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Modeling of Physical Unclonable Functions (PUF): A Systematic

Literature Review

Mieszko Ferens, Edlira Dushku, Sokol Kosta

Abstract—Hardware fingerprinting technologies are an inte-
gral part for security of interconnected devices, for which the
Physical Unclonable Function (PUF) has attracted attention
in industry and academia for over 20 years. PUFs exploit
uncontrollable manufacturing variations to provide hardware-
intrinsic secrets that are highly sensitive to physical tampering.
However, many questions remain on the applicability of PUFs
given the prominent existence of modeling techniques that allow
to predict or manipulate these secret fingerprints. In this survey,
we analyze the trends and state-of-the-art in PUF modeling from
222 papers obtained from a systematic search and screening
process. Our results provide an extensive list of PUF designs and
protocols, which we classify based on three main perspectives:
application, operational, and defensive. Similarly, we list and
classify modeling techniques based on the defined PUF models
and learning algorithms. Most of the surveyed papers consider
modeling techniques purely as a vulnerability. However, we also
include the perspective of modeling as an enabler for lightweight
sharing of PUF secrets. Finally, we provide an exhaustive knowl-
edge base and identify gaps and promising directions for future
work in the field.

Index Terms—physical unclonable function, modeling, machine
learning, authentication, hardware security.

I. INTRODUCTION

N hardware security, a key goal is the development of ef-

fective primitives that enable secure supply chains, support
a root-of-trust, and support cryptographic operations. Starting
from the Integrated Circuit (IC) manufacturing, the manu-
facturer should not illegally use the design and Intellectual
Property (IP) to, e.g., overproduce and sell ICs. It is also
important to guarantee that the final device has not been
tampered by, e.g., a hardware trojan. Moving to the operation
of the final device, it should run on a root-of-trust which
ensures a controlled hardware and software platform. Finally,
the device should also be capable of cryptographic functions
allowing it to authenticate and encrypt its communications.

In this landscape, Physical Unclonable Function (PUF) is
a promising hardware fingerprinting technology that serves
as a building block for the solutions that tackle these afore-
mentioned problems [1]]. PUFs exploit random manufacturing
variations to create a hardware-intrinsic fingerprint, similar
to how biometrics can be used in humans. The generated
fingerprint is essentially a secret that may be used for identifi-
cation and hardware validation. A standout feature of PUFs
is the abundance of lightweight designs targeting low-cost
devices [2]. Additionally, PUFs are inherently tamper-evident
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due to their sensitivity to hardware variations which are
inevitably affected by invasive or probing techniques [3].

However, a large portion of PUF research has focused on
modeling techniques for PUFs, which has become a significant
point of controversy for the technology. Modeling techniques
are required to support PUF applications in a few cases (e.g.,
for sharing a large PUF secret at a low memory cost) [4], but
generally they are a liability due to the vulnerabilities they
introduce [S]. PUF modeling is based on the prediction or
manipulation of the PUF fingerprint, for which many different
algorithms and threat models have been proposed [6]-[9]. As
a result, in the last decade, the field of PUFs has sparked an
arms race between secure PUF designs and algorithms capable
of cloning them, which deserves an in-depth analysis.

In this paper, we perform a systematic literature review
of PUF modeling starting from 2013 until the end of 2024,
where most of the works in this domain have been published.
The goal is to provide a comprehensive evolution of modeling
techniques and PUF designs until the current state-of-the-art.
Additionally, the scale of this study enables us to identify
clear trends and gaps that we make apparent to the research
community. We aim to aid any researcher or developer in
selecting the direction of future work on PUFs by providing
a comprehensive overview of PUF modeling. As such, the
contributions of this paper are as follows:

o We systematically survey the literature on PUF modeling
corresponding to more than 400 papers, and we classify
different PUF architectures and protocols in regard to
their main security features, implementation, and perfor-
mance metrics.

o We identify the different types of modeling attacks and
defensive measures proposed in the literature.

e« We present a thorough analysis of modeling attempts
(successful and unsuccessful) against different types of
PUFs with and without different defensive measures.

o Based on the literature analysis, we discuss the trends
and gaps in current PUF research and conclude with rec-
ommendations for future directions in both PUF system
designs and modeling techniques.

A. Related surveys and motivation

The systematic literature review of this paper (described
in the next subsection) provides a list of surveys related to
PUF modeling, and through a broader search, a larger list
is obtained. As can be seen in Table [I, previous surveys
have focused on various aspects of PUF research, including
general overview [[11f, [[15[], [17], [20], [22], protocols [10],
[21], implementation [16]], and recently, IoT applications [7],



TABLE I
RELEVANT SURVEYS ON PUF IN THE LAST DECADE.

Survey Year Focus Security analysis Modeling attacks
Delvaux et al. [10] 2014  PUF protocols Yes Yes
Herder et al. [11] 2014  PUF overview Yes Yes
Ruhmair et al. [12] 2014  PUF modeling attacks Yes Yes
Zhang et al. [[13] 2014  Silicon PUFs and RO PUF  Yes Yes
Adames et al. [14] 2016  Emerging PUF designs No No
Halak et al. [15]] 2016  PUF overview No No
Alkatheiri et al. [16] 2017  FPGA implementations No No
Chang et al. [17] 2017  PUF overview Yes Yes
Babaei et al. [[18] 2019  IoT applications Yes No
Shamsoshoara et al. [19] 2020  IoT applications Yes No
Ruhmair et al. [9] 2020  PUF side-channel attacks Yes Yes
Yehoshuva et al. [8] 2021  PUF invasive attacks Yes Yes
Lokhande et al. [20] 2021  PUF overview No No
Mall et al. [21] 2022  PUF protocols Yes No
Khalafalla et al. [22] 2022  PUF overview Yes Yes
Al-Meer et al. [[7] 2023  IoT applications Yes Yes
Santikellur et al. [6] 2023  PUF modeling attacks Yes Yes
Ferens et al. [23] 2023  PUF modeling attacks No Yes
Alhamarneh et al. [24] 2024  IoT applications Yes No
This work 2025 PUF modeling Yes Yes

[24]. While most of these surveys include some remarks
or summary of modeling attacks, they do not provide a
depth that is proportional to the amount of research currently
available on PUF modeling. Some recent surveys focus on
PUF modeling attacks [|6], [23], however, they do not provide
a complete overview, choosing to focus on a limited set of PUF
designs. Similarly, there are some surveys on specialized PUF
attacks [8]], [9]], although they lack some recent developments
in the field. Moreover, the beneficial perspective of modeling
techniques is missing. Thus, there is a noticeable gap in the
literature for a survey that provides a complete and updated
overview.

B. Methodology

To systematically search the literature, we focus on the Web
of Science and Scopus databases. These databases index all
the major scientific databases where PUF literature is pub-
lished, including but not limited to IEEE, ACM, ScienceDi-
rect, Springer, and Wiley. To identify relevant works to PUF
modeling, we defined a set of keywords which encompass the
PUF topic while including mentions of modeling or attacks:

((“physical unclonable function” OR “PUF”) AND
(“modeling” OR “modelling” OR “attack™))

We also limited the search criteria to only include papers
from 2013 until the end of 2024. Initially, we attempted
to search the databases on a topic basis, where the set of
keywords can appear in the title, abstract or keywords of
the documents. This search provided us with 2055 and 1950
results in Web of Science and Scopus, respectively, showing
that the query was too broad. Thus, we limited the appearance
of the keyword set to only the document title for our second
query, which provided 197 and 216 results, respectively.

After combining these results into 413 papers, we removed
all duplicates without excluding similar or extended papers,

leaving 236. Then, we screened all remaining papers for
relevancy in our study. Our criteria for inclusion in this paper
were the following:
1) Proposing a novel PUF design, protocol or defensive
mechanism that may tackle modeling attacks.
2) Evaluating some modeling technique on some PUF
design, protocol or defensive mechanism.
While rare, not all papers approach the PUF modeling from
a security perspective. These papers are included in our study
as, fundamentally, they fit the topic. Additionally, some papers
focus on other aspects, e.g., PUF performance, without consid-
ering modeling. These papers are also included in our study,
as long as their contents somehow align with the inclusion
criteria, even if it was not the intention of the authors. On the
other hand, we exclude papers that:
1) Are not about PUFs.
2) Propose PUF applications, design extensions, or proto-
cols that do not affect the modeling in any manner.
3) Are the original and more limited works of other ex-
tended papers included in this study.
4) Are not in English language.
5) Are not accessible to ugl}
The screening process left us with 176 papers, to which we
added 46 papers from a snowballing process performed in
parallel, for a total of 222 papers. This total includes 6 of
the survey papersE] included in Table |II Our methodology is
illustrated in Fig.

C. Organization

The rest of this paper is organized as follows. Section [[I]
presents the necessary background on PUFs and modeling

'We have access to all major publishers including IEEE, ACM, ScienceDi-
rect, Springer and Wiley, as well as many others. In some rare cases, we are
not able to access papers published in less known venues.

2The rest of the surveys from Table E] were found through a general search
on the topic of PUFs without following the described methodology.
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Fig. 1. Systematic literature review methodology with deduplication, screening, and snowballing steps. The numbers indicate the number of papers after each

step.

techniques. In Section the applications of PUFs are intro-
duced, including the problems and solutions that arise from
modeling techniques. Section presents the classification
of PUF designs and shows the trends that have developed.
Following, Section |V| complements the previous section on
PUF designs by considering protocols that extend their func-
tionality. Then, in Section the types of currently available
modeling techniques and their details are provided. Section
discusses the challenges that remain unsolved and provides a
discussion with remarks towards the future goals of research
in the field of PUFs. Finally, Section [VIII] concludes the paper.

II. PRELIMINARIES

This section presents the necessary background on PUFs
to understand the proposed designs and protocols up to date.
It also serves to better understand the modeling of PUFs
discussed later in the paper.

A. Definition and basic operation

PUF is based on the idea that it is not possible to man-
ufacture two exact replicas of the same hardware. Random
manufacturing variations occur due to many factors such as
physical impurities, temperature or pressure difference, among
many others. Given that a manufacturer is not able to control
these variations with current manufacturing technologies, it is
widely accepted that PUFs are physically unclonable. Addi-
tionally, since a PUF implementation depends on its hardware,
any physical tampering or probing inevitably changes the PUF,
proving resilience against such attacks. Note that, we discuss
some works that challenge this assumption in Section

At a high level, a PUF module is expected to function
by providing responses to challenges, as shown in Fig.
A challenge can be any type of stimuli applied to the PUF,
ranging from a binary input to other physical stimuli, such as
photons, depending on the PUF type. Similarly, the response
of a PUF can also take any of the formats the challenge
does. For many applications, it is convenient to provide both
challenges and responses in binary form, thus, if required,
some conversion circuitry can be included in the PUF system
(optional input and output conversion in Fig. 2)).

Ultimately, a commonly used term is the Challenge-
Response Pair (CRP), which describes a single input challenge
to the PUF, and its corresponding response. Based on their
CRPs, PUF are evaluated according to a set of properties.
While different works consider different sets of properties, we
choose to present the fundamental properties that are always
considered in PUF literature in one way or another, and that
are essential to all PUF applications.

o Reliability: The ability of a PUF to provide the same

responses to the same challenges, i.e., the consistency of

bits bits
photons photons
Challenge Response
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Fig. 2. Generic PUF module.

the CRPs. Since the CRPs are used to identify the device
that possesses a PUF, or as inputs to other cryptographic
functions, they are expected to be consistent. Given the
correct response r to a challenge, the reliability of a
PUF is calculated by obtaining ¢ samples of the same
response 7 in different environmental conditions. These
environmental conditions can be a difference in temper-
ature, supply voltage, time (due to aging), among others.
Assuming that the responses are converted to bits, and
that each response is of m bits:

¢
1 HD(r
Reliability = - * 100 1
eliability = (1 -~ ; % (1)
with HD(, -) being the Hamming Distance of two binary

strings. The ideal value for this metric is 100%.

o Uniformity: Assuming responses in binary form, the
uniformity is the ratio of 1s to Os in the responses of
a PUF. It can be calculated from a set of responses 7;
obtained from [ different challenges:

>_|

l
Uniformity = (; Z * 100% 2)

To ensure that the responses are hard to predict, unifor-
mity has an ideal value of 50%.

o Uniqueness: The ability of a PUF to identify two devices,
each with their own instance of the PUF, when responding
to the same challenge. For d devices, each with their own
response r. of m bits, it can be calculated as the average
Hamming Distance of the responses from the d PUFs,
averaged over t different challenges:

Uniqueness =
t d-1 d
1 HD(ri,rd)
E E § # 100 3
d* d+1 i=1 j=i+1 m )* % ()

The ideal value for this metric is 50%.



B. Basics of modeling PUFs

A well-researched problem of PUFs is their clonability [6],
[12], [23]]. In essence, while a PUF is designed to provide
unpredictable outputs to specific inputs (i.e., CRPs), it is
possible to predict them through different methods. This is
the fundamental idea of modeling PUFs and is the basis of
modeling attacks. Note that PUF modeling can also be done
in a trusted manner to, e.g., create a software copy of the
PUF for a server that can then authenticate the PUF. The main
difference between modeling attacks and the latter is that the
restrictions on an attacker are usually considered to be stricter
due to limited access to information on the PUF itself [25].
For example, an attacker may collect CRPs passively by
eavesdropping on a PUF communication channel or actively
by directly communicating with a PUF [26]. Meanwhile, a
manufacturer could have access to measurements that are
internal to the PUF circuit [27].

Regardless of the case, there are two main components
for PUF modeling: (i) the model of the PUF and (ii) the
learning algorithm. The model is a general representation of a
specific PUF design that possesses some parameters that, when
randomized, can perfectly define the behavior of a physical
instance of the respective PUF design. On the other hand, the
learning algorithm is the component responsible for approx-
imating these parameters for a specific PUF instance. This
process obviously requires data on the PUF instance (CRPs or
side-channel information), e.g., fitting a model with a Machine
Learning (ML) algorithm. With a good fit, the resulting fitted
model can approximate the physical PUF instance so closely
that other CRPs not present in the training data can also be
predicted.

The success of PUF modeling depends on the accuracy
of the model, the use of an adequate learning algorithm,
and the availability of sufficient training data. For example,
a popular model for the so-called Arbiter PUF [28] and
XOR PUF [29]] designs is the additive delay model [30],
[31] (these PUFs and models are explained in more detail
in Sections [[V-BT| and [VI-AT)). However, while this model
is linear with the former design, it is nonlinear with the
latter. This means that one of the most popular ML modeling
techniques, namely Logistic Regression (LR) [32], becomes
ineffective in the nonlinear case despite it being the best
modeling approach to date against the Arbiter PUF [33].
Instead, another popular approach is to use the Multi-Layer
Perceptron (MLP) algorithm which adapts better to nonlinear
models [29], [34], [35]], but requires more data [36].

