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Enhanced SNP genotyping with symmetric multinomial logistic regression
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 A B S T R A C T

In genotyping, determining single nucleotide polymorphisms (SNPs) is standard practice, but it becomes 
difficult when analysing small quantities of input DNA, as is often required in forensic applications. Existing 
SNP genotyping methods, such as the HID SNP Genotyper Plugin (HSG) from Thermo Fisher Scientific, perform 
well with adequate DNA input levels but often produce erroneously called genotypes when DNA quantities 
are low. To mitigate these errors, genotype quality can be checked with the HSG. However, enforcing the 
HSG’s quality checks decreases the call rate by introducing more no-calls, and it does not eliminate all wrong 
calls. This study presents and validates a symmetric multinomial logistic regression (SMLR) model designed 
to enhance genotyping accuracy and call rate with small amounts of DNA. Comprehensive bootstrap and 
cross-validation analyses across a wide range of DNA quantities demonstrate the robustness and efficiency of 
the SMLR model in maintaining high call rates without compromising accuracy compared to the HSG. For 
DNA amounts as low as 31.25 pg, the SMLR method reduced the rate of no-calls by 50.0% relative to the HSG 
while maintaining the same rate of wrong calls, resulting in a call rate of 96.0%. Similarly, SMLR reduced the 
rate of wrong calls by 55.6% while maintaining the same call rate, achieving an accuracy of 99.775%. The 
no-call and wrong-call rates were significantly reduced at 62.5–250 pg DNA. The results highlight the SMLR 
model’s utility in optimising SNP genotyping at suboptimal DNA concentrations, making it a valuable tool for 
forensic applications where sample quantity and quality may be decreased. This work reinforces the feasibility 
of statistical approaches in forensic genotyping and provides a framework for implementing the SMLR method 
in practical forensic settings. The SMLR model applies to genotyping biallelic data with a signal (e.g. reads, 
counts, or intensity) for each allele. The model can also improve the allele balance quality check.

1. Introduction

In forensic genotyping, the accurate calling of single nucleotide 
polymorphisms (SNPs) is crucial but becomes a challenge when dealing 
with low amounts of DNA, which is typical for biological traces. While 
amplification-based genotyping tools, such as the HID SNP Genotyper 
Plugin (HSG) from Thermo Fisher Scientific (Waltham, MA, USA), excel 
with sufficient amounts of DNA, their performance declines with lower 
DNA quantities, resulting in increased erroneous genotype calls and 
reduced call rates [1–4].

To reduce the number of wrong calls (WCs), it seems natural to de-
clare a no-call (NC) for genotypes not passing the quality checks (QCs) 
provided by the HSG. However, for low amounts of input DNA, this 
approach significantly decreases the call rate and still struggles to filter 
out WCs.
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niels.morling@sund.ku.dk (N. Morling), mikl@math.aau.dk (M.M. Andersen).

Other probabilistic approaches have been proposed to handle un-
certainty in low-coverage sequencing [2], but they either integrate 
genotype likelihoods directly into downstream computations or rely 
on prior information about the genotypes, such as population allele 
frequencies, and some are limited to integer-valued data such as allele 
reads or counts.

We introduce a symmetric multinomial logistic regression (SMLR) 
model and a framework for refined NC declaration that improves 
genotyping accuracy and call rate, especially in challenging conditions. 
The SMLR model does not rely on prior genotype probabilities and can 
handle integer or continuous allele signals. Its symmetric formulation 
ensures it remains indifferent to the ordering or labelling of the two 
alleles, making the SMLR model robust and straightforward in its 
assumptions.
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Fig. 1. Genotype predictions for the examinations of 31.25 pg DNA.
Each plot displays 1,931 SNP observations classified using the genotyping methods: HID SNP Genotyper Plugin (HSG), enforcing the quality checks (EQC), and symmetric multinomial 
logistic regression (SMLR). A dot represents a pair of SNP read counts (𝑠1 , 𝑠2). The true genotypes are coloured red for heterozygotes and blue or yellow for homozygotes. Failed 
genotype predictions are indicated by red crosses for wrong calls and black pluses for no-calls. In the EQC plot (middle), the grey areas show where the HSG is guaranteed to 
flag for allelic imbalance. In the SMLR plot (right), the solid lines show the decision boundaries of the SMLR model with an intercept fitted to square-root transformed allele 
signals. The grey area marks the no-call zone where genotype probabilities fall short of the threshold 𝑞 = 0.9937 (a value chosen for illustrative purposes). Outside the grey area, 
the predicted genotype has 𝑃 (

𝐺 ∣ 𝑠1 , 𝑠2
)

≥ 𝑞.

We explore the SMLR model’s efficiency and reliability, laying out 
guidelines for its application in forensic SNP genotyping. We also 
demonstrate the SMLR model’s potential in quality control, particularly 
in identifying and managing allelic imbalance.

