Biolimus-eluting biodegradable polymer-coated stent versus durable polymer-coated sirolimus-eluting stent in unselected patients receiving percutaneous coronary intervention (SORT OUT V)
a randomised non-inferiority trial

Christiansen, Evald Høj; Jensen, Lisette Okkels; Thayssen, Per; Tilsted, Hans-Henrik; Krusell, Lars Romer; Hansen, Knud Nørregaard; Kaltoft, Anne Kjer; Maeng, Michael; Kristensen, Steen Dalby; Bøtker, Hans Erik; Terkelsen, Christian Juhl; Villadsen, Anton Boel; Ravkilde, Jan; Aarøe, Jens; Madsen, Morten; Thuesen, Leif; Lassen, Jens Flensted; Scandinavian Organization for Randomized Trials with Clinical Outcome (SORT OUT) V investigators

Published in:
Lancet

DOI (link to publication from Publisher):
10.1016/S0140-6736(12)61962-X

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Biolumis-eluting biodegradable polymer-coated stent versus durable polymer-coated sirolimus-eluting stent in unselected patients receiving percutaneous coronary intervention (SORT OUT V): a randomised non-inferiority trial

Evald Høj Christiansen, Lisette Økkel Jensen, Per Thayssen, Hans-Henrik Tilsted, Lars Romer Kruse, Knud Narregaard Hansen, Anne Kalttoft, Michael Maeng, Steen Dalby Kristensen, Hans Erik Bakker, Christian Juhl Terkelsen, Anton Boel Villadsen, Jan Ravnkilde, Jens Aareø, Morten Madsen, Leif Thuesen, Jens Flensted Lassen, for the Scandinavian Organization for Randomized Trials with Clinical Outcome (SORT OUT) V investigators

Summary

Background Third-generation biodegradable polymer drug-eluting stents might reduce the risk of stent thrombosis compared with first-generation permanent polymer drug-eluting stents. We aimed to further investigate the effects of a biodegradable polymer biolumis-eluting stent compared with a durable polymer-coated sirolimus-eluting stent in a population-based setting.

Methods This randomised, multicentre, all-comer, non-inferiority trial was undertaken at three sites across western Denmark. Eligible patients were aged 18 years or older with chronic stable coronary artery disease or acute coronary syndromes, and at least one coronary artery lesion (>50% diameter stenosis). We randomly assigned patients (1:1) using an independently managed computer-generated allocation sequence to receive either a biolumis-eluting biodegradable polymer stent (Nobori, Terumo, Tokyo, Japan) or a sirolimus-eluting permanent polymer stent (Cypher Select Plus, Cordis, Johnson & Johnson, Warren, NJ, USA). The primary endpoint was a composite of safety (cardiac death, myocardial infarction, definite stent thrombosis) and efficacy (target vessel revascularisation) at 9 months, analysed by intention to treat (non-inferiority margin of 0·02). This trial is registered with ClinicalTrials.gov, number NCT01254981.

Findings From July, 2009, to January, 2011, we assigned 1229 patients (1532 lesions) to receive the biolumis-eluting stent and 1239 (1555 lesions) to receive the sirolimus-eluting stent. One patient was lost to follow-up because of emigration. Intention-to-treat analysis showed that 50 (4·1%) patients who were assigned the biolumis-eluting stent and 39 (3·1%) who were assigned the sirolimus-eluting stent met the primary endpoint (risk difference 0·9% [upper limit of one-sided 95% CI 2·1%]; pnon-inferiority=0·06). Significantly more patients in the biolumis-eluting stent group had definite stent thrombosis at 12 months than did those in the sirolimus-eluting stent group (9 [0·7%] vs 2 [0·2%], risk difference 0·6% [95% CI 0·0–1·1]; p=0·034). Per-protocol analysis showed that 45 (3·8%) of 1193 patients who received a biolumis-eluting stent and 39 (3·2%) of 1208 who received a sirolimus-eluting stent met the primary endpoint (risk difference 0·5% [upper limit of one-sided 95% CI 1·8%]; pnon-inferiority=0·03).