III. KEY CONSEQUENCES OF PUF MODELING ON PUF
APPLICATIONS

Looking back at the fundamental operation of PUFs from
Section the core concept of a PUF is to provide a unique
output to a specific input in the form of a CRP. A CRP
functions as a unique token that only the device in possession
of the corresponding PUF should be able to generate. This
observation shows that a PUF is essentially a tamper-proof
storage, which is widely applicable for different security
applications. Fig. [3] shows a taxonomy of PUF applications

with examples for each. The first division in PUF applications
separates the functional environment in which a PUF (more
specifically its CRPs) operates: (i) internal or “on-device”, and
(i1) external or off-device”. Following, both categories and
their specific subcategories (applications) are described.

A. On-device applications

In the case of on-device applications the focus is on physical
security and anti-tampering properties, with CRPs used only
internally in the device that holds the PUF. Recall that a PUF
acts as a secure storage on the device. However, the contents
of the storage are randomized through the manufacturing
process and cannot be controlled. Nevertheless, randomized
tamper-proof memory is a valuable resource for the following
applications.

o Cryptographic key storage: An obvious use case for
tamper-proof memory is the storage of cryptographic
keys [3]]. The key could be used as a pre-shared secret
(assuming a copy is distributed to other communication
nodes) or to initialize a public-key cryptographic scheme.
The main advantage of using PUF in this use case, is
that adversaries cannot easily obtain this key from the
device by invasive methods. This is especially relevant
when dealing with memory readout attacks on powered-
off devices, as the key is not stored in persistent memory
and the PUF needs to generate it instead [25]], [37].

o Tamper-proof memory encryption: Encrypting the data
in a device’s memory is an effective method to minimize
the risk of adversaries obtaining some information, such
as Intellectual Property (IP) [38|]. To do so, a device
would normally need an encryption key that should not
be physically vulnerable on the same device. This proves
challenging in absence of secure storage, but PUFs can
solve the issue by generating the key on demand.

o Detection of physical tampering: Taking a step back
and generalizing, a PUF can simply be used as a physical
detection layer on an IC that measures its integrity [25].
An example can be found in [27]], where a PUF measuring
capacitance forms a cage that envelopes a circuit. Such a
cage makes it exceedingly difficult to physically breach
the circuit without affecting the PUF, which would then
output different CRPs, allowing for tamper detection.

e True Random Number Generation: Granted a suffi-
ciently large number of CRPs, they can be used as random
numbers [39], [40]. The main advantage of PUFs as Ran-
dom Number Generators (RNGs) is that they implement
this function as a lightweight True RNG (TRNG) instead
of a Pseudo RNG (PRNG).

Overall, on-device PUF applications can be a building block
toward secure supply chain and early-stage integrity validation
in a root-of-trust mechanism. Additionally, over-building and
the sale of ICs on the black market can be prevented through
identification of the generated unique PUFs [41]]. Moreover,
cryptographic functions can be supported with secure storage
modules with guarantees on the randomness of the keys.
Finally, PUFs have great flexibility due to the overwhelmingly
large number of use cases for RNGs.
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Fig. 3. PUF application taxonomy.

The assumption for the uncontrollable randomness of the
CRPs of on-device PUFs is important for the previous appli-
cations. However, recent work has shown that this assumption
may not always hold, when the CRPs of a Static Random
Access Memory (SRAM) PUF were manipulated through a
process called BTI aging [42]]. Such a vulnerability would
allow a manufacturer to maliciously control the contents of
a PUF, although the authors of [42] proposed an anti-invasive
countermeasure which fixed the vulnerability. As will be seen
later, anti-invasive techniques form a small portion of the
overall modeling techniques in PUF literature, showing the
lack of knowledge in this regard. A positive note is that when
not performed maliciously, the technique presented by [42]]
can be used to implement nonrandom secure and tamper-proof
memory, enabling other potential applications that have not
been explored to date.

B. Off-device applications

An arguably much more challenging scenario is when CRPs
are exchanged and leave the tamper-proof premises of a
device. When CRPs leave a device, one cannot guarantee that
they do not fall into the hands of an adversary. Generally,
this would not be a problem if CRPs were fully independent;
however, many off-device applications only make sense in the
presence of a large number of unique CRPs. As we will explain
in Section a Strong PUF can provide an exponential
number of CRPs for its size at the cost of a correlation between
them. Combine this with a malicious adversary and you get
the majority of modeling attacks (see Section [VI). Even so,
many works have attempted to push through this limitation to
provide the following applications.

o Authentication: An obvious use for the PUF’s device-

unique secret is to identify devices by checking the values
of known CRPs [39], [43]].

o Pre-shared key symmetric encryption: Extending the
use of secure storage for cryptographic keys in on-device
applications, a device could use a pre-shared symmetric
key stored in a PUF for encrypted communications [21]].

The main challenge of off-device applications is their sus-
ceptibility to modeling attacks due to exposed CRPs. The
unified response from the research community to this problem
has been to develop obfuscation techniques that prevent CRPs

Memory encryption

Authentication

Symmetric
encryption

from being sent in the clear (despite the potential lack of
encrypted communications). Obfuscation applies especially to
authentication applications, since authentication tends to pre-
cede encryption. However, for symmetric encryption schemes,
the CRPs are not easily exploitable since they are not sent in
the clear by default.

The remaining challenge is then to deploy a single unique
PUF in a shared manner, since any communication requires
both endpoints to share the CRPs provided by the PUF. The
secure deployment of a PUF clone remains an open challenge,
with previous work assuming that it is possible through the
manufacturing process. One major concern is the memory
complexity of storing millions or even billions of CRPs
without a physical PUF. Ironically, a good solution to this
problem comes from modeling techniques, as software PUF
clones can be distributed instead [4]]. However, for additional
security the controlled physical manipulation of PUFs (as
demonstrated by [42] on SRAM PUF) could be employed as
well.

IV. PUF CLASSIFICATION

The idea to use unique and intrinsic characteristics of
materials has existed for many decades [44]. However, the
term “Physical Unclonable Function” was not introduced until
the early 2000s, when the use of intrinsic delays of wires
and electronic components to identify ICs was proposed [30].
Since then, a plethora of ideas to uniquely identify electronic
devices (typically involving ICs) have emerged [7]], accompa-
nied by a variety of applications.

Due to the large number of PUF designs that have been pro-
posed in the literature, it becomes necessary to classify them
into groups. The classification process is not straight forward,
as no standardized method exists. However, based on the large
volume of literature surveyed in this paper, three dimensions to
the classification have been identified: (i) type of PUFs based
on their CRPs (application perspective), (ii) category of PUFs
based on their operational principles (operational perspective),
and (iii) countermeasures (if any) implemented into PUFs
designs (defensive perspective). Fig. ] shows a taxonomy for
the classification with each perspective having subcategories
that are explained in the following subsections.
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Additionally, Table [I] provides a list of PUF designs orga-
nized primarily based on their operational principle, with the
other perspectives included as standard columns. Due to the
large number of implementations (281 in total), Table is
limited to a single page, prioritizing designs that (i) appear in
multiple studies, (ii) include complete performance data, and
lastly (iii) are among the most recent. Note that this means that
PUFs that appear multiple times in the literature have only one
entry in Table [[I] to save space. The full list is available in the
appendices of this survey (see Appendix [A).

A. Application perspective

Depending on the number of unique CRPs that can be
extracted from a PUF, they are classified into Weak or Strong
PUFs. Moreover, originating from these two classes, Con-
trolled PUF can be defined.

o Weak PUFs: Weak PUFs are those that possess a number
of unique CRPs linearly proportional to the number of
basic components of the PUF. The advantage of a Weak
PUF is that its CRPs have low correlation and may
even be considered independent [102]]. This makes it
challenging to model the unknown CRPs based on known
ones. However, note that a Weak PUF does not guarantee
uncorrelated CRPs [103]], [[104]]. Moreover, due to the
limited number of CRPs, an attacker could clone the PUF
in linear time by exhaustively recording all CRPs. Thus,
the CRPs cannot be exchanged in the clear through an
untrusted channel and are normally reserved for on-chip
applications such as key generation [[11]], [[13]].

o Strong PUFs: Strong PUFs are those that possess a
number of unique CRPs exponentially proportional to the
number of basic components of the PUF. This character-
istic prevents PUF cloning in linear time by exhaustively
recording all CRPs, making Strong PUFs practical for
off-chip applications where CRPs are sent in the clear
over an untrusted channel, e.g., authentication. However,
since different unique CRPs are generated from the same
components of the PUF, they are correlated and exhibit
limited entropy [2], [105]]. The consequence is that Strong
PUFs can become vulnerable to modeling attacks in
which unknown CRPs are predicted based on previously
known CRPs [[102]].

( Delay )

Full obf. Other

Side channel obf. None

o Controlled PUFs: Controlled PUFs are those that use
either a Weak or (typically) Strong PUF as their core.
In addition to this, they implement control logic, e.g., a
Random Number Generator (RNG) [106], Linear Feed-
back Shift Register (LFSR) [[107]], hash function [108]], or
fuzzy extractors [[109]]. Overall, a Controlled PUF enables
complex modes of operation that allow for increased
security (by implementing countermeasures) and reliable
applications. It is worth noting that the definition of
Controlled PUF is not consistent throughout the literature.
For instance, some PUFs with additional modules might
be called Strong PUFs instead [[70]], [72]. In this paper,
we choose to consider as a Controlled PUF any PUF that,
besides a single core PUF, incorporates additional ele-
ments that increase the difficulty of modeling. However,
additional modules that do not affect the modeling do not
classify the PUF as a Controlled PUF (e.g., only for in-
creasing reliability [38]], [L10]], [L11]] or uniqueness [112]],
[L13]D).

Looking at the types of PUFs that are addressed in the
literature, the largest volume goes to Controlled PUFs with
65.1% of designs. Meanwhile, only 26% and 8.9% are purely
Strong and Weak PUFs, respectively. As a security primi-
tive, PUFs are expected to be unclonable and tamper-proof.
However, repeated vulnerabilities have necessitated additional
security mechanisms, leading mainly to the development of
Controlled PUFs. Additionally, the extensive number of CRPs
in Strong PUFs provides greater versatility, justifying their
popularity in the literature over Weak PUFs. This popularity is
reinforced by Weak PUFs already showing good resilience to
attacks due to their low correlation CRPs. Since only a handful
of recent studies successfully compromise them [42]], [114],
[115], researchers typically focus on the more challenging
security problem of Strong PUFs.

B. Operational perspective

Based on their manufacturing, PUFs can be classified as:

o Non-silicon PUFs: Non-silicon PUFs are those that are
based on the manufacturing variations of non-electrical
components. The most common example are optical
structures that modify light patterns that pass through
them [99], [[116], [[117], although microscopic randomly



TABLE I
SHORT OVERVIEW OF PUF IMPLEMENTATIONS (SEE APPENDIX@FOR FULL VERSION). THE DISPLAYED AND TOTAL NUMBER OF ENTRIES ARE SHOWN
AS (X /Y). PERFORMANCE VALUES ARE SELECTED BASED ON A REPRESENTATIVE WORST CASE SCENARIO. A ’~’ SYMBOL INDICATES THAT THE
VALUES ARE TAKEN FROM A VISUAL GRAPH AND ARE NOT EXACT. BLANK SPACES ARE INFORMATION THAT WAS NOT OBTAINABLE FROM THE
REFERENCE. A ’-” SYMBOL INDICATES NO COUNTERMEASURE.

Category PUF  Ref ID Type Platform Reliability =~ Uniformity =~ Uniqueness = Countermeasure
Arbiter PUF Strong Xilinx Spartan-6 98.42% 51.19% -
BST-RPUF Controlled Xilinx Artix-7 ~100% 46.78% 48.64% Challenge obf.
CBDC-PUF Strong Xilinx Artix-7 100% 49.6% 49.8% -
CO-PUF Controlled Xilinx Artix-7 95.37% ~50% 50.01% Response obf.
CT PUF Controlled  Xilinx Zyng-7000 ~92% ~50% ~50% Data poisoning
DAPUF Controlled Xilinx Virtex-5 ~90.31% ~45.74% ~46.37% Response obf.
DCH PUF Controlled Xilinx Artix-7 98.68% 41% Response obf.
Dual-mode PUF Strong Xilinx Artix-7 ~86% 44.65% Data poisoning
DyAdv PUF Controlled Xilinx Artix-7 97.97% 49.67% 50.13% Response obf.
FF-PUF Controlled Xilinx Artix-7 Challenge obf.
FLAM-PUF Controlled Simulated 95.59% 49.73% 49.81% Challenge obf.
FOM CDS-PUF Controlled Xilinx Artix-7 92.09% 52.54% 50.50% Challenge obf.
IPUF Controlled Xilinx Artix-7 97.9% 25-50% Challenge obf.
Ising-PUF Controlled Simulated 97.74% 50.1% Challenge obf.
Delay LBIST-PUF Controlled Xilinx Artix-7 89.6% ~60% ~70% Challenge obf.
(32 /186) LEE PUF Controlled Xilinx Spartan-6 99.74% 49% 58.73% Response obf.
LP-PUF Controlled Simulated 61-96% ~99% Full obf.
LSPUF Controlled Xilinx Artix-7 97.08% 49.50% Response obf.
MPUF Controlled Simulated 98.67% 49.80% 50.01% Challenge obf.
NoPUF Controlled Simulated 91.98% 49.65% Challenge obf.
OI-PUF Controlled  Xilinx Zyng-7000 99.2% 48.9% 30% Challenge obf.
P-2APUF Controlled Xilinx Virtex-7 ~53% ~50% Challenge obf.
PFO PUF Controlled Xilinx Spartan-6 96.91% 49.00% 56.02% Full obf.
RO PUF Weak 180nm CMOS 99.95% ~50% -
RPUF Controlled  Xilinx Zyng-7000 94.80% 48.9% 52.2% Challenge obf.
SCD-PUF Controlled Xilinx Artix-7 97.79% 49.56% 49.95% Full obf.
SOI PUF Controlled Xilinx Artix-7 98.6% 48.2% 29.1% Response obf.
SRPUF Controlled Xilinx Artix-7 91.87% 50.14% 50.03% Challenge obf.
SW PUF Controlled Xilinx Artix-7 99.97% 49.74% 49.89% Full obf.
TP PUF Controlled Xilinx Artix-7 96.59% 57.97% Response obf.
XMPUF Controlled Xilinx Artix-7 37.03% 40.6% Challenge obf.
XOR PUF Controlled Simulated 49.23% 53.21% Response obf.
2SPUF Weak Simulated 96.19% 49.34% 48.1% Challenge obf.
BR PUF Strong Xilinx Spartan-6 99% 47% 49% -
Feedback SPN PUF Controlled 130nm CMOS 99.27% ~50% Challenge obf.
Memory MRAM PUF Weak Fe'lbricaled 97.25% 47% o
8 /27) SRAM PUF Weak Simulated 99.14% 50.15% 47.71% Anti-invasive
Suresh PUF Controlled 14nm CMOS 99.74% ~50% Full obf.
TBR PUF Strong Xilinx Spartan-6 97% 54% 50% -
eFlash PUF Strong 55nm CMOS 5% 50.3% -
3D NbOx PUF Weak NbOx 97.59% 49.97% -
AM-PUF Controlled  Xilinx Zyng-7010 98.1% 51.19% 53.51% Full obf.
Arbiter MRAM PUF Strong Simulated 99.55% 49.76% -
CIS PUF Weak Simulated 97.23% 47.62% 47.91% -
Current Mirror PUF Strong Simulated 98% 47% 49% -
ESP-PUF Controlled Altera Cyclone 2 ~100% 50.10% 49.96% Full obf.
HP mem-PUF Weak PrPyrl 100% 48.1% -
Hybrid PUF Controlled Xilinx Spartan-6 99.7% 49.78% 49.38% Full obf.
Other Lattice PUF Controlled Xilinx Spartan-6 98.74% 49.98% 50.00% Other
(17 /1 63) MR-PUF Weak Simulated 51.10% 49.40% -
Neuron-PUF Controlled 65nm CMOS 100% 47.49% 48.42% -
SC PUF Weak 180nm CMOS ~100% 46.72% 50.38% -
SCA PUF Strong 130nm CMOS 97.4% 52.8% 49.9% -
SPN PUF Controlled 130nm CMOS ~100% ~50% Full obf.
STT-MRAM PUF Weak Simulated ~97% 49.09% 49.96% -
Sponge PUF Controlled Simulated ~50% 50.03% 50.00% Full obf.
VTC PUF Strong Simulated 97.9% 50.1% 49.8% -
Non-silicon NOS PUF Strong Simulated ~50% -
315 QuPUF Strong IBM Quantum 13.82% 55.13% -