2. Materials and methods

2.1. The HID SNP Genotyper Plugin

The HSG software uses multiple metrics for SNP genotype determi-
nation [5, p. 35]. Along with its genotype calls, it outputs three quality 
checks:

• A locus-wise coverage check to indicate potential drop-outs (this 
QC flag was not observed in our data).

• A check of the strand balance where a percentage of positive 
coverage below 0.3 or above 0.7 results in a QC flag indicating 
imbalance.

• A check of the allele balance that flags homozygous calls if the 
ratio of the major allele’s coverage to the total coverage of all 
four nucleotides falls below 0.95 and heterozygous calls if it falls 
outside the range of 0.35 to 0.65.

As seen in the leftmost and middle plots of Fig.  1, the HSG’s genotype 
calls and determination of NCs are not based on these QCs alone, so 
genotypes are often called despite the presence of QC flags, and NCs 
are declared even when no QC flag is present [5, p. 35]. Therefore, 
enforcing the quality checks (EQC) by turning genotypes with QC flags 
into NCs will increase the number of NCs and thus reduce the call rate.

2.2. The symmetric multinomial logistic regression model

2.2.1. Model formulation
The SMLR model presents a statistical solution to biallelic geno-

typing challenges by using the allele signals to estimate conditional 
genotype probabilities. For a biallelic marker with alleles 𝑎1 and 𝑎2
having measured signals 𝑠1 and 𝑠2, we consider the unphased geno-
type 𝐺 with outcomes {𝑎1𝑎1, 𝑎1𝑎2, 𝑎2𝑎2} and the conditional genotype 
probabilities 𝑝𝑖𝑗 = 𝑃

(

𝐺 = 𝑎𝑖𝑎𝑗 ∣ 𝑠1, 𝑠2
)

. Multinomial logistic regression 
is apt for modelling the conditional distribution of 𝐺 given 𝑠1 and 𝑠2
with the heterozygous genotype as a baseline category for convenience 
and standardisation [6, p. 293]. However, it is desirable to model 
𝑃
(

𝐺 ∣ 𝑠1, 𝑠2
) in a way that is invariant to the labelling of the alleles 

by introducing a symmetry into the model equations, leading to the 
SMLR model: 

log
(

𝑝11
𝑝12

)

= 𝛽0 + 𝛽1𝑓
(

𝑠1
)

+ 𝛽2𝑓
(

𝑠2
)

,

log
(

𝑝22
𝑝12

)

= 𝛽0 + 𝛽2𝑓
(

𝑠1
)

+ 𝛽1𝑓
(

𝑠2
)

.
(1)

Here, the function 𝑓 is a variance-stabilising transformation of the 
allele signals, e.g. 𝑓 (

𝑠𝑖
)

=
√

𝑠𝑖. In standard multinomial logistic 
regression, the second equation would have different 𝛽𝑖-parameters 
than the first, and the resulting parameter estimates would depend on 
which allele is labelled 𝑎1 or 𝑎2. The introduced symmetry eliminates 
this dependency and ensures that the model’s behaviour is invariant to 
allele labelling. The conditional genotype probabilities become 

𝑝11 = 𝑒𝛽0+𝛽1𝑓
(

𝑠1
)

+𝛽2𝑓
(

𝑠2
)

1 + 𝑒𝛽0+𝛽1𝑓
(

𝑠1
)

+𝛽2𝑓
(

𝑠2
)

+ 𝑒𝛽0+𝛽2𝑓
(

𝑠1
)

+𝛽1𝑓
(

𝑠2
) ,

𝑝22 = 𝑒𝛽0+𝛽2𝑓
(

𝑠1
)

+𝛽1𝑓
(

𝑠2
)

1 + 𝑒𝛽0+𝛽1𝑓
(

𝑠1
)

+𝛽2𝑓
(

𝑠2
)

+ 𝑒𝛽0+𝛽2𝑓
(

𝑠1
)

+𝛽1𝑓
(

𝑠2
) ,

𝑝12 = 1
1 + 𝑒𝛽0+𝛽1𝑓

(

𝑠1
)

+𝛽2𝑓
(

𝑠2
)

+ 𝑒𝛽0+𝛽2𝑓
(

𝑠1
)

+𝛽1𝑓
(

𝑠2
) ,

(2)

where 𝛽1 is expected to be positive, such that 𝑝11 increases with 𝑠1 and 
𝑝22 increases with 𝑠2, and 𝛽2 is expected to be negative, so that 𝑝11 and 
𝑝22 decrease with increasing 𝑠2 and 𝑠1, respectively. It is expected that 
𝛽1 < |𝛽2| such that 𝑝12 goes towards 1 as 𝑠1 = 𝑠2 grows large, aligning 
with the behaviour of heterozygous genotypes at high signal levels.