Interpretation At 1 year follow-up, the biodegradable polymer biolumis-eluting Nobori stent did not improve clinical results compared with a first-generation sirolimus-eluting stent. We will need to obtain long-term data before we can make recommendations for the role of this biolumis-eluting stent in routine clinical practice.

Funding Terumo and Cordis (Johnson & Johnson).

Introduction

By controlling the release of antiproliferative drugs from a polymer surface, first-generation drug-eluting stents (DES) reduce the risk of restenosis and the need for repeat revascularisation compared with bare-metal stents, but at the expense of an increased risk of very late (>1 year) stent thrombosis. Incomplete endothelialisation of the stent struts and positive vessel remodelling due to chronic inflammation might cause this thrombosis, because the persistence of polymer material on first-generation DES after completed drug release might trigger an inflammatory response. Biodegradable polymer DES aim to overcome this problem by providing similar controlled drug release with subsequent degradation of the polymer. Umirolimus (commonly known as biolumis)-eluting stents were designed with a biodegradable polymer applied to the non-luminal surface of the stent. After implantation, the polymer is metabolised to water and carbon dioxide within 9 months. Biolumis is a highly lipophilic sirolimus analogue that inhibits proliferation of smooth muscle cells.

A biodegradable polymer biolumis-eluting stent was assessed in the Limus Eluted from A Durable versus Erodable Stent coating (LEADERS) trial and was reported to be non-inferior to the durable polymer sirolimus-eluting Cypher stent (Cordis, Miami Lakes, FL, USA). In the second-generation biodegradable polymer DES studied in the ongoing ERodable Stent coating (LEADERS) trial, a biodegradable polymer biolumis-eluting stent was non-inferior to a durable polymer sirolimus-eluting stent (Cypher, Cordis, Miami Lakes, FL, USA) in late (>1 year) stent thrombosis. Data from the third-generation DES are eagerly anticipated to confirm whether these promising results will be translated to clinical practice.
with respect to clinical safety and efficacy outcomes up until 4 years’ follow-up. The Intracoronary Stenting and Angiographic Results (ISAR-TEST 4) trial compared a biodegradable polymer stent (with a natural resin eluting sirolimus) with the durable polymer sirolimus-eluting Cypher stent and reported no significant differences in outcomes between the stents.12

The Scandinavian Organization for Randomized Trials with Clinical Outcome (SORT OUT) V trial aimed to further investigate the effects of a third-generation biodegradable biolimus-eluting stent compared with a first-generation durable polymer-coated sirolimus-eluting stent in a population-based setting, using registry detection of clinically driven events.13,14

Methods

Study design and patients

SORT OUT V is a randomised, multicentre, all-comer, two-arm, non-inferiority trial comparing a biolimus-eluting stent with a sirolimus-eluting stent to treat coronary artery stenosis, undertaken at three hospitals across western Denmark. We used western Denmark registry data15,16 to compare randomised and non-randomised patients during the study period so that we could assess how generalisable our study results would be (appendix).17 Eligible patients were aged 18 years or older, had chronic stable coronary artery disease or acute coronary syndromes, and at least one coronary artery lesion with more than 50% diameter stenosis needing treatment with a DES. We did not place restrictions on the number of lesions or vessels to be treated, or lesion length. Exclusion criteria were life expectancy of less than 1 year; allergy to aspirin, clopidogrel, prasugrel, sirolimus, or biolimus; participation in another randomised trial; clinical indications of an inability to tolerate dual antiplatelet treatment for 12 months; or inability to provide written informed consent.

The study complied with the Declaration of Helsinki and was approved by the Central Region Denmark ethics committee. All patients provided written informed consent for trial participation.

Randomisation

We enrolled patients and randomly allocated them to treatment groups after diagnostic coronary angiography and before percutaneous coronary intervention. Block randomisation by centre was used to assign patients (1:1) to receive a biolimus-eluting stent (Nobori, Terumo, Tokyo, Japan) or a sirolimus-eluting stent (Cypher Select Plus, Cordis, Johnson & Johnson, Warren, NJ, USA). The allocation sequence was computer-generated by an independent organisation, and was stratified by sex, age ≥75 years, presence of diabetes, and presence of ST-segment elevation myocardial infarction. Patients were assigned to treatment through an automated telephone allocation service. Although operators were not masked, all individuals analysing data were masked to treatment assignment.