SBS-CAN PUF Strong Fabricated 96% 49.20% 49.60% -




generated structures in certain materials can also be used
as a fingerprint [[101]]. Finally, an emerging idea is to
fingerprint the components of quantum computers [100],
[[118].

o Silicon PUFs: Silicon PUFs are those that are based
on the manufacturing variations in the fabrication of
electrical components, mainly in ICs [81]. Typically, two
subcategories are defined for Silicon PUFs: (i) memory-
based PUFs and (ii) delay-based PUFs. Memory-based
PUFs exploit the stabilization bias of memory compo-
nents (memory cells) towards either 0 or 1 when left in
an unstable state. Meanwhile, delay-based PUFs utilize
the variation in latency of the propagation of electrical
signals through electrical components and wires. Other
subcategories could be defined, but previous work has not
naturally converged towards further definitions. Thus, we
consider a third general subcategory for “other” designs,
as shown in Fig [4]

Comparing silicon and non-silicon PUFs shows a big dif-
ference in the ease of implementation. While a few proposals
that could support optical systems have appeared [99], [116],
they do not come close to the number of silicon PUFs which
account for 98.1% of designs (observed in this survey). Even
with the new emerging ideas to use PUFs as “quantum”
primitives [100], [117], [118], the reliability and particularly
specific use cases of non-silicon PUFs are a major challenge
that holds them back. Meanwhile, the potential of a few
practical silicon PUFs (mainly Arbiter PUF and SRAM PUF)
has largely driven most PUF research over the past decade.

1) The Arbiter PUF: First, the Arbiter PUF [30] is the
first and most promising Strong delay-based PUF to appear in
the literature. It uses a chain of switch elements to generate an
exponential number of CRPs at a low hardware cost. However,
two problems have consistently persisted for Arbiter PUFs: the
difficulty of implementing balanced delay paths in hardware,
especially Field-Programmable Gate Arrays (FPGA) [49]], and
the correlation between CRPs viewed as a vulnerability. The
implementation challenge is out of scope for this paper, but
note that many works have successfully manufactured PUFs in
a variety of FPGA platforms [55]], [119]-[124] and even some
Application-Specific Integrated Circuits (ASIC) [80], [125],
[126].

More importantly, the correlation between CRPs is a prob-
lem that has been shown to be more challenging that could
initially appear. This challenge alone has motivated an enor-
mous number of Controlled PUF designs stemming from the
Arbiter PUF. Firstly, designs such as FF-PUF [127], XOR
PUF [128], [129], IPUF [56], [128], [130], LSPUF [128],
[131], MPUF [62], [128], [132], Dual-mode PUF [51], and
CT-PUF [48]] (just to name a few), all extend the Arbiter PUF
and have one thing in common: they increase the complexity
of the model through more complicated wiring and additional
basic components. This design strategy attempted to retain the
main idea of the Arbiter PUF, that is, lightweight hardware
identity with exponential CRPs. However, due to the esca-
lating effectiveness of modeling attacks, most of the previous
designs were shown to be vulnerable as well. Thus, a different
approach which incorporates other modules was also strongly

argued in many papers leading to designs such as CRC-
PUF [133], DFM-APUF [134], FLAM-PUF [54]], RPUF [68]],
PUF-FSM [135], SRPUF [71], DCH PUF [50], etc. This
approach (similarly to protocols in Section [V) was more
effective against modeling attacks, but certain vulnerabilities
were still exposed (see Section [VI).

2) The SRAM PUF: Aside from delay-based PUFs,
memory-based are an important class. The earliest PUF of
this type is the SRAM PUF [42]], [[136], which exploits the
stabilization bias of SRAM memory cells towards a certain
value. Based on this principle, the use of other memory
technologies can also be exploited, e.g., with DRAM [137]],
[138], MRAM [79], [139], or flash memory [81]]. The use of
memory cells provides an important advantage to security as
the bits generated by the memory cells bias is uncorrelated
between them. However, the limited number of cells leads
to a lower number of CRPs. To combat this limitation, other
designs such as the BR PUF [140||-[142] and TBR PUF [140],
[141] take inspiration from the Arbiter PUF and create a chain
of memory cells, but this can obviously lead to some security
concerns due to correlation between cells.

That said, overall, the amount of research into memory-
based PUFs is lower than for delay-based. Fundamentally, this
is because the best designs are the simple ones such as SRAM
PUF that provide clear use cases for on-device applications
with few security concerns regarding physical aspects [42].

3) Other PUF designs: As can be expected, there are
efforts to improve PUFs by providing fundamentally new
designs. Aside from delays and memory stabilization bias,
capacitance has been exploited [27], [[111]], [143]. Similarly,
voltage, current, or resistance (basically Ohm’s law) through
electronic components can be applied to PUFs [[110], [[144].

Additionally, emerging technologies such as memristors can
be leveraged to create PUFs [3]], [145]. Another interesting
example is the use of CMOS image sensors [146]]. Finally,
non-silicon materials have also been proposed to fabricate
specialized PUFs [101]]. Interestingly, many new designs share
a striking similarity to the structure of an Arbiter PUF [147],
[148].

C. Defensive perspective

Given the existence of different attacks against PUF, many
papers have proposed protocols, schemes, and techniques to
mitigate them. The large-scale literature review conducted
in this paper has allowed for the identification of common
techniques. Thus, in this subsection, we provide a classification
of the types of countermeasures that can be found in the
literature, with explanations for each class. There are four fun-
damental countermeasures to modeling techniques: challenge
obfuscation, response obfuscation, full obfuscation, and data
poisoning. Additionally, special countermeasures to prevent
side-channel and invasive attacks have also been proposed.
Finally, certain countermeasures that cannot be grouped with
the rest have also been proposed.

o Challenge obfuscation: Most modeling attacks on PUFs
rely on the use of clear CRPs for training of an ML
model (see Section [VI). For this reason, a popular ap-
proach in PUF protocols as well as many Controlled



PUFs is to hide the challenge fully or partially from the
attacker [149]-[153]]. This obfuscation is typically done
with some common control logic on both the verifier and
the prover, so that they can generate matching challenges
without the need to publicly exchange them through
an insecure communication channel [154]. For example,
a common PRNG can be used on both endpoints to
generate the same challenges [155]]. Note that there can
be vulnerabilities associated with the added control logic.
Response obfuscation: Similar to challenge obfuscation,
response obfuscation is based on the idea that if an
attacker does not possess clear CRPs, they cannot perform
a modeling attack. In this case, instead of hiding the
challenge information from the attacker, the response
information is hidden [156]]-[159]. This can be done by,
e.g., hashing the response value with some other public
information through some common hash function [160],
or sending decoy responses so that the attacker does not
know which corresponds to which challenge [161].

Full obfuscation: As the name implies, full obfuscation
combines both challenge and response obfuscation. By
hiding both challenge and response information from the
attacker, creating a sufficiently accurate CRP training set
becomes even more challenging [80], [[162]-[165]. It is
important to mention that the more complex the PUF
additional control logic becomes, the larger the possibility
of other vulnerabilities. Additionally, the hardware and
the protocol overhead of the design increases, which is
an undesirable side effect.

Data poisoning: Different from the previous approaches,
data poisoning is based on the idea that the verifier and
prover can control the CRPs that are used for the PUF
application [26], [[166]. The ability to control CRPs can
be exploited to perform, e.g., adversarial counterattacks
against the modeling attacks. The key characteristic of
these countermeasures is that they do not limit the at-
tacker’s ability to obtain CRPs in any way, but regardless,
the modeling difficulty increases.

Side-channel obfuscation: Not all modeling attacks, and
attacks in general, are designed with CRPs in mind. A
common idea to extract information from a PUF is to
use side-channel information such as power traces [167],
[168]], Electromagnetic (EM) radiation [169]], or reliabil-
ity [119]. Side-channel information can be a grave threat
to PUF security; thus, countermeasures that hide these
traces have been proposed [[170], [171].

Anti-invasive: While widely considered to be physically
unclonable, in rare cases PUFs have been successfully
exploited through physical tampering [42], [115]. In
response to this, specific anti-invasive countermeasures
have been developed. Specifically, tampering is detected
through capacitive cages [27], [111], [143], hardware
trojans are prevented through an integrated state ma-
chine [[172], and memory bit modification through Fo-
cused Ion Beam (FIB) aging is handled with specialized
pre-charge [42] or transistor test circuits [|115]].

Other: There exist a handful of countermeasures which
do not fit into any of the previous groups [90], [173]].

We specify these countermeasures as “Other” in Ta-
bles and

« None: Obviously, many designs do not incorporate any
specific countermeasure against modeling. We specify
these cases as “-” in Tables and

The need for resilience against modeling attacks has clearly
motivated the implementation of countermeasures, since look-
ing at the papers included in this survey only 28.5% do
not include any countermeasures. Meanwhile, obfuscation
techniques are extremely popular, with 29.4%, 23.4%, and
10.6% of PUFs implementing challenge, response, and full
obfuscation, respectively. The lower proportion of full obfus-
cation techniques can be attached to the larger and undesirable
hardware cost. In contrast, data poisoning techniques providing
extremely low cost are very scarce with a 2.6%, arguably
do the fact that they do not fundamentally prevent modeling
attacks and only make them harder. Additionally, although
side-channel and invasive techniques are a serious threat,
their countermeasures are also rarely seen in literature with
2.1% and 3%, respectively. Finally, other not categorized
countermeasures make up the remaining 0.4% of papers.

It is obvious that a popular trend has been to tackle modeling
attacks with obfuscation [39]. However, the appearance of
advanced attacks that break some of these methods can argue
against their use. It is worth noting that some obfuscation
techniques have not been broken or have had some initial
vulnerability fixed by the same authors that proved them
vulnerable. Thus, further research into this direction is not
advisable. Instead, the lighter data poisoning solutions that
may be more practical in low-cost applications deserve more
attention. Moreover, side-channel and invasive vulnerabilities
are also a mostly unexplored avenue.

V. PROTOCOLS

The use of PUFs requires protocols depending on the
application. Typically, these protocols are tied to functionality
rather than security. However, in the topic of modeling of
PUFs we can find papers that propose a PUF protocol as a
countermeasure to modeling. These cases are different from a
Controlled PUF because it is the way in which the PUFs are
used that changes, not its operation. As such, protocols deserve
their own section, but we will consider a similar classification
to PUFs. This can be seen in Table [}

The first observation we can make is that all protocols
that we found use an Arbiter PUF or derivative (except for
two where it is unclear) for testing. Note that these protocols
tend to be agnostic to the PUF (although they might require
a Strong PUF) so this is just a choice by the authors. The
second important observation is that when classifying the type
of countermeasure they provide, almost all give some form
of obfuscation to the CRPs. These observations make sense
based on our previous statistics showing that Arbiter-based
PUFs and obfuscation techniques have been by far the most
researched. The only exceptions to this are an exchangeless
key protocol [185] providing Weak PUF functionality, and a
data poisoning technique [26] based on selective use of CRPs.
Based on these data, our conclusions for the state of research



TABLE III
FULL OVERVIEW OF PUF PROTOCOLS. PERFORMANCE VALUES ARE SELECTED BASED ON A REPRESENTATIVE WORST CASE SCENARIO. A "~’ SYMBOL
INDICATES THAT THE VALUES ARE TAKEN FROM A VISUAL GRAPH AND ARE NOT EXACT. BLANK SPACES ARE INFORMATION THAT WAS NOT
OBTAINABLE FROM THE REFERENCE. A ’-” SYMBOL INDICATES NO COUNTERMEASURE.

