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Abstract—A method for order reduction of switched 
controllers is presented in this paper. The proposed technique 
is based on the generalized gramian framework for model 
reduction and it is the carry-over of the method in [20] and [9]. 
To the best of our knowledge, there is no other reported result 
on switched controller reduction in the literature. The method 
is an LMI-based technique in which to avoid numerical 
instability and also to increase the numerical efficiency, 
generalized gramian based Petrov-Galerkin projection is 
constructed instead of the similarity transform approach for 
reduction. The stability of the closed-loop system   under 
arbitrary switching signal is proven to be preserved in the 
reduction and the technique is applicable to both continuous 
and discrete time systems.  The performance of the proposed 
method is illustrated by numerical example. 

I. INTRODUCTION 
HE ever-increasing need for accurate mathematical 
modeling of physical as well as artificial processes for 

simulation and control leads to models and controllers of 
high complexity. This problem demands efficient 
computational prototyping tools to replace such complex 
models/controllers by an approximate simpler 
model/controller, which are capable of capturing dynamical 
behavior and preserving essential properties of the complex 
one. Due to this fact model reduction methods have become 
increasingly popular over the last two decades [1],[2],[3]. 
Such methods are designed to extract a reduced order state 
space model that adequately describes the behavior of the 
system in question. 

In particular, there are several reasons for the preference 
of low order controllers rather than higher order ones which  
usually appear when dealing with practical large-scale 
models. A low-order controller for a large scale system 
brings ease of implementation.As opposed to a high-order 
controller that might require expensive or complicated 
hardware; the low-order controller requires less complicated 
and more easily available hardware to implement, to fix and 
to understand. Low-order controllers are computationally 
less demanding. The effects of computational delay due to 
the complexity of the controller on the stability and 
performance of the closed loop decrease when low order 
controllers are used instead of the one of high order. 
Therefore the problem of controller order reduction gained 
considerable attention in recent years [7]-[10]. 
On the other hand, most of the methods that are proposed so 
far for control and analysis of hybrid and switched systems 
suffer from high computational burden when dealing with 
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large-scale dynamical systems. Because of the weakness of 
nonlinear model reduction techniques and also pressing 
needs for efficient analysis and control of large-scale 
dynamical hybrid and switched systems, model reduction 
draws  lately attentions of the hybrid systems research 
community [15]-[24]. Some works have been focused on 
ordinary model reduction methods that have potential 
applications in modeling and analysis of hybrid systems 
[15]-[19] motivated by reachability analysis and safety 
verification problem.  Some researches address the problem 
of model reduction of switched and hybrid systems directly 
[20]-[24]. Among those, the generalized grammian 
framework for model reduction of switched systems is 
proposed in [20] which gives the base for our method for 
switched controller reduction in this paper.  
This method can be categorized as SVD based model 
reduction methods.  Balanced model reduction is one of the 
most common SVD-based model reduction schemes. It was 
presented in [4] for the first time. 

To apply balanced reduction, first the system is 
represented in a basis, where the states, which are difficult to 
reach are simultaneously difficult to observe. This is 
achieved by simultaneously diagonalizing the reachability 
and the observability gramians, which are solutions to the 
reachability and the observability Lyapunov equations. 
Then, the reduced model is obtained by truncating the states 
which have this property. Balanced model reduction method 
is modified and developed from different viewpoints [1],[2]. 
Generalaized grammian based reduction method is one of 
the technique that are developed based on balanced model 
reduction which uses the generalized gramians instead of 
gramians[5]. In this method in order to compute the 
generalized gramians, one solves Lyapunov inequalities 
instead of Lyapunov equations. This method is also used to 
devise a technique for structure preserving model reduction 
methods in [6]. 
To the best of our knowledge, there is no reported result on 
switched controller reduction in literature. In this paper we 
propose a technique for switched controller reduction which 
can be considered as a carry-over of the method in [20] and 
[9].The method is an LMI-based technique. We modified the 
original method in [5] to avoid numerical instability and also 
to achieve more numerical efficiency by building Petrov-
Galerkin projection based on generalized gramians. We 
generalized the framework to switched controller reduction 
by solving systems of Lyapunov inequalities to find 
common generalized gramians.  
The paper is organized as follows: In the next section we 
review balanced reduction method and balanced reduction 
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technique based on generalized gramian. Section III presents 
how generalized gramian based method can be applied to 
switched controller reduction problem followed by some 
remarks on numerical implementation of the algorithm and 
using projection for generalized gramian based reduction 
method is suggested instead of balancing and truncation. 
Section III ends up with a brief discussion on stability, 
feasibility and an error bound. Section IV presents our 
numerical results.  

