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A B S T R A C T

Participants in the energy market are at greater risk of making decisions due to the nonlinear and volatile 
characteristics of electricity prices. Accurate short-term electricity price forecasting (EPF) is essential to ensure 
improved resource allocation, grid stability and enable market participants to manage their decisions efficiently. 
This study proposes a novel two-stage forecasting framework for day-ahead EPF using time series decomposition 
methods and hybrid deep learning algorithms. In the first stage, features related to EPF at the next time step are 
predicted. In this stage, the highest-frequency component extracted via Empirical Mode Decomposition (EMD) is 
further decomposed using Variational Mode Decomposition (VMD) so as to better capture rapid fluctuations and 
improve the overall prediction accuracy. Moreover, a decentralized deep learning architecture is designed in 
which Gated Recurrent Unit (GRU) networks are employed for high-frequency components, while Long Short- 
term Memory (LSTM) networks are used for the remaining components. In the second stage, EPF is generated 
using a hybrid LSTM and GRU structure, which incorporates both features estimated in the first stage and his
torical electricity price data. Finally, hyperparameters of the deep learning models are optimized using Bayesian 
Optimization to enhance performance. To validate the proposed framework, real market data from the DK1 
region of Denmark is used. The proposed hybrid prediction framework is evaluated against both machine 
learning methods and deep learning-based architectures. Experimental results demonstrate that the proposed 
method achieves approximately 27.15 % lower RMSE compared to traditional machine learning models, and 
around 28.24 % lower RMSE compared to LSTM-based models.

1. Introduction

1.1. Motivation

In the competitive electricity market, accurate electricity price 
forecasting (EPF) is critically important for market participants engaged 
in buying and selling transactions in order to maximize their profit. 
Market participants rely on price forecasts to determine their bidding 
strategies, allocate resources efficiently, and plan facility investments 
(Gong et al., 2025). In such a competitive environment, any participant 
who can accurately predict future electricity prices can gain additional 
advantage and achieves greater profits. The supply-demand relationship 
among participants plays a key role in determining electricity prices 
under market conditions. These decisions are heavily influenced by the 
participants’ own price forecasts. Therefore, the ability to act efficiently 
in the market depends on the accurate implementation of EPF.

1.2. Literature review

Recent studies show that deep learning, machine learning, and 
intelligent algorithms are increasingly favored for electricity price pre
diction. Researchers primarily aim to achieve accurate forecasts despite 
the presence of price volatility and sudden spikes. Earlier studies in this 
field largely relied on statistical models particularly time series ap
proaches such as Autoregressive Integrated Moving Average (ARIMA) 
(Rajan and Chandrakala, 2021), (McHugh et al., 2022), (Abdellatif et al., 
2023) and Generalized Autoregressive Conditional Heteroskedastic 
(GARCH) (da Silva Leite and de Lima, 2023), (Janczura and Puć, 2023). 
However, these methods often fall short in capturing the complex and 
non-linear dynamics of electricity markets, making them less responsive 
to abrupt price changes. ARIMA methods are successful in modeling 
linear relationships and seasonal trends and are suitable for systems that 
do not show major changes over time and operate in a predictable and 
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balanced manner. However, they are inadequate in modeling the com
plex and variable structure in energy systems. In order to increase the 
prediction accuracy in future studies, Computational Intelligence (CI) 
models and hybrid models have begun to be used. Initially, in the CI 
field, intelligent system methods were frequently preferred for EPF. In 
intelligence systems, Artificial Neural Network (ANN) (Panapakidis and 
Dagoumas, 2016), Fuzzy (Plakas et al., 2023) and Neuro-fuzzy (Setayesh 
Nazar and Eslami Fard, 2021) and, Random Forest (de Castilho Braz 
et al., 2024) methods have been used in electricity price forecasting 
studies. These methods can capture nonlinear dependencies and inte
grate external factors into the models used in the estimation phase. The 
use of these methods in the EPF field has increased over time.

Later, with the use of big data in the EPF field, these models, despite 
their strengths, were insufficient to extract complex relationships in the 
data. Models such as ARIMA and simple ANNs can generally only see 
surface relationships; They are insufficient to capture deeper relation
ships in the data related to electricity prices. For this reason, deep 
learning methods have begun to be used in EPF studies. The preferred 
deep learning methods in EPF can be Deep Neural Network (DNN) 
(Huang et al., 2021), Support Vector Machine (SVM) (Zhang et al., 
2020), Recurrent Neural Network (RNN) (Kaya et al., 2023), Gated 
Recurrent Unit (GRU) (Yang and Schell, 2020), Long Short-term Mem
ory (LSTM) (Wang et al., 2023), and Convolution Neural Network (CNN) 
(Khan et al., 2020).

Previously some of the stand-alone models used in the EPF field were 
successful under certain conditions. However, it became clear that these 
methods were unable to fully capture the deep relationships in elec
tricity price data with complex, volatile, and non-stationary structure (i. 
e., statistically changing over time). To overcome this difficulty, re
searchers began to develop “hybrid” models that combine multiple 
methods. A hybrid model is one that combines several different 
methods, and as a result, it becomes more powerful and flexible than a 
single model, and is therefore capable of producing more accurate and 
reliable results. Moradzadeh et al. in (Moradzadeh et al., 2025) aimed at 
short-term electricity price forecasting using hourly Ontario energy 
price data from Canada and they proposed a hybrid deep learning 
model. In this paper, Bidirectional LSTM and Gated Recurrent Unit are 
hybridized to improve the prediction performance. The obtained results 
were compared with Extreme Learning Machine (ELM), CNN-LSTM and 
Autoencoder + BiLSTM (AE-BiLSTM) to demonstrate the success of the 
proposed method. Similarly, in (Pourdaryaei et al., 2024), a method that 
can model both spatial and temporal relationships in market fluctua
tions more effectively by using multi-head attention and 1D-CNN 
together with feature selection for short-term electricity price predic
tion was developed. With the proposed model, low error rates were 
obtained in the analysis for each season.

The use of hybrid models provided high estimates in complex and 
dynamic EPF. Due to the complex structure of hybrid models and the fact 
that parameter tuning involves a large number of possibilities, the use of 
methods such as Bayesian optimization in parameter tuning increases 
the predictive performance of the model. In (Dai and Yu, 2024), the 
parameters of prediction model developed by integrating CNN, TCN, 
Attention mechanism were optimized by Bayesian optimization method. 
Jayanth and Manimaran in (Jayanth and Manimaran, 2024) have opti
mized the parameters of the proposed hybrid forecasting method 
(Double Exponential Smoothing + Dual Attention Encoder-Decoder +
Bi-Directional GRU) in order to maximize the performance of the model 
using Bayesian Optimization.

These methods assist only in tuning parameters that lie outside the 
learning process-that is, parameters the model cannot learn on its own 
and must be predefined. However, tuning these external parameters 
alone is not sufficient to ensure the model’s efficiency. To address these 
limitations and enhance model performance, time series decomposition 
techniques have been integrated with deep learning algorithms. Another 
hybridization option to deal with the complexity of EPF time series data 
is the use of time series decomposition methods such as Wavelet 

Transform (WF) (Osório et al., 2018), Empirical Mode Decomposition 
(EMD) (Zhang et al., 2021), Variational Mode Decomposition (VMD) 
(Xiong and Qing, 2023), (Xu et al., 2025), Ensemble EMD (EEMD) (Khan 
et al., 2021), etc. In this regard, Xiong and Qing (2023) have proposed a 
new hybrid method that, after the feature selection step, performs signal 
decomposition on the selected features using the VMD method for noise 
reduction and information extraction. The parameters of the LSTM 
model used in the estimation method were optimized with Bayesian 
Optimization and Hyperband. Likewise, in (Tan et al., 2023), time series 
data is decomposed into low-frequency and high-frequency components 
with ICEEMDAN to better model the complex volatility of prices in 
day-ahead electricity price forecasting for the Australian national elec
tricity market (in NSW). In addition, Inspired Grey Wolf Optimizer 
(IGWO) was used for hyperparameter optimization in this study.

