
may be expressed as follows:

∂f(xk−1, uk−1,Θ)

∂Θ
=[

0 0 (1 − Fik−1) (Ahist − hk−i)

∣∣∣∣η · iBAT,k∆t

CBAT

∣∣∣∣Fik−1

]
. (25)

The final part of the derivative term may be obtained by
calculating

∂f(xk, uk,Θ)

∂xk−1

dxk−1

dΘ
= Fk−1

dxk−1

dΘ
. (26)

IV. ENHANCEMENT OF THE INTERNAL RESISTANCE
ESTIMATION

The process described in the previous section implies the
use of covariances which are calculated according to the actual
system conditions. So, the first two columns of vector CΘ

k

contain the momentary charge and discharge currents. This
vector is then included into the formula (19), where the
corresponding Kalman gain vector is calculated. The values
of respective elements within this vector actually determine
the extent to which each of the elements in Θ−

k is altered
when the correction step of (20) is applied. If the covariance
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calculation is left to the natural evolution of the algorithm,
an external influence on the propagation of parameter values
is not possible. In this case, they are altered automatically,
without respect to battery conditions in which the terminal
voltage changes may depend predominantly on a certain
set of parameters. Therefore, the enhancement of the dual
Kalman filter is related with application of external tuning
of corresponding elements within the CΘ

k vector.
More specifically, in order to make use of the knowledge

related to dynamic battery behaviour in pulsed current con-
ditions, the automatic self-tuning of the elements associated
with internal resistances within the parameter Kalman gain
vector is proposed. To that end, one may recall the typical
shape of the battery terminal voltage transient which follows
the current step. As recalled from Fig. 2, it consists of an
instantaneous voltage drop and a transient voltage term that
can be considered to consist of a number of exponential terms
with different time constants. In this case, the theoretical
transient voltage is designed to consist of three different
terms; i.e. the instantaneous term, the fast transient and a slow
transient. First two of them are accommodated by the internal
resistance and discrete low pass filter respectively, while the
latter is based on the hysteresis effect described by equation
(4).

The proposed enhancement is based on the exploitation of
the fact that instantaneous voltage change followed by the
battery current step change depends exclusively on internal
resistance. So, if the step occurs during the charging period,
momentarily voltage drop is associated with Rch, and with
Rdis if it occurs during the discharging. To that end, unlike
having the charging and discharging current as the first two
elements in CΘ

k vector, these elements are artificially increased
once the pulse currents are detected. This feature is achieved
by the application of a linear discrete filter that has the same
structure such as the one used for emulating fast voltage
transients (see (3)). However, here it is used for instantaneous
increase of the corresponding element in the CΘ

k vector so as to
increase the associated Kalman gain as well. As the filter was
tuned to have a zero dc gain, its response decays exponentially
with the time that follow the initial current step. In order to
perform the enhancement, the first two elements of equation
(23) were reformulated as follows:
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Fig. 7. Comparison of measured voltage response and the output of dual
extended Kalman filter with performance enhancer.
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Fig. 8. Self-tuning of the battery internal discharging resistance.

{
abs (sign(icharge)) + 5 · ftch
−abs (sign(idischarge)) − 5 · ftdis

(27)

where ftch and ftdis were calculated as:

{
ftch,k = 0.4ftch,k + abs(iBATch,k − iBATch,k−1) > 0.5

ftdis,k = 0.4ftdis,k + abs(iBATdis,k − iBATdis,k−1) > 0.5.
(28)

An example of rapid changes (with amplitude more than
0.5 A) of the battery charging current and its impact on the
first element in CΘ

k vector is shown in Fig. 5. This result came
as the validation of the Kalman filter on experimental battery
measurements in a real industrial environment. The rest of
results are presented in the next section.

V. SIMULATION RESULTS

First, the version of the dual extended Kalman filter without
the proposed enhancement has been implemented in the lab
and was tested on the previously experimentally recorded
discharge and charge voltage curves (see [13]).

The corresponding tracking of the SOC is shown in Fig.
6. A good behaviour of the algorithm can be explained
by the relatively static environment in which the test has
been performed. Thus, the limited variation of the parameters
allows for an accurate SOC estimation even, as the covariance
matrices are kept at a relatively low value.

On the other hand, the Kalman filter expanded with an inter-
nal resistance enhancer was tested on the battery data recorded
in the real remote telecommunication station. The station is
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supplied exclusively by RESs, i.e. two wind turbines and a PV
array. Therefore, the environment in which the battery operates
was rather turbulent from electrical point of view. There, the
frequent current steps were caused by the combined effect of
wind gusts, PV array cloud shadowing and a non-constant load
profile. Developed filter applied to a single day of experimental
data showed a very good measurement tracking, as shown in
Fig. 7. The algorithm was tracking the instantaneous changes
in the total battery current and produced the corresponding
changes in the internal resistance covariation matrix. So, every
time when the current change within one second surpassed
the value of 0.5 A, the instantaneous rise of the gain followed
by its exponential decay appeared in the respective matrix,
causing the faster convergence of the instantaneous charging
resistance value. see Fig. The effect is specifically accentuated
during the 8th and 12th hour, as seen in Fig. 8.

The filter was also tested on a larger time horizon, which
was more indicative for the correctness of the SOC estimation.
So, the estimate of the battery terminal voltage and battery
OCV during one week of the operation is shown in Fig. 9,
while the corresponding evolution of SOC is shown in Fig.
10.

VI. CONCLUSION

This paper was focused on the development of reliable
SOC and battery parameter estimation algorithm. For that
purpose, a dual extended Kalman filter has been selected
due to possibility of obtaining very precise tracking with
measurements of only electrical quantities. The algorithm was

embedded in Matlab and was tested on previously performed
experimental tests, showing a good tracking given that the
initial conditions for parameters were set close to the actual
ones. However, the selection of the gain in the state transition
matrix for the internal resistance estimation proved to be
difficult due to overlap with the hysteresis parameter. On
the other hand, once subjected to a turbulent environment of
the RES based remote telecommunication facility, the rapidly
changing battery current was used as the trigger to increase
the respective gains in the parameter covariance matrix. In this
way, it was ensured that internal resistances always converge
to correct values following any significant current step.
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