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ARTICLE INFO ABSTRACT

Keywords: In genotyping, determining single nucleotide polymorphisms (SNPs) is standard practice, but it becomes
Symmetric multinomial logistic regression difficult when analysing small quantities of input DNA, as is often required in forensic applications. Existing
Forensic genetics SNP genotyping methods, such as the HID SNP Genotyper Plugin (HSG) from Thermo Fisher Scientific, perform

Low DNA concentrations
Biallelic markers

SNP genotyping

Massively parallel sequencing

well with adequate DNA input levels but often produce erroneously called genotypes when DNA quantities
are low. To mitigate these errors, genotype quality can be checked with the HSG. However, enforcing the
HSG’s quality checks decreases the call rate by introducing more no-calls, and it does not eliminate all wrong
calls. This study presents and validates a symmetric multinomial logistic regression (SMLR) model designed
to enhance genotyping accuracy and call rate with small amounts of DNA. Comprehensive bootstrap and
cross-validation analyses across a wide range of DNA quantities demonstrate the robustness and efficiency of
the SMLR model in maintaining high call rates without compromising accuracy compared to the HSG. For
DNA amounts as low as 31.25pg, the SMLR method reduced the rate of no-calls by 50.0% relative to the HSG
while maintaining the same rate of wrong calls, resulting in a call rate of 96.0%. Similarly, SMLR reduced the
rate of wrong calls by 55.6% while maintaining the same call rate, achieving an accuracy of 99.775%. The
no-call and wrong-call rates were significantly reduced at 62.5-250pg DNA. The results highlight the SMLR
model’s utility in optimising SNP genotyping at suboptimal DNA concentrations, making it a valuable tool for
forensic applications where sample quantity and quality may be decreased. This work reinforces the feasibility
of statistical approaches in forensic genotyping and provides a framework for implementing the SMLR method
in practical forensic settings. The SMLR model applies to genotyping biallelic data with a signal (e.g. reads,
counts, or intensity) for each allele. The model can also improve the allele balance quality check.

1. Introduction Other probabilistic approaches have been proposed to handle un-

certainty in low-coverage sequencing [2], but they either integrate

In forensic genotyping, the accurate calling of single nucleotide genotype likelihoods directly into downstream computations or rely

polymorphisms (SNPs) is crucial but becomes a challenge when dealing on prior information about the genotypes, such as population allele

with low amounts of DNA, which is typical for biological traces. While frequencies, and some are limited to integer-valued data such as allele
amplification-based genotyping tools, such as the HID SNP Genotyper reads or counts.

Plugin (HSG) from Thermo Fisher Scientific (Waltham, MA, USA), excel We introduce a symmetric multinomial logistic regression (SMLR)

with sufficient amounts of DNA, their performance declines with lower
DNA quantities, resulting in increased erroneous genotype calls and
reduced call rates [1-4].

To reduce the number of wrong calls (WCs), it seems natural to de-
clare a no-call (NC) for genotypes not passing the quality checks (QCs)

model and a framework for refined NC declaration that improves
genotyping accuracy and call rate, especially in challenging conditions.
The SMLR model does not rely on prior genotype probabilities and can
handle integer or continuous allele signals. Its symmetric formulation

provided by the HSG. However, for low amounts of input DNA, this ensures it remains indifferent to the ordering or labelling of the two

approach significantly decreases the call rate and still struggles to filter alleles, Tnaklng the SMLR model robust and straightforward in its
out WCs assumptions.
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Fig. 1. Genotype predictions for the examinations of 31.25pg DNA.

— Bo=0,q=0.9937

Each plot displays 1,931 SNP observations classified using the genotyping methods: HID SNP Genotyper Plugin (HSG), enforcing the quality checks (EQC), and symmetric multinomial
logistic regression (SMLR). A dot represents a pair of SNP read counts (s,,s,). The true genotypes are coloured red for heterozygotes and blue or yellow for homozygotes. Failed
genotype predictions are indicated by red crosses for wrong calls and black pluses for no-calls. In the EQC plot (middle), the grey areas show where the HSG is guaranteed to
flag for allelic imbalance. In the SMLR plot (right), the solid lines show the decision boundaries of the SMLR model with an intercept fitted to square-root transformed allele
signals. The grey area marks the no-call zone where genotype probabilities fall short of the threshold ¢ = 0.9937 (a value chosen for illustrative purposes). Outside the grey area,

the predicted genotype has P (G | s.s,) > g.

