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Physics-informed Fully Convolutional
Network-based Power Flow Analysis for

Multi-terminal MVDC Distribution Systems
Pingyang Sun, Graduate Student Member, IEEE, Rongcheng Wu, Hongyi Wang, Student Member, IEEE,

Gen Li, Muhammad Khalid, and Georgios Konstantinou, Senior Member, IEEE

Abstract—Numerical methods in power flow (PF) studies for
medium-voltage direct current (MVDC) distribution systems
require repetitive computations, particularly in scenarios with
time-variable facilities that often alter the system operation
points. Conventional neural networks (NNs), though efficient in
rapid PF calculations, face accuracy challenges with untrained
data distributions and varied topology structures. This highlights
the need for more robust approaches to improve reliability
in diverse scenarios. This paper proposes a physics-informed
fully convolutional network (PI-FCN) to address this issue. The
architecture of the PI-FCN is enhanced with the inclusion of
two additional layers: i) a channel combination layer and ii) a
physics operation layer. The former channel combination layer
strengthens the model feature extraction capability by converting
all input channels constituted by initial PF data matrix into dc
voltage, current and line conductance matrix channels. The latter
physics operation layer reformulates the combined input channels
by physical connections in MVDC systems. The new layers
enhance the prediction accuracy and allow generalization of
the model. Five multi-terminal MVDC (MT-MVDC) distribution
networks with different dc voltage levels and network layouts are
used to verify the superiority of proposed PI-FCN compared to
other NNs in fixed and varied topology structures.

Index Terms—Multi-terminal medium-voltage direct current
(MT-MVDC) system, power flow (PF), neural network (NN),
fully-convolutional network (FCN).

I. INTRODUCTION

MEDIUM-voltage direct current (MVDC) power systems
have the potential to outperform equivalent ac systems

in many applications, especially in distribution grids [1].
Multiple ac/dc and dc/dc converters can be interconnected in
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MVDC distribution systems to form multi-terminal MVDC
(MT-MVDC) systems [2], [3]. To enhance operational security
and future planning for MT-MVDC networks, it is crucial to
examine the power flow (PF) analysis in response to different
system operation scenarios such as line disconnection, con-
verter outage [4]. Various numerical methods (also known
as model-driven methods) can be employed for PF analysis
in MT-MVDC networks [5]–[7]. Methods represented by the
Newton-Raphson (NR) are effective for PF solutions in an
MVDC distribution system that utilize various converters with
diverse control schemes [8]. However, numerical methods
come with certain disadvantages such as convergence for ill-
conditioned systems, and computational complexity for large
systems [8], [9].

With advances in computer processing capabilities, machine
learning-based data-driven methods are increasingly employed
to handle PF problems, such as regression techniques and
neural networks (NNs) [10], [11]. Data-driven methods have
the benefit of directly learning from historical data, bypassing
the need for complex models and assumptions often required
by model-driven approaches. This results in a more efficient,
real-time optimization of PF, significantly enhancing decision-
making speeds to three orders of magnitude [12] in prac-
tical examples, particularly in scenarios involving changes
in load/generation and grid expansions [13]. An MT-MVDC
distribution system often experiences shifts in steady-state op-
eration points due to the presence of time-variable loads, dis-
tributed generation (DG), and energy storage systems (ESSs)
with power sharing achieved through connected converters
utilizing various control schemes [14]. This underscores the
necessity for employing data-driven methods that possess
excellent generalization capabilities, adapting to varying oper-
ational scenarios and ensuring stable system performance.

Regression techniques: Least squares regression (LSR) can
be used to determine the variable relationships in a linearized
PF model [10]. For scenarios of data multicollinearity in
PF models, partial least square (PLS) [15] and ridge regres-
sion (RR) [10] can approach issues through extracting new
combined variables (latent variables) and introducing penalty
terms (regularization terms), respectively. The combination
of PLS and Bayesian linear regression (BLR) effectively
addresses both collinearity and overfitting issues, facilitating
accurate linearization calculations [16]. Locally weighted RR
(LWRR) incorporates locally weighted fitting into RR to
identify time-varying sensitivities in grids with limited data
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availability [17]. Support vector machine (SVM), is capable
in handling data outliers and collinearity, achieving enhanced
performance when integrated with RR [18]. Furthermore, PF
mapping can be recovered from historical data in matrix form
using support matrix regression (SMR) [19]. Nevertheless,
linear regression is limited to capturing linear relationships in
PF models, demonstrating reduced adaptability when dealing
with high-dimensional data that exhibit complex nonlinear
interactions.

Articial NNs (ANNs): Conventional ANNs with fully-
connected (FC) layers have found significant success in PF
predictions. Multilayer perceptrons (MLPs) [11] and radial
basis function networks (RBFNs) [20] are among the early
methods employed in research for conducting PF analysis, par-
ticularly in ac transmission systems and microgrids. ANNs can
also support PF analysis even in the absence of comprehensive
initial system data [21]. In addition, ANNs have been widely
used in optimal PF to enhance the efficiency of traditional
methods [22] or to directly produce optimal solutions [23]–
[25]. Although ANNs are effective in fixed topology structures,
they encounter challenges when the system topologies shift.
The number of neurons in the input layer of conventional
ANNs must be specified to match the size or dimensionality of
the input data, necessitating a fixed-size input. While inputs of
variable size can be preprocessed through padding, truncating,
or resampling, these operations may result in information loss
and introduce invalid data [26].

Convolutional NNs (CNNs): Compared to conventional
ANNs, CNNs inherently have the capability to handle input
with variable sizes due to spatial hierarchies and local connec-
tivity patterns, which allow adoption of different spatial dimen-
sions without requiring a fixed-size input vector [27]. CNNs
have been extensively employed in PF studies under uncertain
contingency scenarios [28], demonstrating efficiencies up to
100 times [29] and 350 times [30], [31] that of traditional
numerical methods for optimal PF solutions. In addition,
the Latin-hypercube sampling method has been incorporated
into CNNs to enhance training efficiency in probabilistic PF
analyses [32]. The integration of CNNs with long short-term
memory (LSTM) networks facilitates the inclusion of time-
varying weather conditions in PF determinations [33].

Nevertheless, the traditional approach to CNN channel
construction fails to fully capture the complex relationships
between node and line parameters such as node voltage, power
and line impedance that constitute the inherent physical con-
nections in power systems. This lack of representation leads
to diminished performance when dealing with unseen data,
as it overlooks the interactions between these key elements
that fundamentally drive the electrical network behaviors [34].
Moreover, the requirement to flatten the output of convo-
lutional layers for integration with multiple FC layers in a
conventional CNN constraints the flexibility of input topology
structures [35].