Protocol Test target  Ref ID Type Platform Reliability ~ Uniformity = Uniqueness = Countermeasure
Arbiter PUF 126] Strong Simulation 97% 54% 50% Data poisoning
FF-PUF 126] Controlled Simulation Data poisoning
Selective CRPs IPUF 126] Controlled Simulation Data poisoning
LSPUF 126] Controlled Simulation Data poisoning
XOR PUF [26] Controlled Simulation 86% 51% 50% Data poisoning
Arbiter PUF [108] Controlled Xilinx Artix-7 93.90% ~47% ~40% Full obf.
Deception FF-PUF [108] Controlled Simulated Full obf.
XOR PUF [108] Controlled Simulated Full obf.
AES XOR PUF [174] Controlled Simulated Challenge obf.
XOR PUF [160] Controlled Simulated Challenge obf.
DES XOR PUF [174] Controlled Simulated Challenge obf.
XOR PUF [160] Controlled Simulated Challenge obf.
Lockdown Arbiter PUF [1155]] Controlled 0.18um CMOS Challenge obf.
XOR PUF 175] Controlled Simulated Challenge obf.
Noise bifurcation XOR PUF [161] Controlled Simulated Challenge obf.
] XOR PUF [1175]) Controlled Simulated Challenge obf.
Permutation Interf: Arbiter PUF [176] Controlled Simulated Challenge obf.
ermutation Intertace XOR PUF  [[76]  Controlled Simulated Challenge obf.
Response inversion Arbiter PUF 1177] Controlled Xilinx Artix-7 Response obf.
P ’ XOR PUF [178] Controlled Simulated Response obf.
Slender PUF LSPUF [109] Controlled Simulated Full obf.
XOR PUF [179] Controlled Xilinx Virtex-5 75.3% Full obf.
Reverse Fuzzy Extractor  Arbiter PUF [109] Controlled Simulated Response obf.
Challenge Splitting Arbiter PUF [180] Controlled Xilinx Artix-7 Challenge obf.
Challenge Permutation Arbiter PUF [181] Controlled Xilinx Artix-7 99.99% 61.00% Challenge obf.
CoLAC Arbiter PUF [182] Controlled Xilinx Artix-7 98.22% Response obf.
DAUP Arbiter PUF [183]] Controlled Xilinx Artix-7 Challenge obf.
ECC XOR PUF 1184 Controlled Simulated Response obf.
Exchangeless Key [185] Weak -
Noise Injection Arbiter PUF [186] Strong Simulated Data poisoning
RFID Auth [187] Controlled Full obf.

AES: Advanced Encryption Standard, DES: Data Encryption Standard, CoLAC: Coordinated and Lightweight Adversarial Machine Learning-based
Countermeasure, DAUP: Distributed Authentication Using PUFs, ECC: Error Correction Code, RFID: Radio Frequency Identification

of protocols are the same as for PUF designs in the previous
section.

VI. MODELING TECHNIQUES

This section describes the types of PUF models that have
been applied to date. We also classify the modeling techniques
that have been presented in the literature. The result of this
study highlights which research directions in PUF modeling
are successful and which are not. Additionally, we identify the
research gaps in the literature.

Table lists the modeling attempts on different PUF
designs and protocols. Due to the large scale of this study
and the fact that many papers perform modeling attempts on
the same PUF implementation but with varying parameters, we
choose to include in Table[[V]only one modeling attempt from
each paper. Regarding cases where a PUF implementation
is tested with and without a countermeasure, we include
both. However, if many countermeasures are considered and
evaluated in different combinations, we only include the most
challenging countermeasure combination for modeling. Our
decision for including a modeling instance is based on the
following priority order: (i) the largest (and most complex)
parameters for implementation where the accuracy shows a
successful modeling attack (above 90%), (ii) the largest (and

most complex) parameters for implementation where the ac-
curacy show improvement from random guessing (not close to
50%), and (iii) the smallest (and least complex) parameters for
implementation where the accuracy shows a failed modeling
attack (around 50%). Even with the previous criteria, the total
number of entries scales to 275 modeling attempts, so Table[[V]
is cut to one page with priority for the more popular techniques
and successful attempts. We again refer readers interested in
the full table to the appendices (see Appendix [B).

A. Types of PUF models

An essential element for effectively modeling a PUF is
the use of a model. From analyzing the literature, in this
survey, we identify five main model types: (i) parametric, (ii)
Deterministic Finite-State Machine, (iii) black-box, (iv) white-
box, and (v) physical. Fig. 5] shows the taxonomy for these
models, also used in Table |I_V| for each entry.

o Parametric model: This model is based on the idea that
certain PUFs can be defined as mathematical functions
with a set of randomly generated parameters. These
parameters are randomized by the manufacturing process
of the PUF and considered to be unknown. Thus, the
modeling problem becomes a problem of approximating



TABLE IV
SHORT OVERVIEW OF PUF MODELING TECHNIQUES (SEE APPENDIXEFOR FULL VERSION). THE DISPLAYED AND TOTAL NUMBER OF ENTRIES ARE
SHOWN AS (X / Y). PERFORMANCE VALUES ARE SELECTED BASED ON A REPRESENTATIVE WORST CASE SCENARIO. A ~’ SYMBOL INDICATES THAT
THE VALUES ARE TAKEN FROM A VISUAL GRAPH AND ARE NOT EXACT. BLANK SPACES ARE INFORMATION THAT WAS NOT OBTAINABLE FROM THE
REFERENCE. A ’-” SYMBOL INDICATES NO COUNTERMEASURES.

XMPUF

Challenge obf.

Black-box

Attack PUF/protocol ~ Countermeasure Model CRPs Timef} Accuracy
DEPUF - Parametric 6%10% ~94%
FF-IPUF  Challenge obf. Parametric + SC 108 96.85%
MPUF Challenge obf. Black-box 3.2%10° 0:15:23.0 96.54%
MLP (7 / 88) Response inversion Response obf. Black-box 5%103 95.70%
RF-PUF - ‘White-box 99.99%
SCA PUF - Parametric 3.5%10% 97%
Selective CRPs Data poisoning Black-box 9*10% ~95%
Arbiter PUF - Parametric 6.5¥103 0:0:0.76 99%
CRO XMPUF - Parametric + SC 10% ~98%
LR (5/54) LP-PUF Full obf. Parametric 5%10° ~100%
Noise bifurcation Challenge obf. Parametric 5%10° 05:00:00 92%
. XbarPUF - Black-box 5%103 99.0%
Nel
& FF-PUF Challenge obf. Parametric + SC 10® ~91%
5 SVM (3 / 30) STT-MRAM PUF - Black-box 10° ~95%
bt XOR BR PUF Response obf. Parametric 7.2%10° 0:0:24.0 95%
5
‘g 108 Deception Full obf. Parametric + SC 2%10° 228 years 99%
§ CMA-ES (2/25) 196 PUF-FSM Response obf. Parametric 102 ~100%
;;é ES (1/9) Slender PUF Full obf. Black-box 6.4%10* ~93%
9 RE(1/7) LBIST-PUF Challenge obf. Black-box 6+10% ~93%
p= Boosting (1 /4) MRO-PUF Response obf. Black-box 5104 00:00:02 ~98%
CNN (1/4) RO PUF - Parametric + SC 2%10° 92.8%
VAE (1/4) AES Challenge obf. Black-box 2.5%102 00:01:37 63.9%
DQN (1/3) Arbiter PUF - DFSM 104 94.98%
DT (1/3) HP mem-PUF - Black-box 1.2%10° ~85%
ECP-TRN (1/3) Lockdown Challenge obf. Black-box 4.8+106 00:48:12 98.09%
GA (1/3) Current Mirror PUF - Parametric 5104 26:18:00 97.07%
SLP (1/2) TBR PUF - Black-box 5%10% ~95%
GRNN XOR PUF Response obf. Parametric 7+10% 01:07:10 99.64%
LM RNN SCA-PUF Challenge obf. Parametric 2%10° ~54%
LiR RPUF Challenge obf. Parametric 1.024+103 ~90%
NB DyAdv PUF Response obf. Black-box 7%10% ~52%
PAC Arbiter PUF - DFSM
RBFNN CBDC-PUF - Parametric 10* 50.9%
% FIB(1/3) SRAM PUF - Physical 1.6*10 00:05:00 Success
= BTI (1/2) SRAM PUF - Physical 98.64%
5 Bypass Capacitive PUF Anti-invasive Physical
= MD Capacitive PUF Anti-invasive Physical
g MP Capacitive PUF Anti-invasive Physical
Sorting (1 / 3) CIS PUF - Parametric ~20 ~90%
LP(1/3) Xbar PUF - Parametric + SC 1.288*10° 00:12:48 99.9%
~  Cryptoanalysis (1 /2) RO PUF Response obf. Parametric + SC ~100%
& Characterization Arbiter PUF - Parametric 10° 83.7%
; EM analysis RO PUF - Parametric + SC 0 94.2%
T Emulation Arbiter PUF - Physical 75.5%
E Qs RO PUF - Parametric 8.39%10% 99%
3 - NoPUF Challenge obf. Parametric ~92%
- NOS PUF - Physical ~100%
- 10*

94%

TFormat is “hours : minutes : seconds” (hh:mm:ss), unless directly specified with other units in the case of times longer than 48 hours.

BTI: Bias Temperature Instability, CMA-ES: Covariance Matrix Adaptation Evolutionary Strategies, CNN: Convolutional Neural Network, DQN: Deep Q-Network,
DT: Decision Tree, ECP-TRN: Efficient CANDECOM/PARAFAC-Tensor Regression Network, ES: Evolutionary Strategies, FIB: Focused Ion Beam, GA: Genetic
Algorithm, GRNN: General Regression Neural Network, LM: Lagrange Multiplier, LiR: Linear Regression, LP: Linear Programming, LR: Logistic Regression,

MD: Micro-drilling, MLP: Multi-Layer Perceptron, MP: Magnetic Probing, NB: Naive Bayes, PAC: Probably Approximately Correct, QS: Quick Sort, RBFNN: Radial

Basis Function Neural Network, RF: Random Forest, SLP: Single-Layer Perceptron, SVM: Support Vector Machine, VAE: Variational Auto-Encoder
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Fig. 5. PUF model type taxonomy.

the values of these parameters until full emulation of
the PUF is achieved. An important note is that certain
parametric models utilize side-channel information [168]],
[210]-[212f, which is specified in Table as "+ SC”.
Many different parametric models have been defined,
although the specifics of all parametric models that are
used in the literature surveyed by this paper are too
broad (and not included in Table [[V). However, we do
provide an explanation of the most popular option in
Section - the so-called additive delay model [30],
[213].

o Deterministic Finite-State Machine (DFSM) model: As
the name suggests, this model is based on the idea that a
PUF’s operation for generating an output can be modeled
by states and transitions. Similarly to the parametric
model, the challenge is to define a state machine that
adequately conveys the inner working of the PUF in
question. This is hard for a PUF such as the SRAM
PUF [214], since you would require an independent
state machine for each bit where the state transitions are
dependent on factors internal to the physical components
of the SRAM module. Instead, for, e.g., an Arbiter PUF,
a DFSM representation makes far more sense as the
transitions will be dependent on the input challenge.
Despite many candidates for such a model existing (see
Table , very few works make such attempts. However,
we were able to find two examples [[199], [203].

o Black-box model: When no known mathematical model
can be applied to a PUF (or even if one exists), a
different option is simply treating the PUF as a black-
box. As a black-box, the PUF turns into an unknown
function which must be approximated using an adequate
technique [215]—[217]. This modeling is enabled by the
advances in ML techniques, and especially Neural Net-
works (NNs) capable of theoretically approximating any
function given enough data [218]], [219]. However, this
form of modeling is generally less effective than when a
pre-defined model is available, since a larger amount of
input-output data is required and there is no guarantee of
successfully approximating the unknown function [220)],
[221]. That said, this black-box approximation remains
a realistic threat to PUF that is enhanced by further
advances in the field of ML [5]], [35]. It is important
to note that some papers describe an existing model for
their target PUF but proceed to perform an attack using a
black-box model. In this paper we consider any modeling
technique that does not explicitly define a model and

( Modification ) ( Emulation )

tailored technique as black-box.

+ White-box model: In complete opposition to the black-
box approach, the white-box model assumes that mod-
eling is performed with complete access and design
information for the PUF. The main argument for this
approach is to create a PUF clone legally to support the
applications of PUFs. On the other hand, it is obvious
that white-box modeling is unrealistic for adversaries
(aside from a single party charged with all steps of PUF
manufacturing and supply).

« Physical model: These methods differ from the previous
approaches as they use the physical design and char-
acteristics of the PUF instead of defining mathematical
models. The methods to physically model a PUF are
either through emulation of physical characteristics [208|]
or by physically modifying a PUF [42], [115].

When looking at the presence of the previous models in
the literature, black-box modeling overshadows the rest with
52.8% of cases. It is easy to conclude that the ease of use
and availability of advanced ML techniques influences this
statistic. Meanwhile, parametric modeling is a strong second
choice with 29.2%, to which we should add another 12%
when including side-channel information. The popularity in
this case is explained with the undeniable effectiveness of the
techniques when properly applied. On the other hand, the use
of DFSM was only shown to be theoretically possible in [203]],
and further simplified and experimentally proven in [199].
The lack of research in this direction puts it at a very low
0.4%. Similarly, white-box modeling is only seen 0.8% of the
time, because the threat model is less realistic for adversaries.
Finally, physical cloning shows promise with 4.8% but mod-
erated by the stricter entry barrier for researchers. Following,
we describe some representative examples of each model
type, excluding black-box as all such models are inherently
unknown internally.

1) (Parametric) additive delay model: Starting with para-
metric models, the most well-known PUF model is the additive
delay model, initially proposed for the Arbiter PUF [30],
[213]. Its importance comes from the fact that the Arbiter
PUF, as shown in Fig. [f] is the building block for most other
delay-based PUF designs (see Section [V-BI).

In the context of the Arbiter PUF, the additive delay model
considers each stage as an individual switch element (e.g.,
multiplexer). Consider the ¢-th stage. The delay between both
inputs to their corresponding outputs is determined by four
critical delay parameters: p;, g;, 7, S;- The key idea of the
model is that each stage adds a delay between its outputs
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Fig. 6. Schematic view of n-bit Arbiter PUF.

without interference from the other stages (hence the term
”additive” model). Following the previous example, the i-th
stage’s delay can be expressed as J;. Based on the input to
the Arbiter PUF, i.e., the challenge C = [¢1, ..., Cn], this delay
can take two values:

5 = {Pi - i,

Ty — Si,
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Using both these values, one can define each stage based
on the difference between these delays, while adding the
common delays that all paths have from the previous stage.
The only exception is the first stage, since it does not have
any stages prior to it. Thus, we can define the Arbiter PUF as
W = [wy, ..., Wn11], with each parameter defined as:
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Notice that there are n + 1 elements instead of n. This
is because the common delay from previous stages must be
considered for all stages except the first, however the term w
is defined including only the previous stage. Thus, we need
the additional w41 term to include the common delay of the
n-th stage. For additional information regarding the additive
delay model, including the details for how to define w;, we
refer the reader to [213]].