1.3. Contribution of this work

This research proposes a two-stage day-ahead electricity price fore
casting (EPF) algorithm, recognizing the importance of EPF for both 
researchers and industry stakeholders. In the first stage, the input fea
tures for price prediction are decomposed into frequency components 
using EMD. The most complex component is further processed using 
VMD and modeled with GRU, while the remaining components are 
modeled with a LSTM network. The results are then combined to 
generate a precise t+1 price prediction in the next stage. Indeed, in the 
second stage, a 24-h electricity price forecast is performed using the t+1 
feature values predicted in the first stage, applying a decentralized 
LSTM + GRU framework. Finally, the main contributions of the paper 
can be summarized as follows: 

• A novel two-stage hybrid forecasting framework is introduced, 
combining signal decomposition with a heterogeneous deep learning 
architecture to separately model low- and high-frequency compo
nents of electricity price time series, enabling component-specific 
learning and improved forecast accuracy.

• A decentralized deep learning structure is developed, integrating 
LSTM and GRU networks to simultaneously capture long-term de
pendencies and short-term fluctuations in price signals, optimized 
through Bayesian methods for enhanced predictive performance.

• Comprehensive real-world validation is conducted using DK1 market 
data from Denmark, demonstrating the proposed model’s superiority 
over conventional ML/DL methods in terms of accuracy and 
robustness in day-ahead electricity price forecasting.

The rest of the paper is structured as follows. Section 2 introduces the 
proposed framework and presents details regarding the dataset, per
formance metrics, and hyperparameter optimization process. Section 3
provides a comprehensive analysis of each stage within the two-stage 
estimation process and compares the results with benchmark methods 
using various performance metrics. Finally, Section 4 summarizes the 
key findings of the study and offers recommendations for future research 
directions.

2. Method of research

The effectiveness of accurate price forecasting can be assessed from 
the perspectives of both grid producers and consumers. For producers, 
precise forecasts support informed production allocation decisions, 
enabling optimal use of generation resources across regions to maximize 
profitability. On the other hand, consumers depend on accurate price 
predictions to plan budgets, manage consumption patterns, and mitigate 
the impact of price volatility. In today’s increasingly volatile energy 
markets, the ability to anticipate price fluctuations with high accuracy is 
essential-not only for securing profit but also for avoiding unexpected 
financial losses. To address this challenge, this section proposes a new 
framework that employs a hybrid two-stage forecasting approach 
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designed to enhance predictive accuracy. The proposed model consists 
of two main stages: (i) Multi-step feature forecasting (multi-step fore
casting of selected features) and (ii) Electricity price prediction model 
for the specific bidding zone. (day-ahead price prediction using these 
forecasted inputs). The following sections provide detailed explanations 
of the framework consisting of these two steps. An overall schematic 
representation of the proposed methodology is illustrated in Fig. 1.

2.1. Introduction of decomposition techniques used in the developed 
model

Time series of key variables in energy markets are often complex and 
consist of multiple frequency components. Decomposition techniques 
are employed to decompose the time series into sub-series with distinct 
frequency characteristics. The goal is to break down the time series into 
simpler components, allowing each to be analyzed separately for better 
interpretability and predictive accuracy. Decomposition techniques can 
generally be applied in either a single-step or multi-step approach. In 
single-step decomposition, a single method is used to decompose the 
time series into sub-series based on frequency components. However, a 
single decomposition method may not fully capture all the structural 
features of the series. Therefore, hybrid decomposition methods are 
employed to leverage the strengths of multiple techniques. In multi-step 
decomposition, additional methods are applied after the initial decom
position to extract all relevant structural characteristics of the time 

series more effectively. In this study, EMD and VMD techniques are 
preferred.

2.1.1. Empirical Mode Decomposition (EMD)
EMD is a signal decomposition technique widely used in conjunction 

with deep learning methods to analyze and process nonlinear and non- 
stationary data (Huang et al., 1998). This method was developed as an 
alternative to theoretical decomposition techniques, such as Fourier 
decomposition, to address the challenge of selecting an appropriate 
decomposition method for non-stationary signals with time-varying 
mechanisms (Taheri et al., 2021). When applied to complex real-world 
signals, EMD decomposes the original signal into multiple simple com
ponents known as Intrinsic Mode Functions (IMFs) and one residue 
component. Two conditions are taken into account when decomposing 
the signal into IMF components: (i) in each IMF component, the number 
of local extrema (maximum and minimum values) and the number of 
zero crossing points should be either equal or differ by at most one, (ii) 
the signal should be symmetric with respect to the local zero mean. The 
process of the decomposition includes 5 steps which can be explained as 
follows: 

Step 1: The local maximum and minimum points of the original signal 
(X(t)) are determined.

Fig. 1. A framework for forecasting the day-ahead locational marginal price.
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Step 2: The local minimum (emin(t)) and maximum (emax(t)) points 
required to form the envelope are determined and interpolated be
tween these points.
Step 3: The average envelope is calculated using Eq. (1). The formula 
for this step is as follows:

M(t)= [emin(t) + emax(t)] /2 (1) 

Step 4: To test whether the new signal is IMF, the mean value is 
subtracted from the original signal using Eq. (2)

S(t)=X(t) − M(t) (2) 

Step 5: Finally, if the resulting signal satisfies the IMF criteria (zero 
crossing point and symmetry), it is considered an IMF and set 
IMF1(t) = S(t). If not, S(t) is used as the new input signal and we 
return to the first step. Finally, the mathematical formulation of EMD 
would be as follows:

X(t)=
∑

n∈N
IMFn(t) + rn(t) (3) 

where, X(t) is the original signal data. IMFn(t) and rn(t) denote nth 

intrinsic mode function (IMF) and the residues, respectively. The re
sidual component is defined as the remaining signal after subtracting the 
IMFs. Since IMF_1 represents the highest frequency component of the 
original signal, it contains the most random noise and rapidly varying 
elements. Therefore, IMF_1 is regarded as the noisiest component.

2.1.2. Variational Mode Decomposition (VMD)
VMD is an adaptive, non-recursive signal processing method 

(Dragomiretskiy and Zosso, 2013) that decomposes a real-valued signal 
into a finite number of sub-signals. Each component is nearly compact 
around its corresponding center frequency. This decomposition tech
nique effectively addresses the limitations of EMD, such as mode mixing 
and endpoint effects. The signals decomposed using VMD exhibit high 
accuracy and strong noise robustness. If one seeks to decompose a 
real-valued signal X(t) into K VMFs each component xk must be 
concentrated around its corresponding center frequency wk. The 
different steps of this decomposition technique are mentioned as 
follows: 

Step 1: To obtain a single-sided frequency spectrum, the correlation 
analysis signal for each mode (uk) is calculated using the Hilbert 
transform.
Step 2: The frequency spectra obtained for each mode are positioned 
to the baseband using an exponential function adjusted by the esti
mated center frequency.
Step 3: In this step, the method transforms the decomposition prob
lem into an optimization problem to determine the modes using Eq. 
(4):

minwk ,uk

∑

k

⃦
⃦
⃦
⃦φt

[(

μ(t) + j
πt

)

∗ uk(t)
]

e− jwkt
⃦
⃦
⃦
⃦

2

2

s.t.
∑

k
uk = X(t)

(4) 

where X(t) is the original time series signal. μ represents the Dirac dis
tribution and * represents the convolution operation. uk and wk denote 
the modes and the center pulsations, respectively. uk(t) shows the mode 
functions.