Procedures

The biolimus-eluting stent was available in three diameters (2.50 mm, 3.00 mm, 3.50 mm) and five lengths (8 mm, 14 mm, 18 mm, 24 mm, and 28 mm). The sirolimus-eluting stent was available in five diameters (2.25 mm, 2.50 mm, 2.75 mm, 3.00 mm, and 3.50 mm) and six lengths (8 mm, 13 mm, 18 mm, 23 mm, 28 mm, and 33 mm). We implanted the stents according to standard techniques. We allowed direct stenting without previous balloon dilation. We attempted full lesion coverage by implantation of one or more stents. If several lesions needed to be treated in one patient, the allocated study stent had to be used in all lesions. However, we permitted the use of DES not specified by the random allocation scheme, bare metal stents, and balloon angioplasty if the study stent could not be implanted.

Before implantation, patients received at least 75 mg of aspirin, a 600 mg loading dose of clopidogrel, and an unfractionated heparin dose (5000 IU or 70–100 IU/kg). Glycoprotein IIb/IIa inhibitors were used at the operator’s discretion. Recommended postprocedure dual antiplatelet regimens were 75 mg aspirin daily lifelong and clopidogrel 75 mg for 1 year. We also used prasugrel.
treatment as an alternative to clopidogrel, with a loading dose of 60 mg and a daily dose of 10 mg.

The primary endpoint was a combination of safety (cardiac death, myocardial infarction, definite stent thrombosis) and efficacy (clinically indicated target vessel revascularisation) within 9 months of stent implantation. We did intention-to-treat analyses after 9 months and again at 12 months after implantation. Secondary endpoints were: total mortality; cardiac mortality; myocardial infarction; clinically indicated target lesion or vessel revascularisation; definite, probable, or possible stent thrombosis; and device delivery failure.

We defined cardiac death as any death due to an evident cardiac cause, any death related to percutaneous coronary intervention, unwitnessed death, or death from unknown causes. Myocardial infarction was defined according to the universal definition used by the European Society of Cardiology, the American College of Cardiology, the American Heart Association, and the World Heart Federation. We did not assess biomarkers at the time of the index percutaneous coronary intervention procedure. We classified stent thrombosis as definite, probable, or possible stent thrombosis. We defined target vessel revascularisation as any repeat percutaneous coronary intervention or surgical bypass of any segment within the entire major coronary vessel that was proximal or distal to a target lesion, including upstream and downstream branches, and the target lesion itself. We defined target lesion revascularisation as repeat revascularisation caused by a more than 50% stenosis within the stent or within a 5 mm border proximal or distal to the stent. Device failure was defined as the inability to implant the assigned study stent in a target lesion. To establish comorbidity, we obtained data on reason for hospital admission, and diagnosis of myocardial infarction, heart failure, cerebrovascular disease, and cancer.

We used clinically driven event committee to avoid study-induced re-interventions. We obtained data on mortality, hospital admissions, coronary angiography, repeat percutaneous coronary intervention, and coronary bypass surgery for all randomly allocated patients from the following national Danish administrative and health-care registries: the Civil Registration System; the Western Denmark Heart Registry; the Danish National Registry of Patients (which maintains records for all hospital admissions in Denmark); and the Danish Registry of Causes of Death. An independent event committee, masked to treatment group assignment during the adjudication process, reviewed all endpoints and source documents to adjudicate causes of death, reasons for hospital admission, and diagnosis of myocardial infarction. Two dedicated percutaneous coronary intervention operators at each participating centre reviewed cine films for the event committee to classify stent thrombosis and target vessel revascularisation (either with percutaneous coronary intervention or coronary artery bypass grafting).