We explore the SMLR model’s efficiency and reliability, laying out
guidelines for its application in forensic SNP genotyping. We also
demonstrate the SMLR model’s potential in quality control, particularly
in identifying and managing allelic imbalance.

2. Materials and methods
2.1. The HID SNP Genotyper Plugin

The HSG software uses multiple metrics for SNP genotype determi-
nation [5, p. 35]. Along with its genotype calls, it outputs three quality
checks:

+ A locus-wise coverage check to indicate potential drop-outs (this
QC flag was not observed in our data).

» A check of the strand balance where a percentage of positive
coverage below 0.3 or above 0.7 results in a QC flag indicating
imbalance.

+ A check of the allele balance that flags homozygous calls if the
ratio of the major allele’s coverage to the total coverage of all
four nucleotides falls below 0.95 and heterozygous calls if it falls
outside the range of 0.35 to 0.65.

As seen in the leftmost and middle plots of Fig. 1, the HSG’s genotype
calls and determination of NCs are not based on these QCs alone, so
genotypes are often called despite the presence of QC flags, and NCs
are declared even when no QC flag is present [5, p. 35]. Therefore,
enforcing the quality checks (EQC) by turning genotypes with QC flags
into NCs will increase the number of NCs and thus reduce the call rate.

2.2. The symmetric multinomial logistic regression model

2.2.1. Model formulation

The SMLR model presents a statistical solution to biallelic geno-
typing challenges by using the allele signals to estimate conditional
genotype probabilities. For a biallelic marker with alleles @, and a,
having measured signals s, and s,, we consider the unphased geno-
type G with outcomes {a,a,,a,a,,a,a,} and the conditional genotype
probabilities p; = P (G = g, | 51,5, ). Multinomial logistic regression
is apt for modelling the conditional distribution of G given s, and s,
with the heterozygous genotype as a baseline category for convenience
and standardisation [6, p. 293]. However, it is desirable to model
P (G| sy,s,) in a way that is invariant to the labelling of the alleles

by introducing a symmetry into the model equations, leading to the
SMLR model:

toe (21) = ho+1af (1) + 121 ().
P12 1
10%(%) =po+hf (51)+ﬁ1f(52)-

Here, the function f is a variance-stabilising transformation of the
allele signals, e.g. f(s;) = \/s—, . In standard multinomial logistic
regression, the second equation would have different f;-parameters
than the first, and the resulting parameter estimates would depend on
which allele is labelled a, or a,. The introduced symmetry eliminates
this dependency and ensures that the model’s behaviour is invariant to
allele labelling. The conditional genotype probabilities become

ePo+Pif (s1)+h2f (s2)

P= [+ efotbif (s1) 421 (52) 4 obotbaf (s1)+h11 (52)
ePotBaf (s1)+h1f(s2) @
P = >
1 + ePothif(s1)+h2f (s2) 4 phothaf (s1)+h1f (52)
1
P2 =

1 + ePothif (s1)+h2f (s2) 4 phothaf (s1)+h1f (52) ’

where g, is expected to be positive, such that p,; increases with s; and
Py, increases with s,, and g, is expected to be negative, so that p;, and
Py, decrease with increasing s, and s, respectively. It is expected that
B, < |B,| such that p;, goes towards 1 as s, = s, grows large, aligning
with the behaviour of heterozygous genotypes at high signal levels.

2.2.2. SNP genotype calling

With the SMLR model, the genotype calling for an observation is
straightforward: the genotype to be called is the one associated with the
highest conditional probability estimated from (2). The decision bound-
aries are the points (s;,s,) where at least one of the model equations
from (1) equals zero. In other words, where the conditional probability
of the heterozygous genotype equals the conditional probability of one
of the homozygous genotypes. As shown in the SMLR plot in Fig. 1,
these boundaries can be represented graphically in a plot of f (s,)
versus f (s;) by the lines

f(Sz):—@—ﬁf(Sl),

B B

by P )
T == = Tt

The plot also illustrates how a measure of call confidence is im-
plemented by introducing the user-defined probability threshold, g.
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An observation is then declared an NC if its maximum conditional
probability among the potential genotypes falls short of 4. By setting
1/2 < g < 1, observations on the decision boundaries are guaranteed
to be declared NCs, yielding unambiguous call decisions even when
multiple genotypes have equal conditional probability estimates. The
call confidence increases with increasing g-values, corresponding to
expanding a no-call zone around the decision boundaries within which
all conditional genotype probabilities are below g.