2.2. Introduction of deep learning networks

Deep learning methods are mainly used in nonlinear and time- 
varying time series activities. The basic method of this field is Recur
rent Neural Networks (RNNs). RNN differs from Artificial Neural 
Network (ANN) by incorporating a feedback structure, allowing them to 
retain information from previous time steps and effectively process time- 
dependent data. RNNs are the basic method in this field, but gradient 
explosion and gradient disappearance problems make their training 
difficult (Ceni, 2025). In addition, due to these problems, RNNs have 
difficulty using system state information used for a long time. Long 
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have been 
proposed to overcome these limitations. While LSTMs can preserve 
long-term information thanks to the memory cells and gate mechanisms 
in their structures, GRUs show similar performance with a simpler 
structure. The schematic representation of the structures of the methods 
is given in Fig. 2.

2.2.1. Long Short-Term Memory (LSTM)
LSTM is a special type of RNN designed to cope with the problems of 

RNNs even with long delays (Hochreiter and Schmidhuber, 1997). In 
this method, the long-term memory of RNNs is encoded in weights that 
change slowly during the training of the model, so the method is called 
LSTM. While RNNs in the LSTM structure maintain long-term memory, 
temporary activations exchanged between nodes provide short-term 
memory as shown in Fig. 2 (Waqas and Humphries, 2024). LSTMs 
consist of three gate mechanisms: Forget Gate, Input Gate, Output Gate. 
To enhance clarity, let the network input be xt ∈ Rnxm and the hidden 
units be h. Define n as the number of samples and m as the number of 
features. Let ht− 1 represents the hidden state from the previous time 
step. The input gate is given by It ∈ Rnxh, the forget gate by Ft ∈ Rnxh, and 
the output gate by Ot ∈ Rnxh. The forget gate determines how much of 
the previous cell state will affect the current cell state. Input and output 
gates are the gates through which the cell is entered and exited. The 
equations for the gates are as follows (see Eq.s (5), (6) and (9)): 

Ft = sigmoid
(
xtWf + ht− 1Uf + bf

)
(5) 

The sigmoid layer of the input gate determines which information 
needs to update as follows. 

It = sigmoid(xtWi + ht− 1Ui + bi) (6) 

The tanh layer of the input layer creates a new candidate vector (Cʹ
t). 

The current cell state is updated as follows: 

Cʹ
t = tanh(xtWc + ht− 1Uc + bc) (7) 

Ct = itCʹ
t + ft Ct− 1 (8) 

In the last step, the output gate value of LSTM is calculated as 
follows: 

Ot = sigmoid(xtWo + ht− 1Uo + bo) (9) 

Wi, Wo, Wf , Wc and Ui, Uo, Uf , Uc are weights of the neural network. 
bi, bo, bf , bc are biases. LSTMs differ from RNNs with the gates they use in 
hidden states. These gates solve the problems in RNNs by deciding when 
to update the hidden state. The hidden state update is as follows: 

ht =Ottanh(Ct) (10) 

2.2.2. Gated Recurrent Unit (GRU)
Gated Recurrent Unit (GRU) introduced in (Cho et al., 2014) makes 

predictions by combining the information from previous time steps with 
the current time information. The GRU structure is shown in Fig. 2. The 
GRU architecture is similar to the LSTM architecture. These networks 
consist of gates and the information flow is controlled using these gates. 
The gate architecture allows the model to recognize temporal 
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relationships and manage long-term memory (Greff et al., 2016). In 
GRU, the gate architecture of LSTM is made simpler and more efficient. 
While LSTM uses three main gates, namely input, forget and output 
gates, GRU combines the input and forget gates to form the update gate 
and associates the output gate directly with the hidden state. Reset gate 
controls how much of the previous memory information is forgotten. 
The update gate (zt) and reset gate (rt) are obtained as follows: 

zt = sigmoid(Wz ∗ (xt , ht− 1)) (11) 

rt = sigmoid(Wr ∗ (xt , ht− 1)) (12) 

where t is the time index. xt is the input signal at time t. ht− 1 is the prior 
hidden state. Wz and Wr are weight matrix of the update and reset gates, 
respectively. While calculating the candidate’s hidden layer as shown in 
Eq. (13), past time information is preserved. The past time information is 
controlled by adjusting the r(t) value. 

hʹ
t = tanh(W ∗ (rt ∗ ht− 1, xt)) (13) 

where W is the weight matrix. In the last step, the final hidden state is 
calculated by combining the previous hidden state (∗ht− 1) with the new 
candidate hidden state (h́t) as follows: 

ht =(1 − zt)∗ht− 1 + zt ∗ hʹ
t (14) 

2.3. Multi-step feature forecasting approach

The simulation phase includes three distinct scenarios, designed to 
account for the structural differences in the model used during the input 
feature estimation phase. The series of independent variables is first 
decomposed into different frequency components using EMD, aiming to 
extract meaningful features from the time series. The initial decompo
sition identifies the most rapidly changing fluctuations and noise, with 
the first component typically containing random fluctuations, high- 
frequency noise, and short-term variations. To further refine the fre
quency components, the IMF-worst (high-frequency signal) undergoes 
VMD decomposition. This step enhances the model’s ability to capture 
finer frequency details hidden within the IMF-worst. Finally, deep 
learning methods are applied to the resulting IMFs, and the predicted 

value is obtained by aggregating the outputs from each decomposition 
step. The parameters of the applied deep learning methods are opti
mized using the Bayesian tuning method. The output of this stage is used 
as input for the subsequent electricity price prediction model in the 
specific bidding zone. The details of three different scenarios, in which 
the methods used at this stage are analyzed based on their structural 
differences, are presented below.

2.3.1. Scenario 1: EMD + LSTM
In the first scenario, a single-step decomposition is performed, where 

EMD is applied to extract IMFs with different frequency components. 
Each IMF is then individually predicted using LSTM networks, and the 
results are combined to generate the final forecast as shown in Fig. 3. 
This approach enhances the capture of diverse frequency components in 
the time series and improves forecasting accuracy by leveraging deep 
learning models. In this scenario, separate forecasting models are 
employed for each component (sub-series) extracted through EMD. Each 
component is individually forecasted and later aggregated to generate 
the final prediction. After that, LSTM is applied to each component, 
which has been separated into different frequency ranges using the 
decomposition method, and the individual forecasts are aggregated to 
obtain the final prediction.

2.3.2. Scenario 2: EMD + VMD + LSTM
In this variant, a dual-stage decomposition is applied. In the first 

stage, N intrinsic mode functions (IMFs) are extracted based on the 
signal’s frequency structure. After applying decomposition using EMD, 
the highest frequency IMF (IMF_1) primarily contains noise and short- 
term variations. In the second stage, the most complex and variable 
IMF (IMF_1) extracted by EMD is further decomposed using VMD, 
resulting in K new variational mode functions (VMFs) as shown in Fig. 4. 
By leveraging the smoothing filter capability of VMD, noise is effectively 
isolated and removed, enhancing the clarity and predictability of the 
decomposed components (Chen et al., 2017). All extracted IMFs and 
VMFs are individually predicted using the LSTM model to capture their 
temporal patterns and generate accurate forecasts.

Fig. 2. Schematic representation of Artificial Neural Network (ANN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and GRU architectures.
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2.3.3. Scenario 3: EMD + VMD + LSTM + GRU
In this model, different prediction models are applied for high fre

quency components. The low-frequency components obtained from 
EMD decomposition are used for longer-term predictions and usually 
have less uncertainty. The highest frequency IMF (IMF_1), which con
tains noise and short-term variations, is further decomposed using VMD 
in this step. Subsequently, GRU is employed to predict each VMF signal 
as shown in Fig. 5. By analyzing dependencies and variable interactions 
over time, GRU demonstrates strong forecasting performance. Notably, 
GRU has been observed to outperform the LSTM method when dealing 
with noisy data (Qi et al., 2023).

2.4. Day-ahead electricity price prediction model

The estimated values from the previous stage are used as inputs to 
the price forecasting model in this stage. The model is trained on these 
inputs to learn the underlying relationships. As a result, it generates 
forecasts for all 24 h of the next day, producing a complete set of hourly 
electricity price estimates.