The Danish National Health Service provides universal tax-supported health care, guaranteeing residents free access to family doctors and hospitals. The Danish Civil Registration System, which is updated on a daily basis, has kept electronic records on sex, birth date, residence, and source documents to adjudicate causes of death, review cine films for the event committee to classify stent thrombosis and target vessel revascularisation (either with percutaneous coronary intervention or coronary artery bypass grafting).
emigration date, and vital status changes since 1968; the ten-digit civil registration number assigned at birth and used in all registries allows accurate record linkage. The Civil Registration System provided vital status data for our study participants and minimised loss to follow-up. The National Registry of Causes of Deaths and the Danish National Registry of Patients provided information on causes of death and diagnoses made during hospital admissions (coded according to the International Classification of Diseases, 10th revision). The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or writing of the report. They also did not have access to the clinical trial database, nor any opportunity to review the manuscript. The corresponding author had full access to all the data in the study and final responsibility for the decision to submit for publication.

Results

Between July, 2009, to January, 2011, we screened 7570 patients and randomly assigned 2468 patients with 3087 lesions to receive either the biolimus-eluting stent (1229 patients with 1532 lesions) or the sirolimus-eluting stent (1239 patients with 1555 lesions; figure 1). 3245 eligible patients were not enrolled, mainly because some operators at the participating centres preferred not to leave stent selection to a randomised process. One patient was lost to follow-up on day 112 because of emigration.

Baseline demographic and clinical characteristics in the two study groups were well balanced except for a slightly higher rate of previous coronary artery bypass grafting in the biolimus-eluting stent group (table 1). A high proportion of patients in both groups had acute coronary syndromes, multivessel disease, and complex lesions (table 1). Diabetes was equally distributed and reported in 15% of patients. Apart from a higher maximum stent implantation pressure (table 2) and larger reference vessel diameter in the sirolimus-eluting group, procedure results (such as the rate of device delivery failure and indices of procedure duration, fluoroscopy time, and use of contrast) and lesion characteristics were similar in the study groups (table 2).

The 9 month composite primary endpoint occurred in 50 (4·1%) of 1229 patients in the biolimus-eluting stent group and in 39 (3·1%) of 1239 patients in the sirolimus-eluting stent group (figure 2). With an absolute risk difference of 0·9% and the upper limit of the one-sided 95% CI at 2·1% (one-sided pnon-inferiority=0·06),
non-inferiority of the biolimus-eluting stent versus the sirolimus-eluting stent was not shown. Rates of death, cardiac death, myocardial infarction, and clinically driven target vessel revascularisation at 9 months did not differ significantly between the two stent groups (table 3). The result was similar for the composite endpoint at 12 months, which occurred in 66 (5.4%) patients in the biolimus-eluting stent group and in 55 (4.4%) patients in the sirolimus-eluting stent group (table 3 and figure 2). Definite stent thrombosis occurred within 12 months in nine (0.7%) patients in the biolimus-eluting stent group and in two (0.2%) patients in the sirolimus-eluting stent group (p=0.034). We did not detect late definite stent thrombosis in any patient. At 12 month follow-up, definite or probable stent thrombosis did not differ between the two groups (table 3). Clinically driven target lesion revascularisation occurred within 9 months in 30 (2.4%) patients in the
Table 3: Clinical outcomes

<table>
<thead>
<tr>
<th>Events at 30 days</th>
<th>Biolimus-eluting stent (n=1229)</th>
<th>Sirolimus-eluting stent (n=1239)</th>
<th>Risk difference (95% CI)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All-cause mortality</td>
<td>8 (0.7%)</td>
<td>7 (0.6%)</td>
<td>0.1% (-0.5 to 0.7)</td>
<td>0.78</td>
</tr>
<tr>
<td>Cardiac death</td>
<td>6 (0.5%)</td>
<td>6 (0.5%)</td>
<td>0.0% (-0.5 to 0.6)</td>
<td>0.99</td>
</tr>
<tr>
<td>Myocardial infarction</td>
<td>10 (0.8%)</td>
<td>8 (0.6%)</td>
<td>0.6% (0.0 to 1.1)</td>
<td>0.050</td>
</tr>
<tr>
<td>Target vessel revascularisation</td>
<td>14 (1.1%)</td>
<td>8 (0.6%)</td>
<td>0.5% (-0.2 to 1.2)</td>
<td>0.19</td>
</tr>
<tr>
<td>Definite stent thrombosis</td>
<td>11 (0.9%)</td>
<td>8 (0.6%)</td>
<td>0.3% (-0.3 to 1.0)</td>
<td>0.34</td>
</tr>
<tr>
<td>Definite stent thrombosis</td>
<td>9 (0.7%)</td>
<td>9 (0.7%)</td>
<td>0.0% (0.0 to 1.1)</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Events at 9 months				