This paper proposes a novel physics-informed fully-
convolutional network (PI-FCN), specifically designed for PF
studies in MT-MVDC distribution systems. It is also the first
time to apply FCN in PF studies considering different con-
verter control schemes of MVDC systems, including MVDC

terminal voltage control, power/current control and droop
control. In this model, the input channels are reformulated to
account for the relationships between voltage, power, current
at MVDC terminals and line parameters, while substituting the
FC layer with a convolutional layer assuring flexible topology
structure input.

The contributions in this paper are:
1) The proposed PI-FCN is suitable for PF studies of MT-

MVDC distribution systems taking account of diverse
control schemes. The inherent weight sharing and sparse
connectivity characteristics in the PI-FCN efficiently
reduce the training parameters/model capacity and al-
leviate the overfitting issue. By removing the FC layers,
the proposed NN achieves fully variable-length input
accepting the PF prediction of any MT-MVDC network
structures after training. In addition, all input channels
determined by the number of different MVDC bus types
are consolidated into three channels constructed by dc
voltage, current and line conductance matrices. This
enhancement is realized through a specially designed
channel combination layer, which effectively merges the
data from the original power, current, power/voltage,
current/voltage channels into a singular current channel.
It simplifies the computation of the proposed network
and reinforces feature extraction by integrating channels
that may individually have limited data.

2) The proposed PI-FCN improves prediction accu-
racy through a physics-informed channel reformulation
method. After the input channel combination, the volt-
age, current and line conductance channels are further
reformulated based on the physical relation between
the three channels. The voltage and current channels
mutually transform through the line conductance chan-
nel, reflecting the actual voltage and current interac-
tions. Furthermore, a more accurate representation of the
physical connection is captured through the execution
of multiple reformulation calculations. This operation
enhances both the prediction accuracy and generalization
capability, as it allows the network to comprehend the
complex interaction between voltage, current, and line
conductance.

To validate the superior performance of the proposed PI-
FCN, it is tested across five MT-MVDC distribution networks
featuring various dc voltage levels and connection methods,
comparing it against other NNs in scenarios with both fixed
and variable topologies.

II. NUMERICAL POWER FLOW APPROACH FOR
MT-MVDC NETWORKS

In MT-MVDC distribution systems, an ac/dc or dc/dc
converter can regulate PF by performing different control
functions, including i) dc bus voltage control, ii) dc power or
current control, and iii) power/voltage (P/V) or current/voltage
(I/V) droop control [4]. Droop control is widely employed
to automatically facilitate power sharing among converters
connected to the ac grid, DGs, and ESSs following system
disturbances such as line disconnections and converter out-
ages [14].
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According to the corresponding control modes of different
converters [4], five MVDC bus types can be defined to
compute the PF based on NR method in an MT-MVDC system
with n buses. They are i) one MVDC voltage bus (slack bus),
ii) m dc power buses, iii) l dc current buses, iv) k P/V droop-
controlled buses, v) (n−m− l− k− 1) I/V droop-controlled
buses. The PF equations are summarized in (1) to (5) for dc
voltage, dc power, dc current, P/V droop-controlled and I/V
droop-controlled buses, respectively.

Vdcrefm,i − Vdcm,i = 0, (i = 1) (1)

Pdcrefm,i − Pdcm,i = 0, (i = 2, ,m+ 1) (2)

Idcrefm,i − Idcm,i = 0, (i = m+ 2, , l +m+ 1) (3)

(Pdcrefm,i − Pdcm,i) +KPV
droop,i(Vdcrefm,i − Vdcm,i) = 0,

(i = l +m+ 2, , k + l +m+ 1)
(4)

(Idcrefm,i − Idcm,i) +KIV
droop,i(Vdcrefm,i − Vdcm,i) = 0,

(i = k + l +m+ 2, , n)
(5)

where Vdcrefm is usually set as rated voltage V rated
dcm , KPV

droop,i

and KIV
droop,i are the droop constants for converters with P/V

and I/V droop, respectively. KPV
droop,i = (V rated

dcm δdroop)
−1P rated

dc ,
KIV

droop,i = (V rated
dcm · V rated

dcm δdroop)
−1P rated

dc and δdroop is the
maximum allowable dc voltage deviation ratio [36].

Moreover, the dc power and current injected to any MVDC
buses is expressed as:





Pdcm,i = Vdcm,i

n

j=1

Gdcm,ijVdcm,j (6a)

Idcm,i =

n

j=1

Gdcm,ijVdcm,j (6b)

Therefore, mismatch equations (7)-(10) can be obtained by
substituting (6) into (2)-(5).

∆PP -bus
dcm,i = Pdcrefm,i − Vdcm,i

n

j=1

Gdcm,ijVdcm,j , (7)

∆II-busdcm,i = Idcrefm,i −
n

j=1

Gdcm,ijVdcm,j , (8)

∆P
PV -bus
dcm,i =(Pdcrefm,i +KPV

droop,iVdcrefm,i)−KPV
droop,iVdcm,i

− Vdcm,i

n

j=1

Gdcm,ijVdcm,j ,

(9)
∆I

IV -bus
dcm,i =(Idcrefm,i +KIV

droop,iVdcrefm,i)−KIV
droop,iVdcm,i

−
n

j=1

Gdcm,ijVdcm,j ,

(10)
where Gdcm,ij is the line conductance in an MT-MVDC
system. Eqs. (7) to (10) can also be expressed in a ma-
trix format as ∆Fdcm = Jdcm∆Vdcm, where ∆Fdcm =

[∆PP -bus
dcm ,∆II-bus

dcm ,∆P
P/V -bus
dcm ,∆I

I/V -bus
dcm ]T , ∆Vdcm =

[∆V P -bus
dcm ,∆V I-bus

dcm ,∆V
P/V -bus
dcm ,∆V

I/V -bus
dcm ]T , Jdcm repre-

sent the derived Jacobian matrix. The detailed calculations for
Jdcm can be found in [37].

Although a numerical approach is capable of accurately
determining the PF in MT-MVDC distribution systems, its

dependence on iterative calculations significantly increases
the computational cost. This high demand for computational
resources renders it impractical for rapid PF estimation in
MT-MVDC systems, especially those characterized by time-
variable loads, DGs, and ESSs, where processing efficiency
are of paramount importance.