As mentioned earlier, in this stage, the model’s aim is to make the 
day-ahead (H = 24) electricity price forecast for day D, i.e. YD =

(
YD,1,

YD,2,⋯,YD,H
)
. The following 62 input variables are used in the estima

tion models: 

• Past day-ahead prices for a previous day, i.e. YD− 1 =
(
Y(D− 1),1,

Y(D− 1),2,⋯,Y(D− 1),H
)
,

• Total load forecasts for the current day, XL
D =

(
XL

D,1,XL
D,2,⋯,XL

D,H

)
,

• Electricity generation (at D and H = 1) from 
o Thermal energy sources, XTE

D,H,
o Hydropower sources, XHP

D,H,
o Solar sources, XS

D,H,
o Onshore wind power sources, XONW

D,H ,
o Offshore wind power sources, XOFW

D,H ,
o Other renewable sources, XRS

D,H,
• Amount of the electricity exchange amounts (at D and H = 1), XEX

D,H,
• Dummy variables representing the day of the week, XDoW

D for D = 1,2,
⋯,7, here each variable specifies a specific day with a binary value.

Among the aforementioned inputs, past day-ahead prices (YD− 1) and 
total load variables (XL

D) have a dimension of (H = 24), while the 
remaining variables (XTE

D,H, XHP
D,H, XS

D,H, XONW
D,H , XOFW

D,H , XRS
D,H, XEX

D,H) are repre
sented as single values. In addition, seven binary dummy variables 
representing the day of the week (XDoW

D ).
The first hourly power generation forecasts for the following day can 

be predicted one day in advance by system operators or models. To 
ensure the model remains realistic in terms of data availability, these 

Fig. 3. EMD-based decomposition and LSTM forecasting framework.

Fig. 4. Hybrid EMD-VMD decomposition and LSTM forecasting framework.

Fig. 5. Hybrid EMD-VMD decomposition with LSTM-GRU forecasting framework.
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initial forecasts are preferred. In addition, using only a single time point 
instead of taking all 24-h energy production series as input reduces the 
input size of the model and provides faster learning. In addition, since 
spot prices are directly related to production capacity and supply- 
demand balance, especially in the first hours of the day, the input data 
of the model is organized in this way in this study. Then, a deep learning 
model with an LSTM-GRU hybrid architecture is developed to predict 
day-ahead electricity prices over a 24-h horizon. The model adopts a 
decentralized architecture in which each feature is processed individu
ally through separate LSTM and GRU layers. The outputs of these layers, 
representing the learned patterns for each feature, are then concate
nated to form a unified feature representation. This structure allows the 
model to capture feature-specific temporal dynamics more effectively. 
Finally, the combined vector is passed through a two-layer dense 
network to generate the 24-h price forecasts.

2.5. Introduction of hyperparameter optimization model in the developed 
model

In the data processing methods used, selecting the hyperparameters 
of the model is the principal disadvantage. Comprehensive search 
methods such as Grid Search (GS) and Random Search (RS) have been 
used determining the optimal hyperparameters. However, these 
methods have disadvantages such as computational cost, stochastic 
structures and long running times (Hanifi et al., 2024). In these methods, 
hyperparameter settings are considered independently of each other. 
Instead, using the information from previous parameter trials in the 
improvement of the next search space can provide improvements in 
terms of time and cost. For this reason, probabilistic methods are sug
gested for hyperparameter optimization. A goal of optimization is to find 
a point that minimizes a problem’s objective function. In this field, 
Bayesian Optimization Algorithm (BOA) enables the search process to be 
completed efficiently using the defined information. At each step, it 
makes new estimates using the information it has previously obtained 
(Eleftheriadis et al., 2024).

The Bayesian Optimization method is based on the Bayesian Gauss 
Theorem and uses an acquisition function when evaluating the next 
hyperparameter value. The Bayesian optimization problem is expressed 
as follows: 

x∗ = arg minxϵRf(x) (15) 

Where x∗ represents the optimized hyperparameter combination. R and 
f(x) denote set of hyperparameter and objective function, respectively. 
In this work, the objective function is defined as the error of the results 
obtained from the prediction model with respect to the actual values.

In this study, the Bayesian Optimization method was used to search 
the parameter values of the estimation methods. Possible parameter 
values were selected from predefined value ranges. The Gaussian Pro
cess model evaluates each parameter combination, makes the best es
timate based on the results of the tested parameters and determines 
which parameter combination should be tested in the next step. In this 
process, it is aimed to optimize the parameters that will give the best 
result among certain values. As a result, the performance of the model is 
improved by finding the most appropriate combinations on the discrete 

parameter space. The search values of the prediction models used in the 
study are given in Table 1.

2.6. Performance metrics

To evaluate the forecasting performance of the methods, four error 
criteria are used as given in Table 2.

In addition, in this work, the significance testing has been done using 
the Diebold-Mariano (DM) test which is a popular paired comparison 
method (Diebold and Mariano, 1995) to compare the forecasting per
formance of two time series models and determine which model’s 
forecasts are superior. One of the advantages of this test is that it can be 
used with different loss functions. This feature allows for a more 
comprehensive comparison between forecasting models.

The DM test was designed to compare two time series forecasts based 
on a user-defined loss metric. The difference in loss, dt, between the two 
forecasts is calculated as: 

dt = L
(
errorg,t

)
− L

(
errorh,t

)
(16) 

Errors calculated at time t for model g and model h are represented as 
errorg,t and errorh,t and loss function is given as L(.). The average loss is 
calculated as: 

d=
1
T
∑

t∈T
dt (17) 

And the DM test statistic is calculated as follows: 

DM statistic=
d

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(d)

√ (18) 

where, Var(d) is the variance of the mean loss differential. A typical 
normal distribution is asymptotically followed by the DM statistic, 
meaning that when the sample size is large enough, the DM test statistic 
approaches the standard normal distribution. This property increases 
the reliability of the test and makes it easier to determine whether the 
performances of different prediction models are statistically significant. 
In this study, three different significance thresholds (α = 0.01, 0.05, 0.1) 
were used to determine the significance level of the DM test. This in
dicates that hypothesis testing was conducted at different confidence 
levels, corresponding to 90 %, 95 %, and 99 % confidence intervals, 
respectively.

2.7. Case study

To meet its ambitious 2030 and 2050 carbon-neutral society goals, 
Denmark heavily relies on clean energy sources for electricity 

Table 1 
Optimized hyper-parameters and value ranges in deep learning 
algorithms.

Hyper-parameters Value range

Number of LSTM units (32, 128), step = 16
Number of GRU units (32, 128), step = 16
Number of dense units (64, 256), step = 32
Dropout rate (0.1, 0.5), step = 0.05
Learning rate Log-scale [0.0001–0.03]
Batch size {16, 32, 64}

Table 2 
Error criteria and their equations.

Index Abbreviator Equation

Root Mean Square Error RMSE RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑

n∈N

(
xactual − xpredicted

)2
√

Mean Absolute Error MAE MAE =
1
N
∑

n∈N

⃒
⃒xactual − xpredicted

⃒
⃒

Symmetric Mean Absolute 
Percentage Error

sMAPE sMAPE =

1
N
∑

n∈N

⃒
⃒
⃒
⃒
⃒
⃒
⃒

xactual − xpredicted
(
|xactual| +

⃒
⃒xpredicted

⃒
⃒
) /2

⃒
⃒
⃒
⃒
⃒
⃒
⃒

Relative Root Mean Square 
Error

rRMSE rRMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑

n∈N
(
xactual − xpredicted

)2

∑
n∈N(xactual)

2

√
√
√
√
√

Note that, xactual and xpredicted represent the real and predicted output values, 
respectively. N is the number of data points and n is the data index.
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production, primarily wind turbines (WTs). In addition, the Danish 
electricity market is part of the European electricity market and operates 
within Nord Pool. The Danish power grid is divided into two main 
bidding zones: the Western grid (DK1 - Jutland and Funen region) and 
the Eastern grid (DK2 - Zealand region), which are interconnected via 
the Great Belt power connection.