2.2.2. SNP genotype calling
With the SMLR model, the genotype calling for an observation is 

straightforward: the genotype to be called is the one associated with the 
highest conditional probability estimated from (2). The decision bound-
aries are the points (𝑠1, 𝑠2

) where at least one of the model equations 
from (1) equals zero. In other words, where the conditional probability 
of the heterozygous genotype equals the conditional probability of one 
of the homozygous genotypes. As shown in the SMLR plot in Fig.  1, 
these boundaries can be represented graphically in a plot of 𝑓 (

𝑠2
)

versus 𝑓 (

𝑠1
) by the lines 

𝑓
(

𝑠2
)

= −
𝛽0
𝛽2

−
𝛽1
𝛽2

𝑓
(

𝑠1
)

,

𝑓
(

𝑠2
)

= −
𝛽0
𝛽1

−
𝛽2
𝛽1

𝑓
(

𝑠1
)

.
(3)

The plot also illustrates how a measure of call confidence is im-
plemented by introducing the user-defined probability threshold, 𝑞. 
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An observation is then declared an NC if its maximum conditional 
probability among the potential genotypes falls short of 𝑞. By setting 
1∕2 < 𝑞 < 1, observations on the decision boundaries are guaranteed 
to be declared NCs, yielding unambiguous call decisions even when 
multiple genotypes have equal conditional probability estimates. The 
call confidence increases with increasing 𝑞-values, corresponding to 
expanding a no-call zone around the decision boundaries within which 
all conditional genotype probabilities are below 𝑞.

2.2.3. Estimation
In multinomial logistic regression, maximum likelihood estimates

(MLEs) of parameters are well-defined and unique when the data 
categories overlap and thus are not completely separable [7,8]. When 
fitting SMLR models to biallelic data, overlapping categories essentially 
mean that after applying the variance-stabilising transformation to the 
allele signals, at least one of the collections of homozygous points 
cannot be separated from the collection of heterozygous points by any 
straight line (see SMLR-plot in Fig.  1). For completely separable data, 
the true genotypes are perfectly partitioned by the decision bound-
aries. The ratios between the parameters, and thereby the decision 
boundaries in (3), are still well-defined, but the likelihood function will 
no longer have a unique maximum, and the MLEs will tend towards 
infinity unless constrained by a stopping criterion [6, p. 298].

The MLEs are determined by minimising the negative log-likelihood 
of the SMLR model, as derived in the supplementary material (S3). 
Using the R function ‘optim’ with the default Nelder–Mead method 
facilitates this process. It requires an initial guess for the parameter 
vector, which can be set to

(

𝛽init0 , 𝛽init1 , 𝛽init2
)

= (0, 1,−2) or
(

𝛽init1 , 𝛽init2
)

= (1,−2) ,

reflecting the expectations of 𝛽2 < 0 < 𝛽1 < |𝛽2|. These are merely ex-
pectations of the resulting parameters, not requirements or constraints 
on the model equations. Therefore, the initial guess can take values 
beyond these expectations, such as (0, 0,−1).

2.3. Assessing the minimal sample size

Bootstrap analysis was applied to determine a reasonable sample 
size for fitting the SMLR model. By observing how the variance of 
parameter estimates decreases with increasing sample size, we esti-
mated a point beyond which additional SNP observations or individuals 
would yield limited precision gains relative to the cost of further data 
collection [9].

The bootstrap analysis also demonstrates the stability of the SMLR 
model’s decision boundaries in scenarios of complete separation, which 
often occurs with smaller sample sizes, and it illustrates under which 
conditions complete separation is less likely.

2.4. Assessing the effectiveness of the SMLR model

The SMLR model is primarily designed as a predictive tool for 
classification, focusing on the practical application in forensic SNP 
genotyping rather than theoretical explanatory power [10]. As such, 
the evaluation metrics relevant for this study are call rate (𝐶𝑅) and 
accuracy (𝐴𝐶), where 𝐶𝑅 is defined as the percentage of calls that are 
not NCs, and 𝐴𝐶 as the percentage of correct calls when disregard-
ing NCs:

𝐶𝑅 = Total calls - NCs
Total calls × 100,

𝐴𝐶 = Total calls - NCs - WCs
Total calls - NCs × 100.

To ensure fair comparisons between the SMLR model and the HSG, 
it is critical to analyse their performances under equivalent conditions. 
Therefore, cross-validation was used to assess the effectiveness of the 
SMLR model in increasing the call rate without compromising accuracy 
and vice versa. More precisely, the relative difference in call rates 

was assessed when the no-call zone of the SMLR model had a width 
providing the same level of accuracy as the HSG. Since it is not always 
possible to find a width that gives exactly the same accuracy for the 
SMLR model and the HSG, the accuracy of the SMLR model was set to 
the lowest value exceeding the accuracy of the HSG, i.e. its no-call zone 
was adjusted to the width where the model yielded the same number 
of WCs as the HSG or fewer. Conversely, the accuracies were compared 
when the SMLR model provided at least the same call rate as the HSG, 
i.e. the same number of NCs or fewer. This way, the comparisons are 
conservative by favouring the HSG over the SMLR model.