III. PROPOSED PI-FCN FOR MT-MVDC DISTRIBUTION
NETWORKS

A. Conventional CNN Description

A CNN comprises multiple convolutional layers that ex-
tract various feature maps from inputs (F ) using specified
convolution kernels (K). An activation function σ(·) offers
nonlinearity to CNN. The first convolution layer connected to
the input map in a CNN should follow the forward propagation
rule [27] as:




Cf = σ

F ∗K1,f +Bf


,

Cf (u, v) = σ


r

g=−r

r
h=−r

F (u− g, v − h) ·K1,f (g, h) +Bf


,

(11)
where f refers to the f th feature map, ∗ denotes the convolu-
tion operator, B is bias, r is the length of convolution range,
and u, v are row and column indices of feature map Cf . Pool-
ing layer can also be used in CNNs, while not necessary, to
achieve dimensionality reduction and perform downsampling.
Average pooling (Dave) and maximum pooling (Dmax) are
two typical methods expressed as:

Dave
f (u, v) =

1

w2

w−1

g=0

w−1

h=0

Df (s · u− g, s · v − h), or (12)

Dmax
f (u, v) = Maxw−1

g=0 Maxw−1
h=0Df (s · u− g, s · v − h), (13)

where w represents the size of the pooling window, and
s denotes the stride with which the window is moved.
Moreover, the size of convolution and pooling layers is
respectively calculated as (size(F )− size(K) + 2p)s+ 1
and (size(C)− size(K))s+ 1, where p refers to the total
number of padding. The FC layer can be used as the final
layer in a conventional CNN, although it is not required for
an FCN.

Ofc = σ(Wh+B), (14)

where h = H ({Df}) represents the vectorization of each Df

and concatenation of all vectors [38].

B. Network Description of Proposed PI-FCN

The proposed PI-FCN, as shown in Fig. 1, uses a FCN
with residual connection and incorporates a physics-based
convolutional channel redesign. The new NN offers two key
advancements: 1) accommodating variable input sizes by
adaptable kernel sliding across input matrices, and 2) improv-
ing prediction accuracy with the integration of restructured
input channels. Following the PF determination discussed in
Section II, there are six input channels including voltage,
power, current, P/V droop, I/V droop and line conductance
channels. However, both forward and backward propagations
require more computations with the increase in the number of
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input channels. The potential for information extraction could
be constrained when dealing with a channel that contains less
effective information (fewer number of buses for a specific bus
type). Beyond the two factors, a critical concern is the absence
of inter-channel data exchange, considering the relationships
among terminal voltage, power, current, and line conduc-
tance in an MT-MVDC system, which results in reduced
network generalization. To overcome these issues, the six
channels are reformulated to three channels (voltage, current
and conductance) while embedding physics information. A
detailed discussion of the channel reformulation process will
be provided in Section IV.

In the proposed PI-FCN, there is one channel combination
layer (depicted by the green box in Fig. 1), one physics opera-
tion layer (red box), and six encoder blocks, each comprising
two convolutional layers (orange boxes). The number of input
features Nfeature,in is equivalent to the number of channels
Nchannel in the initial encoder block, and it progressively ex-
pands to 8Nfeature,in by the final encoder block. The data output
(dc voltage at different MVDC buses), calculated as (15),
emanates from an additional convolutional layer illustrated as
a grey box. Moreover, residual connection is further added
as (16) (purple boxes) for mitigating vanishing/exploding
gradient and improving model stability [39].

OPI-FCN = σ

C

(e6)
f ∗K(final)

f +B
(final)
f


(15)





C
(e3)
f = σ


C

(e2)
f + C

(r1)
f


∗K(e3)

f +B
(e3)
f



C
(e5)
f = σ


C

(e4)
f + C

(r2)
f


∗K(e5)

f +B
(e5)
f

 (16)

The network input does not specify the height and width of the
input data to allow for flexibility in accommodating varying
sizes. In addition, the proposed PI-FCN omits the pooling layer
to prevent the potential loss of information that could disrupt
the intrinsic physical relation among different input channels.

IV. PHYSICS-INFORMED CONVOLUTIONAL CHANNEL
REFORMULATION

Physics-informed learning techniques can be embedded into
a NN through architecture reformulation to strengthen the
NN performance [40]. In the proposed PI-FCN, the net-
work architecture is reformulated through a physics-guided
convolutional channel operation, which offers 1) simplified
computation complexity and improved feature extraction ca-
pability by the transformation of initial input channels; and
2) enhanced prediction accuracy/generalization capability by
the reconstruction of merged channels, using the physical
relations between line conductance, voltage and current in
MVDC systems. A channel reformulation example provided
in this section illustrates the process of capturing physical
information in detail.

A. Channel Reformulation Approach

1) Input Channel Combination: Based on MVDC PF equa-
tions (1) to (5), the matrices of initial six input channels are

constructed as (17) to (22) for voltage, power, current, P/V
droop, I/V droop and line conductance, respectively.

CHV = diag(Vdcrefm,1, Vdcrefm,1, , Vdcrefm,1)
n×n (17)

CHP = diag(0, Pdcrefm,2, , Pdcrefm,m+1, , 0)
n×n (18)

CHI = diag(0, , Idcrefm,m+2, , Idcrefm,l+m+1, , 0)
n×n

(19)
CHP/V =diag(0, ..., Pdcrefm,l+m+2 +KPV

droop,l+m+2Vdcrefm,l+m+2,

.., Pdcrefm,k+l+m+1 +KPV
droop,k+l+m+1Vdcrefm,k+l+m+1,

..., 0)n×n

(20)
CHI/V =diag(0, ..., Idcrefm,k+l+m+2 +KIV

droop,k+l+m+2×
Vdcrefm,k+l+m+2, .., Idcrefm,n +KIV

droop,nVdcrefm,n)
n×n

(21)
CHG = Gdcm (22)

However, fewer input channels are required for simplifying
computations in forward/backward information propagations.
The six input channels operate independently, without any data
exchange based on physical knowledge, resulting in limited
adaptability to changing topological structures.

A physics-informed channel combination scheme is pre-
sented to address the issue. Initially, the matrices (18), (20),
and (21) related to power, P/V droop, and I/V droop channels
are transformed into the format of matrix (19) by following
transformation:





CHP → CHP
I , by Pdcrefm,iV

rated
dcm (23a)

CHP/V → CHP/V
I , by Pdcrefm,iVdcrefm,i (23b)

CHI/V → CHI/V
I , Only keep Idcrefm,i (23c)

They are merged with the current matrix (19) to create an
updated current matrix as (24), hence the six input channels are
converted into three channels (voltage, current, conductance).

CHI,total = CHP
I + CHI + CHP/V

I + CHI/V
I (24)

2) Inter-channel Transformation: Further conversion is
needed to enhance the NN adaptability to diverse input net-
work structures. Eq. (6b) shows the terminal current has a
linear correlation with the terminal voltage. Hence, (25) can
be established for any input power or current vectors derived
from (6b) and (23).

Idcm,i =

n

j=1

Gdcm,ij · Vdcm,j , (25)

where Idcm,i includes accurate and estimated dc current
values. In addition, (26) can also be established by splitting
self-conductance and mutual conductance of (25).