The notation used in this paper is as follows: *M denotes  
transpose of matrix if n mM ×∈  and complex conjugate 

transpose if n mM ×∈ . The norm .
∞

denotes the H∞ , 
norm of a rational transfer function. The standard notation 

, ( , )> ≥ < ≤ is used to denote the positive (negative) definite 
and semidefinite ordering of matrices. 

II. BALANCED TRUNCATION , GENERALIZED GRAMIANS 
AND MODEL REDUCTION OF SWITCHED SYSTEMS  

 Balanced truncation is a well-known method for model 
reduction of dynamical systems, see for example [1],[2].The 
basic approach relies on balancing the gramians of the 
systems. For dynamical systems with minimal realization: 

                      ( ) : ( , , , )G s A B C D=                                (1) 
where  ( )G s  is transfer matrix with associated state-space 
representation: 

  
( ) ( ) ( ), ( )
( ) ( ) ( )

nx t Ax t Bu t x t
y t Cx t Du t

⎧ = + ∈
⎨

= +⎩
            (2)                                 

 gramians are given by the solutions of the Lyapunov 
equations: 

                        
* *

* *

0
0

AP PA BB
A Q QA C C

+ + =

+ + =
                           (3) 

For stable A , they have a unique positive definite solutions 
P  and Q  , called the controllability and observability 
gramians. In balanced reduction, first the system is 
transformed to the balanced structure in which gramians are 
equal and diagonal: 

                           
11

1

( ,..., )
qk q k

q

j
j

P Q diag I I

k n

σ σ

=

= =

=∑
               (4)                        

where 1i iσ σ +> and they are called Hankel singular values. 
  The reduced model can be easily obtained by truncating the 
states which are associated with the set of the least   Hankel 
singular values. Applying the method to stable, minimal 
realization ( )G s , If we keep all the states associated to 

(1 )m m rσ ≤ ≤ , by truncating the rest, the reduced model 
( )rG s will be minimal and stable and satisfies[1][2]: 

                            
1

( ) ( ) 2
q

r j
j r

G s G s σ
∞

= +

− ≤ ∑                     (5) 

 One of the closely related model reduction methods to the 

balanced truncation is balanced reduction based on 
generalized gramian that is presented in [5]. The following 
Proposition allows us to develop generalized version of 
different geramian based reduction methods as we did in 
[20] for frequency domain balanced reduction within 
frequency bound.      

Proposition 1: Suppose A is stable and X is a solution of 
Lyapunov equation: 
                           * 0A X XA Q+ + =                               (6) 

where 0Q ≥ . If a symmetric gX satisfies: 

                               * 0g gA X X A Q+ + ≤                         (7)                

Then: gX X≥ . 
Proof: see [5] or [20]. 
 
In gerealized gramian based  balanced method, instead of 
Lyapunov equations (3), the following Lyaponuv inequalies 
should be solved: 

                             
* *

* *

0

0
g g

g g

AP P A BB

A Q Q A C C

+ + ≤

+ + ≤
                       (8) 

For stable A , they have positive definite solutions gP  

and gQ , called the generalized controllability and 
observability gramians. Note that these gramians are not 
unique. The rest of this model reduction method is the same 
as the aforementioned balanced truncation method, the only 
difference is that in this algorithm the balancing and 
truncation are based on generalized gramian instead of 
ordinary gramian. In this method we have generalized 
Hankel singular values ( iγ ) which are the diagonal elements 
of balanced gerealized gramians instead of Hankel singular 
values iσ which are the diagonal elements of balanced 
ordinary gramians. For the error bound also the same result 
holds but in terms of  the generalized Hankel singular values   
instead of  Hankel singular values. It is worth to mention 
that , i iγ σ≥ . Therefore the error bound in balanced 
reduction based on generalized gramian is greater equal than 
the error bound in ordinary balanced model reduction.   
In order to develop this technique for model reduction of 
switched systems one solves a system of Lyapunov LMI to 
find common observability/controllability  generalized 
gramian  of subsystems and build balancing transformation 
based on these generalized gramians[20].  
This reduction framework is stability preserving. In other 
words, the reduced order switched system is stable under 
arbitrary switching signal [20]. In the next section we try to 
develop this method for switched controller reduction. 