2.2.3. Estimation

In multinomial logistic regression, maximum likelihood estimates
(MLEs) of parameters are well-defined and unique when the data
categories overlap and thus are not completely separable [7,8]. When
fitting SMLR models to biallelic data, overlapping categories essentially
mean that after applying the variance-stabilising transformation to the
allele signals, at least one of the collections of homozygous points
cannot be separated from the collection of heterozygous points by any
straight line (see SMLR-plot in Fig. 1). For completely separable data,
the true genotypes are perfectly partitioned by the decision bound-
aries. The ratios between the parameters, and thereby the decision
boundaries in (3), are still well-defined, but the likelihood function will
no longer have a unique maximum, and the MLEs will tend towards
infinity unless constrained by a stopping criterion [6, p. 298].

The MLEs are determined by minimising the negative log-likelihood
of the SMLR model, as derived in the supplementary material (S3).
Using the R function ‘optim’ with the default Nelder-Mead method
facilitates this process. It requires an initial guess for the parameter
vector, which can be set to

(B, BN BY) = (0.1,-2) or (A", A™) = (1,-2),
reflecting the expectations of f, < 0 < f; < |p,|. These are merely ex-
pectations of the resulting parameters, not requirements or constraints
on the model equations. Therefore, the initial guess can take values
beyond these expectations, such as (0,0, —1).

2.3. Assessing the minimal sample size

Bootstrap analysis was applied to determine a reasonable sample
size for fitting the SMLR model. By observing how the variance of
parameter estimates decreases with increasing sample size, we esti-
mated a point beyond which additional SNP observations or individuals
would yield limited precision gains relative to the cost of further data
collection [9].

The bootstrap analysis also demonstrates the stability of the SMLR
model’s decision boundaries in scenarios of complete separation, which
often occurs with smaller sample sizes, and it illustrates under which
conditions complete separation is less likely.

2.4. Assessing the effectiveness of the SMLR model

The SMLR model is primarily designed as a predictive tool for
classification, focusing on the practical application in forensic SNP
genotyping rather than theoretical explanatory power [10]. As such,
the evaluation metrics relevant for this study are call rate (CR) and
accuracy (AC), where CR is defined as the percentage of calls that are
not NCs, and AC as the percentage of correct calls when disregard-
ing NCs:

Total calls - NCs

CR = ————— x 100,
Total calls

AC = Total calls - NCs - WCs % 100.
Total calls - NCs
To ensure fair comparisons between the SMLR model and the HSG,
it is critical to analyse their performances under equivalent conditions.
Therefore, cross-validation was used to assess the effectiveness of the
SMLR model in increasing the call rate without compromising accuracy

and vice versa. More precisely, the relative difference in call rates

Forensic Science International: Genetics 78 (2025) 103291

was assessed when the no-call zone of the SMLR model had a width
providing the same level of accuracy as the HSG. Since it is not always
possible to find a width that gives exactly the same accuracy for the
SMLR model and the HSG, the accuracy of the SMLR model was set to
the lowest value exceeding the accuracy of the HSG, i.e. its no-call zone
was adjusted to the width where the model yielded the same number
of WCs as the HSG or fewer. Conversely, the accuracies were compared
when the SMLR model provided at least the same call rate as the HSG,
i.e. the same number of NCs or fewer. This way, the comparisons are
conservative by favouring the HSG over the SMLR model.

In general, the relative difference in call rates is proportional to the
relative difference in NCs, and when the number of NCs for the SMLR
model is equal to that of the HSG, the relative difference in accuracies
is proportional to the relative difference in WCs:

CRsmiriusc — CRusg NCysg — NCsmirHsG

, “4)
CRysc NCyse
ACsmirjasc — ACHsG W Cusc — W Csmirjasc ®)
ACysg W Cysc '

Here, NCygg and W Cygg are the no-calls and wrong calls of the HSG,
while NCqyipusg @and W Csyirusg are the corresponding counts for
the SMLR model when its WCs and NCs are aligned to those of the
HSG, respectively. The proportionalities (4) and (5) are derived in the
supplementary material at (S1) and (S2).