Finally, given the Arbiter PUF parameters (), the output r
can be calculated as:

r = sign(w’ D) (6)

where @ represents the input challenge C transformed from
its binary forn’}

@(C) = [(1)1(0)7_.,7@71(0)’1] (7N

. n
®,(C) = [[ (-1 ®)

i=1
The additive delay model can obviously be extended to
delay-based PUF designs that incorporate Arbiter PUFs.
Clear examples are the FF-PUF [222], XOR PUF [223],
LSPUF [61], MPUF [132], IPUF [224] or DAPUF [225]. We
note that many other delay-based designs from Table [lI| use
Arbiter PUFs, although in many cases they include modules
(Controlled PUFs) which make it challenging to adapt the

3By binary form we refer to the fact that the challenge bits ¢; = {0, 1}.
Some authors convert this to ¢; = {—1,1}, respectively. In that case, the
definition of ®;(C) in (§) should be adjusted accordingly.

additive delay model. Apart from this, delay-based PUFs that
are not based on the Arbiter PUF can also have an additive
delay model defined for them. We can find obvious examples
of this in the BR PUF [141]], TBR PUF [141]], and Current
Mirror PUF [200f], all of which had mathematical models
defined for them in a similar fashion to the Arbiter PUF.

2) DFSM model: This approach for modeling the Arbiter
PUF from Fig. [ is taken in [203]. The model begins by
following the same approach as the additive delay model,
where the total delay at the two outputs of each stage can
be described as 6! and 67, for the top and bottom paths
respectively. These values are the sum of the delays of each
path until the i-th stage, and their difference marks the delay
difference &; = & — 6% (Fig. [4).

However, the authors realize that the four key wire delays
of each stage (p;, ¢;, Si, and r;) follow a Gaussian distribution
N(pi,0;). Assuming that all stages have the same mean
and standard deviation (which is reasonable since they are
manufactured together in close proximity), for an n-bit Arbiter
PUF p = 4y = ... = pp and 0 = 01 = ... = op. By
utilizing this assumption, the distribution of the total delay of
all stages must follow the Gaussian distribution N (nu, \/no).
Additionally, we can also consider that the Arbiter at the end of
the chain has a limited precision threshold y for differentiating
the final path delays. Therefore, the final output of the Arbiter
PUF is given by (9).

]-a 5;752>7
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Notice that there exists a metastable state for the Arbiter if
the delay difference is too low. This is simply an unreliable
response, and the lower the value of v is, the more reliable the
Arbiter PUF will be. Moreover, due to the limited precision of
the Arbiter and the fact that 99.7% of a Gaussian distribution
values fall into an interval of 60, the real values of the delays
at the outputs of the stages can be mapped to integer values
by f: R — Z as shown by (10).

5—nu+30\/ﬁ" (10)

~y

This mapping means that §; € {0, M} for all delay values
that are in the interval [nu — 30+v/n, nu + 30+/n] (99.7% of
values), and that M can be expressed by (TI).

[

With the previous observations it is possible to construct a
DFSM representing an Arbiter PUF. Note that it was always
possible to represent an Arbiter PUF as a DFSM by simply
starting from an initial state, and then for each state transition
the DFSM grows by twice as many states as it already has.
Basically, this representation considers each state as all the
possible combinations of previous stages, where at each stage
the paths are either straight or crossed, and the resulting delay
difference 9; is either lower or higher than 0. However, such
a DFSM grow exponentially with n (number of stages). That
is why the DFSM constructed in [203] is an improvement,

= |

(11
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as it is of polynomial size in n, as shown in Fig [/| This
DFSM has an initial and terminal state, and for each stage
of the Arbiter PUF a total of (M + 1)? + 1 states. Each of
these states represents a unique differentiable pair of §¢ and
&b, i.e., the granularity of §; that the Arbiter can differentiate
due to its precision of . Note that each state has two possible
transitions depending on the challenge bit ¢; for that stage,
and the state to which this transition connects is determined
by the delay parameters p;, q;, 7;, and s;. In other words, each
Arbiter PUF instance transitions are determined by the random
manufacturing variations.

To model an Arbiter PUF with the polynomial DFSM
representation, one would have to learn the state transitions.
Such a problem is solvable with different algorithms and as
such is a valid Arbiter PUF model. Additionally, it is possible
to extend the DFSM to other PUF architectures, although it
may come at the cost of a significant increase in complexity.
On the other hand, it is also possible to reduce the number of
states per stage further for easier learnability, such as in [[199]],
at the cost of a lower fidelity towards the real PUF model.

3) White-box PUF probing: In this literature review, a
few works that assume unrestricted access to certain PUF
parameters can be found [33]], [190]. Generally, this approach
is only interesting for developing functional PUF clones for
applications, not as an attack method. There exist obvious
and simple examples of white-box modeling (not seen in
any papers in this review), namely, exhaustive modeling. For
example, we can model an SRAM PUF by recording all output
bits with privileged access during manufacturing. Another
example would be to probe the delays of each connection on
an Arbiter PUF.

4) Physical modification and emulation of PUFs: There
are two alternatives when physically modeling a PUF. The
first is to physically modify a PUF to manipulate its output
values in a predictable manner. An excellent work for such a
technique was presented in [42]], where the authors managed to
modify the outputs of an SRAM PUF via a process called Bias
Temperature Instability (BTI) aging. Using this technique, any
SRAM PUF could be configured to have a specific set of
CRPs, which means that a supplier could maliciously control,
e.g., a cryptographic key embedded in a device. Alternatively,
a supplier could also create legitimate clones of SRAM PUFs
for symmetric cryptography purposes. The second option for
physical modeling of PUFs is emulation [208]]. This method is
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similar to parametric modeling, but involves modeling the PUF
characteristics at a physical level, instead of mathematical.
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B. PUF modeling techniques

Aside from selecting a model, PUF modeling requires an
algorithm or other technique that approximates the exact PUF
instance based on observed data. In this survey, these tech-
niques are broadly grouped into: (i) ML-based, (ii) invasive,
and (iii) other. However, we need to specify algorithms and
techniques to provide a full overview, thus the classification
goes into a second level for each, as illustrated in Fig. [§]

o ML: By far the most popular approach towards approx-
imating a PUF model is the use of ML algorithms.
These algorithms are trained on data collected from the
PUFs, i.e., CRPs. Data collection is considered viable
for adversaries as they can collect CRPs passively from
the communication channel in off-device applications.
Additionally, side-channel information can enhance the
model, but may require additional pre-processing or phys-
ical access to the target PUF. There has been a wide
variety of ML algorithm applied to PUF modeling; how-
ever, the majority follow a supervised learning approach.
The current highlights are optimized LR [31f], [32] and
MLP [32]], [[189] for passive modeling, and the reliability-
based Covariance Matrix Adaptation Evolutionary Strate-
gies (CMA-ES) [212] considering side-channels.

« Invasive: This type of technique assumes physical unre-
stricted access to the PUF, and its goal is to challenge
the “physically unclonable” property of PUFs. Invasive
modeling is different from simply collecting side-channel
information, as the latter typically only involves mea-
surement on the physical device with no manipulation
or invasive probing. As a highly specialized group of
techniques, invasive modeling is less accessible and pop-
ular. However, some work has shown the viability of
such techniques [114f, [204] and proves the need for
further research into the unique fingerprinting capabilities
of PUFs, even for Weak PUFs and on-device applications.

e Other: While reviewing the literature we encountered
papers that had a unique approach to the modeling of
PUFs which had no clear connection to the previous
two categories of techniques [211]]. As each is unique
and strongly specialized to the context of the respective
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Regression, LP: Linear Programming, LR: Logistic Regression, MD: Micro-drilling, MLP: Multi-Layer Perceptron, MP: Magnetic Probing, NB: Naive Bayes,
PAC: Probably Approximately Correct, QS: Quick Sort, RBFNN: Radial Basis Function Neural Network, RF: Random Forest, SLP: Single-Layer Perceptron,

SVM: Support Vector Machine, VAE: Variational Auto-Encoder.

papers, they require individual attention, which leads us
to group them as “other”.

Given the large number of techniques, Fig. [0 illustrates
the proportion of use of each technique in the literature.
We can observe how ML techniques take up most of the
work with an 89.2%. Given that the problem of modeling
PUFs can be considered as a binary classification problem, the
application of many ML algorithms is not surprising. Looking
at some specific techniques, it is clear that Neural Networks
(NN), especially feed-forward NNs with back propagation, are
the most popular. We can see that MLP occupies almost a
third of the literature, with other NN-based algorithms being
considerably less frequent. A strong second place goes to LR,
followed by Support Vector Machine (SVM) and CMA-ES or
Evolutionary Strategies (ES).

Meanwhile, only 3.2% are invasive and 7.6% are other
specialized techniques. Regarding other techniques, we believe
that this is an adequate amount of research towards niche
approaches that are highly specialized. However, the low
number of invasive techniques is more concerning. Given the
successful invasive techniques shown in [42], [[114], [115],
we would argue that this direction of research is significantly
underdeveloped. This is significant since it affects all appli-
cations of PUFs due to the possible breaking of the physical
unclonability property. An interesting observation in modeling
is that seemingly unrelated metrics can have significant effects
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Other ML

SLP

Bypass
Characterization
EM analysis
Emulation

GRNN

I Machine Learning (89.5 %)
Qs mmmm Other (7.6 %)
Invasive (2.9 %)

0% 4% 8% 12% 16% 20% 24% 28% 32%

Fig. 9. Percentages of modeling attempts for each modeling technique. See
Fig [8] for the acronyms.



on the modeling algorithms, e.g., uniformity [226].

VII. OPEN CHALLENGES

The open challenges in PUF modeling and PUF applications
limited by modeling attacks can be approached from different
perspectives. First, PUF designs focus mainly on creating
secure Strong PUFs, as they have a broader set of applica-
tions compared to Weak PUFs and are thus more desirable.
However, this leads to overheads through large designs or
Controlled PUFs with additional modules [227]. Moreover,
most designs are based on delay-based PUFs, with a majority
being extensions of a previously proposed architecture called
the Arbiter PUF. This creates a problem, as the modeling vul-
nerability of the original PUF is transmitted to its extensions,
making modeling attacks more challenging but not infeasible.

While some work into Strong PUF designs besides delay-
based is ongoing [228[|-[230], it is yet to provide a widely
accepted proposal. This is partially because a Strong PUF
design with uncorrelated CRPs is unlikely to be possible, as a
limited number of hardware components cannot generate un-
limited entropy [[104]], [105]. Regardless, a lightweight Strong
PUF capable of providing an extremely large number of CRPs
could still prove practical for off-device applications [26].
An important element to this is a formal security proof
accompanying a practical implementation [[231]], but to the best
of our knowledge, no work has combined both these aspects
for modeling.

A different approach towards practical PUF off-device ap-
plications is through countermeasures. The majority choose to
obfuscate CRP information from an attacker. In most cases
this prevents modeling attacks but requires more complex and
expensive hardware and protocol design. Despite the cost,
authors typically argue that their Controlled PUFs remain very
lightweight [169]], [232], [233]]. However, the vulnerabilities
of additional logic have become a liability in the past [[109],
(1741, 11771, [234].

Nowadays, obfuscation countermeasures have so many sim-
ilar proposals that further significant improvements seem un-
likely. Alternatively, data poisoning methods can be adopted,
where an attacker has access to handpicked CRPs, making
training accurate ML models difficult. PUF designs and pro-
tocols that acknowledge the limited entropy and aim to provide
a provable large number of CRPs are an interesting research
direction [26], [186]], [235]] with few contributions thus far.
Additionally, side-channel and invasive countermeasures have
only recently gained importance due to vulnerabilities related
to the physical properties of PUFs [42], [67], [[115], [192],
[204].

Finally, we should not forget the open challenges in mod-
eling techniques themselves. Almost all modeling techniques
for PUFs are based on ML techniques. Despite this, there is an
illusion that many secure PUFs exist as of the current state-
of-the-art. The problem is that most new PUF designs aim
to prevent ML-based modeling and use it as a benchmark.
However, most of these models cannot be applied to many
new designs [236]], and thus the results are unsurprising. This
is shown by the fact that some outliers that successfully
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exploit Controlled PUFs have been shown in literature [237].
Thus, most current PUF designs and protocols cannot provide
security guarantees, since better modeling techniques could be
developed [32], [212]], [221], [222]], [224], [238]].

A silver bullet approach which can model many PUF
designs as a black-box is the end goal of the research topic.
For the purpose of achieving such a model, further research
into black-box models of PUF should be performed. A first
step in this direction would be to create a model which can
successfully model two different types of PUFs without more
than a few tweaks to its configuration. A different idea would
be to attempt to model some of the Controlled PUF that
obfuscate CRP information as a black-box.

Alternatively, tailor-made modeling for specific PUF de-
signs or protocols is rare [211]], [224], [237]]-[239]], leaving a
large gap for new attacks towards many of the current “secure”
designs. However, given the lack of widely adopted PUF
designs and protocols aside from a chosen few, this research
direction has low impact. Meanwhile, invasive modeling tech-
niques, although more challenging, are gaining traction as their
viability challenges even the physical unclonability property of
PUFs [42], [115].

VIII. CONCLUSION

The Physical Unclonable Function (PUF) supports secu-
rity applications through its unique hardware fingerprinting
capabilities. Unique hardware physical characteristics can be
leveraged to provide enhanced physical security on devices
and enable resource-constrained security applications includ-
ing cryptography and authentication. However, due to the
existence of many modeling techniques that can effectively
clone PUFs, the applicability of this technology is limited
in practice. In this paper, we screened over 400 papers into
222 relevant papers and classified the different proposals for
PUFs, the countermeasures against modeling attacks, and the
modeling techniques (not necessarily adversarial) that have
been applied so far.