In this study, an analysis of the DK1 bidding zone is conducted ac
cording to the available data for the period September 1, 2023–February 
1, 2024. A proposed forecasting framework is applied to predict vola
tility and fluctuations in electricity prices by leveraging key market 
characteristics. The dataset used in this study includes historical elec
tricity prices, total load, and electricity generation data from various 
renewable sources such as hydropower, solar, wind, and others for DK1. 
Furthermore, it incorporates electricity generation from thermal sources 
and electricity trade volumes with neighboring countries. The relevant 
data is available and can be sourced from (Energidataservice web page). 
The detailed information about the data set is given in Table 3.

2.7.1. Correlation analysis
As specified in Table 3, 14 features in the dataset are intended to be 

used as input features in electricity price forecasting. Therefore, Mutual 
Information and Spearman Correlation Analysis are utilized to examine 
the relationship between electricity price and these features. These 
methods can detect non-linear relationships, making them ideal for 
studying the connections between the target variable and input vari
ables in detail. In this way, the accuracy of the selection of input vari
ables used in our dataset is ensured. When the results obtained with 
different methods are analyzed, it is observed that the dependency 
values vary as seen in Figs. 6 and 7. This is because each method eval
uates the relationships in the data set from different aspects and has 
different sensitivities.

2.7.2. Statistical analysis
The dataset has minimal missing values, making it consistent and 

well-maintained. Missing data were filled by averaging the previous and 
next feature values. Statistical Summary of energy market variables is 
presented in Table 4. Having such a wide range of electricity prices in
dicates the volatility of the market and underscore the importance of the 
accurate price prediction.

Having filled in the missing data, the next step is to decide on the 
input features to be used in the developed model. Considering the cor
relation values given in Figs. 6 and 7, the inputs to be used in the model 
are arranged. The variables for average electricity generation from 
power plants where biomass and fossil resources are the primary fuel 
sources are grouped together. Average electricity generation from power 
plants where other fuels and waste are the primary fuel source is com
bined and used as a single variable in the model. Amount of exchange 
with Norway and Sweden, Europe and DK2 region are also combined. 
While collecting the features, mean values were calculated to ensure 
consistency in the dataset. The Spearman results shown in Fig. 6, which 
capture ordered relationships, validate the accuracy of the combina
tions, particularly for renewable energy sources and electricity trade 
variables. Additionally, the Mutual Information results given in Fig. 7
confirm the strong linkage among thermal energy components as well as 
the other two combinations. In order to reduce the risk of overfitting and 
to ensure that the model focuses on fewer inputs, variables are grouped 
among themselves according to the results of correlation methods. 
Biomass, Fossil Gas, Fossil Hard Coal and Fossil Oil variables are 
grouped as Thermal Energy Sources, Other Renewable and Waste vari
ables are grouped as Other Renewable Sources and Exchange Continent, 
Exchange Great Belt and Exchange Nordic Countries variables are 
grouped as Electricity Exchange. As a result, final 8 features are obtained 
to be used in the model.

A wide range of values can be found for the minimum and maximum 
values of different variables. Hence, when modeling, it is important to 
take into account these scale differences. The normalization process 
brings variables of different scales to the same level, which ensures that 
all inputs are equally focused. It also significantly reduces training time 
and improves convergence (Sola and Sevilla, 1997).

2.7.3. Data preprocessing
After data selection in the preprocessing phase, the next steps are the 

processing of null values and normalization. By completing these steps, 
the data to be used in the prediction phase is made suitable for the al
gorithm. In this study, the dataset contained a small amount of missing 
data. This missing data was filled by averaging the previous and next 
values.

Then, data normalization was performed to remove differences in 
scale in the dataset. This method is a widely used preprocessing step in 
machine learning and deep learning models. The specified data is scaled 
to the range [0, 1]. 

xʹ=
x − min(x)

max(x) − min(x)
(19) 

In the final stage, to facilitate comparison with the original dataset, 
the prediction results are inversely normalized as follows: 

x = xʹ(max(x) − min(x)) + min(x) (20) 

Where x and x’ is input and output, respectively. min(x) denotes the 
lowest value for variable x, and max(x) refers the highest value for 
variable x.

3. Simulation and results

As mentioned earlier in the definition of the use case, the developed 
forecasting model is applied to the DK1 bidding zone. The dataset was 
split into approximately 80 % for training and 20 % for testing. A total of 
2,928 data points from September 1, 2023, to December 31, 2023 is used 
as training set and of the remaining 744 data points from January 1, 
2024, to January 31, 2024 is used as test set. The study consists of two 
stages. In the first stage, the input variables that influence the price of 
electricity are forecasted. After that, forecasting of prices for the day 
ahead is carried out. The pseudocode for the proposed framework is 
given in Appendix A. In addition, pseudocode for the multi-step feature 

Table 3 
Description of the input and target features.

Input variables Description

Total Load Total consumption including transmission loss (MWh)
Biomass The average power generation from power plants where 

biomass is the primary fuel source (MWh)
Fossil gas The average power generation from power plants where 

fossil gas is the primary fuel source (MWh)
Fossil hard coal The average power generation from power plants where 

fossil hard coal is the primary fuel source (MWh)
Fossil oil The average power generation from power plants where 

fossil oil is the primary fuel source (MWh)
Hydropower The average power generation from hydroelectric power 

plants (MWh)
Other renewable The average power generation from power plants where 

other fuels is the primary fuel source (MWh)
Waste The average power generation from power plants where 

waste is the primary fuel source (MWh)
Solar power Electricity generation from solar power plants (MWh)
Onshore wind power Average electricity generation from onshore wind power 

(MWh)
Offshore wind power Electricity generation from offshore wind power (MWh)
Exchange continent It is the amount of exchange with Europe. Positive values 

indicate imports, negative values indicate exports (MWh)
Exchange Great Belt This is the amount of trade through the Great Belt 

connection with DK2 region (MWh)
Exchange Nordic 

countries
It is the amount of exchange with Norway and Sweden 
(MWh)

SpotPrice in DK1 It refers to day-ahead spot prices for DK1 zone (MWh)
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forecasting and pseudocode for the decentralized LSTM-GRU based day- 
ahead price forecasting framework is given in Appendix B and Appendix 
C, respectively.

This section consists of three subsections prepared to evaluate the 
effectiveness of the proposed model. In each subsection, the 

performance of the developed model is analyzed in comparison with 
existing approaches, and a comprehensive evaluation is presented on the 
basis of prediction accuracy and error metrics.

Fig. 6. Spearman correlation between the variables employed in the prediction models.

Fig. 7. Mutual Information correlation between the variables employed in the prediction models.
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3.1. Signal decomposition

Long-term trends and large-scale fluctuations in time series are 
captured within low-frequency components, while high-frequency 
components represent rapidly changing signals. Low-frequency com
ponents generally exhibit lower uncertainty, making them easier to 
forecast. In contrast, high-frequency components contain short-term 
fluctuations and noise, making direct estimation more challenging due 
to their chaotic nature as shown in Fig. 8. To improve predictability, an 
additional decomposition step is applied to further refine the high- 
frequency components as demonstrated in Fig. 9. In this step, three 
different scenarios are employed for forward-time forecasting of the 
features used in the prediction phase. Initially, time series are analyzed 
by decomposing them into low- and high-frequency components using 
EMD and the hybrid EMD-VMD approach. The original signals and the 
frequency components extracted through EMD decomposition are pre
sented in Fig. 8.