For signals exhibiting variation consistent with a Poisson distribu-
tion, commonly observed for integer-valued data, the transformation
fx) = \/; is well established as an effective method for stabilising
variance [11]. However, even a theoretically well-justified choice of
f will not necessarily optimise the performance metrics in (4) and
(5). Thus, to explore the effectiveness of various transformations and
intercept configurations, six SMLR model formulations were tested:
identity, square root, and logarithmic transformations

f(s)=si f(s)=+/s;, and f(s;)=log(s;+1),

each with and without an intercept (i.e. f, # 0 and g, = 0).

The models were evaluated through extensive cross-validation, a
method that randomly divides the data into disjoint training and test
subsets, the former used for model fitting and the latter exclusively
to evaluate model performance [12,13]. Repeating this process with
different data splits helps estimate how the model will perform on
new datasets. To assess robustness and generalisability, several cross-
validations were conducted, considering cases where training and test
subsets were drawn from the same and different DNA dilutions.

This structured approach enables an objective comparison of the
models and ultimately allows identification of the optimal model in
forensic genetic contexts.

2.5. Software

For the analyses, we used R version 4.5.0 with the packages: ‘tidy-
verse’, "future.apply’, and ‘xtable’ [14-20]. For creating figures, we used
ImageMagick and the R packages: ‘ggplot2’, ‘ggnewscale’, ‘latex2exp’,
and ‘patchwork’ [21-25]. The R scripts used for data analyses and
figure generation are available on GitHub and Zenodo [26].

2.6. Data

This study analysed results of SNP typing with the Precision ID
Ancestry Panel (Thermo Fisher Scientific), which includes 165 auto-
somal SNPs used to predict the biogeographic origin of humans. The
laboratory methods were described by Pereira et al. [27].

The manufacturer recommends using 1ng DNA to increase the suc-
cess rate with degraded DNA from compromised tissue samples. Others
have demonstrated that good results can be obtained with smaller
amounts of DNA if it is of good quality and modified experimental
conditions are used [1].
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Table 1
The SMLR model’s genotyping improvements for all examined DNA quantities.

Forensic Science International: Genetics 78 (2025) 103291

First series:

Second series:

5 individuals, 4 examinations

18 individuals, 1 examination

DNA quantity (pg) 1,000 500 250 125 62.5 31.25 50 25 12.5 6.25
q y (pg
Observed SNPs (s, +s,>0) 3,240 3,240 3,240 3,238 2,585 1,931 2,831 2,821 2,575 2,347
HSG? No-calls 1 3 28 48 83 156 62 142 213 276
Wrong calls 0 0 1 1 2 9 8 59 184 272
g aligning WCs” 0 0 0 0.5473 0.5473 0.7394 0.8115 0.8449 0.8302 0.8541
SMLR! Call rate (%) 100 100 100 99.8 99.7 96.0 98.4 95.7 95.1 92.2
No-calls 0 0 0 5 7 78 46 121 125 184
NC-reduction (%) 100 100 100 89.6 91.6 50.0 25.8 14.8 41.3 33.3
q aligning NCs® 0.8890 0.8808 0.8588 0.8592 0.8514 0.8414 0.8488 0.8592 0.8725 0.8841
SMLRY Accuracy (%) 100 100 100 100 100 99.775 99.747 97.878 92.760 88.048
Wrong calls 0 0 0 0 0 4 7 57 171 248
WC-reduction (%) 0 0 100 100 100 55.6 12,5 3.4 7.1 8.8

2 Number of no-calls (NCs) and wrong calls (WCs) made by the HID SNP Genotyper Plugin (HSG).

b The smallest ¢ that aligns the SMLR model’s WCs according to (4).

¢ The smallest ¢ that aligns the SMLR model’s NCs according to (5).
d

Two DNA dilution series were analysed: The first series included six
two-fold DNA dilutions from each of five individuals, with 1ng, 500 pg,
250 pg, 125 pg, 62.5 pg, and 31.25 pg DNA, repeated in four examinations.
Due to limitations in the initial DNA amounts, one of the examinations
included only a single individual at 62.5 pg DNA, and another included
only two individuals at 31.25 pg. This series included six complete SNP
profile measurements for all individuals, with additional partial data.
For each individual, these complete SNP profiles were identical and
were adopted as the true genotypes for subsequent analyses.

The second series was a single examination of four two-fold DNA
dilutions from each of 18 individuals with 50pg, 25pg, 12.5pg, and
6.25 pg DNA. The individuals’ SNP profiles were known from previous
analyses. Details on the number of observed SNPs in each series are
found in Table 1.