In general, the relative difference in call rates is proportional to the 
relative difference in NCs, and when the number of NCs for the SMLR 
model is equal to that of the HSG, the relative difference in accuracies 
is proportional to the relative difference in WCs:

𝐶𝑅SMLR∣HSG − 𝐶𝑅HSG
𝐶𝑅HSG

∝
𝑁𝐶HSG −𝑁𝐶SMLR∣HSG

𝑁𝐶HSG
, (4)

𝐴𝐶SMLR∣HSG − 𝐴𝐶HSG
𝐴𝐶HSG

∝
𝑊𝐶HSG −𝑊𝐶SMLR∣HSG

𝑊𝐶HSG
. (5)

Here, 𝑁𝐶HSG and 𝑊𝐶HSG are the no-calls and wrong calls of the HSG, 
while 𝑁𝐶SMLR∣HSG and 𝑊𝐶SMLR∣HSG are the corresponding counts for 
the SMLR model when its WCs and NCs are aligned to those of the 
HSG, respectively. The proportionalities (4) and (5) are derived in the 
supplementary material at (S1) and (S2).

For signals exhibiting variation consistent with a Poisson distribu-
tion, commonly observed for integer-valued data, the transformation 
𝑓 (𝑥) =

√

𝑥 is well established as an effective method for stabilising 
variance [11]. However, even a theoretically well-justified choice of 
𝑓 will not necessarily optimise the performance metrics in (4) and 
(5). Thus, to explore the effectiveness of various transformations and 
intercept configurations, six SMLR model formulations were tested: 
identity, square root, and logarithmic transformations

𝑓
(

𝑠𝑖
)

= 𝑠𝑖, 𝑓
(

𝑠𝑖
)

=
√

𝑠𝑖, and 𝑓
(

𝑠𝑖
)

= log
(

𝑠𝑖 + 1
)

,

each with and without an intercept (i.e. 𝛽0 ≠ 0 and 𝛽0 = 0).
The models were evaluated through extensive cross-validation, a 

method that randomly divides the data into disjoint training and test 
subsets, the former used for model fitting and the latter exclusively 
to evaluate model performance [12,13]. Repeating this process with 
different data splits helps estimate how the model will perform on 
new datasets. To assess robustness and generalisability, several cross-
validations were conducted, considering cases where training and test 
subsets were drawn from the same and different DNA dilutions.

This structured approach enables an objective comparison of the 
models and ultimately allows identification of the optimal model in 
forensic genetic contexts.

2.5. Software

For the analyses, we used R version 4.5.0 with the packages: ‘tidy-
verse’, ’future.apply’, and ‘xtable’ [14–20]. For creating figures, we used 
ImageMagick and the R packages: ‘ggplot2’, ‘ggnewscale’, ‘latex2exp’, 
and ‘patchwork’ [21–25]. The R scripts used for data analyses and 
figure generation are available on GitHub and Zenodo [26].

2.6. Data

This study analysed results of SNP typing with the Precision ID 
Ancestry Panel (Thermo Fisher Scientific), which includes 165 auto-
somal SNPs used to predict the biogeographic origin of humans. The 
laboratory methods were described by Pereira et al. [27].

The manufacturer recommends using 1ng DNA to increase the suc-
cess rate with degraded DNA from compromised tissue samples. Others 
have demonstrated that good results can be obtained with smaller 
amounts of DNA if it is of good quality and modified experimental 
conditions are used [1].
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Table 1
The SMLR model’s genotyping improvements for all examined DNA quantities.
 First series: Second series:
 5 individuals, 4 examinations 18 individuals, 1 examination
DNA quantity (pg) 1,000 500 250 125 62.5 31.25 50 25 12.5 6.25  
Observed SNPs (𝑠1+𝑠2>0) 3,240 3,240 3,240 3,238 2,585 1,931 2,831 2,821 2,575 2,347  

 HSGa No-calls 1 3 28 48 83 156 62 142 213 276  
 Wrong calls 0 0 1 1 2 9 8 59 184 272  
 
SMLRd

𝑞 aligning WCsb 0 0 0 0.5473 0.5473 0.7394 0.8115 0.8449 0.8302 0.8541  
 Call rate (%) 100 100 100 99.8 99.7 96.0 98.4 95.7 95.1 92.2  
 No-calls 0 0 0 5 7 78 46 121 125 184  
 NC-reduction (%) 100 100 100 89.6 91.6 50.0 25.8 14.8 41.3 33.3  
 
SMLRd

𝑞 aligning NCsc 0.8890 0.8808 0.8588 0.8592 0.8514 0.8414 0.8488 0.8592 0.8725 0.8841  
 Accuracy (%) 100 100 100 100 100 99.775 99.747 97.878 92.760 88.048  
 Wrong calls 0 0 0 0 0 4 7 57 171 248  
 WC-reduction (%) 0 0 100 100 100 55.6 12.5 3.4 7.1 8.8  
a Number of no-calls (NCs) and wrong calls (WCs) made by the HID SNP Genotyper Plugin (HSG).
b The smallest 𝑞 that aligns the SMLR model’s WCs according to (4).
c The smallest 𝑞 that aligns the SMLR model’s NCs according to (5).
d Results are conservative and based on the SMLR model with an intercept fitted to square-root transformed allele signals from examinations of 25 pg and 50 pg DNA.