Since the amount of electricity generated from solar power is directly 
influenced by the hourly variation in sunlight distinct daily periodic 
patterns are observed in this time series. In Scenarios 2 and 3, the re- 
decomposition of high-frequency components (IMF 1) disrupts these 
periodic patterns, adversely impacting the model’s learning process. 
When IMF 1 is re-decomposed using VMD, the inherent periodic struc
ture is altered, leading to increased instability in the forecast results. 
Consequently, further decomposition of components with short-term 
variability makes the forecasting model overly sensitive, resulting in 
higher error rates. Therefore, in the subsequent parts of the study, the 
results obtained from the Scenario 1 framework were utilized for the 
time series forecasting of electricity generation from solar power.

The EMD method applied in the first stage enables the time series to 
be decomposed into components based on their different frequency 
characteristics. Some of these components exhibit high noise levels and 
short-term variability, leading to reduced accuracy in the forecasting 
process. To address this issue, the high-frequency component is further 
decomposed using VMD. The graphs below (Fig. 9) provides a detailed 
illustration of the newly obtained components (excluding Solar Power 
Generation) after the VMD process.

The discrete and deterministic structure of the solar power series at 
different times of the day is shown in Fig. 10. Re-decomposition of high- 
frequency components can disrupt this regular structure in series with a 
distinctly periodic structure.

The decomposition structure in Scenario 3 disrupts the phase/energy 
consistency of the signal by breaking down predictable components. 
Therefore, the results from Scenario 1 were preferred for generation 
from solar power. Since this distinct periodic structure was not observed 
when examining the signals of the other features, Scenario 3 was suc
cessfully implemented.

At this stage of the study, different scenarios were proposed to 

demonstrate the success of the two-stage decomposition and the impact 
of using different deep learning methods based on signal structures. 
Therefore, it was decided to continue with Scenario 3 for the other 
features. In this study, the results obtained for each variable were 
examined to determine which scenario to preferred. Future work plans 
to develop an adaptive scenario selection mechanism that can auto
matically determine the most appropriate combination of decomposi
tion and modeling based on the characteristics of each dataset.

3.2. Forecasting results and analysis

In this study, a decentralized architecture is implemented across 
three different scenarios. The intrinsic mode functions obtained from the 
decomposition phase are fed into separate forecasting models. Pre
dictions are then generated under three distinct scenarios, and the re
sults are evaluated based on various error metrics, as presented in 
Fig. 11. This evaluation includes four metrics: RMSE, sMAPE, MAE, and 
RRMSE. Additionally, to demonstrate the effectiveness of the decen
tralized architecture, the results from the centralized structure are also 
included for comparison.

As shown in Fig. 11, the decentralized architecture yields signifi
cantly better results. Comparing RMSE values reveals that scenario 2 
achieves approximately a 50 % improvement in forecasting generation 
from other renewable sources compared to scenario 1. Moreover, pre
dictions for load consumption, thermal energy generation, hydropower, 
and onshore wind improve by about 20 % on average. Moving from 
scenario 2 to scenario 3, further gains are observed: prediction accuracy 
improves by around 10 % for onshore wind, offshore wind, thermal 
energy, and other renewable sources, with smaller improvements in the 
remaining variables. Overall, scenario 2 outperforms Scenario 1, while 
Scenario 3 delivers the highest predictive accuracy across all criteria.

Among the three different scenarios, Scenario 3 demonstrates supe
rior performance, achieving the lowest error rates across multiple error 
metrics. Its success can be attributed to the hybrid decomposition and 
forecasting approach, which enables a more effective analysis of various 
frequency components within the time series. By accurately capturing 
long-term trends in low-frequency components and enhancing the pre
diction of short-term fluctuations in high-frequency components, this 
framework significantly improves overall forecasting accuracy. As a 
result, a comprehensive analysis of the forecast results obtained using 
scenario 3 for seven different variables and scenario 1 for solar power 
generation is presented in Fig. 12.

As seen, the model’s predictions are compared with actual values for 
each variable, and performance is evaluated using various error metrics 
to assess the accuracy and reliability of the forecasts. Furthermore, the 
performance differences between the centralized and decentralized ar
chitectures are highlighted by comparing the forecast results with those 
of the centralized model. By processing the various components of the 

Table 4 
Descriptive statistics of the input and target features between September 1st, 2023 and January 31st, 2024.

count mean median std min max

Total Load 3672 2646,65 2659,12 439,63 1477,89 3767,45
Biomass 3672 201,98 240,51 108,66 1,62 415,53
Fossil Gas 3672 174,11 129,34 118,36 37,55 482,02
Fossil Hard Coal 3672 321,57 211,57 282,4 34,86 1352,36
Fossil Oil 3672 22,49 15,37 12,72 5,38 70,61
Hydropower 3672 2,29 2,52 0,77 0,75 3,86
Other Renewable 3672 1,68 1,37 0,77 0,48 4,6
Solar Power 3672 126 0 290,17 0 1768,39
Waste 3672 44,35 46,2 16,17 8,09 111,73
Onshore Wind Power 3672 1258,94 1012,18 1007,83 3,44 3633,53
Offshore Wind Power 3672 689,43 718,89 410,08 0,83 1351,94
Exchange Continent 3671 − 85,84 − 360,06 1299,39 − 3235,82 3299,8
Exchange Great Belt 3671 6,56 0 382,18 − 590,85 600,32
Exchange Nordic Countries 3671 215,28 326,28 1491,44 − 2377,36 2378,22
Spot Price (EUR) in DK1 3672 75,27 78,26 47,07 − 8,54 524,27
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time series independently, the decentralized architecture achieves lower 
error rates and greater reliability.

3.3. Prediction of day-ahead electricity price in DK1

Electricity price time series forecasting plays a crucial role in the 
energy market. However, complex characteristics such as high 

frequency, nonlinearity, and volatility make this forecasting chal
lenging. Therefore, this complex structure needs to be better modeled 
with advanced time series forecasting methods.

In this study, electricity prices were forecasted one day in advance 
using multiple prediction scenarios and relevant input factors as dis
cussed previously. Machine learning and deep learning-based models 
provide powerful tools for capturing the non-linear nature of electricity 

Fig. 8. Extraction of features based with EMD method (a)Load Consumption, (b)Generation from Thermal Energy Sources, (c)Generation from Hydropower, (d) 
Generation from Other Renewable Sources, (e)Generation from Solar Power, (f)Generation from Onshore Wind Power, (g)Generation from Offshore Wind Power, (h) 
Amount of Electricity Exchange.
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prices and accurately forecasting price fluctuations. At this stage of the 
study, day-ahead electricity price forecasting leverages feature values 
obtained from various scenarios to achieve the most precise price pre
dictions possible. Fig. 13 compares the day-ahead electricity price 
forecasts obtained using different forecasting methods with feature 
values derived from multi-step forecasting. The black line represents the 
actual electricity prices, while the predictions from different models are 
shown with various colored lines. In general, all models follow the 
overall trend of real electricity prices, but their forecasting accuracy 
varies. A closer examination of the January 15–16 period reveals that 

some models align more closely with actual values than others, partic
ularly in capturing peaks and troughs, which highlights their ability to 
represent fine-grained price fluctuations.

Table 5 presents the error metrics for different forecasting models, 
providing a numerical comparison of their performance. The results 
clearly indicate that decentralized models outperform centralized ones. 
Among them, the decentralizedLSTMGRU model achieves the lowest 
RMSE (22.55), SMAPE (28.70), MAE (18.11), and RRMSE (30.19), 
confirming that it delivers the most accurate forecasts. This suggests that 
decentralization plays a key role in improving predictive performance. 

Fig. 8. (continued).
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When comparing centralized and decentralized deep learning models, it 
is evident that decentralized approaches consistently yield superior re
sults. While traditional machine learning models perform reasonably 
well, they are outperformed by deep learning models. Despite their 
robustness, centralized deep learning models struggle to fully capture 
the complexities of price fluctuations, leading to higher error rates. In 
conclusion, decentralized models, particularly LSTMGRU, effectively 
minimize forecasting errors and enhance predictive efficiency, making 

them highly suitable for real-world electricity price forecasting. Their 
improved accuracy and ability to handle intricate market dynamics 
suggest strong potential for future applications in energy market anal
ysis and decision-making.