Idcm,i = Gdcm,iiVdcm,i +

n

j ̸=i

Gdcm,ijVdcm,j , (26)

which can also be written as (27) to reflect how one node
voltage is influenced by its neighbouring node voltage values.

Vdcm,i =

Idcm,i −
n

j ̸=i

Gdcm,ij · Vdcm,j

Gdcm,ii
(27)
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Fig. 1. Network structure of proposed PI-FCN for MT-MVDC distribution systems.

The input voltage and current matrices are further recon-
structed by (28) and (29), respectively, using matrix Gdcm,ij .

Inew
dcm  

CHnew
I,total

= Gdcm  
CHG

· diag(Vdcm)  
CHV

(28)

V new
dcm  

CHnew
V

=

diag(Idcm)  
CHI,total

− nondiag(Gdcm)  
CHnondiag

G

· diag(Vdcm)  
CHV

diag(Gdcm)  
CHdiag

G

(29)

The reconstructed voltage and current matrices consist of N
dc voltage and current components:

X new
dcm =




Xdcm,11 Xdcm,12 · · · Xdcm,1N

Xdcm,21 Xdcm,21 · · · Xdcm,2N

...
...

. . .
...

Xdcm,n1  
component 1

Xdcm,n2  
component 2

· · · Xdcm,nN  
component N



, (30)

where X refers to V or I in (28) and (29), respectively. The
sum of all components in each row of (30) is the actual dc
voltage or current values as:






row V new

dcm,i =
Ncolumn
N=1

V new
dcm,iN , (31a)


row Inew

dcm,i =
Ncolumn
N=1

Inew
dcm,iN  (31b)

This operation achieves mutual conversion of the current
channel and voltage channel as shown in Fig. 2. In voltage
channel CHV , the 2nd to nth diagonal voltage elements are
substituted by corresponding elements in V new

dcm,i.

CHV i =


row V new
dcm,i (i = 2, 3, , n) (32)

In current channel CHI,total, dc current elements in addition
to the elements related to the current buses should be all
updated based on the following rule:

Fig. 2. Input channel conversion process.

• Voltage bus-related element:

CHIi,total =


row Inew
dcm,i (i = 1) (33)

• Power bus-related elements:

CHIi,total = Pdcrefm,i


row V new
dcm,i (i = 2, ,m+ 1)

(34)
• P/V bus-related elements:

CHIi,total =
Pdcrefm,i +KPV

droop,i(Vdcrefm,i −


row V new
dcm,i)

row V new
dcm,i

,

(i = l +m+ 2, , k + l +m+ 1)
(35)

• I/V bus-related elements:

CHIi,total = Pdcrefm,i +KIV
droop,i(Vdcrefm,i −


row V new

dcm,i),

(i = k + l +m+ 2, , n)
(36)

By such conversion method, the model generalization and
prediction accuracy can be increased due to the embedded
physics principle. Utilizing a single channel conversion calcu-
lation by (28) and (29) yields limited physics information. By
employing multiple conversion calculations or iterations, one
can garner adequate physics insights. The complete flowchart
illustrating the physics information embedding process is
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Fig. 3. Physics information embedding process in the proposed PI-FCN for
MT-MVDC distribution systems.

shown in Fig. 3. However, it is important to recognize that
while the training time increases with the number of iterations,
obtaining sufficient physics information can expedite network
convergence.

B. Matrix Element Update Explanation

A six-terminal MVDC (6T-MVDC) distribution network
is used to explain the channel reformulation process. The
network structure is shown in Fig. 5(b) and related parameters
are provided in Table I. Initial conditions for PF determination
are:

• Grid-connected converter 1 (voltage control) - voltage
reference (12 kV);

• Grid-connected converter 2 (P/V droop control) - voltage
reference, power reference, P/V droop constant (12 kV,
8 MW, 833 MW/kV);

• Load-connected converter 3 (current control) - voltage
reference, current reference (12 kV, −06 kA);

• Load-connected converter 4 (power control) - voltage
reference, power reference (12 kV, −8 MW);

• DG-connected converter 5 (I/V droop control) - voltage
reference, current reference, I/V droop constant (12 kV,
01 kA, 03472 kA/kV);

• ESS-connected converter 6 (I/V droop control) - voltage
reference, current reference, I/V droop constant (12 kV,
0 kA, 03472 kA/kV).

Following the channel reformulation process in Section IV-A,
the initial six input matrices are converted into three by (23).
The reformulated three channels are then acquired:

CHI,total = diag(0, 0.67
(23b)

,−06, -0.67  
(23a)

, 0.1
(23c)

, 0
(23c)

) (37)

CHV = diag(12, 12, 12, 12, 12, 12) (38)

CHG =




225 0 −125 0 −1 0
0 225 0 −125 0 −1

−125 0 125 0 0 0
0 −125 0 292 −167 0
−1 0 0 −167 267 0
0 −1 0 0 0 1




(39)
Furthermore, new current and voltage matrices are obtained
after executing one calculation:

Inew(1)
dcm =



27
Ic.1
dcm,1

0
Ic.2
dcm,1

−15
Ic.3
dcm,1

0
Ic.4
dcm,1

−12
Ic.5
dcm,1

0
Ic.6
dcm,1

0
Ic.1
dcm,2

27
Ic.2
dcm,2

0
Ic.3
dcm,2

−15
Ic.4
dcm,2

0
Ic.5
dcm,2

−12
Ic.6
dcm,2

−15
Ic.1
dcm,3

0
Ic.2
dcm,3

15
Ic.3
dcm,3

0
Ic.4
dcm,3

0
Ic.5
dcm,3

0
Ic.6
dcm,3

0
Ic.1
dcm,4

−15
Ic.2
dcm,4

0
Ic.3
dcm,4

35
Ic.4
dcm,4

−20
Ic.5
dcm,4

0
Ic.6
dcm,4

−12
Ic.1
dcm,5

0
Ic.2
dcm,5

0
Ic.3
dcm,5

−20
Ic.4
dcm,5

32
Ic.5
dcm,5

0
Ic.6
dcm,5

0
Ic.1
dcm,6

−12
Ic.2
dcm,6

0
Ic.3
dcm,6

0
Ic.4
dcm,6

0
Ic.5
dcm,6

12
Ic.6
dcm,6




,
(40)