Two DNA dilution series were analysed: The first series included six 
two-fold DNA dilutions from each of five individuals, with 1 ng, 500 pg, 
250 pg, 125 pg, 62.5 pg, and 31.25 pg DNA, repeated in four examinations. 
Due to limitations in the initial DNA amounts, one of the examinations 
included only a single individual at 62.5 pg DNA, and another included 
only two individuals at 31.25 pg. This series included six complete SNP 
profile measurements for all individuals, with additional partial data. 
For each individual, these complete SNP profiles were identical and 
were adopted as the true genotypes for subsequent analyses.

The second series was a single examination of four two-fold DNA 
dilutions from each of 18 individuals with 50 pg, 25 pg, 12.5 pg, and 
6.25 pg DNA. The individuals’ SNP profiles were known from previous 
analyses. Details on the number of observed SNPs in each series are 
found in Table  1.

The project is registered in the University of Copenhagen’s joint 
record of biobanks and record of research projects containing personal 
data (514-1056/24-3000). It complies with the rules of the General 
Data Protection Regulation (Regulation (EU) 2016/679).

2.6.1. Initial SNP calling
The primary sequencing analysis was performed with Torrent Suite 

Software v4.6 (Thermo Fisher Scientific). BAM files were generated 
using the HSG (v4.3.1). No noise filter was used.

Some SNPs are known to have rare variants. Therefore, it was in-
vestigated whether rare alleles, different from the two expected alleles, 
were present. The HSG does this through its QC of the allele balance [5, 
p. 35]. One marker, rs7722456, exhibited anomalous adenine reads 
and was excluded from the main analyses, along with the markers 
rs459920 and rs7251928, as recommended by Pereira et al. [27], 
leaving data from 162 SNPs for analysis. However, rs7722456 was 
retained as example data to illustrate how the SMLR model can enhance 
the detection rate of imbalance when used for QC of the allele balance.

SNP data with zero reads for both alleles were removed from 
the dataset, as they provided no useful information and consistently 
resulted in NCs for the HSG.

3. Results

For low amounts of DNA, the HSG-plot and EQC-plot in Fig.  1 
reveal that using the QC-flags to improve the accuracy is inefficient: 
converting flagged observations to NCs has a significant cost to the call 
rate and does not eliminate all WCs. Hence, comparison with the EQC 
method is not meaningful. The ensuing results affirm the SMLR model’s 
utility in forensic genotyping, demonstrating its capacity to improve 
call rate and accuracy across various testing scenarios.

3.1. Pre-analysis

Table  1 demonstrates how a fit of the SMLR model with an intercept 
and a square root transformation reduces the NCs for each DNA amount 
examined when compared to the HSG using (4) and similarly reduces 
the WCs when compared using (5). Thus, for each column in Table  1, 
this SMLR model gives fewer NCs and WCs when the 𝑞-threshold lies 
between the model’s two alignment values displayed in that column, 
implying simultaneous improvements in call rate and accuracy. Since 
the metrics in (4) and (5) favour the HSG, and the cross-validations 
presented later show that the fit used in Table  1 is not necessarily 
the best performing one, the improvements displayed in the table are 
conservative.

3.1.1. Relevant dilutions
Fig.  2 shows how the distribution of (√𝑠1,

√

𝑠2
) becomes more 

spread out and how the HSG makes more NCs and WCs as the DNA 
amount decreases. It further illustrates that most WCs at low DNA 
amounts are heterozygous genotypes misidentified as homozygous due 
to a reduced signal for one of the alleles. For the SMLR model, this 
pattern necessitates higher 𝑞-threshold settings for accurate genotyp-
ing, resulting in lower call rates. Consequently, genotyping with the 
Precision ID Ancestry Panel requires more than 25 pg DNA to maintain 
acceptable call rates.

Table  1 highlights performance variations across different DNA 
input levels. At 500 pg DNA and above, the HSG performs adequately, 
rendering the SMLR model redundant. At 250 pg DNA, the HSG pro-
duces a few WCs and introduces significantly more NCs with each step 
down the dilution series. Fig.  2 and Table  1 show that the HSG makes 
significantly more WCs at 50 pg DNA and below.

Based on these observations, the following analyses focus on testing 
genotyping performance within the two ranges of DNA quantities: 
31.25–50 pg and 62.5–250 pg. The former is where the call rate of the 
HSG becomes critically low and where it more frequently makes WCs. 
However, to assess robustness and generalisability, the SMLR models 
will also be fitted using data from exterior DNA quantities.