Composite primary endpoint*	50 (4.1%)	50 (4.1%)	0.0% (-0.6 to 2.4)	0.22
All-cause mortality	22 (1.8%)	22 (1.8%)	0.0% (-1.0 to 1.1)	0.98
Cardiac death	8 (0.7%)	12 (1.0%)	-0.3% (-1.0 to 0.4)	0.38
Myocardial infarction	16 (1.3%)	8 (0.6%)	0.7% (-0.1 to 1.4)	0.097
Definite stent thrombosis†	9 (0.7%)	2 (0.2%)	0.6% (0.0 to 1.1)	0.034
Target vessel revascularisation	40 (3.3%)	26 (2.1%)	1.2% (-0.1 to 2.4)	0.075
Target lesion revascularisation	30 (2.4%)	16 (1.3%)	1.1% (0.1 to 2.2)	0.035

Events at 12 months				

Composite endpoint†	66 (5.4%)	55 (4.4%)	0.9% (-0.8 to 2.6)	0.28
All-cause mortality	30 (2.4%)	27 (2.2%)	0.3% (-0.9 to 1.4)	0.67
Cardiac death	12 (1.0%)	14 (1.1%)	-0.2% (-1.0 to 0.7)	0.71
Myocardial infarction	82 (6.7%)	68 (5.5%)	1.2% (-0.7 to 3.1)	0.22
Definite stent thrombosis	19 (1.5%)	11 (0.9%)	0.7% (-0.2 to 1.5)	0.14
Definite or probable	9 (0.7%)	2 (0.2%)	0.6% (0.0 to 1.1)	0.034
Acute (<24 h)	5 (0.4%)	1 (0.1%)	0.3% (-0.4 to 1.0)	0.10
Subacute (24 h to 30 days)	4 (0.3%)	1 (0.1%)	0.2% (-0.1 to 0.6)	0.18
Late (31 days to 12 months)	0	0	NA	NA
Probable	1 (0.1%)	1 (0.1%)	0.0% (-0.4 to 0.2)	0.57
Definite or probable	10 (0.8%)	4 (0.3%)	0.5% (-0.1 to 1.1)	0.11
Possible	3 (0.2%)	5 (0.4%)	-0.2% (-0.6 to 0.3)	0.75
Target vessel revascularisation	52 (4.2%)	39 (3.3%)	1.1% (-0.2 to 3.6)	0.15
Target lesion revascularisation	40 (3.3%)	25 (2.0%)	1.2% (0.0 to 2.5)	0.055

Data are number (%) unless otherwise indicated. Two-sided CIs have been used for all endpoints. *Cardiac death, myocardial infarction, definite stent thrombosis, and clinically-driven target vessel revascularisation. †Academic Research Consortium definition.

Discussion

Our SORT OUT V trial is the largest head-to-head comparison of the biodegradable polymer-coated biolimus-eluting Nobori stent and the permanent polymer-coated sirolimus-eluting Cypher stent. The biodegradable stent of the LEADERS trial (BioMatrix Flex, Biosensors, Newport Beach, CA, USA) is almost identical to the Nobori stent used in our study. The stent platforms are made of the same stainless steel alloy and the biodegradable polymer is the same. However, the Nobori stent has an ultra-thin non-degradable parylene coating between the stent and the biodegradable polymer to assure polymer attachment to the stent struts.

In the LEADERS trial, the event rate for the primary endpoint was almost twice as high as in SORT OUT V, and the investigators concluded that the biodegradable polymer study stent was non-inferior to the sirolimus-eluting stent. By contrast with the LEADERS trial, we did not routinely assess procedural biomarkers, and did not record asymptomatic and electrocardiograph silent procedure-related myocardial damage. The higher rate of new revascularisations in the LEADERS trial (4.4% with the biolimus-eluting stent vs 5.5% with the sirolimus-eluting stent) compared with our trial (3.2% vs 2.1%) might be explained by the fact that 25% of patients in the LEADERS trial had a prescheduled angiography follow-up. Furthermore, the rate of diabetes was twice as high in the LEADERS trial as in our trial in which 15% of patients had diabetes, a rate that is characteristic for interventional studies in Nordic countries.