Residual graphs which illustrate the residual (error) values between 
the actual and predicted values of various prediction models are shown 
in Fig. 14.

Each method is illustrated with a separate residual graph for clear 

Fig. 9. Decomposition results of IMF-worst signal with VMD method (a)Load consumption, (b)Generation from thermal energy sources, (c)Generation from Hy
dropower, (d)Generation from other renewable sources, (e)Generation from onshore wind power, (f)Generation from offshore wind power, (g)Amount of elec
tricity exchange.
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comparison. Although most models show residuals centered around 
zero, some exhibit more extreme errors. The residuals of the machine 
learning model (Fig. 14a–c) are more dispersed, with clusters of errors in 
specific regions. In the LGBMRegressor method results, residuals are 
moderately spread, but positive deviations increase as higher true values 
increase. CatBoost exhibits a similar pattern to LGBMRegressor, but the 
negative deviations are slightly less. In SVR, the majority of residuals are 
between − 75 and + 75. However, while it appears more balanced at 
lower values, the model exhibits more positive deviations at higher 
values. Among them, the SVR model displays the widest error spread, 

indicating higher variance.
When we examine centralized structures, we see that errors are 

distributed over a wider range in CentralizedLSTM (− 150 to +100). In 
CentralizedLSTM2, residuals are slightly more densely distributed and 
closer to the center than in the previous model. CentralizedLSTMGRU 
also has a generally quite scattered structure.

In contrast, the centralized (Fig. 14d–f) and decentralized deep 
learning models (Fig. 14g–i) show narrower error distributions, partic
ularly in the decentralized case, which demonstrates fewer and less se
vere residuals. This suggests that decentralization improves learning 

Fig. 9. (continued).
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efficiency and model robustness. In DecentralizedLSTM, the errors are 
quite tightly distributed, between ±80 ◦C. A tighter distribution is 
visually observed. The DecentralizedLSTM2 results appear consistent 
with the model’s overall predictive performance. The residual graph for 
DecentralizedLSTMGRU shows that this model has one of the most 

evenly distributed graphs among all other models. Errors generally fall 
between − 60 and + 60, with the residuals being more concentrated 
around the center.

These results demonstrate that the model offers the most stable and 
predictable performance in terms of overall accuracy. Overall, the 

Fig. 10. Time series of solar power generation over time.

Fig. 11. Comparison of different decomposition scenarios across multiple error metrics (a)Load consumption, (b)Generation from thermal energy sources, (c) 
Generation from hydropower, (d)Generation from onshore wind power, (e)Generation from offshore wind power, (f)Generation from other renewable sources, (g) 
Amount of electricity exchange.
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proposed model delivers the highest prediction accuracy, with the 
lowest error levels, outstripping all other approaches. Finally, the DM 
test was conducted to evaluate the prediction performance of the pro
posed model compared to other approaches. Three different loss func
tions (MSE and MAE) were used for evaluation as shown in Table 6.

In this test, the p-value represents the statistical significance of the 

results, where a lower p-value indicates stronger statistical significance. 
To enhance the clarity of the table, asterisks are used to denote different 
significance levels. The key observation from the table is that the DM 
statistics are significantly positive, indicating that the proposed model 
outperforms the other approaches. The results show that the difference 
in forecast accuracy between the compared models is statistically 

Fig. 12. Forecast and regression analysis of variables in Scenario 3. (a)Load consumption, (b) Generation from thermal energy sources, (c) Generation from hy
dropower, (d)Generation from other renewable sources, (e)Generation from solar power, (f)Generation from onshore wind power, (g)Generation from offshore wind 
power, (h)Amount of electricity exchange.
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significant at the 1 % level, meaning that the null hypothesis of equal 
forecast performance is rejected with 99 % confidence. The results 
illustrated that this model achieves significantly better accuracy in daily 
price prediction for energy markets. Table 6 further highlights the ad
vantages of decentralized resources by comparing them with centralized 
methods. As depicted, the decentralized structure effectively enhances 
prediction accuracy.

To conduct a sensitivity analysis to show how different input features 
impact forecasting accuracy, we performed feature ablation experiments 
by systematically removing each input and observing the corresponding 
changes in prediction performance. The basic logic in this method is to 
eliminate each feature or feature group and try different combinations of 
input features (Yang et al., 2025). Then, prediction performance results 
are examined to understand the impact of input features on prediction. 
The results of the sensitivity analysis showing the impact of removing 
each input feature on forecasting accuracy are presented in Table 7.

The results indicate that the removal of historical price information 
leads to the most significant performance degradation, highlighting it as 
the most critical variable for day-ahead electricity price forecasting. A 
moderate increase in forecasting error is observed when load con
sumption and day of the week features are excluded, suggesting their 
substantial but secondary influence. In contrast, the exclusion of fea
tures related to renewable energy generation results in comparatively 
smaller changes in model performance, indicating a relatively lower 
impact on price prediction.

4. Conclusion

In this study, a two-stage hybrid model was proposed for day-ahead 
electricity price forecasting with decomposition techniques. In the first 
stage, forward prediction of the features of electricity price data was 
made. In the second stage, the day-ahead price was forecasted using 
both the estimated features and historical price data. To handle the 
complex, multi-frequency structure of electricity price signals, the first 
stage employed EMD to decompose the signal into sub-series. The most 
complex high-frequency component is further decomposed using VMD. 
GRU networks were utilized for VMD decomposed signals (VMFs), while 
LSTM networks were employed for the prediction phase of EMD 
decomposed signals (IMFs). The t+1 predicted feature values and his
torical prices obtained from this step were then used in the second stage. 
In the second stage, a decentralized structure was adopted, and day- 
ahead forecasting was performed using a hybrid LSTM-GRU architec
ture. The model was designed to effectively capture the complex and 
high-frequency patterns commonly observed in electricity price data, 
and aimed to improve prediction accuracy through hybrid deep learning 
techniques. Bayesian optimization was applied for hyperparameter 
tuning to enhance model performance. Experimental results showed 
that the proposed method achieved significant improvements in fore
casting accuracy. Compared to traditional machine learning models 
such as LGBMRegressor, CatBoost, and SVR, the proposed approach 
reduced RMSE by approximately 27.15 %, and compared to LSTM-based 
models, by approximately 28.24 %, demonstrating superior perfor
mance over benchmark methods.

In this study, some features were grouped for analysis. In future 
research, applying feature selection techniques may further enhance the 
model’s overall accuracy and robustness. In the proposed hybrid 
discriminant-based prediction framework, sequential application of 
EMD and VMD signal decomposition techniques in the first step allows 
the prediction models to learn more detailed patterns, but it increases 
computational time and has a high computational cost. Therefore, the 
need for more processing power and time during the implementation 
phase may limit the usability of the models. Therefore, future work can 
explore strategies to reduce computational time. Furthermore, the 
sensitivity of deep learning models to hyperparameter tuning also has a 
significant impact on performance. While Bayesian optimization was 
used for hyperparameter tuning in this study, future work may explore 
the effectiveness of recently proposed parameter optimization 

Fig. 13. Day-ahead price prediction result curve.

Table 5 
Error metrics for different prediction models.