3.1.2. Parameter variance, sample size, and separation
Bootstrap analyses were performed for the six SMLR variants men-

tioned in the Materials and methods section. They all showed similar 
results to those depicted in Supplementary Fig. S1. Here, we see a less 
pronounced decline in the parameters’ variances after a sample size 
of around nine individuals or roughly 1,460 SNPs. This sample size 
provides a good balance between the proportions of data used for fitting 
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Fig. 2. Distribution of square-root transformed allele signals.
A dot represents a pair of SNP read counts (𝑠1 , 𝑠2). The true genotypes are coloured red for heterozygotes and blue or yellow for homozygotes. The displayed DNA quantities 
indicate where the accuracy of the HID SNP Genotyper Plugin falls below 100%, with its wrong calls marked by red crosses and no-calls by black pluses.

and testing in the cross-validation, especially in the least populated 
examination (31.25 pg DNA), where the use of nine individuals for 
fitting corresponds to 75% of the data.

Supplementary Fig. S1 indicates that the parameter estimates and 
decision boundaries depend on the DNA amount, with the effect becom-
ing more noticeable at 12.5 pg and below. It also shows that complete 
separation can be avoided by including examinations of very low 
DNA amounts (e.g. 25 pg) in the fitting data, and that this does not 
substantially alter the decision boundaries.

3.2. Validation of the SMLR model

3.2.1. Cross-validation insights
The cross-validation experiments in Supplementary Fig. S2 demon-

strate that the strong results from Table  1 were not coincidental. The 
figure shows that when either the square root or the logarithmic trans-
formation was applied to the allele signals, the SMLR model generally 
outperformed the HSG with substantial reductions in NCs and WCs, 
leading to simultaneous improvements in call rate and accuracy.

The subplots in the figure’s first and fourth columns show nearly 
horizontal performance lines, indicating that fitting to combined data 
from the examinations of 25 pg and 50 pg DNA gave particularly stable 
SMLR models for both the low (31.25–50 pg) and high (62.5–250 pg) DNA 
amounts. Therefore, the subsequent analyses are based on these fits to 
let the results inherit this stability.

Supplementary Fig. S2 intends to compare each SMLR variant to the 
HSG and not to make comparisons between the variants themselves, as 
a variant that excels when aligned to the HSG is not necessarily the best 
performing for other balances between the call rate and accuracy.

Fig.  3 compares the SMLR variants fitted to data subsets from the 
examinations of 25 pg and 50 pg DNA: the call rates from the 1,000 
cross-validation iterations were rounded to one decimal place, and the 
median accuracy for each variant was determined at each rounded call 
rate. This approach allows for a more precise assessment of how the 
accuracy of each SMLR variant changes with the call rate.

The red dot in each plot of Fig.  3 represents the median accuracy 
and call rate of the HSG. The lines for the models with 𝑓 (

𝑠𝑖
)

=
√

𝑠𝑖
and 𝑓 (

𝑠𝑖
)

= log
(

𝑠𝑖 + 1
) are generally seen to move well to the left 

of and above these dots. Thus, these four SMLR models convincingly 
outperform the HSG in median accuracy and call rate. For the low 
DNA amounts, they increase the call rate to more than 95% while still 

achieving higher accuracies than the HSG. At the highest call rates, 
the square-root model without an intercept (dark blue line) achieves 
slightly higher median accuracies than the other variants.

To avoid overestimating the performance of the SMLR method 
framework, the remaining analyses were based on the square-root 
model with an intercept, as this is a more conservative variant given 
that better SMLR models exist.

3.2.2. Call rate and accuracy dependencies
The accuracy of the SMLR model depends on the call rate through 

the width of the no-call zone, which is controlled by the value of the 
probability threshold 𝑞. This dependency on 𝑞 is depicted in Fig.  4, 
where the previously selected SMLR model is applied to the range of 
low DNA quantities. The left plot shows that the SMLR model surpasses 
the HSG’s median accuracy of 99.567% at a probability threshold of 
𝑞 = 0.74. At this 𝑞-value, the right plot shows that the SMLR model has 
a median call rate of 96.6%, i.e. an increase of 3.0 percentage points 
compared to the HSG.

The model’s median call rate remains higher than that of the HSG 
until 𝑞 = 0.84, where it achieves a median accuracy of 99.727%. The left 
plot (Fig.  4) shows that this is above the maximum accuracy observed 
for the HSG (99.647%) during the 1,000 cross-validation iterations.

When applied to DNA quantities of 500 pg and above, Table  1 
shows that the SMLR model achieves 100% accuracy and call rate. 
This demonstrates its capability to maintain high performance across 
varying DNA inputs.

3.2.3. SMLR for quality checks
The locus rs7722456 had many reads of an unexpected nucleotide 

(adenine) for all examinations in the first dilution series. The HSG’s 
quality control flagged only 37 of the 108 unusual observations with 
its QC flag for allelic imbalance. The limited efficiency in identifying 
allele balance issues was consistent for all DNA quantities examined in 
this dilution series.