III. SWITCHED CONTROLLER REDUCTION METHOD  
In this section we present a method for switched 

controller reduction followed by a brief discussion on 
modifications in numerical implementation of the algorithm. 
In the last subsection we elaborate more on the method 



 
 

 

( )K sσ

 
w  

y u

( )G sσ  z  

studying stability, feasibility and approximation error.  

A. Generalized Gramian Framework for Switched 
Controller Reduction 
 
One of the most important subclasses of hybrid systems 

are Linear switched systems. Linear switched system is a 
dynamical system specified by the following equations: 

  

               ( ) ( )

( ) ( )

( ) ( ) ( )
:

( ) ( ) ( )
t t

t t

x t A x t B u t
y t C x t D u t

σ σ

σ σ

= +⎧⎪∑ ⎨ = +⎪⎩
 (9)                       

where ( ) nx t ∈ is the continuous state, ( ) py t ∈ is the 

continuous output, ( ) mu t ∈  is the measurable input, and 
0:σ ≥ → Κ ⊂ is the switching signal that is a piecewise 

constant map of the time. Κ is the set of discrete modes, and 
it is assumed to that it is finite. For each i ∈ Κ , 

iA , iB , iC , iD are matrices of appropriate dimensions.  
Consider a general switched system with switched 

controller in the following closed loop configuration (see 
Fig. 1.)   

 
 
 

 
 
 
 
 
 

Fig. 1.  Closed loop Switched System with Switching Controller 
 
 
In this configuration ( ) : ( , , , )G s A B C Dσ σ σ σ σ=  is n -th 
order switched system and ( ) : ( , , , )k k k kK s A B C Dσ σ σ σ σ= is 
m -th order switched controller. The transfer matrix from 
w  to z is: 
                           : ( , , , )zwT A B C Dσ σ σ σ=                      (10) 

where: 
 

2 2 2

2 22

k k

k k k k

A B L D C B L C
A

B F C A B F D C
σ σ σ σ σ σ σ σ

σ
σ σ σ σ σ σ σ σ

+⎡ ⎤
= ⎢ ⎥+⎣ ⎦

        (11) 

 
 

1 2 21

21

k

k

B B L D D
B

B F D
σ σ σ σ σ

σ
σ σ σ

+⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                                          (12) 

1 12 2 12[ ]k kC C D D F C D L Cσ σ σ σ σ σ σ σ σ= +                      (13) 

11 12 21kD D D D F Dσ σ σ σ σ σ= +                                           (14) 
1 1

22 22( ) , ( )k kL I D D F I D Dσ σ σ σ σ σ
− −= − = −                    (15) 

Note that in the above configuration switched 
plant ( )G sσ is partitioned where inputs to 1B σ  are the 

disturbances, inputs to 2B σ are the control inputs, output of 

1C σ  are the errors to be kept small, and outputs of 2C σ  are 
the output measurements provided to the controller. 
The goal is to reduce the controller in the way that the 
closed-loop behavior is preserved as much as possible 
without sacrificing the stability of the original switched 
closed loop system. To do this, we develop generalized 
grammian framework for switched controller reduction 
which is inspired by the method in [9] which was proposed 
for controller reduction of linear dynamical systems.  
The procedure is similar to generalized gramian 
framework for model reduction of switched system. In the 
first step one should find common generalized grammian 
for closed loop switched system. In other words we have 
to solve: 

                
* * 0cg cgA P P A B Bσ σ σ σ

σ

⎧ + + <⎪
⎨
∀ ∈ Κ⎪⎩

                   (16) 

and also 

                    
* * 0og ogA Q Q A C Cσ σ σ σ

σ

⎧ + + <⎪
⎨
∀ ∈ Κ⎪⎩

            (17) 

to find the common generalized controllability and 
observability gramian respectively. Due to the fact that we 
are interested in the reduction of controller in our 
framework, we should find  generalized gramians that 
have the following structure: 

                      1 2( , ) 0cgP diag P P= >                      (18) 

                      1 2( , ) 0ogQ diag Q Q= >                    (19) 

where  2P and 2Q  are simultaneously balanceable and the 
are compatible to the order of the switched controller.  
This can be done by solving Lyaponuv linear matrix 
inequities using common LMI solvers.  
The last step of the framework is to reduce the controller 
by balanced truncation of each sub-controllers based on 

2P and 2Q .  
 