The project is registered in the University of Copenhagen’s joint
record of biobanks and record of research projects containing personal
data (514-1056/24-3000). It complies with the rules of the General
Data Protection Regulation (Regulation (EU) 2016/679).

2.6.1. Initial SNP calling

The primary sequencing analysis was performed with Torrent Suite
Software v4.6 (Thermo Fisher Scientific). BAM files were generated
using the HSG (v4.3.1). No noise filter was used.

Some SNPs are known to have rare variants. Therefore, it was in-
vestigated whether rare alleles, different from the two expected alleles,
were present. The HSG does this through its QC of the allele balance [5,
p- 35]. One marker, rs7722456, exhibited anomalous adenine reads
and was excluded from the main analyses, along with the markers
1459920 and rs7251928, as recommended by Pereira et al. [27],
leaving data from 162 SNPs for analysis. However, rs7722456 was
retained as example data to illustrate how the SMLR model can enhance
the detection rate of imbalance when used for QC of the allele balance.

SNP data with zero reads for both alleles were removed from
the dataset, as they provided no useful information and consistently
resulted in NCs for the HSG.

3. Results

For low amounts of DNA, the HSG-plot and EQC-plot in Fig. 1
reveal that using the QC-flags to improve the accuracy is inefficient:
converting flagged observations to NCs has a significant cost to the call
rate and does not eliminate all WCs. Hence, comparison with the EQC
method is not meaningful. The ensuing results affirm the SMLR model’s
utility in forensic genotyping, demonstrating its capacity to improve
call rate and accuracy across various testing scenarios.

Results are conservative and based on the SMLR model with an intercept fitted to square-root transformed allele signals from examinations of 25pg and 50 pg DNA.

3.1. Pre-analysis

Table 1 demonstrates how a fit of the SMLR model with an intercept
and a square root transformation reduces the NCs for each DNA amount
examined when compared to the HSG using (4) and similarly reduces
the WCs when compared using (5). Thus, for each column in Table 1,
this SMLR model gives fewer NCs and WCs when the g-threshold lies
between the model’s two alignment values displayed in that column,
implying simultaneous improvements in call rate and accuracy. Since
the metrics in (4) and (5) favour the HSG, and the cross-validations
presented later show that the fit used in Table 1 is not necessarily
the best performing one, the improvements displayed in the table are
conservative.

3.1.1. Relevant dilutions

Fig. 2 shows how the distribution of (\/s_ R \/g) becomes more
spread out and how the HSG makes more NCs and WCs as the DNA
amount decreases. It further illustrates that most WCs at low DNA
amounts are heterozygous genotypes misidentified as homozygous due
to a reduced signal for one of the alleles. For the SMLR model, this
pattern necessitates higher g-threshold settings for accurate genotyp-
ing, resulting in lower call rates. Consequently, genotyping with the
Precision ID Ancestry Panel requires more than 25 pg DNA to maintain
acceptable call rates.

Table 1 highlights performance variations across different DNA
input levels. At 500 pg DNA and above, the HSG performs adequately,
rendering the SMLR model redundant. At 250 pg DNA, the HSG pro-
duces a few WCs and introduces significantly more NCs with each step
down the dilution series. Fig. 2 and Table 1 show that the HSG makes
significantly more WCs at 50 pg DNA and below.

Based on these observations, the following analyses focus on testing
genotyping performance within the two ranges of DNA quantities:
31.25-50 pg and 62.5-250pg. The former is where the call rate of the
HSG becomes critically low and where it more frequently makes WCs.
However, to assess robustness and generalisability, the SMLR models
will also be fitted using data from exterior DNA quantities.

3.1.2. Parameter variance, sample size, and separation

Bootstrap analyses were performed for the six SMLR variants men-
tioned in the Materials and methods section. They all showed similar
results to those depicted in Supplementary Fig. S1. Here, we see a less
pronounced decline in the parameters’ variances after a sample size
of around nine individuals or roughly 1,460 SNPs. This sample size
provides a good balance between the proportions of data used for fitting
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Fig. 2. Distribution of square-root transformed allele signals.

A dot represents a pair of SNP read counts (s,s,). The true genotypes are coloured red for heterozygotes and blue or yellow for homozygotes. The displayed DNA quantities
indicate where the accuracy of the HID SNP Genotyper Plugin falls below 100%, with its wrong calls marked by red crosses and no-calls by black pluses.

and testing in the cross-validation, especially in the least populated
examination (31.25pg DNA), where the use of nine individuals for
fitting corresponds to 75% of the data.