In Supplementary Fig. S3, the major allele signals for rs7722456 are 
plotted against the adenine signals, along with the decision boundaries 
of the previously selected SMLR model. Using the probability threshold 
𝑞 = 0.99, 106 points were in the no-call zone, indicating an allelic 
imbalance. The choice of 𝑞 = 0.99 is a mere example illustrating how 
the SMLR model can also be used for QC and why this statistical 
approach is more effective than applying a static threshold to the 
coverage ratio [5, p. 35].
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Fig. 3. Median accuracy versus call rate from aggregated results of cross-validations (legend applies to both plots).
Each line represents the median accuracies calculated from binned call rate data of 1,000 cross-validation iterations, where the six SMLR models were fitted to and tested on data 
from the examinations of the DNA quantities indicated above the plots. The red dot in each plot shows the median accuracy and call rate for the HID SNP Genotyper Plugin. Note 
that the two plots use different axes scales, and that the first axes have been reversed to align with Fig.  4, where increasing 𝑞 leads to decreasing call rates.

Fig. 4. Performance of the SMLR model across probability thresholds, 𝑞 (legend applies to both plots).
The grey lines depict the SMLR model’s performance in 1,000 cross-validation iterations. The model was fitted with an intercept to square-root transformed allele signals and 
tested on data from the examinations of the DNA quantities indicated above the plots. Dotted lines mark the 25th and 75th percentiles among the 1,000 cross-validations, while 
dashed lines indicate medians. The shaded horizontal bars represent the accuracy (left) and call rate (right) ranges for the HID SNP Genotyper Plugin.

4. Discussion

This study aimed to develop an effective method for SNP call-
ing in forensic genetics. The developed SMLR model is simple, using 
only two or three parameters to compute three conditional genotype 
probabilities from two input signals. It is possible to use more com-
plex variance-stabilising transformations than those investigated in this 
study. Still, the aim was to demonstrate the capabilities of the model 
while retaining as much of its inherent simplicity as possible.

Some immediate benefits of this simplicity are increased robustness 
and a straightforward implementation of a no-call zone. Conversely, for 
a non-symmetric model, changing the labels for a subset of the alleles 
will alter the parameter estimates, making the model less robust. Non-
symmetric decision boundaries may also make some nucleotides more 
prone than others to be declared NCs, creating an NC bias. Furthermore, 
even with significant differences in the nucleotide-signal distributions 
(such that certain allele labellings make more sense than others), it 
is still likely that the SMLR model’s equal treatment of alleles will 
yield higher accuracy compared to a non-symmetric model due to the 
bias–variance trade-off [10]. However, we do not see any alarming 
differences in the nucleotides’ signals (see Supplementary Fig. S4).

An alternative approach to handling uncertainty in low-coverage 
data is the probabilistic model described by Mostad et al. (2023) [2], 
which derives genotype likelihoods 𝑃 (𝑠 ∣ 𝑔) and combines them with 
prior genotype probabilities 𝑃 (𝑔) to compute 𝑃 (𝑔 ∣ 𝑠) via Bayes’ theo-
rem. This structure is particularly useful when allele frequency infor-
mation is known and reliably specified, such as in population-based 
or familial relationship inference contexts. However, prior informa-
tion is often unavailable in forensic genotyping scenarios, such as 

criminal investigations or cases involving unidentified remains. The 
SMLR model, by contrast, estimates 𝑃 (𝑔 ∣ 𝑠) directly without relying on 
external priors, thereby avoiding potential bias from misspecified allele 
frequencies. This distinction makes the SMLR framework well-suited for 
general forensic use, especially in cases involving unknown individuals 
or populations.

Measuring the performance of the SMLR variants is not straight-
forward when NCs are introduced and should be judged neutrally, 
i.e. from the perspective that they are meant to remove WCs, whereby 
NCs should not be seen as incorrect genotype predictions. This is further 
complicated as performance changes with the amount of input DNA. 
However, the SMLR model using a square-root transformation emerged 
as the best all-in-one model, offering a good balance between NCs and 
WCs for DNA quantities as low as 31.25 pg, particularly when modelled 
without an intercept.

The SMLR method was compared with the commonly used HSG, 
which performs well with high DNA quantities but leaves room for 
improvement at lower DNA amounts. The SMLR models using a square-
root transformation generally perform better than the HSG on the 
examined DNA quantities. Consistently outperforming a genotyping 
method with high accuracy and call rate, such as the HSG, is a sig-
nificant achievement that demonstrates the applicability of the SMLR 
method for biallelic genotyping, particularly in forensic genetics set-
tings.

While the improvements in call rate and accuracy were more modest 
for the high DNA amounts recommended by kit manufacturers, we 
demonstrated that the SMLR framework substantially increased the 
detection rate of allelic imbalance independently of the examined DNA 
quantity (Supplementary Fig. S3). As a result, any laboratory can 
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benefit from the SMLR framework, regardless of the DNA quantities 
they typically work with.