From our results, we can conclude that many PUF designs
with no known modeling attacks exist, but there is no guaran-
tee that an improved or tailor-made attack will not appear in
the future. Even for PUFs employed in applications that only
use the primitive on the device, recent invasive techniques have
raised questions about their security. Despite this, for every
vulnerability, new designs and protocols have been developed,
making PUFs retain their potential as a lightweight security
primitive. Thus, we believe that this field is waiting for a PUF
design with formal security or a powerful modeling technique
that disproves the technology’s viability.
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APPENDIX A

CLASSIFICATION OF PUF IMPLEMENTATIONS

TABLE V: Full overview of PUF implementations.
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2024 Strong Simulated -
2024 Strong Simulation -
2022 Strong Xilinx Spartan-6 98.42% 51.19% -
2022 Controlled Xilinx Spartan-6 98.42% 51.19% Response obf.
2022 Strong Simulated -
2020 Strong Xilinx Artix-7 -
2020 Strong Simulated -
2020 Strong Simulated Side-channel obf.
2019 Strong Simulated 51.04% 50.19% -
2018 Strong Simulated -
2018 Strong Simulated Data poisoning
Arbiter PUF (23) 2018 Strong Simulated 96.5% -
2017 Strong Xilinx Virtex-5 -
2017 Strong Xilinx Virtex-5 -
2016 Strong Simulated -
2016 Strong 65nm CMOS 65% -
2016 Controlled 65nm CMOS 65% Response obf.
2016 Strong -
2015 Strong Xilinx Spartan-6 -
2015 Strong Xilinx Spartan-6 -
2013 Strong Xilinx Spartan-6 95.13% -
2013 Strong 45nm CMOS 96.82% -
2013 Strong Xilinx Spartan-3A 97.11% ~50% -
2024 Controlled Simulation Response obf.
2023 Controlled Xilinx Artix-7 Response obf.
2022 Controlled Simulated Response obf.
2022 Controlled Simulated Response obf.
2021 Controlled Simulated 49.23% 53.21% Response obf.
2021 Controlled Simulated 50.31% Response obf.
2020 Controlled Simulated Response obf.
2020 Controlled Simulated Response obf.
2020 Controlled Simulated Response obf.
o 2020 Controlled Xilinx Artix-7 49.93% Response obf.
g XORPUF0) 5919 Controlled Simulated 50% 4998%  Response obf.
= 2018 Controlled Simulated Response obf.
° 2018 Controlled Simulated Response obf.
A 2016 Controlled Xilinx Virtex-5 Response obf.
2015 Controlled Simulated 76.0% Response obf.
2015 Controlled Simulated Response obf.
2015 Controlled Xilinx Spartan-6 Response obf.
2013 Controlled Xilinx Spartan-6 Response obf.
2013 Controlled 45nm CMOS Response obf.
2013 Controlled Simulation Response obf.
2021 Weak 180nm CMOS 99.95% ~50% -
2020 Weak 180nm CMOS -
2019 Weak Simulated -
2019 Weak Simulated -
2018 Controlled 65nm CMOS 98.30% 50.17% Challenge obf.
RO PUF (11) 2018 Strong Xilinx Spartan-3E -
2015 Controlled Xilinx Spartan-3E Response obf.
2014 Weak Mixed -
2014 Weak Data poisoning
2013 Weak Simulated -
2012 Controlled Xilinx Spartan-3E ~90% 50.02% 49.99% Response obf.
2024 Controlled Simulation Challenge obf.
2021 Controlled Xilinx Artix-7 Challenge obf.
2021 Controlled Xilinx Artix-7 46% Challenge obf.
2021 Controlled Xilinx Artix-7 Challenge obf.
IPUF (10) 2021 Controlled Xilinx Artix-7 Challenge obf.
2020 Controlled Simulated Challenge obf.
2020 Controlled Simulated Challenge obf.
2019 Controlled Xilinx Artix-7 Challenge obf.
2019 Controlled Xilinx Artix-7 97.9% 25% Challenge obf.
2019 Controlled Simulated 50.50% 50.92% Challenge obf.
2021 Controlled Simulated Response obf.
2019 Controlled Xilinx Virtex-5 Side-channel obf.
LSPUF (6) 2019 Controlled Simulated 50.62% 51.01% Response obf.
2015 Controlled Xilinx Artix-7 97.08% 49.50% Response obf.
2013 Controlled Simulated Response obf.
2013 Controlled Simulation Response obf.
DAPUF (4) 2019 Controlled Xilinx Spartan-6 40.2% Response obf.
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TABLE V: Full overview of PUF implementations (continued).

2018 [225] Controlled Xilinx Virtex-5 Response obf.
DAPUF (4) 2016 [129] Controlled Xilinx Virtex-5 Response obf.
2015 [49] Controlled Xilinx Virtex-5 ~90.31% ~45.74% ~46.37% Response obf.
2023 53] Controlled Xilinx Artix-7 Challenge obf.
2019 [194) Controlled Xilinx Virtex-5 Challenge obf.
FE-PUF(4) 5017 [533]  Controlled Simulated Challenge obf.
2013 131) Controlled Simulated Challenge obf.
2022 [209] Controlled Simulated Challenge obf.
2020 1149] Controlled Simulated Challenge obf.
MMPUE® 5000 [[49]  Controlled Xilinx Artix-7 94% 40.10% -
2020 [149] Controlled Xilinx Kintex-7 96.65% 47.30% -
2022 [127] Controlled Xilinx Zynqg-7000 Full obf.
2022 132] Controlled Xilinx Artix-7 Full obf.
XOR FEPUE () 5050 (165]  Controlled Xilinx Artix-7 ~93% ~50% Full obf.
2020 [165] Controlled Xilinx Artix-7 ~93% ~50% Full obf.
2018 1219] Strong Xilinx Spartan-3E -
CRO PUF (3) 2018 [192] Strong Simulated -
2017 [170] Controlled Xilinx Artix-7 89% ~50% 48.85% Side-channel obf.
2023 [60] Controlled Simulated 61-96% ~99% Full obf.
LP-PUF (3) 2023 601 Controlled Simulated Full obf.
2022 [209) Controlled Simulated Full obf.
2020 [132] Controlled Simulated Challenge obf.
MPUF (3) 2019 [128] Controlled Simulated 50.05% 54.20% Challenge obf.
2018 [62] Controlled Simulated 98.67% 49.80% 50.01% Challenge obf.
2022 [150] Controlled Xilinx Artix-7 98.68% 41% Response obf.
DCHPUF @ 502 (8]  Controlled Full obf.
FE-IPUF (2) 2024 [189] Controlled Simulated 78.60% 50.11% 49.70% Challenge obf.
2024 [189) Controlled Simulated 78.60% 50.11% 49.70% Challenge obf.
Ising PUF (2) 2022 1148] Controlled Simulated 99.81% ~50% 50% Challenge obf.
sing 2018  [57]  Controlled Simulated 97.74% 50.1%  Challenge obf.
NoPUF (2) 2021 [63] Controlled Simulated 91.98% 49.65% Challenge obf.
2021 [63] Controlled Simulated 56.75% 49.65% Data poisoning
OL-PUF (2) 2023 [64] Controlled Xilinx Zyng-7000 99.2% 48.9% 30% Challenge obf.
2023 [64] Controlled Simulated Challenge obf.
2019 1196] Controlled Simulated Response obf.
PUFESM @) 5018 [133]  Controlled FPGA -
MPUF (2) 2021 [217] Controlled Xilinx Artix-7 99% 51% Response obf.
r 2018 162) Controlled Simulated 98.67% 50.04% 49.95% Challenge obf.
RPUF (2) 2019 [196] Controlled Simulated Challenge obf.
2016 [68] Controlled Xilinx Zynq-7000 94.80% 48.9% 52.2% Challenge obf.
2023 73] Controlled Xilinx Artix-7 96.59% 57.97% Response obf.
TPPUF Q) 503 A Strong Xilinx Artix-7 -
VPUF (2) 2017 [119] Controlled Xilinx Kintex-7 ~93% 49.8% 49.7% -
2017 [119] Controlled Xilinx Kintex-7 ~93% 49.8% 49.7% -
XMPUF (2) 2022 [209] Controlled Simulated Challenge obf.
2018 [74] Controlled Xilinx Artix-7 37.03% 40.6% Challenge obf.
2022 [230] Strong Xilinx Zyng-7000 98% 49.68% 49.62% -
XORROPUF @) 550 [533]  Strong Xilinx Artix-7 90287%  46.04% 44.64% -
AES-PUF 2019 [163] Controlled Simulated 97.4% 47.1% 52.4% Full obf.
AML PUF 2021 1177) Controlled Xilinx Artix-7 Response obf.
AROPUF 2017 [152] Controlled Xilinx Spartan 3E Challenge obf.
Alahmadi PUF 1 2024 [43] Controlled Simulated Challenge obf.
BST-RPUF 2021 [45] Controlled Xilinx Artix-7 ~100% 46.78% 48.64% Challenge obf.
Bent PUF 2021 1228]] Controlled Simulated ~80% 54.6% ~49.95% Challenge obf.
CBDC-PUF 2023 [46] Strong Xilinx Artix-7 100% 49.6% 49.8% -
CO-PUF 2024 [47] Controlled Xilinx Artix-7 95.37% ~50% 50.01% Response obf.
CP PUF 2022 [162] Controlled Simulated 98% 49.94% 49.99% Full obf.
CPP-APUF 2020 [153] Controlled Altera FPGA 99.67% 50.18% 51.06% Challenge obf.
CRC-PUF 2019 [133] Controlled Simulated 50.08% 50.00% Challenge obf.
CRO XMPUF 2018 [192] Controlled Simulated -

CRPUF 2018 [229] Strong Xilinx Spartan-3E 86.4% 43% -

CT PUF 2022 48] Controlled Xilinx Zyng-7000 ~92% ~50% ~50% Data poisoning
Composite PUF 2015 [61] Controlled Xilinx Spartan-3 98.85% 54.76% 36.87% Response obf.
DC MUX PUF 2020 [231]) Strong Simulated 94.10% 99.93% 96.77% -

DCA PUF 2015 [172) Controlled Altera Cyclone 11 Anti-invasive

DEPUF 2023 [188] Strong Simulated 48.02% -

DFM-APUF 2022 [134] Controlled Xilinx Artix-7 94.82% 50.69% 50.17% Challenge obf.
DMOS-PUF 2018 [154]) Controlled Xilinx Artix-7 94.8% 49.7% Full obf.

DPUF 2023 12 Controlled Xilinx Artix-7 Response obf.

Domino IPUF 2020 224]) Controlled Simulated Challenge obf.

Dual-mode PUF 2018 I51) Strong Xilinx Artix-7 ~86% 44.65% Data poisoning

DyAdv PUF 2024 152) Controlled Xilinx Artix-7 97.97% 49.67% 50.13% Response obf.
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TABLE V: Full overview of PUF implementations (continued).

Ebrahimabadi PUF 2021 Controlled Xilinx Artix-7 96% 50.02% 45.66% Challenge obf.
FLAM-PUF 2022 Controlled Simulated 95.59% 49.73% 49.81% Challenge obf.
FOM CDS-PUF 2023 Controlled Xilinx Artix-7 92.09% 52.54% 50.50% Challenge obf.
HELP PUF 2018 Controlled Simulated Full obf.
LBIST-PUF 2020 Controlled Xilinx Artix-7 89.6% ~60% ~70% Challenge obf.
LEE PUF 2023 Controlled Xilinx Spartan-6 99.74% 49% 58.73% Response obf.
LHS-PUF 2019 Controlled Simulated Response obf.
LROBIPUF 2021 Controlled Xilinx Artix-7 Challenge obf.
MARPUF 2021 Controlled Simulated 87.5% 48.23% 47.12% Challenge obf.
ME-PUF 2021 Controlled Simulated ~50% Response obf.
MMP PUF 2021 Controlled Simulated Full obf.
MRO-PUF 2018 Controlled Simulated 56-93% ~50% ~45% Response obf.
MUX PUF 2015 Strong Simulated -
Ma PUF 2023 Controlled Xilinx Artix-7 99.8% 49.89% Challenge obf.
PUF-CPRNG 2022 Controlled Xilinx Zyng-7000 Full obf.
OB-PUF 2019 Controlled Simulated Challenge obf.
OBCIPUF 2021 Controlled Xilinx Artix-7 Challenge obf.
Oun PUF 2021 Controlled Xilinx Artix-7 Challenge obf.
P-2APUF 2024 Controlled Xilinx Virtex-7 ~53% ~50% Challenge obf.
[ P2M-Sec 2018 Controlled Response obf.
% PFO PUF 2024 Controlled Xilinx Spartan-6 96.91% 49.00% 56.02% Full obf.
> Poly PUF 2019 Controlled Simulated Full obf.
% Polymorphic PUF 2017 Controlled Xilinx Artix-7 48.0% 61.4% -
A ROInLFSR PUF 2024 Controlled Xilinx Virtex-7 94.67% 50.06% 50.49% Response obf.
SCD-PUF 2024 Controlled Xilinx Artix-7 97.79% 49.56% 49.95% Full obf.
SOI PUF 2024 Controlled Xilinx Artix-7 98.6% 48.2% 29.1% Response obf.
SP-PUF 2022 Controlled ~90% ~49% Challenge obf.
SRPUF 2021 Controlled Xilinx Artix-7 91.87% 50.14% 50.03% Challenge obf.
SW PUF 2024 Controlled Xilinx Artix-7 99.97% 49.74% 49.89% Full obf.
TVO-APUF 2021 Controlled Xilinx Spartan-6 94.2% 53.2% 47.1% Challenge obf.
Tree IPUF 2020 Controlled Simulated Full obf.
Trit PUF 2019 Controlled Xilinx Artix-7 100% 49.7% Challenge obf.
Two-stage PUF 2018 Controlled TSMC 65nm 70.50% 39.06% 47.76% Challenge obf.
XOR Cascaded IPUF 2020 Controlled Simulated Full obf.
XOR Domino IPUF 2020 Controlled Simulated Full obf.
XOR IPUF 2020 Controlled Simulated Full obf.
XOR Multi-PUF 2023 Controlled Xilinx Zyng-7000 97% ~50% 48.85% Challenge obf.
XOR OPUF 2018 Controlled Xilinx Kintex-7 86.3% Challenge obf.
XOR RPUF 2018 Controlled Xilinx Kintex-7 93.5% Challenge obf.
XRBR PUF 2022 Strong -
XRRO PUF 2022 Weak -
cMPUF 2018 Controlled Simulated 98.10% 50.23% 50.00% Challenge obf.
cSOI PUF 2024 Controlled Xilinx Artix-7 98.3% 49.1% 49.8% Full obf.
2023 Weak Simulated 96.99% 50.03% 47.67% -
2023 Weak Simulated 99.14% 50.15% 47.71% Anti-invasive
SRAM PUF (5) 2022 Weak 130nm CMOS -
2016 Weak Alliance AS6C6264 -
2013 Weak Atmel ATmega328P -
2020 Strong Xilinx Spartan-6 99% 47% 49% -
BR PUF (3) 2015 Strong Xilinx Spartan-6 ~97% ~20% -
2014 Strong Xilinx Spartan-6 ~80% ~3-32% -
2020 Strong Xilinx Spartan-6 97% 54% 50% -
TBR PUF (3) 2015 Strong Xilinx Spartan-6 -
. 2014 Strong Xilinx Spartan-6 ~78% ~14% -
S
e 2020 Controlled Xilinx Spartan-6 Response obf.
g XOR BR PUF (3) 2020 Controlled Xilinx Spartan-6 Full obf.
£ 2015 Controlled Xilinx Spartan-6 ~92% ~70% ~50% Response obf.
= 2SPUF 2020 Weak Simulated 96.19% 49.34% 48.1% Challenge obf.
Bitline PUF 2014 Strong Simulated 92.4% 50.03% -
D-PUF 2016 Weak Altera Stratix IV GX  ;30°C OK j40°C OK -
DRAM PUF 2019 Weak Xilinx Spartan-6 -
Feedback SPN PUF 2021 Controlled 130nm CMOS 99.27% ~50% Challenge obf.
LS-BR PUF 2024 Controlled Xilinx FPGA 98.15 49.49% 48.31% Full obf.
Liu PUF 2022 Controlled 130nm CMOS ~100% ~50% Challenge obf.
MRAM PUF 2015 Weak Fabricated 97.25% 47% -
Multi-port PUF 2013 Weak 65nm CMOS 98.15% -
Suresh PUF 2020 Controlled 14nm CMOS 99.74% ~50% Full obf.
XM XOR BR PUF 2020 Controlled Xilinx Spartan-6 Challenge obf.
XOR TBR PUF 2020 Controlled Xilinx Spartan-6 Response obf.
eFlash PUF 2019 Strong 55nm CMOS 5% 50.3% -
2024 Strong Simulated 97.2% 48.3% 50.3% -
2024 Controlled Simulated 97.0% 55.6% 49.9% Challenge obf.
SCA PUF (6) 2024 Controlled Simulated 96.3% 49.9% 50.0% Challenge obf.
a 2023 Controlled Simulated 99.4% 49.3% 50.7% Challenge obf.
° 2022 Strong -
E 2020 Strong 130nm CMOS 97.4% 52.8% 49.9% -
O 2022 Strong Simulated 99.55% 49.76% -
Arbiter MRAM PUF 2022 Controlled Simulated 99.55% 49.76% Response obf.
4 2021 Strong Simulated 99.85% ~50% 50.21% -
2021 Controlled Simulated Response obf.
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TABLE V: Full overview of PUF implementations (continued).