B. Numerical Issues and the Algorithm 
The last step of our framework is to apply balanced 
truncation on controllers. Balanced transformation can be 
ill-conditioned numerically when dealing with the systems 
with some nearly uncontrollable modes or some nearly 
unobservable modes. Difficulties associated with 
computation of the required balanced transformation in 
[11] draw some attentions to devise alternative numerical 
methods[12]. Balancing can be a badly conditioned even 
when some states are much more controllable than 
observable or vice versa. It is advisable then to reduce the 
system in the gramian based framework without balancing 
at all. Schur method and Square root algorithms provides 
projection matrices to apply balanced reduction without 
balanced transformation[1],[12]. This method can be 
easily applied to other gramian based method. In our 
generalized method for controller reduction we use the 



 
 

 

same algorithm by putting generalized gramians 2P and 2Q  
into the algorithm instead of ordinary gramians. In order to 
improve the numerical algorithm we use Petrov-Galerkin 
projection to reduce switched controller.  
Petrov-Galerkin projection for a dynamical system[1]: 
 

        
( ) ( ( ), ( )) ,
( ) ( ( ), ( ))

nx t f x t u t x
y t g x t u t

⎧ = ∈
⎨

=⎩
          (20) 

 
is defined as a projection *VWΠ = , where: 
* , , ,n k

kW V I V W k n×= ∈ < . 
The reduced order model using this projection is: 

               
*ˆ ˆ ˆ( ) ( ( ), ( )) ,

ˆ( ) ( ( ), ( ))

kx t W f Vx t u t x
y t g Vx t u t

⎧ = ∈⎪
⎨

=⎪⎩
 (21) 

In order to avoid numerical bad conditioning and also to 
increase the efficiency we use Schur or square root 
algorithm instead of balancing and directly Petrov-Galerkin 
projection matrices can be computed to reduce the switched 
controller. 

 
 

C. Stability, feasability and Approximation Error  
 
One of the important issues in model/controller reduction 

is preservation of the stability. In other words, the question 
is if the reduction technique method can preserve the 
stability of the original model in approximation. In the 
following proposition we show that the proposed framework 
for switched controller reduction is a stability preserving 
model reduction method that is ,it preserves the stability of 
the original closed loop system under arbitrary switching.  

 
Proposition 2. If the closed loop system described by 

(10)-(15) is stable, the closed-loop system with reduced 
switched controller resulting from the proposed algorithm is 
guaranteed to be quadratic stable. 

 
Proof:  
In the proposed method for original closed loop system, 

we have:  
* * 0cg cgA P P A B Bσ σ σ σ

σ

⎧ + + <⎪
⎨
∀ ∈ Κ⎪⎩

 

where: 1 2( , ) 0cgP diag P P= >  
Equivalently we have: 

*
2 2 1 1 2 2

*
1 2 21 1 2 21

( ) ( )

( )( ) 0
k k

k k

A B L D C P P A B L D C

B B L D D B B L D D
σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

+ + + +

+ + <
   (22) 

and 
*

22 2 2 22

*
21 21

( ) ( )

( )( ) 0
k k k k k k

k k

A B F D C P P A B F D C

B F D B F D
σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ

+ + + +

<
(23) 

On the other hand, from our reduction framework for 

switched controller using Petro-Galerkin projection we 
have: 

  
                     * , , ,n k

kW V I V W k n×= ∈ <                 (24) 
* *ˆ ˆˆ ˆ: ( , , , )r k k k k k k k kK A W A V B W B C C V D Dσ σ σ σ σ σ σ σ= = = =  

which rK is projected switched controller (reduced order 
controller). The outcome of Square root algorithm for 
projection[1]: 

                                  2 1

2 1

PW V
Q V W

= Σ
= Σ

                               (25) 

where 1
k k×Σ ∈ is diagonal and positive definite. We 

know from (23): 
*

22 2 2 22( ) ( ) 0k k k k k kA B F D C P P A B F D Cσ σ σ σ σ σ σ σ σ σ+ + + <  
 
which implies:  

              
*

22 2

*
2 22

(( )

( ) ) 0
k k k

k k k

W A B F D C P

P A B F D C W
σ σ σ σ σ

σ σ σ σ σ

+ +

+ <
                 (26) 

On the other hand using (25) and then (24) we have, 
 
* *

22 2 2 22
* * *

22 2 2 22
* * *

22 1 1 22
* *

22 1
* * *

1 22

(( ) ( ) )