We cannot explain why, in our trial, the 12 month event rates in the biolimus-eluting stent group were higher than those in the sirolimus-eluting stent group. Although non-significant, the difference was noted in all elements of the combined endpoint and across patient subgroups. The differences seemed to occur mainly during the first month and were most pronounced in the endpoints of stent thrombosis, myocardial infarction, and new revascularisations (figure 2). We cannot exclude that the non-degradable parylene coating between the stent and the biodegradable polymer, covering the entire stent, might be a causal factor. Other explanations might be the significant, but small, difference in implantation pressures between the two groups, with a possibly improved apposition.

biolimus-eluting stent group and 16 (1.3%) patients in the sirolimus-eluting stent group (p=0.035).

Findings for the primary endpoint were consistent across prespecified subgroups (figure 3). Specifically, the primary endpoint did not differ significantly between the two stent groups in patients with and without diabetes mellitus. Due to the small imbalance in proportion of patients with previous coronary artery bypass graft and difference in reference vessel diameter between groups, we adjusted for these variables with Cox proportional hazards regression analysis. This did not change the results (data not shown).

Results of per-protocol analysis showed that 45 (3.8%) of 1193 patients who received the sirolimus-eluting stent met the primary endpoint (risk difference 0.5% [upper limit of one-sided 95% CI 1.8%]; pnon-inferior=0.033) and 39 (3.2%) of 1208 patients who received the sirolimus-eluting stent met the primary endpoint (risk difference 0.5% [upper limit of one-sided 95% CI 1.8%]; pnon-inferior=0.034).
between stent struts and vessel wall in the patients who received the sirolimus-eluting stent.

The SORT OUT IV study documented similar safety and efficacy between the sirolimus-eluting Cypher stent and the second-generation everolimus-eluting Xience V stent. The COMPARE II trial randomly assigned 2707 patients (2:1) to the biolimus-eluting Nobori stent or an everolimus-eluting stent (Xience V or Prime, Abbott Vascular, Santa Clara, CA, USA, or Promus, Boston Scientific, Natick, MA, USA; panel). Although the event rates in the biolimus-eluting stent group were numerically higher than in the everolimus-eluting stent group, the study showed non-inferiority of the biolimus-eluting stent. At 12 months, rates of major adverse cardiac events and definite stent thrombosis were 0.7% versus 4.8% with the everolimus-eluting stent and the biolimus-eluting stent. At 12 months, the rates of major adverse cardiac events and definite stent thrombosis were 0.7% versus 0.4%. These results are similar to those reported in our study (5.4% with the biolimus-eluting stent vs 4.4% with the sirolimus-eluting stent for major cardiac events and 0.7% vs 0.2% for definite stent thrombosis), so despite our study not showing non-inferiority, our results are backed up by 12 month safety and efficacy data from COMPARE II, which also compared an older-generation DES with the biolimus-eluting Nobori stent.

Panel: Research in context

Systematic review

We searched PubMed, EuroPCR, and Transcatheter Cardiovascular Therapeutics (TCT) conferences for reports on randomised trials comparing the biolimus-eluting biodegradable polymer-coated Nobori stent with durable polymer stents powered for clinical endpoints with the search terms “Nobori”, “stent”, “randomized”, or “randomised”, published between Jan 1, 2003, and June 1, 2012. We identified the COMPARE II trial, which randomly assigned (2:1) 2707 patients to the biolimus-eluting Nobori stent or an everolimus-eluting stent. At 12 months, the rates of major adverse cardiac events and definite stent thrombosis were higher in the biolimus-eluting stent group than in the everolimus-eluting stent group, but using a non-inferiority margin of 4%, the investigators concluded non-inferiority of the biolimus-eluting stent. We identified additional reports cited in this Article by searching PubMed with the term “biolimus-eluting stent”.