2020 195 Strong Simulated ~100% 51.05% 50.01% -
2019 Weak Simulated -
STE-MRAM PUF (4) 2019 Controlled Simulated Anti-invasive
2024 Weak Simulated ~97% 49.09% 49.96% -
2020 173 Strong Simulated -
2020 7 Strong Simulated Side-channel obf.
VTC PUF (4) 2016 Strong Simulated -
2015 Strong Simulated 97.9% 50.1% 49.8% -
2024 159 Controlled Xilinx Artix-7 Response obf.
Alahmadi PUF 2 (3) 2024 Controlled Xilinx Artix-7 Response obf.
2024 Controlled Xilinx Artix-7 Response obf.
2024 Weak Simulated 97.23% 47.62% 47.91% -
CIS PUF (3) 2024 Weak Simulated Response obf.
2021 Weak Simulated -
. 2016 Strong Simulated -
Current Mirror P%F) 2016 Strong Simulated -
2014 Strong Simulated 98% 47% 49% -
2021 Weak 180nm CMOS ~100% 46.72% 50.38% -
SC PUF (3) 2024 Weak 7nm CMOS 95.24% 49.34% 50.22% Anti-invasive
2018 Strong 0.18um CMOS 100% 47.85% 50.26% -
2021 Weak PrPyrl 100% 48.1% -
HP mem-PUF (3) 2021 Strong PrPyrl 100% 40.07% -
2021 Controlled PrPyrl 100% Challenge obf.
o 2018 Strong Simulated -
< Xbar PUF (3) 2017 Strong Simulated -
g 2017 Controlled Simulated Response obf.
© He PUF (2) 2022 Controlled 65nm CMOS ~100% ~50% Challenge obf.
2022 Controlled 65nm CMOS -
3D NbOx PUF 2021 Weak NbOx 97.59% 49.97% -
AC-XOR PUF 2022 Strong 65nm CMOS 99.42% 49.92% -
AM-PUF 2023 Controlled Xilinx Zynq-7010 98.1% 51.19% 53.51% Full obf.
Capacitive PUF 2021 Anti-invasive
CF-PUF 2018 Strong Simulated 80% 50.70% 53.96% -
Chaotic PUF 2019 Controlled Xilinx Artix-7 97.01% 53.16% 41.17% Challenge obf.
ESP-PUF 2022 Controlled Altera Cyclone 2 ~100% 50.10% 49.96% Full obf.
Hybrid PUF 2023 Controlled Xilinx Spartan-6 99.7% 49.78% 49.38% Full obf.
Lattice PUF 2020 Controlled Xilinx Spartan-6 98.74% 49.98% 50.00% Other
Lin PUF 2023 Strong 65nm CMOS 99.8% ~50% -
MDR-ROM PUF 2015 Controlled 180nm CMOS 98.36% 44.44%  Side-channel obf.
MR-PUF 2024 Weak Simulated 51.10% 49.40% -
Memristive PUF 2020 Strong Simulated 56.33% 49% -
Neuron-PUF 2021 Controlled 65nm CMOS 100% 47.49% 48.42% -
PUFID 2014 Controlled Simulated Response obf.
RF-PUF 2018 Strong Simulated ~99.97% ~99.97% -
RRAM PUF 2021 Controlled Simulated Challenge obf.
SPN PUF 2023 Controlled 130nm CMOS ~100% ~50% Full obf.
Sponge PUF 2024 Controlled Simulated ~50% 50.03% 50.00% Full obf.
Weak-assist SPUF 2022 Controlled Altera Cyclone 2 ~100% 50.08% 49.99% Response obf.
XOR MRAM PUF 2021 Controlled Simulated Response obf.
XOR RRAM PUF 2019 Controlled 1Kb RRAM array 95.5% ~50% ~50% Response obf.
Zuo PUF 2023 Strong 65-nm CMOS ~98% ~50% ~50% -
iPUF 2020 Controlled 55nm CMOS 90.07% 48.53% 48.03% Challenge obf.
mrSPUF 2015 Strong Simulated 92.5% 50.76% 50.07% -
D NOS PUF 2023 Strong Simulated ~50% -
H Optical PUF 2016 Strong -
S QR-PUF 2012 Strong -
7 QuPUF 2021 Strong IBM Quantum 13.82% 55.13% -
:‘ZS SBS-CAN PUF 2024 Strong Fabricated 96% 49.20% 49.60% -
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APPENDIX B
CLASSIFICATION OF PUF MODELING TECHNIQUES

TABLE VI: Full overview of PUF modeling techniques.
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2021 3D NbOx PUF - Black-box 2#108 ~50%

2022 AC-XOR PUF - Black-box 10° 50.99%

2023 AM-PUF Full obf. Black-box 7%10% ~50%

2021 AML PUF Response obf. Black-box 10° ~64%

2017 AROPUF Challenge obf. Black-box 50.36%

2024 Alahmadi PUF 2 Response obf. Parametric 107 57%

2024 Alahmadi PUF 2 Response obf. Parametric 107 54%

2024 Alahmadi PUF 2 Response obf. Parametric 107 52%

2022 Arbiter MRAM PUF - Black-box 2%10% 79.7%

2022 Arbiter MRAM PUF Response obf. Black-box 2%10% 53.8%

2022 Arbiter PUF - Parametric 5%10% ~100%

2016 Arbiter PUF - Black-box 5%10* 58%

2019 Arbiter PUF - Black-box 6.8%102 00:00:11 99.50%

2024 CO-PUF Response obf. Black-box 5%10° 58.89%

2022 CP PUF Full obf. Black-box 2.5%10° ~50%

2020 CPP-APUF Challenge obf. Black-box 1.5%10° ~62%

2018 CRO PUF - Black-box 3.264+%10% 88.6%

2022 Challenge Splitting Challenge obf. Parametric 6%10* ~51.92%

2021 Challenge Permutation Challenge obf. Black-box 3%10* 44.50%

2019 DAPUF Response obf. Black-box 1.7#107 81.5%

2022 DAUP Challenge obf. Black-box 2%10° ~50%

2023 DEPUF - Parametric 6%10* ~94%

2018 DMOS-PUF Full obf. Black-box 10° 63.61%

2023 DPUF Response obf. Parametric 108 81.11%

2018 Dual-mode PUF Data poisoning Black-box 5%103 61.05%

2020 ECC Response obf. Black-box 10° ~50%

2021 Ebrahimabadi PUF ~ Challenge obf. Black-box 108 ~58%

2024 FF-IPUF Challenge obf. Black-box 10° 65.42%

o 2024 FF-IPUF Challenge obf. Parametric + SC 10° 96.85%

3 2023 FF-PUF Challenge obf. Parametric 1.5%10° 92.33%

::; 2017 FF-PUF Challenge obf. Parametric 2%10% 00:00:08 91.01%

g 2021 IPUF Challenge obf. Parametric 108 00:14:00 92.56%

3 2021 IPUF Challenge obf. Black-box 3#10° 07:00:00 93%
a MLP (88) 6

° 2021 IPUF Challenge obf. Black-box 2*10 01:20:00 95%

£ 2019 IPUF  Challenge obf. Black-box 3.19¥10° 00:05:23 97.44%

g 2022 Ising-PUF Challenge obf. Black-box 4*10° ~50%

= 2018 Ising-PUF Challenge obf. Black-box 5%10% ~50%

2023 LP-PUF Full obf. Parametric ~80%

2019 LSPUF Response obf. Black-box 8%10° 00:33:24 97.42%

2020 Lattice PUF Other Black-box 108 ~50%

2022 Liu PUF Challenge obf. Black-box 4%107 50.03%

2021 MARPUF Challenge obf. Black-box 2%10% 58.9%

2021 MMP PUF Full obf. Black-box 2.7%10° 50.09%

2020 MPUF Challenge obf. Parametric 8+10* 96.04%

2019 MPUF Challenge obf. Black-box 3.2%10° 00:15:23 96.54%

2023 Ma PUF Challenge obf. Black-box 5%10° 56%

2022 PUF-CPRNG Full obf. Black-box 6%10° 48.07%

2023 OI-PUF Challenge obf. Parametric 107 61%

2021 Oun PUF Challenge obf. Black-box 5%103 7.5%

2024 PFO PUF Full obf. Black-box 108 ~67%

2022 Permutation Interface Challenge obf. Parametric 107 ~80%

2019 Poly PUF Full obf. Parametric 10° ~95%

2018 RF-PUF - White-box 99.99%

2021 Response inversion Response obf. Black-box 5%103 95.70%

2021 RRAM PUF Challenge obf. Parametric ~1.3%107 92.33%

2022 SCA PUF - Parametric 10* ~95%

2020 SCA PUF - Black-box 10% ~60%

2024 SCA PUF - Parametric 3.5%102 97%

2024 SCA PUF Challenge obf. Parametric 8+102 ~90%

2024 SCD-PUF Full obf. Black-box 108 51.29%

2024 SOI PUF Response obf. Black-box 4¥107 20:04:12 69.19%

2023 SPN PUF Full obf. Black-box 107 ~50%

2021 SRPUF Challenge obf. Black-box 5%10° 00:54:30 50.28%

2024 Selective CRPs Data poisoning Black-box 2.5%10° ~70%

2024 Sponge PUF Full obf. Black-box 2%107 ~50%

2020 Suresh PUF Full obf. Black-box 7%10° 99%

2023 TP PUF Response obf. Black-box ~2#108 50.90%

MLP: Multi-Layer Perceptron



TABLE VI: Full overview of PUF modeling techniques (continued).
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2023 TP PUF - Black-box ~3%107 71.11%

2018 Two-stage PUF Challenge obf. Black-box 9%103 59.85%

2022 Weak-assist SPUF Response obf. Black-box 2%107 ~50%

2020 XM XOR BR PUF Challenge obf. Black-box 10° 99.1%

2020 XOR BR PUF Response obf. Black-box 108 00:04:48 99.5%

2020 XOR BR PUF Full obf. Black-box 10° 82.3%

2022 XOR FF-PUF Full obf. Parametric 1.8%107 24:00:00 90%

2022 XOR FF-PUF Full obf. Parametric 10° 00:01:51 67.75%

2020 XOR FF-PUF Full obf. Black-box 108 ~80%

2022 XOR PUF Response obf. Parametric 1.75%10%* ~97.5%

MLP (83) 2022 XOR PUF  Response obf. Parametric 3.25%108 53 days 98.1%

2020 XOR PUF Response obf. Parametric 4+10° 00:09:15 99.07%

2020 XOR PUF Response obf. Black-box 3.4%10° 00:12:51 96%

2019 XOR PUF Response obf. Black-box 6.8%10° 00:20:52 97.68%

2018 XOR PUF Response obf. Black-box 3%107 00:23:18 99.17%

2019 XOR RRAM PUF Response obf. Black-box ~57%

2020 XOR TBR PUF Response obf. Black-box 10° 00:06:48 98.8%

2023 Zuo PUF - Black-box 107 ~51.84%

2024 ¢SOI PUF Full obf. Black-box 4#107 17:12:07 58.71%

2019 eFlash PUF - Black-box 10° ~50%

2021 rMPUF Response obf. Black-box 8.55%10° 93.12%

2020 2SPUF Challenge obf. Black-box 5%103 60.4%

2021 Arbiter MRAM PUF Response obf. Black-box 7.5%103 ~50%

2021 Arbiter MRAM PUF - Black-box 7.5%103 ~065%

2020 Arbiter PUF - Black-box 4.182%10° 50.41%

2013 Arbiter PUF - Parametric 6.5¥10° 830 ms 99%

2013 Arbiter PUF - Parametric 6.5¥103 760 ms 99%

2013 Arbiter PUF - Parametric 1.8%10* ~88%

2019 CRC-PUF Challenge obf. Black-box 75%

2018 CRO XMPUF - Parametric + SC 104 ~98%

2018 CRPUF - Black-box 10° ~85%

2019 Chaotic PUF Challenge obf. Black-box 5%10* 52.53%

s 2022 CoLAC Response obf. Black-box 4¥10* ~50%
3 2015 Composite PUF Response obf. Parametric 1.25%10* 94.68%
o 2020 DC MUX PUF - Parametric 10* 00:08:00 90.77%
§ 2022 DFM-APUF Challenge obf. Black-box 10° 50.71%
g 2019 DRAM PUF - Black-box 51.8%
= 2020 Domino IPUF Challenge obf. Parametric 2%107 24:00:00 95%
.;é 2022 ESP-PUF Full obf. Black-box 108 ~53%
2 2022 FLAM-PUF Challenge obf. Black-box 108 53.4%
= 2021 IPUF  Challenge obf. Parametric 10° 68.59%
2020 IPUF Challenge obf. Parametric 7.5%108 56 days 95%