V
new(1)
dcm =




0
V c.1
dcm,1

0
V c.2
dcm,1

66667  
V c.3
dcm,1

0
V c.4
dcm,1

53333  
V c.5
dcm,1

0
V c.6
dcm,1

0
V c.1
dcm,2

02978  
V c.2
dcm,2

0
V c.3
dcm,2

66667  
V c.4
dcm,2

0
V c.5
dcm,2

53333  
V c.6
dcm,2

12
V c.1
dcm,3

0
V c.2
dcm,3

−048  
V c.3
dcm,3

0
V c.4
dcm,3

0
V c.5
dcm,3

0
V c.6
dcm,3

0
V c.1
dcm,4

51429  
V c.2
dcm,4

0
V c.3
dcm,4

−02297  
V c.4
dcm,4

68571  
V c.5
dcm,4

0
V c.6
dcm,4

45
V c.1
dcm,5

0
V c.2
dcm,5

0
V c.3
dcm,5

75
V c.4
dcm,5

00375  
V c.5
dcm,5

0
V c.6
dcm,5

0
V c.1
dcm,6

12
V c.2
dcm,6

0
V c.3
dcm,6

0
V c.4
dcm,6

0
V c.5
dcm,6

0
V c.6
dcm,6






(41)
By summing all components in each row of (40) and (41), the
actual dc voltage and current values are:
 

row Inew(1)
dcm = [0, 0, 0, 0, 0, 0]T kA


row V

new(1)
dcm = [12, 122978, 1152, 117703, 120375, 12]T kV

(42)
Following the element update rule (32) to (36), the updated
current and voltage channels are expressed as:


CHupdate(1)
I,total = diag(0, 04487,−06,−06797, 00870, 0)

CHupdate(1)
V = diag(12, 122978, 1152, 117703, 120375, 12)

(43)
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Efficient physics information would be captured by execut-
ing multiple iterations (i = N ). The new derived current and
voltage matrices after ten iteration calculations are:

Inew(10)
dcm =




27 0 −14.4 0 −12.0489 0
0 28.2929 0 −14.5191 0 −11.6775

−15 0 14.4 0 0 0
0 −15.7183 0 33.8780 −20.0814 0

−12 0 0 −19.3588 32.1303 0
0 −12.5746 0 0 0 11.6775



,

(44)
V

new(10)
dcm =




0.3438 0 6.4 0 5.3551 0
0 0.1135 0 6.4529 0 5.19
12 0 −0.48 0 0 0
0 5.3891 0 −0.2361 6.8851 0
4.5 0 0 7.2596 0.0311 0
0 12.5746 0 0 0 0.112



.

(45)

The actual dc voltage and current values are calculated as:





row Inew(10)

dcm = [05511, 20963,−06,−19217,

07715,−08971]T kA


row V
new(10)
dcm = [120989, 127565, 1152, 120381,

117907, 126866]T kV

(46)

by summing all components in each row of (44) and (45).
Furthermore, the updated current and voltage channels are
expressed as:





CHupdate(10)
I,total = diag(05511, 08531,−06,−06646,

01727,−02384)

CHupdate(10)
V = diag(12, 117565, 1152, 120381,

117907, 126866)

(47)

This procedure demonstrates how the proposed method for
input channel reformulation captures physical information
across all terminals through multiple iterations. The provided
pseudo-code Algorithm 1, written in Python using the Pytorch
framework [41], represents the proposed iterative calculation
for the 6T-MVDC distribution network after 10 iterations.

C. Training Process

The general training process of the proposed PI-FCN is
shown in Fig. 4. Data is acquired using the conventional NR
method implemented in Python. Detailed information on data
acquisition will be discussed in Section V-A. Data sequen-
tially flow through all layers, with the number of features
incrementally increasing from the initial number of channels
to eightfold, thereby enhancing the learning capability of the
proposed PI-FCN. The initial six input channels are first
converted into three channels through a predefined channel
combination layer based on (23) and (24). Moreover, the
subsequent physics operation layer provides physical insights
to the network by the mutual conversion of these combined
three channels according to (28)-(36).

The encoder and residual blocks perform convolutional op-
erations on the output channels of the physics operation layer.
Each encoder/residual block contains two convolutional layers
with different kernel sizes, stride and padding. Following
each convolutional operation, normalization technique such
as Instance Normalization is utilized to ensure data stability,

Algorithm 1 Iteration calculation for voltage/current channel
matrices in 4T-MVDC distribution network.
1: I2D-Input

dcm ← diag([0, 067,−06,−067, 01, 0])

2: V 2D-Input
dcm ← diag([12, 12, 12, 12, 12, 12])

3: N ← 10

4: for i in range(N ) do
5: Inew

dcm ← Gdcm × V 2D-Input
dcm

6: V new
dcm ← inv(diagGdcm)× (I2D-Input

dcm − ndiagGdcm × V 2D-Input
dcm )

7:


row Inew
dcm ← sum(Gdcm × V 2D-Input

dcm , axis = 1)

8:


row V new
dcm ← sum(inv(diagGdcm)× (I2D-Input

dcm −ndiagGdcm×
V 2D-Input
dcm ), axis = 1)

9: V 2D-Input
dcm [1 :] ← 

row V new
dcm[1 :]

10: I2D-Input
dcm [type V] ← 

row Inew
dcm[type V]

11: I2D-Input
dcm [type P] ← Pdcrefm[type P]V 2D-Input

dcm [type P]
12: I2D-Input

dcm [type P/V] ← (Pdcrefm[type P/V] +KP/V
droop×

(Vdcrefm[type P/V]− V 2D-Input
dcm [type P/V]))V 2D-Input

dcm [type P/V]
13: I2D-Input

dcm [type I/V] ← Idcrefm[type I/V] +K I/V
droop×

(Vdcrefm[type I/V]− V 2D-Input
dcm [type P/V])

14: end for

while an activation function like the Rectified linear unit
(ReLU) is applied to introduce nonlinearity into the network.
The predicted MVDC bus voltage values from the proposed
PI-FCN are finally compared with the target values by the
computation of loss function gradient during the backward
propagation to update the weights.

Hyperparameters are fine-tuned through both Bayesian op-
timization and heuristic methods. The evaluation metric is the
accuracy on the validation set. Bayesian optimization specif-
ically determines the number of encoder/residual blocks and
the convolutional layers in each block, while heuristic tuning
is used to set the values of other parameters. Early stopping
is applied on the validation set to mitigate overfitting, which
also assists the adjustment of hyperparameters by interrupting
the training process at optimal epochs.

V. EXPERIMENT VERIFICATION

The proposed PI-FCN, along with other neural network
models, are developed using PyTorch. Three distinct cases are
considered to validate the superior performance of the pro-
posed PI-FCN in MT-MVDC distribution networks compared
to conventional FCN and MLP. All evaluations were conducted
on a PC equipped with an Intel(R) Core(TM) i7-13700K
CPU@3.4GHz, 64GB RAM, and a NVIDIA GeForce RTX
4090 GPU. The three cases include: 1) fixed network topology
that five designed MT-MVDC networks as shown in Fig. 5(a)-
(e) are trained using random sampling of line resistance, as
well as reference values for grid-connected, DG-connected,
ESS-connected, and load-connected converters; 2) varying net-
work topology that random line disconnections are considered;
3) varying network topology that random converter outages
and corresponding line disconnections are included.