Supplementary Fig. S1 indicates that the parameter estimates and
decision boundaries depend on the DNA amount, with the effect becom-
ing more noticeable at 12.5 pg and below. It also shows that complete
separation can be avoided by including examinations of very low
DNA amounts (e.g. 25pg) in the fitting data, and that this does not
substantially alter the decision boundaries.

3.2. Validation of the SMLR model

3.2.1. Cross-validation insights

The cross-validation experiments in Supplementary Fig. S2 demon-
strate that the strong results from Table 1 were not coincidental. The
figure shows that when either the square root or the logarithmic trans-
formation was applied to the allele signals, the SMLR model generally
outperformed the HSG with substantial reductions in NCs and WCs,
leading to simultaneous improvements in call rate and accuracy.

The subplots in the figure’s first and fourth columns show nearly
horizontal performance lines, indicating that fitting to combined data
from the examinations of 25 pg and 50 pg DNA gave particularly stable
SMLR models for both the low (31.25-50 pg) and high (62.5-250 pg) DNA
amounts. Therefore, the subsequent analyses are based on these fits to
let the results inherit this stability.

Supplementary Fig. S2 intends to compare each SMLR variant to the
HSG and not to make comparisons between the variants themselves, as
a variant that excels when aligned to the HSG is not necessarily the best
performing for other balances between the call rate and accuracy.

Fig. 3 compares the SMLR variants fitted to data subsets from the
examinations of 25pg and 50pg DNA: the call rates from the 1,000
cross-validation iterations were rounded to one decimal place, and the
median accuracy for each variant was determined at each rounded call
rate. This approach allows for a more precise assessment of how the
accuracy of each SMLR variant changes with the call rate.

The red dot in each plot of Fig. 3 represents the median accuracy
and call rate of the HSG. The lines for the models with £ (s;) = /5;
and f (s;) = log(s;+1) are generally seen to move well to the left
of and above these dots. Thus, these four SMLR models convincingly
outperform the HSG in median accuracy and call rate. For the low
DNA amounts, they increase the call rate to more than 95% while still

achieving higher accuracies than the HSG. At the highest call rates,
the square-root model without an intercept (dark blue line) achieves
slightly higher median accuracies than the other variants.

To avoid overestimating the performance of the SMLR method
framework, the remaining analyses were based on the square-root
model with an intercept, as this is a more conservative variant given
that better SMLR models exist.

3.2.2. Call rate and accuracy dependencies

The accuracy of the SMLR model depends on the call rate through
the width of the no-call zone, which is controlled by the value of the
probability threshold g. This dependency on ¢ is depicted in Fig. 4,
where the previously selected SMLR model is applied to the range of
low DNA quantities. The left plot shows that the SMLR model surpasses
the HSG’s median accuracy of 99.567% at a probability threshold of
q = 0.74. At this g-value, the right plot shows that the SMLR model has
a median call rate of 96.6%, i.e. an increase of 3.0 percentage points
compared to the HSG.

The model’s median call rate remains higher than that of the HSG
until ¢ = 0.84, where it achieves a median accuracy of 99.727%. The left
plot (Fig. 4) shows that this is above the maximum accuracy observed
for the HSG (99.647%) during the 1,000 cross-validation iterations.

When applied to DNA quantities of 500pg and above, Table 1
shows that the SMLR model achieves 100% accuracy and call rate.
This demonstrates its capability to maintain high performance across
varying DNA inputs.

3.2.3. SMLR for quality checks

The locus rs7722456 had many reads of an unexpected nucleotide
(adenine) for all examinations in the first dilution series. The HSG’s
quality control flagged only 37 of the 108 unusual observations with
its QC flag for allelic imbalance. The limited efficiency in identifying
allele balance issues was consistent for all DNA quantities examined in
this dilution series.

In Supplementary Fig. S3, the major allele signals for rs7722456 are
plotted against the adenine signals, along with the decision boundaries
of the previously selected SMLR model. Using the probability threshold
g = 0.99, 106 points were in the no-call zone, indicating an allelic
imbalance. The choice of ¢ = 0.99 is a mere example illustrating how
the SMLR model can also be used for QC and why this statistical
approach is more effective than applying a static threshold to the
coverage ratio [5, p. 35].
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Fig. 3. Median accuracy versus call rate from aggregated results of cross-validations (legend applies to both plots).