2020 IPUF Challenge obf. Parametric 3¥108 18 days 95%

2023 LP-PUF Full obf. Parametric 5%10° ~100%

2021 LROBIPUF Challenge obf. Black-box 10° 62.12%

2019 LSPUF  Side-channel obf.  Parametric + SC 5%10° 49.2%

2015 LSPUF Response obf. Parametric 3%10% 36.30%

LR (54) 2013 LSPUF Response obf. Black-box 108 267 days 99%

2013 LSPUF Response obf. Parametric + SC 2%10° 00:01:45 96.0%

2016 Lockdown Challenge obf. Black-box 1.2%107 Fail

2020 MMPUF Challenge obf. Black-box 10° ~60%

2020 Memristive PUF - Black-box 5.4%10% ~54%

2015 Noise bifurcation Challenge obf. Parametric 4+109 01:00:00 88%

2014 Noise bifurcation Challenge obf. Parametric 5%10° 05:00:00 92%

2021 OBCIPUF Challenge obf. Black-box 10° 63.57%

2024 P-2APUF Challenge obf. Black-box 1.4%10% 52.16%

2024 ROinLFSR PUF Response obf. Black-box 108 ~50%

2022 SP-PUF Challenge obf. Black-box 104 ~68%

2024 Selective CRPs Data poisoning Parametric 3%10% ~86%

2021 TVO-APUF Challenge obf. Black-box 10* ~54%

2020 Tree IPUF Full obf. Parametric 5%10° 08:48:00 95%

2017 VPUF - Parametric 81.4%

2020 XOR Cascaded IPUF Full obf. Parametric 107 02:42:00 95%

2020 XOR Domino IPUF Full obf. Parametric 4+107 2 days 95%

2020 XOR IPUF Full obf. Parametric 4+107 3 days 95%

2021 XOR MRAM PUF Response obf. Black-box 7.5%103 ~45%

2023 XOR Multi-PUF Challenge obf. Black-box 10° 90%

2013 XOR PUF Response obf. Parametric 7.8+10% 00:39:00 99%

2013 XOR PUF Response obf. Parametric 7.8+10% 00:18:09 99%

2021 XOR PUF Response obf. Parametric 5%10% 96.87%

2015 XOR PUF Response obf. Black-box 3.5%10% 37:46:00 98%

2013 XOR PUF Response obf. Parametric + SC 5%10° 00:04:07 95%

2022 XRBR PUF - Parametric 10% 99.40%

2022 XRRO PUF - Parametric 8106 98.06%

2017 XbarPUF - Black-box 5+10° 99.0%

LR: Logistic Regression, MLP: Multi-Layer Perceptron



TABLE VI: Full overview of PUF modeling techniques (continued).

2022 Arbiter PUF - Parametric + SC 10° 92.59%

2022 Arbiter PUF Response obf. Parametric + SC 103 53.18%

2020 Arbiter PUF - Parametric + SC 810 00:00:09 96.65%

2018 Arbiter PUF - Parametric 3.5%102 92.72%

2017 Arbiter PUF - Parametric 10® 97.4%

2017 Arbiter PUF - Parametric 10® 55.1%

2015 BR PUF - Parametric 1.3¥10° 95%

2014 Bitline PUF - Black-box 54102 ~90%

2018 CE-PUF - Black-box 10* ~50%

2014 Current Mirror PUF - Black-box 2106 00:20:40 70%

2018 RO PUF Challenge obf. Black-box 10 ~50%

2018 DAPUF Response obf. Parametric 5%10% ~70%

2015 DAPUF Response obf. Black-box 10® 80.72%

2019 FF-PUF Challenge obf. Parametric + SC 102 ~91%

SVM (30) 2022 He PUF Challenge obf. Black-box 10471 ~50%

2024 LS-BR PUF Full obf. Black-box 10 ~51%

2021 ME-PUF Response obf. Black-box 6.4%10% 50.11%

2015 MUX PUF - Black-box 5%10% ~10%

2021 NoPUF Challenge obf. Black-box 5%10% ~58%

2014 PUF ID Response obf. Black-box 5.12%102 ~0%

2024 STT-MRAM PUF - Black-box 1.675%10% 54.04%

2020 STT-MRAM PUF - Black-box 10° ~95%

2015 TBR PUF - Parametric 7.5%102 95%

2020 VTC PUF - Parametric + SC 8+10° 00:00:32 85.35%

2020 VTC PUF  Side-channel obf.  Parametric + SC 4%103 ~60%

2015 VTC PUF - Black-box 10° 79.2%

2017 XbarPUF Response obf. Black-box 5%103 57.9%

2015 XOR BR PUF Response obf. Parametric 7.2%103 00:00:24 95%

2015 XOR PUF Response obf. Parametric + SC 102 87%

2020 XOR RO PUF - Black-box 10% 62.4%

2024 Alahmadi PUF 1 Challenge obf. Black-box 10° 56%

2018 CRO PUF - Parametric + SC 104 ~100%

g 2022 CT PUF Data poisoning Black-box 10° ~61%
e 2022 DCH PUF Response obf. Parametric 8%107 40 days 96.89%
2 2022 DCH PUF Full obf. Parametric 4¥10% 52.38%
g 2021 Deception Full obf. Parametric + SC 2%10° 228 years 99%
3 2023 FOM CDS-PUF Challenge obf. Black-box 10° 55%
2 2019 IPUF Challenge obf. Black-box 2+%10° ~50%
% 2019 LHS-PUF Response obf. Parametric 10 ~98%
§ 2023 Lin PUF - Black-box 5%107 50.6%
2020 MMPUF Challenge obf. Parametric + SC 104 ~T13%

2018 MPUF  Challenge obf. Black-box 2¥10° 76%

CMA-ES 24) 503 OLPUF  Challenge obf. Parametric 5410°  12:54:00 7%

2019 PUF-FSM Response obf. Parametric 102 ~100%

2019 Response inversion Response obf. Black-box 10° 72.33%

2015 Reverse Fuzzy Extractor Response obf. Parametric 1.785%10° 00:23:00 97%

2015 Reverse Fuzzy Extractor Response obf. Parametric + SC 5.355%10° 00:01:00 97%

2024 SW PUF Full obf. Black-box 10° ~58%

2015 Slender PUF Full obf. Parametric 3%10° 30:18:00 96.9%

2019 Trit PUF Challenge obf. Black-box 1.6%10* 1000 years ~62%

2017 VPUF - Parametric + SC 86.2%

2018 XMPUF  Challenge obf. Parametric + SC 10% ~80%

2020 XOR FF-PUF Full obf. Parametric + SC Fail

2015 XOR PUF Response obf. Parametric + SC 5%10° 30:30:00 90.8%

2018 rMPUF Challenge obf. Parametric + SC 6%10° 99.68%

2016 Current Mirror PUF - Black-box 10% 01:52:00 99.26%

2021 Deception Full obf. Parametric 5%10% 6 years 99%

2013 FF-PUF Challenge obf. Black-box 5%10% 03:15:00 99%

2017 Polymorphic PUF - Parametric 1.024%10° ~68%

ES (9) 2016 RPUF Challenge obf. Black-box 2%102 57.3%

2014 Slender PUF Full obf. Black-box 6.4¥10* ~93%

2016 VTC PUF - Black-box 104 01:23:00 99.31%

2018 XOR OPUF Challenge obf. Black-box 2.1%10° 86.5%

2018 XOR RPUF Challenge obf. Black-box 1.11%10° 04:51:36 93.7%

2020 Arbiter PUF  Side-channel obf.  Parametric + SC 4%103 ~61%

2016 Arbiter PUF - Black-box 2#10* 97.5%

2016 Arbiter PUF Response obf. Parametric + SC 2%10% ~87%

RF (7) 2024 Arbiter PUF - Black-box 6¥103 89%

2020 LBIST-PUF Challenge obf. Black-box 6*10% ~93%

2024 MR-PUF - Black-box 5.0323%10° 52.30%

2024 Noise injection Data poisoning Black-box 6+10° ~80%

2018 Arbiter PUF Data poisoning Black-box 10° ~78%

Boosting (4) 2018 HELP PUF Full obf. Black-box 6.5536*10% ~96%

2018 MRO-PUF Response obf. Black-box 5%10% 00:00:02 ~98%

LR: Logistic Regression, SVM: Support Vector Machine, CMA-ES: Covariance Matrix Adaptation Evolutionary Strategies, ES: Evolutionary Strategies, RF: Random Forest



TABLE VI: Full overview of PUF modeling techniques (continued).
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Boosting (4) 2021 188 HP mem-PUF Challenge obf. Black-box 1.2#10° ~52%
2019 [163] AES-PUF Full obf. Black-box 10° 51.8%
CNN (4) 2019 [198] RO PUF - Parametric + SC 2%10° 92.8%
2020 [220] XOR PUF Response obf. Parametric 1.15%10° 80%
2020 [220] XOR PUF Response obf. Parametric + SC 1.5%10° ~90%
2020 [174) AES Challenge obf. Black-box 2.5%102 00:01:37 63.9%
VAE (4) 2020 [160] AES Challenge obf. Black-box 2.5%102 00:00:47 59.2%
2020 [174] DES Challenge obf. Black-box 2.5%102 00:01:22 60.3%
2020 [160] DES Challenge obf. Black-box 2.5%102 00:00:42 57.3%
2024 [199] Arbiter PUF - DFSM 10% 94.98%
. DQN (3) 2024 [199] IPUF Challenge obf. Black-box 1.5%10° ~93%
g 2024 [199] XOR PUF Response obf. Parametric 1.9%105 ~90%
Q
e 2021 78] Feedback SPN PUF Challenge obf. Black-box 2%107 50.26%
‘g DT (3) 2023 [59] LEE PUF Response obf. Black-box 10° 49.74%
8 2021 [88] HP mem-PUF - Black-box 1.2%10° ~85%
,E 2021 175] LSPUF Response obf. Parametric 4.8+106 00:25:07 96.73%
§ ECP-TRN (3) 2021 175 Lockdown Challenge obf. Black-box 4.8+106 00:48:12 98.09%
= 2021 175 XOR PUF Response obf. Parametric 2.7%10° 15:30:00 97.42%
2016 1200] Current Mirror PUF - Parametric 5%10% 26:18:00 97.07%
GA (3) 2020 [239] RO PUF - Black-box 5%10% 96%
2019 [103] RO PUF - Black-box 5%10% 08:20:00 79.3%
sp 2014 (1400 BR PUF - Black-box 5%10% ~100%
2014 [140) TBR PUF - Black-box 5%10% ~95%
GRNN 2023 [201]] XOR PUF Response obf. Parametric 7%10% 01:07:10 99.64%
LM 2023 1202] SCA-PUF Challenge obf. Parametric 2#10° ~54%
LiR 2019 [196] RPUF Challenge obf. Parametric 1.024*10° ~90%
NB 2024 [52] DyAdv PUF Response obf. Black-box 7%10% ~52%
PAC 2016 [203] Arbiter PUF - DFSM
RBFNN 2023 [46] CBDC-PUF - Parametric 104 50.9%
Other 2016 [129] DAPUF Response obf. Black-box 5+10% 02:24:42 ~91%
Other 2016 [129] XOR PUF Response obf. Black-box 5%10% 02:24:42 ~97%
2019 [115) STT-MRAM PUF - Physical Success
FIB (3) 2019 [115]) STT-MRAM PUF Anti-invasive Physical Fail
% 2013 [204] SRAM PUF - Physical 1.6*%10 00:05:00 Success
2 BTI (2) 2023 [42] SRAM PUF - Physical 98.64%
§ 2023 [42) SRAM PUF Anti-invasive Physical 51%
=
- Bypass 2021 27] Capacitive PUF Anti-invasive Physical
MD 2021 127] Capacitive PUF Anti-invasive Physical
MP 2021 127] Capacitive PUF Anti-invasive Physical
2018 [206] Arbiter PUF - Parametric + SC 2.415%103 00:24:12 99.9%
LP (3) 2018 [206] XOR PUF Response obf. Parametric + SC 5.718%10°3 01:01:48 99%
2018 [206] Xbar PUF - Parametric + SC 1.288%10° 00:12:48 99.9%
2024 [185]) CIS PUF - Parametric 2.66%10°3 87.7%
Sorting (3) 2024 [85] CIS PUF Response obf. Parametric 2.66*10° 66%
2021 [205) CIS PUF - Parametric ~20 ~90%
Cryptoanalysis (2) 2015 [207)) RO PUF Response obf. Parametric + SC ~100%
P y 2015 [207) RO PUF  Response obf. Black-box ~50%
Q Characterization 2015 208 Arbiter PUF - Parametric 106 83.7%
E EM analysis 2021 167] RO PUF - Parametric + SC 0 94.2%
o) Emulation 2015 [208] Arbiter PUF - Physical 75.5%
QS 2013 131 RO PUF - Parametric 8.39%10% 99%
- 2022 133 He PUF - White-box ~50%
- 2022 [209] LP-PUF Full obf. Black-box 10 86%
- 2022 [209] MMPUF Challenge obf. Black-box 10 93%
- 2023 [99] NOS PUF - Physical ~100%
- 2021 163] NoPUF Challenge obf. Parametric ~92%
- 2014 [211] RO PUF - Parametric + SC
- 2016 [114) SRAM PUF - Physical 0%
- 2022 [136] SRAM PUF - Physical
- 2022 [1209] XMPUF Challenge obf. Black-box 104 94%

BTI: Bias Temperature Instability, CMA-ES: Covariance Matrix Adaptation Evolutionary Strategies, CNN: Convolutional Neural Network, DQN: Deep Q-Network,
DT: Decision Tree, ECP-TRN: Efficient CANDECOM/PARAFAC-Tensor Regression Network, FIB: Focused Ion Beam, GA: Genetic Algorithm, GRNN: General

Regression Neural Network, LM: Lagrange Multiplier, LiR: Linear Regression, LP: Linear Programming, MD: Micro-drilling, MP: Magnetic Probing, NB: Naive Bayes,
PAC: Probably Approximately Correct, QS: Quick Sort, RBFNN: Radial Basis Function Neural Network, SLP: Single-Layer Perceptron, VAE: Variational Auto-Encoder



	Introduction
	Related surveys and motivation
	Methodology
	Organization

	Preliminaries
	Definition and basic operation
	Basics of modeling PUFs

	Key Consequences of PUF Modeling on PUF Applications
	On-device applications
	Off-device applications

	PUF Classification
	Application perspective
	Operational perspective
	The Arbiter PUF
	The SRAM PUF
	Other PUF designs

	Defensive perspective

	Protocols
	Modeling Techniques
	Types of PUF models
	(Parametric) additive delay model
	DFSM model
	White-box PUF probing
	Physical modification and emulation of PUFs

	PUF modeling techniques

	Open challenges
	Conclusion
	References
	Appendix A: Classification of PUF implementations
	Appendix B: Classification of PUF modeling techniques