A. Training Data Derivation
The initial PF data is obtained from the MT-MVDC systems

through a conventional NR algorithm programmed in Python.

This article has been accepted for publication in IEEE Transactions on Power Systems. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2024.3382266

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Technical University of Denmark DTU Library. Downloaded on April 08,2024 at 05:12:55 UTC from IEEE Xplore.  Restrictions apply. 



8

Fig. 4. General training process of proposed PI-FCN.

The conventional PF derivation approach has been discussed
in Section II considering different control methods used with
power electronic converters [37]. This PF algorithm incorpo-
rates different control modes in the bus type definition (1)
to (5), making it broadly applicable for acquiring training data
in MVDC systems with converters featuring different control
schemes.

The initial parameters of converters and lines for the five
networks are listed in Table I. To obtain enough training data,
random sampling for the three cases are also considered in the
employed NR algorithm, following:

• Voltage reference values (p.u.) of all converters are uni-
formly varied from 0.9 to 1.1.

• For load-connected converters, the power/current refer-
ence values (p.u.) uniformly span from 0.8 to 1.2.

• For grid-connected, DG-connected, and ESS-connected
converters, the power/current reference values (p.u.) are
uniformly sampled between 0.9 and 1.1.

• Random sampling of line resistance values ranging from
0.95 p.u. to 1.05 p.u. has also been taken into account to
enhance the robustness of the model.

• Any single lines/double lines are disconnected at random
considering N − 1 and N − 2 contingency, respectively.
At the same time, the tie switch is closed to maintain
an uninterrupted power flow to the loads, which is inte-
gral to the subsequent monitoring of converter outages.
Furthermore, as part of this process, each terminal is
automatically checked during the sampling process to
ensure that no independent terminals are present.

• Single or double grid-connected converter outages are in-
cluded and associated lines are disconnected. To guaran-
tee the NR algorithm operates correctly after the converter
isolation, the converter-linked terminals are renumbered,
ensuring sequential continuity of the terminal indices.

Fig. 5. MT-MVDC network structures: (a) four-terminal MVDC system with
load, (b) six-terminal MVDC system with load/DG/ESS, (c) eight-terminal
MVDC system with load, (d) nine-terminal MVDC system with load, and (e)
ten-terminal MVDC system with load/DG/ESS.

B. Neural Network Modelling

Unlike the conventional FCN, six original input channels are
converted to three channels (voltage, current, and conductance)
which are subsequently reformulated in the proposed PI-FCN.
The output features are set as 64 in the first FCN encoder
block, which are converted to 128, 256, 512 in the following
blocks as shown in Fig. 1. In the encoder and residual blocks,
the kernel sizes are set to 3 × 3 and 1 × 1, respectively. The
output is produced using a 1 × 1 kernel, with both stride s
and padding p configured to 1. ReLU activation function is
adopted in each convolutional layer. Since MLP only accepts
the input of one-dimensional data, the inputs of an MLP are
n dc voltage, n dc current and n × n conductance values.
The used MLP includes four hidden layers with in total 1000
neurons in all hidden layers.

A total of 20,000 samples within the specified data dis-
tribution are generated for each case, with 12,000 allocated
for model training, 4000 reserved for validation, and another
4000 dedicated to testing the performance of all NNs. All NNs
are trained for 1000 epochs using the Adam optimizer, with a
learning rate of 0.001 and a batch size of 32. The network loss
function employs MSE for each sample (n terminal voltage
values are included), hence the calculation of total loss in all
sample data follow:

LosstotalMSE =

Ndata

p=1


1

n

n

i=1


V act,p
dcm,i − V tar,p

dcm,i

V rated
dcm

2
, (48)

where Ndata is the number of sample data, V act
dcm is the

predicted MVDC voltage output from networks, and V tar
dcm is

the corresponding target values. Loss reduction is also used
as monitor metric to trigger early stopping by a predefined
patience setting of 20 epochs. The prediction accuracy Atest
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TABLE I
SYSTEM PARAMETERS OF MT-MVDC NETWORKS.

Converter Parameters Converter 1 Converter 2 Converter 3 Converter 4 Converter 5 Converter 6 Converter 7 Converter 8 Converter 9 Converter 10

Network 1 12, −, − 12, −, 0.65 12, −, -0.6 12, -8, − / / / / / /
Vdcrefm (kV), Network 2 12, −, − 12, 8, − 12, −, -0.6 12, -8, − 12, −, 0.1 12, −, 0 / / / /
Pdcrefm (MW), Network 3 20, −, − 20, 15, − 20, −, -0.25 20, −, -0.25 20, −, -0.25 20, −, -0.25 20, -5, − 20, -5, − / /
Idcrefm (kA) Network 4 20, −, − 20, 10, − 20, 10, − 20, −, -0.25 20, −, -0.25 20, −, -0.25 20, −, -0.25 20, -5, − 20, -5, − /

Network 5 70, −, − 70, −, 0.7 70, 50, − 70, −, -0.65 70, -45, − 70, −, -0.65 70, −, -0.15 70, -10, − 70, −, 0.15 70, −, 0

Control Method

Network 1 V IV (0.69) I P / / / / / /
Network 2 V PV (8.33) I P IV (0.35) IV (0.35) / / / /
Network 3 V PV (10) IV (0.2) IV (0.2) I I P P / /
Network 4 V PV (7.5) PV (7.5) IV (0.2) IV (0.2) I I P P /
Network 5 V IV (0.12) PV (8.57) IV (0.10) PV (7.14) IV (0.10) P I IV (0.03) IV (0.02)

Line Parameters Line 1 Line 2 Line 3 Line 4 Line 5 Line 6 Line 7 Line 8 Line 9 Line 10 Line 11

1 4, 0.1, 0.02 2, 0.1, 0.02 5, 0.1, 0.02 / / / / / / / /
Distance, 2 4, 0.1, 0.02 5, 0.1, 0.02 5, 0.1, 0.02 4, 0.1, 0.02 3, 0.1, 0.02 / / / / / /
R (Ω/km), 3 6, 0.1, 0.02 8, 0.1, 0.02 8, 0.1, 0.02 6, 0.1, 0.02 4, 0.1, 0.02 4, 0.1, 0.02 4, 0.1, 0.02 / / / /
L (mH/km) 4 6, 0.1, 0.02 8, 0.1, 0.02 8, 0.1, 0.02 8, 0.1, 0.02 8, 0.1, 0.02 6, 0.1, 0.02 4, 0.1, 0.02 4, 0.1, 0.02 4, 0.1, 0.02 / /

5 12, 0.1, 0.02 16, 0.1, 0.02 16, 0.1, 0.02 16, 0.1, 0.02 16, 0.1, 0.02 12, 0.1, 0.02 8, 0.1, 0.02 8, 0.1, 0.02 8, 0.1, 0.02 8, 0.1, 0.02 6, 0.1, 0.02

Note 1: The units of I/V and P/V droop constants are kA/kV and MW/kV, respectively.
Note 2: The listed line distance refers to the distance for each pole.

is determined by the proportion of data deemed qualified
Nqualified to the entire test set Ntotal (49). Test data is
considered qualified when the error between the sum of actual
MVDC voltage values predicted by the NNs and the provided
samples is less than a predefined error E , expressed as (50).