Each line represents the median accuracies calculated from binned call rate data of 1,000 cross-validation iterations, where the six SMLR models were fitted to and tested on data
from the examinations of the DNA quantities indicated above the plots. The red dot in each plot shows the median accuracy and call rate for the HID SNP Genotyper Plugin. Note
that the two plots use different axes scales, and that the first axes have been reversed to align with Fig. 4, where increasing ¢ leads to decreasing call rates.
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Fig. 4. Performance of the SMLR model across probability thresholds, ¢ (legend applies to both plots).

The grey lines depict the SMLR model’s performance in 1,000 cross-validation iterations. The model was fitted with an intercept to square-root transformed allele signals and
tested on data from the examinations of the DNA quantities indicated above the plots. Dotted lines mark the 25th and 75th percentiles among the 1,000 cross-validations, while
dashed lines indicate medians. The shaded horizontal bars represent the accuracy (left) and call rate (right) ranges for the HID SNP Genotyper Plugin.

4. Discussion

This study aimed to develop an effective method for SNP call-
ing in forensic genetics. The developed SMLR model is simple, using
only two or three parameters to compute three conditional genotype
probabilities from two input signals. It is possible to use more com-
plex variance-stabilising transformations than those investigated in this
study. Still, the aim was to demonstrate the capabilities of the model
while retaining as much of its inherent simplicity as possible.

Some immediate benefits of this simplicity are increased robustness
and a straightforward implementation of a no-call zone. Conversely, for
a non-symmetric model, changing the labels for a subset of the alleles
will alter the parameter estimates, making the model less robust. Non-
symmetric decision boundaries may also make some nucleotides more
prone than others to be declared NCs, creating an NC bias. Furthermore,
even with significant differences in the nucleotide-signal distributions
(such that certain allele labellings make more sense than others), it
is still likely that the SMLR model’s equal treatment of alleles will
yield higher accuracy compared to a non-symmetric model due to the
bias-variance trade-off [10]. However, we do not see any alarming
differences in the nucleotides’ signals (see Supplementary Fig. S4).

An alternative approach to handling uncertainty in low-coverage
data is the probabilistic model described by Mostad et al. (2023) [2],
which derives genotype likelihoods P (s | g) and combines them with
prior genotype probabilities P (g) to compute P (g | s) via Bayes’ theo-
rem. This structure is particularly useful when allele frequency infor-
mation is known and reliably specified, such as in population-based
or familial relationship inference contexts. However, prior informa-
tion is often unavailable in forensic genotyping scenarios, such as

criminal investigations or cases involving unidentified remains. The
SMLR model, by contrast, estimates P (g | s) directly without relying on
external priors, thereby avoiding potential bias from misspecified allele
frequencies. This distinction makes the SMLR framework well-suited for
general forensic use, especially in cases involving unknown individuals
or populations.

Measuring the performance of the SMLR variants is not straight-
forward when NCs are introduced and should be judged neutrally,
i.e. from the perspective that they are meant to remove WCs, whereby
NCs should not be seen as incorrect genotype predictions. This is further
complicated as performance changes with the amount of input DNA.
However, the SMLR model using a square-root transformation emerged
as the best all-in-one model, offering a good balance between NCs and
WGCs for DNA quantities as low as 31.25 pg, particularly when modelled
without an intercept.

The SMLR method was compared with the commonly used HSG,
which performs well with high DNA quantities but leaves room for
improvement at lower DNA amounts. The SMLR models using a square-
root transformation generally perform better than the HSG on the
examined DNA quantities. Consistently outperforming a genotyping
method with high accuracy and call rate, such as the HSG, is a sig-
nificant achievement that demonstrates the applicability of the SMLR
method for biallelic genotyping, particularly in forensic genetics set-
tings.

While the improvements in call rate and accuracy were more modest
for the high DNA amounts recommended by kit manufacturers, we
demonstrated that the SMLR framework substantially increased the
detection rate of allelic imbalance independently of the examined DNA
quantity (Supplementary Fig. S3). As a result, any laboratory can
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benefit from the SMLR framework, regardless of the DNA quantities
they typically work with.

Since data characteristics may vary when using SNP platforms and
procedures different from those in this study, the SMLR model’s param-
eters may need adjustment and validation before being implemented
with new genotyping methods. It should be noted that the effect of
changes in the probability threshold, g, on the width of the no-call
zone depends on the parameter estimates, particularly on the choice
of variance-stabilising transformation. A tailored dilution series can
help define the optimal setup for each lab environment, especially in
determining the ideal value for the probability threshold q.