( ) ( )

( ) ( )

( )

( )

k k k k k k

k k k k k k

k k k k k k

k k k

k k k

W A B F D C P P A B F D C W

W A B F D C PW W P A B F D C W

W A B F D C V V A B F D C W

W A V W B F D C V

W A V W B F D C V

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ σ

σ σ σ σ σ

σ σ σ σ σ

+ + +

= + + +

= + ∑ + ∑ +

= + ∑ +

∑ +
*

22 1 1 22
ˆ ˆ ˆ ˆˆ ˆ( ) ( )k k k k k kA B F D C A B F D Cσ σ σ σ σ σ σ σ σ σ= + ∑ + ∑ +

 

Hence: 
               

*
22 1 1 22

ˆ ˆ ˆ ˆˆ ˆ( ) ( ) 0k k k k k kA B F D C A B F D Cσ σ σ σ σ σ σ σ σ σ+ ∑ + ∑ + <  (27)                 

where  1
k k×Σ ∈ is positive definite.  

Similar to (11) for the closed-loop system with reduced 
switched controller we have: 

2 2 2

2 22

ˆˆ

ˆ ˆˆ ˆ
k k

r

k k k k

A B L D C B L C
A

B F C A B F D C
σ σ σ σ σ σ σ σ

σ

σ σ σ σ σ σ σ σ

⎡ ⎤+
= ⎢ ⎥

+⎢ ⎥⎣ ⎦
      (28) 

 
It is easy to see from (22) and (27) that for 

1 1( , )P diag P= ∑ we have: 

                      * 0r rA P A Pσ σ+ <                                (29) 

Note that P is positive definite. Therefore *x Px is the 
common quadratic Lyaponuv function for the closed loop 
switched system with reduced controller.   

In stability theory for switched system it is well-known 
sufficient condition for quadratic stability [13].Hence, 
reduced order model is guaranteed to be quadratic stable.  

 
 

 
 
  



 
 

 

 
  
The same results hold, if we use balancing transformation 

instead of projection. The proof is straightforward and it is 
just based on the fact that for any matix 0M ≤ , all its 
leading square diagonal blocks are negative semidefinite.  

As we can see, the presented framework for model 
reduction of switched system is stability preserving model 
reduction method. The error of approximation for each 
subsystem of the closed-loop switched system is bounded 
and it is given in terms of generalized Hankel singular 
values of the controller. This is the direct result of the 
theorem in [9] for linear controller reduction.   

The system of LMIs in our framework is said to be 
feasible if a common generalized grammian exists. In 
general existence of a common lyapunov function is not 
guaranteed for switched systems [13], therefore we can not 
expect to have common generalized grammian for all linear 
switched controllers. One way to improve the feasibility of 
the proposed controller reduction method is to use recently 
proposed extended notion of generalized grammian which is 
called extended grammian [14].    

IV. NUMERICAL EXAMPLE 
In this section we have applied the proposed method for 
reduction of two switched linear controllers. The first 
example is a switched controller of order 5 and the second 
one is of order 20.  

A. Fifth Order Switched controller: 
We consider a randomly generated switched linear of the 
form (9) for which we have: 

1

3.3428 0.7766 0.1894 0.5820 1.5424
0.7766 1.2319 0.3043 0.3098 0.2189
0.1894 0.3043 0.4807 0.0478 0.3770

0.5820 0.3098 0.0478 0.7472 0.6891
1.5424 0.2189 0.3770 0.6891 1.9965

A

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

2

-0.6905  0.8334 -0.8545 -1.316 0.1195
-1.113 -0.7869 -1.917 -0.455 1.335
0.748 1.968 -0.7385 -0.1609 -0.0892

-0.8108 0.5693 0.00355 -4.924 -2.485
-0.8452 -1.418 0.2512 -2.278 -1.872

A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1

0 0.5581
0.1024 0
1.8490 -1.0816
1.1762 0.0374
0.2678 -1.5963

B

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 
2

1.543 -0.3838
-1.931 0.2474

0 0
-0.3468 -0.05512
-0.1662 -0.5688

B

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

1

-0.2914 0.0921 -0.2622 -0.4689 -2.0424
0.8185 -0.4314 0 -1.2311 0

C ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

2

-1.78 0 0 0.1578 -0.04066
0.9576 1.125 0 1.059 0

C ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 

1

0 -0.2468
0.2342 0.9183

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

,
2

0 0.208
0.3414 -1.024

D
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

A switched bimodal stabilizing H2 optimal controller 
( ) : ( , , , )k k k kK s A B C Dσ σ σ σ σ= is synthesized for the above 

switched system according to the Fig. 1. for which we have: 
 