Atest =
Nqualified

Ntotal
× 100% (49)

erroractualsum =


n

i=1

V act
dcm,i −

n

i=1

V tar
dcm,i

<E , (50)

which can be further converted into:

errorpusum =


n

i=1

V
act(pu)
dcm,i −

n

i=1

V
tar(pu)
dcm,i

<
E

V rated
dcm

(51)

if per unit calculations are adopted, and 0.01 p.u. error in each
terminal is used that

V act(pu)
dcm,i − V

tar(pu)
dcm,i

<E(n · V rated
dcm ).

C. Fixed Network Topology (Case 1):

1) Trained Data Distribution Range: The topology of all
MT-MVDC networks remains identical, where only the values
of converter references, and line resistances are uniformly
sampled. The five networks are trained separately and the
prediction accuracy is verified in MLP, FCN and proposed
PI-FCN. The comparison results are listed in Table II. The
results indicate that the proposed PI-FCN outperforms other
NNs, with its accuracy most notably improving as the number
of iterations increases, especially in the 10T-MVDC system.
The curves illustrating loss reduction in training/validation set
for different NNs under 10T-MVDC systems over 1000 epochs
are presented in Fig. 6. It reveals that the proposed PI-FCN
converges more rapidly and achieves lower loss than both the
conventional FCN and MLP.

Table III lists the training time comparison in one epoch.
The weight-sharing characteristics of FCNs lead to a decrease
in training time compared to the MLP, while the proposed PI-
FCN requires more time due to the introduction of additional
operation layers. During the PF prediction stage, all NNs
have significant speed advantages compared to conventional
NR method, as shown in Table IV. Despite the integration of

physics operation in the forward PF prediction, this extra step
only involves the simple solution of two linear equations (28)
and (29), necessitating minimal additional time.

2) Untrained Data Distribution Range: To further demon-
strate the superiority of physics-informed channel reformula-
tion, a contrast experiment is conducted in both 4T-MVDC
(Fig. 7) and 10T-MVDC (Fig. 8) networks. Three NNs are
used in this experiment, including MLP, FCN and PI-FCN
(PI-FCN refers to PI-FCN(3) in the subsequent description),
to assess their performance under untrained sampling range
based on MVDC voltage prediction errors errorpusum (the sum
of all dc voltages expressed in p.u. value).

The dc power/current references of load-connected or grid-
connected converters are constant in each test, while other
parameters are changed following the sampling method de-
scribed in Section V-A. Figs. 7(a), 8(a) and Figs. 7(b), 8(b)
show the prediction accuracy comparison (mean value of
4000 test samples), when the dc power/current references
of load-connected converters ranges from 0.3 to 1.7 and dc
power/current references of grid-connected converters change
from 0.7 to 1.3 with 0.1 step, respectively. In both 4T- and 10T-
MVDC distribution systems, all three NNs have acceptable
performance within the trained areas, but the proposed PI-FCN
has higher prediction accuracy in untrained areas.

TABLE II
PREDICTION ACCURACY COMPARISON OF DIFFERENT NNS UNDER

CASE 1.

Network 4T-MVDC 6T-MVDC 8T-MVDC 9T-MVDC 10T-MVDC

MLP 97.5% 95.8% 91.4% 88.1% 88.2%
FCN 97.5% 94.7% 92.2% 90.0% 87.9%

PI-FCN(1) 99.3% 99.5% 98.0% 98.2% 97.8%
PI-FCN(2) 99.8% 99.8% 98.7% 98.6% 98.1%
PI-FCN(3) 99.9% 99.7% 99.1% 99.4% 98.7%
(1): 1 iteration, (2): 5 iterations, (3): 20 iterations.

D. Varying Network Topology with Random Line Disconnec-
tion (Case 2):

1) Trained Line Disconnection: Random line disconnection
is included in addition to the uniform sampling of converter
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TABLE III
TRAINING TIME COMPARISON (ONE EPOCH).

Network MLP FCN PI-FCN(1) PI-FCN(2) PI-FCN(3)

4T-MVDC
4.01s 2.98s 3.32s 3.40s 4.23s
84.9it/s 113.5it/s 102.0it/s 98.5it/s 80.7it/s

10T-MVDC
7.20s 5.93s 6.18s 6.49s 7.91s
53.3it/s 65.0it/s 61.9it/s 59.0it/s 48.5it/s

TABLE IV
CALCULATION TIME COMPARISON (4000 SAMPLES) IN CPU.

Prediction Method NR MLP FCN PI-FCN(1) PI-FCN(2) PI-FCN(3)

Time(s) 4T-MVDC 3.775 0.213 0.221 0.229 0.301 0.457
10T-MVDC 23.879 0.450 0.502 0.526 0.692 0.983

Fig. 6. Loss reduction in the training/validation set under 10T-MVDC: (a)
training set in all NNs, and (b) training and validation sets in the PI-FCN
with 20 iterations.

Fig. 7. Prediction error comparison for 4T-MVDC distribution system under
different NNs: (a) dc power/current reference value changes of load-connected
converters, and (b) dc power/current reference value variations of grid-
connected converters.

references and line resistances. Single and double line discon-
nections are considered together to mimic N − 1 and N − 2
contingencies. Table V lists the prediction accuracy consid-
ering random single line disconnections in the five MVDC
systems. The prediction accuracy of MLP and conventional
FCN declines compared to fixed topology due to the increased
training complexity. The proposed PI-FCN maintains good
performance, despite a slight decrease in prediction accuracy.

2) Untrained Line Disconnection: A test for generalization
capability is conducted, wherein the system is trained on

Fig. 8. Prediction error comparison for 10T-MVDC distribution system
under different NNs: (a) dc power/current reference value changes of load-
connected converters, and (b) dc power/current reference value variations of
grid-connected converters.

single line disconnections and then tested on double line
disconnections (N − 2 contingency). The accuracy compar-
ison for untrained double line disconnections is presented
in Table VI, excluding 4T-MVDC and 6T-MVDC networks
due to the presence of independent terminals for any double
line disconnections. The results demonstrate the proposed PI-
FCN has better generalization capability in the case of unseen
double line disconnection scenarios.