The SMLR method can be adapted with minor modifications to anal-
yse data from other biallelic genetic systems, e.g. insertion-deletions.
The SMLR principle can also classify non-genetic data with similar
structures.

The bootstrap analysis showed that using approximately 1,460 SNP
observations markedly decreases the parameter estimates’ variances
when fitting the SMLR model (Supplementary Fig. S1). For the Preci-
sion ID Ancestry Panel, this corresponds to approximately nine com-
plete SNP profiles, with the option of repeating examinations of the
same individual, e.g. by measuring the SNP profiles of three individ-
uals, each repeated in three examinations. However, if feasible, we
recommend using larger sample sizes to enhance precision further.

For robust fitting, it is important to have a reasonable overlap
between the genotype clusters, preferably by measuring sufficient data
in the 31.25-50 pg DNA range. If this is not feasible, including a few
examinations with as little as 25 pg DNA can effectively achieve overlap.
However, the bootstrap analysis showed that adding data from exam-
inations of extremely low DNA quantities, like 12.5 pg, may negatively
distort the model’s decision boundaries.

In the Estimation subsection, it was suggested that the initial value
of the parameter vector be set to (1,-2) or to (0, 1,—2) if an intercept
is included. Depending on the scale of the signals and the choice of
variance-stabilising transformation, other initial values may be more
suitable. For example, we encountered issues with the initialisation of
‘optim’ when using the suggested initial values for the models with an
identity transformation. However, these issues were resolved by setting
ﬁli“it = 0 and ﬂ;““ = —1. Initialisation problems can occur due to
numerical overflow, e.g. if the value of the log-likelihood function at
the chosen initial value exceeds the limit the computer can represent.
Such issues are of general concern for optimisation tasks and are not
specific to fitting the SMLR model.

Maximum likelihood estimation (MLE) focuses on optimally placing
the decision boundaries to classify genotypes based on the observed
data. In this sense, MLE can be said to optimise accuracy when the
probability threshold ¢ is zero. However, the introduction of a no-
call zone creates a second decision layer that alters the classification
process in a non-trivial way. For example, before applying a probability
threshold to convert WCs into NCs, the model with §, # 0 may achieve a
higher likelihood and yield fewer WCs. Yet once a threshold is applied,
the performance metrics (4) and (5) may favour the simpler model
with f; = 0. This occurs because MLE does not account for how the
parameter estimates influence the width and shape of the no-call zone.

Although the cross-validations demonstrated that MLE yields effec-
tive SMLR models, it may still be possible to improve accuracy and call
rate further by considering estimation procedures that directly incor-
porate the no-call mechanism. Research into such methods — moving
beyond pure classification to explicitly optimise performance in the
presence of NCs — could be valuable for forensic genotyping.

Genetic software like GenoGeographer [28-30] typically assumes
that genotype calls are correct once they pass quality filters, over-
looking the inherent uncertainty in genotyping, particularly in forensic
genetics, where samples of low quality and quantity are common. A
statistical approach, such as the SMLR model, provides estimates of
the conditional genotype probabilities, which can help mitigate this
uncertainty. However, high accuracy of a model’s predictions does

Forensic Science International: Genetics 78 (2025) 103291

not guarantee that its probability estimates align with the genotype
frequencies in real data [10]. To integrate such probabilities suc-
cessfully into existing software, empirical verification is crucial. We
conducted separate preliminary empirical assessments for the homozy-
gous and heterozygous genotypes within the combined data of 31.25
and 50 pg DNA. Through binomial testing on groups of observations,
we evaluated whether the mean of the model’s probability estimates
for its predicted genotype could explain the observed proportion of
that genotype. This method confirmed that the SMLR model’s proba-
bility estimates align well with the empirical genotype distributions,
reinforcing our confidence in its utility for forensic applications.

5. Conclusion

The SMLR model improved the SNP calling efficiency, particularly
with suboptimal DNA amounts, as is often the case in forensic genetic
examinations of stain material in criminal investigations. At 31 pg DNA,
the NC rate was reduced by approximately 50% compared to the HSG,
while maintaining the same WC rate as the HSG. The WC rate was
reduced by over 50% while maintaining the same NC rate. At 62-250 pg
DNA, the no-call rate was dramatically reduced. Using SMLR for quality
checks of the allele balance substantially improved imbalance detection
regardless of the DNA input level.
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