1

-0.09566 0.1983 1.476 0.9568 9.094
4.643 2.1 2.024 0.07586 7.579
16.89 3.821 6.688 3.009 32.88
11.72 2.181 5.018 1.812 21.85
0.362 0.222 1.103 2.497 8.707

kA

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥

− −⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

 

2

13.98 1.753 0.8545 5.245 0.5049
6.806 2.233 1.917 2.626 1.544
12.42 0.2864 0.7385 2.905 0.2101
3.915 0.9486 0.00355 4.263 2.563
9.733 0.8385 0.2512 0.9021 2.086

kA

− − −⎡ ⎤
⎢ ⎥− − −⎢ ⎥
⎢ ⎥= − −
⎢ ⎥
− − −⎢ ⎥

⎢ ⎥− − − −⎣ ⎦

 

1

0.7196
1.371
6.89
3.92

0.5589

kB

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥= −
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎣ ⎦

2

2.299
1.285
1.495
0.3372
0.5148

kB

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
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Fig. 2 shows the decay rate of the generlized Hankel 
singular values of the switched controller. It is clear from 
Fig. 2 that reduction of the controller to the fourth order 
switched controller should provide with accurate results.   
   The step response of the original closed loop system and 
closed loop system with reduced order controller of order 4 
associated to randomly generate switching signal of Fig.3 is 
presented in Fig. 4.  
We reduce the controller as much as possible i. e. to a first 
order switched controller. The step responses of the original 
closed loop system and the closed loop system with first 
order switched controller are shown in Fig. 5. These step 
responses are also associated to switching signal shown in 
Fig. 3.  
According to Fig. 2 it was expected to have less accurate  
results in this case because too much input/output 
information are lost by omitting 4 states of the switched 
controller.   

 
Fig. 2.  Generalized Hankel Singular Valuse( iγ ) 



 
 

 

 
Fig. 3.  Randomly generated switching signal 

 

 
Fig. 4.  Step response of original closed loop system(solid line) and the the 
closed loop system with the reduced switched controller of order 4(dotted). 

 
Fig. 5.  Step response of original closed loop system(solid line) and the the 
closed loop system with the reduced first order switched controller(dotted). 
 
 

B. Bimodal Switched controller of order 20: 
We consider a randomly generated bimodal switched linear 
system of order 20. Similar to the previous example, we 
designed a switched bimodal stabilizing H2 optimal 
controller for the system. The switched controller is of order 
20 with the generlized Hankel singular values which are 
shown in Fig. 6. It is clear from Fig. 6 that most of the 
input/output behavior information are embedded in the first 
two states of the controller. We expect that reduction of the 
controller to the second order switched controller should 
provide us with accurate results.   
The step response of the original closed loop system and 
closed loop system with reduced second order switched 
controller associated to randomly generate switching signal 
of Fig.7 is presented in Fig. 8. 

  

 
Fig. 6.  Generalized Hankel Singular Valuse( iγ ) 

 
Fig. 7.  Randomly generated switching signal 

 
Fig. 8.    Step response of original closed loop system (solid line) and the 
the closed loop system with the reduced second order switched 
controller(dotted). 

V. CONCLUSION 
A method for switched controller order reduction is 
presented in this paper. The proposed method is based on 
the generalized gramian framework for model reduction 
which needs to solve LMI’s in the reduction procedure.  
  This method preserves the stability of the original closed 

loop switched system   under arbitrary switching signal and 
is applicable to both continuous and discrete time systems. It 
is also a general method meaning that different gramian 
based reduction method can be developed in this framework 
for switched controller reduction. The presented approach 



 
 

 

due to the fact that uses common generalized gramian not 
only preserves the stability but also it reduces the sub-
controllers in one shot using global projection matrices.    

 One of the drawbacks of the method is that it is not 
guaranteed to be feasible because it is not always possible to 
find a common Lyapunov function for switched systems. 
Error is bounded but it is not guaranteed to be always small 
enough. There are different directions for further extensions 
such as using optimization, piecewise gramians and also 
various generalized gramians.    
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