Interpretation

Our study and the COMPARE II trial show that at 1 year, the biodegradable polymer biolimus-eluting Nobori stent does not improve clinical results compared with the first-generation sirolimus-eluting or everolimus-eluting durable polymer stents. However, long-term data will be needed before we can make recommendations for the role of the Nobori stent in routine clinical practice.

Very late stent thrombosis (generally defined as occurring >1 year after implantation) has been a weakness of first-generation DES. Therefore, our follow-up
of 12 months is too short to offer a complete description of the safety profile of the biolimus-eluting stent. In the NOBORI 2 study,24 which assessed the biolimus-eluting Nobori stent, very low stent thrombosis rates were seen 12–24 months (0.1%)25 and 24–36 months (0.1%) after implantation.26 By contrast, results of the LEADERS trial showed that the sirolimus-eluting Cypher stent has a yearly incidence of very late stent thrombosis of about 0.6%.27 Therefore, we postulate that our results might show non-inferiority of the biolimus-eluting stent versus the sirolimus-eluting stent in the longer term. Accordingly, a meta-analysis of three randomised clinical trials with 2 or more years’ follow-up reported that biodegradable, as compared with durable, polymer DES were associated with a reduced risk of definite stent thrombosis and target lesion revascularisation.28 The second-generation everolimus-eluting stent with a permanent fluoro-polymeric polymer seems to be an exception to this finding, and so far it has not been associated with long-term safety problems.29

In conclusion, the SORT OUT V study did not show non-inferiority of the biolimus-eluting Nobori stent compared with the sirolimus-eluting Cypher stent at 12 months.

Contributors
The steering committee formulated the study design, which all authors subsequently accepted. EHC and MoM were responsible for data management and for design and implementation of the statistical analysis. All other authors enrolled patients and contributed to data collection. EHC, LOJ, PT, IT, and JFL contributed to the design of the statistical analysis and the interpretation of results. EHC, LOJ, MiM, IT, and JFL drafted the report, which was subsequently reviewed by all authors. All authors saw the final submitted report and agreed with its contents.

SORT OUT V study group
Principal investigator: Evald Høj Christiansen (Aarhus University Hospital, Skejby, Denmark). Coordinating centre: the Scandinavian Organization for Randomized Trials with Clinical Outcome IV (SORT OUT IV). Aarhus University Hospital, Skejby, Aarhus, Denmark.

Clinical events committee
Kristian Thygesen, Jacob Thorsted Sørensen, and Bjarne Linde Norgaard (Aarhus University Hospital, Skejby, Aarhus, Denmark).

Data and monitoring centre
Morten Madsen and Henrik Toft Sørensen (Aarhus University Hospital, Aarhus, Denmark).

Steering committee
 Evald Høj Christiansen, Hans Henrik Tilsted, Jan Ravnkilde, Leif Thuesen, and Jens Flensted Lassen (Aarhus University Hospital, Aarhus, Denmark); and Per Thyssen and Lisette Okkels Jensen (Odense University Hospital, Odense, Denmark).

Conflicts of interest
EHC has received honoraria from Terumo and Cordis and travel grants from both companies. LOJ has received unrestricted grants from Terumo for its institution and honoraria from Cordis (Clinical Event Committee member). PT, ABV, and JA have received unrestricted grants from Terumo and Cordis for their institutions. H-HT has received travel grants from Terumo and Cordis for his institution, and he is married to a Terumo employee. AK has received unrestricted grants from Abbott Vascular, Boston Scientific, and Cordis for her institution, and honoraria from Cordis. MiM has received travel grants from Cordis, Medtronic, and Boston Scientific. SDR has received honoraria from AstraZeneca, Eli Lilly, Daichi Sankyo, and The Medicines Company. JR has received unrestricted grants from Cordis, Medtronic, and Boston Scientific for his institution and honoraria from Cordis, Abbott Vascular, and Boston Scientific. JFL has received unrestricted grants from Abbott Vascular, Boston Scientific, and Cordis for his institution and speaking honoraria from Abbott Vascular, Cordis, Medtronic, Eli Lilly, Boston Scientific, and AstraZeneca. LKK, KHE, CTT, and MoM declare that they have no conflicts of interest.

References