Since data characteristics may vary when using SNP platforms and 
procedures different from those in this study, the SMLR model’s param-
eters may need adjustment and validation before being implemented 
with new genotyping methods. It should be noted that the effect of 
changes in the probability threshold, 𝑞, on the width of the no-call 
zone depends on the parameter estimates, particularly on the choice 
of variance-stabilising transformation. A tailored dilution series can 
help define the optimal setup for each lab environment, especially in 
determining the ideal value for the probability threshold 𝑞.

The SMLR method can be adapted with minor modifications to anal-
yse data from other biallelic genetic systems, e.g. insertion-deletions. 
The SMLR principle can also classify non-genetic data with similar 
structures.

The bootstrap analysis showed that using approximately 1,460 SNP 
observations markedly decreases the parameter estimates’ variances 
when fitting the SMLR model (Supplementary Fig. S1). For the Preci-
sion ID Ancestry Panel, this corresponds to approximately nine com-
plete SNP profiles, with the option of repeating examinations of the 
same individual, e.g. by measuring the SNP profiles of three individ-
uals, each repeated in three examinations. However, if feasible, we 
recommend using larger sample sizes to enhance precision further.

For robust fitting, it is important to have a reasonable overlap 
between the genotype clusters, preferably by measuring sufficient data 
in the 31.25–50 pg DNA range. If this is not feasible, including a few 
examinations with as little as 25 pg DNA can effectively achieve overlap. 
However, the bootstrap analysis showed that adding data from exam-
inations of extremely low DNA quantities, like 12.5 pg, may negatively 
distort the model’s decision boundaries.

In the Estimation subsection, it was suggested that the initial value 
of the parameter vector be set to (1,−2) or to (0, 1,−2) if an intercept 
is included. Depending on the scale of the signals and the choice of 
variance-stabilising transformation, other initial values may be more 
suitable. For example, we encountered issues with the initialisation of 
‘optim’ when using the suggested initial values for the models with an 
identity transformation. However, these issues were resolved by setting 
𝛽init1 = 0 and 𝛽init2 = −1. Initialisation problems can occur due to 
numerical overflow, e.g. if the value of the log-likelihood function at 
the chosen initial value exceeds the limit the computer can represent. 
Such issues are of general concern for optimisation tasks and are not 
specific to fitting the SMLR model.

Maximum likelihood estimation (MLE) focuses on optimally placing 
the decision boundaries to classify genotypes based on the observed 
data. In this sense, MLE can be said to optimise accuracy when the 
probability threshold 𝑞 is zero. However, the introduction of a no-
call zone creates a second decision layer that alters the classification 
process in a non-trivial way. For example, before applying a probability 
threshold to convert WCs into NCs, the model with 𝛽0 ≠ 0 may achieve a 
higher likelihood and yield fewer WCs. Yet once a threshold is applied, 
the performance metrics (4) and (5) may favour the simpler model 
with 𝛽0 = 0. This occurs because MLE does not account for how the 
parameter estimates influence the width and shape of the no-call zone.

Although the cross-validations demonstrated that MLE yields effec-
tive SMLR models, it may still be possible to improve accuracy and call 
rate further by considering estimation procedures that directly incor-
porate the no-call mechanism. Research into such methods – moving 
beyond pure classification to explicitly optimise performance in the 
presence of NCs – could be valuable for forensic genotyping.

Genetic software like GenoGeographer [28–30] typically assumes 
that genotype calls are correct once they pass quality filters, over-
looking the inherent uncertainty in genotyping, particularly in forensic 
genetics, where samples of low quality and quantity are common. A 
statistical approach, such as the SMLR model, provides estimates of 
the conditional genotype probabilities, which can help mitigate this 
uncertainty. However, high accuracy of a model’s predictions does 

not guarantee that its probability estimates align with the genotype 
frequencies in real data [10]. To integrate such probabilities suc-
cessfully into existing software, empirical verification is crucial. We 
conducted separate preliminary empirical assessments for the homozy-
gous and heterozygous genotypes within the combined data of 31.25 
and 50 pg DNA. Through binomial testing on groups of observations, 
we evaluated whether the mean of the model’s probability estimates 
for its predicted genotype could explain the observed proportion of 
that genotype. This method confirmed that the SMLR model’s proba-
bility estimates align well with the empirical genotype distributions, 
reinforcing our confidence in its utility for forensic applications.

5. Conclusion

The SMLR model improved the SNP calling efficiency, particularly 
with suboptimal DNA amounts, as is often the case in forensic genetic 
examinations of stain material in criminal investigations. At 31 pg DNA, 
the NC rate was reduced by approximately 50% compared to the HSG, 
while maintaining the same WC rate as the HSG. The WC rate was 
reduced by over 50% while maintaining the same NC rate. At 62–250 pg
DNA, the no-call rate was dramatically reduced. Using SMLR for quality 
checks of the allele balance substantially improved imbalance detection 
regardless of the DNA input level.
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