Fig. 9 shows a detailed comparison of prediction errors
(mean error of 4000 samples), examining the effects of
single-line disconnection (line 1 or line 7) and concurrent
disconnections of line 1 & line 3 or line 7 & line 11,
within the 10T-MVDC system. It should be noted that to
ensure the uninterrupted power supply to load 1 following
the simultaneous tripping of line 1 and line 3, the tie switch
connecting the two load terminals (T7 and T8) is closed.
The proposed PI-FCN (green bars) outperforms others in both
single and unseen double line tripping scenarios, owing to
its integration of physics-based information. The increase in
errors from single to double line disconnection of the proposed
PI-FCN are also the smallest, being ∆errorpusum = 0028 for
lines 1 and 3, and ∆errorpusum = 0030 for lines 7 and 11
disconnections, respectively. In contrast, the MLP exhibits the
poorest performance in scenarios involving unseen double line
disconnections (errorpusum is increased to around 03) because
it flattens the two-dimensional conductance matrix into one-
dimensional inputs, a process which results in the loss of
critical spatial structural information.

TABLE V
PREDICTION ACCURACY COMPARISON OF DIFFERENT NNS UNDER

CASE 2 - SINGLE LINE DISCONNECTION.

Neural Network 4T-MVDC 6T-MVDC 8T-MVDC 9T-MVDC 10T-MVDC

MLP 92.4% 86.7% 82.8% 78.9% 78.3%
FCN 94.2% 90.7% 88.5% 84.9% 83.6%

PI-FCN 99.5% 99.2% 98.6% 98.1% 98.2%

TABLE VI
PREDICTION ACCURACY COMPARISON OF DIFFERENT NNS UNDER

CASE 2 - UNTRAINED DOUBLE LINE DISCONNECTION.

Neural Network 8T-MVDC 9T-MVDC 10T-MVDC

MLP 76.5% 72.4% 68.2%
FCN 79.3% 76.5% 72.3%

PI-FCN 93.4% 92.2% 91.4%
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Fig. 9. Prediction error comparison for random line disconnection occurred
in 10T-MVDC distribution system under different NNs.

E. Varying Network Topology with Random Converter Outage
(Case 3):

1) Trained Converter Outage: This case is the most com-
plex because line disconnection and converter isolation are
included in the training process together. During sampling, in
addition to isolating single or double grid-connected converters
(N − 1 and N − 2 contingencies), lines connected to isolated
converters are also disconnected. Moreover, the outage of a
dc voltage controlled-converter (converter 1) is not included
during the sampling process for providing a voltage magni-
tude reference for the NR algorithm initialization. Similar to
the NN performance comparison of consistent sampling in
Case 2, Table VII presents the prediction accuracy for random
single converter outages across five MVDC systems. Despite
a decrease in the prediction accuracy of the proposed PI-
FCN owing to greater training complexity, it still achieves
the highest precision relative to the MLP and the conventional
FCN.

2) Untrained Converter Outage: Table VIII lists the ac-
curacy comparison for general untrained double converter
outages. The proposed PI-FCN has the highest prediction ac-
curacy in scenarios involving unseen double converter failures,
especially in the 4T-MVDC system where only simultaneous
outages of converters 1 and 3 or converters 2 and 4 are
allowed.

Fig. 10 presents a comparison of prediction errors to assess
the generalization ability of the proposed PI-FCN, which is
trained on single-converter outages and tested on separate
instances of individual converter outages (either converter 2 or
converter 5) as well as on simultaneous outages of converters
2 and 3, or converters 5 and 6, in the 10T-MVDC system. The
errors of all NNs significantly increase when tested on double
converter outages, compared to those on unknown line discon-
nections, due to the substantial divergence in system structures
between the training and test sets. However, the proposed PI-
FCN still has the smallest errors although the prediction errors
from single to double converter outage increase by 75.6% and
51.8% for converters 2 & 3, and for converters 5 & 6 outages,
respectively.

Fig. 10. Prediction error comparison for random converter outage occurred
in 10T-MVDC distribution system under different NNs.

TABLE VII
PREDICTION ACCURACY COMPARISON OF DIFFERENT NNS UNDER

CASE 3 - TRAINED SINGLE CONVERTER OUTAGE.

Neural Network 4T-MVDC 6T-MVDC 8T-MVDC 9T-MVDC 10T-MVDC

MLP 90.4% 82.0% 76.8% 74.9% 73.0%
FCN 91.1% 84.1% 82.5% 78.5% 77.7%

PI-FCN 98.6% 96.3% 95.8% 94.2% 93.5%

TABLE VIII
PREDICTION ACCURACY COMPARISON OF DIFFERENT NNS UNDER

CASE 3 - UNTRAINED DOUBLE CONVERTER OUTAGE.

Neural Network 4T-MVDC 6T-MVDC 8T-MVDC 9T-MVDC 10T-MVDC

MLP 72.7% 72.9% 69.8% 67.5% 66.5%
FCN 81.0% 80.3% 78.5% 74.4% 73.6%

PI-FCN 95.8% 92.8% 91.6% 91.0% 90.2%

VI. CONCLUSION

This paper proposes a novel PI-FCN with integrated physics
guidance to predict the PF in MT-MVDC distribution net-
works, addressing the accuracy reduction issue in conventional
NNs under unseen data distributions and topology structures.
The PI-FCN simplifies its structure by merging various MVDC
bus-type inputs into three channels using a channel combi-
nation layer. This reduces the NN computation burden and
strengthens the feature extraction capability of PI-FCN by
information concentration across different channels. In the
presented physics-informed channel reformulation method, the
physical relation between voltage, current, and line conduc-
tance in an MVDC network is embedded by reconstructing the
input voltage and current matrices. It allows a more thorough
extraction of information, elevates prediction accuracy and
strengthens generalization capability. Three different cases,
including fixed MVDC network topology, varying topologies
with line disconnection and converter outage, demonstrate the
improved prediction accuracy and the potential generalization
ability of proposed PI-FCN.

The PI-FCN offers an effective FCN channel reconstruction
method based on physical information for MT-MVDC PF
prediction in different operation conditions. Given that MVDC
is still in the early stages of commercial application, it is
significant to identify the optimal operating conditions and
strategize for the future expansion of existing projects. By
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using the proposed PI-FCN, the efficiency and accuracy of
decision-making processes can be enhanced to better facilitate
the PF analysis in response to generation/load changes, renew-
able energy integration and grid upgrades in practical MVDC
systems. The presented channel reconstruction method also
offers crucial insights for future physics-informed NN-based
PF estimation method in power system analysis.
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