RMSE SMAPE MAE RRMSE

Machine 
Learning 
Methods

LGBMRegressor 31.38 40.15 25.53 42.01
Catboost 31.97 36.29 24.65 42.81
SVR 29.54 37.41 24.20 39.55

Deep Learning 
Methods

centralizedLSTM 33.93 37.85 25.86 45.43
centralizedLSTM2 30.66 37.69 24.01 41.05
centralizedLSTMGRU 29.68 36.34 23.75 39.74

Improved 
Deep 
Learning 
Methods

decentralizedLSTM 25.22 30.64 20.06 33.77
decentralizedLSTM2 24.04 29.62 19.17 32.19
decentralizedLSTMGRU 22.55 28.70 18.11 30.19
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algorithms to further improve model performance.
The hybrid deep learning framework proposed in this study achieved 

high accuracy in predicting day-ahead electricity prices. Future work 
could integrate the proposed framework into market systems with real- 

time data streams, making it a secure tool for market participants and 
stakeholders to use in decision-making processes. Additionally, this 
study used data from the DK1 region of the Danish energy market. 
Future studies would be valuable in assessing the generalizability of the 

Fig. 14. Uniform residual distribution of forecasting models (a) LGBMRegressor, (b) CatBoost (c) SVR, (d) CentralizedLSTM, (e) CentralizedLSTM2 (f) Central
izedLSTMGRU, (g) DecentralizedLSTM, (h) DecentralizedLSTM2, (i) DecentralizedLSTMGRU.

Table 6 
p-values of the Diebold and Mariano test with different criteria.

MSE MAE

Compared Model Loss_diff DM value p-value Loss_diff DM value p-value

LGBMRegressor 476,229 10,719 0 7,42 10,508 0
CatBoost 513,68 8,598 0 6,536 9,116 0
SVR 364,02 9,846 0 6,087 10,921 0
CentralizedLSTM 642,655 8,336 0 7,75 9,413 0
CentralizedLSTM2 431,523 8,028 4E-15 5,895 8,16 2E-15
CentralizedLSTMGRU 372,396 8,322 0 5,641 8,535 0
DecentralizedLSTM 127,712 7,711 4E-14 1,948 7,292 7,82E-13
DecentralizedLSTM2 69,352 7,121 2,538E-12 1,064 5,838 7,9E-09
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model by applying it to energy markets in different geographic regions.
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İ.Ö.A. acknowledges support from the Scientific and Technological 
Research Council of Türkiye (TÜBİTAK) BIDEB-2219 Postdoctoral 
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Appendix A 

The pseudocode for the proposed framework is given in Algorithm 1. 

Algorithm 1. The pseudocode for the proposed framework

​ Input: Raw dataset: hourly time series data (Load Consumption, Generation Sources etc.)
​ - Hyperparameters for deep learning models
​ Output: Forecasted 24-h ahead LMP values: ŷ_{T+1} = [p̂_1, p̂_2, …, p̂_{24}]
​ ​
1 Step 1: Preprocessing
2 - Handle missing values
3 - Normalize input features using MinMaxScaler
4 - Create lagged features for past day-ahead prices
5 Step 2: Feature Decomposition and Forecasting (Multi-Step Feature Forecasting)
6 For each selected input feature:
7 - Apply EMD to decompose the signal into IMFs: f → [IMF_1, …, IMF_n]
8 - Select the most complex IMF (e.g., IMF_ worst)
9 - Apply VMD to further decompose this IMF into K modes: IMF_ worst → [v_1, …, v_k]
10 - Group the resulting components into High-Frequency (HF) and Low-Frequency (LF) categories
11 - Train LSTM on LF components and GRU on HF components
12 - Forecast each component using the trained models
13 - Combine predictions to form multi-step forecasts for each feature: f̂_{T+1}
14 Step 3: LMP Prediction
15 - Collect all predicted input features ̂f_{T+1} from Step 2
16 - Concatenate as input for the final model
17 - Train hybrid deep model to predict day-ahead LMP
18 - Forecast day-ahead LMP using the trained deep model: ŷ_{T+1} ← Model( X̂_{T+1})
19 - Inverse transform predictions to original scale

Appendix B 

The pseudocode for the Multi-Step Feature Forecasting is given in Algorithm 2. 

Algorithm 2. The pseudocode for the Multi-Step Feature Forecasting

​ Input: Raw dataset: hourly time series data (Load Consumption, Generation Sources etc.)
​ - Hyperparameters for deep learning models
​ Output: Forecasted signal: 24-h ahead values ŷ_{T+1} = [ŷ_1, ŷ_2, …, ŷ_{24}]
​ ​
1 Step 1: Data Preprocessing
2 - Handle missing values and ensure numerical format
3 - Normalize the data using MinMaxScaler

(continued on next page)

Table 7 
Ablation study of input features based on forecasting error metrics.

Feature Removed RMSE MAE ΔRMSE

None (Full model) 22.55 18.11 –

Load Consumption 24.47 19.77 +1.92
Day of the Week 24.52 19.59 +1.97
Generation From Thermal Energy Sources 24.02 19.33 +1.47
Generation From Hydropower 24.18 19.46 +1.63
Generation From Other Renewable Sources 24.21 19.40 +1.66
Generation From Solar Power 23.54 18.95 +0.99
Generation From Onshore Wind Power 23.86 19.36 +1.31
Generation From Offshore Wind Power 23.43 18.95 +0.88
Amount Of Electricity Exchange 23.99 19.35 +1.44
Past Day-Ahead Prices 29.12 23.15 +6.57
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(continued )

4 Step 2: Apply EMD Decomposition
5 - Decompose the time series into multiple IMFs: IMF_1, IMF_2, …, IMF_n
6 - Identify IMF_worst (highest frequency component)
7 Step 3: Apply VMD on IMF_worst
8 - Decompose IMF_worst into into K modes: IMF_ worst → [v_1, …, v_k]
9 Step 4: Deep Learning-Based Component Forecasting
10 For each IMF from EMD:
11 - Scale IMF
12 - Apply LSTM
13 - Train the model and generate forecast
14 - Inverse scale and store predictions
15 For each VMD mode:
16 - Scale mode
17 - Apply GRU
18 - Train the model and generate forecast
19 - Inverse scale and store predictions
20 Step 5: Combine Predictions
21 - Sum predictions across all IMFs and VMD modes
22 - Generate final forecasted signal ŷ_{T+1}
23 Step 6: Evaluation
24 - Compare ŷ_{T+1} with actual values

Appendix C 

The pseudocode for the Decentralized LSTM-GRU Based Day-Ahead Price Forecasting Framework is given in Algorithm 3. 

Algorithm 3. The pseudocode for the Decentralized LSTM-GRU Based Day-Ahead Price Forecasting Framework

​ Input: Forecasted feature values obtained from Algorithm 2:
​ X = [Load forecast (T+1), Dummy DoW (T+1),
​ Generation features (T+1), Amount of Electricity Exchange (T+1),
​ Previous day Spot Prices (T)]
​ - Hyperparameters for deep learning models
​ ​
​ Output: Forecasted 24-h ahead LMP values: ŷ_{T+1} = [p̂_1, p̂_2, …, p̂_{24}]
​ ​
1 Step 1: Data Preprocessing
2 - Handle missing values and ensure numerical format
3 - Normalize the data using MinMaxScaler
4 Step 2: Decentralized Input Structure
5 For each feature in X:
6 - Reshape as separate input
7 Step 3: Model Architecture
8 For each feature input:
9 - Apply LSTM Layer → Dropout → GRU Layer
10 - Store outputs
11 - Concatenate all outputs
12 - Apply Dense Layer(s)
13 - Final Dense Layer → Output 24 values (Spot Prices for T+1)
14 Step 4: Model Training
15 - Compile and train model
16 Step 5: Prediction and Inverse Scaling
17 - Predict Spot Prices values on test set
18 - Inverse transform predictions to original scale
19 Step 6: Evaluation
20 - Compare ŷ_{T+1} with actual values

Data availability

Data will be made available on request.
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Janczura, J., Puć, A., 2023. ARX-GARCH probabilistic price forecasts for diversification 
of trade in electricity markets—variance stabilizing transformation and financial 
risk-minimizing portfolio allocation. Energies 16 (2), 807. https://doi.org/10.3390/ 
en16020807.

Jayanth, T., Manimaran, A., 2024. Developing a novel hybrid model double exponential 
smoothing and dual attention encoder-decoder based Bi-Directional gated recurrent 
unit enhanced with bayesian optimization to forecast stock price. IEEE Access. 
https://doi.org/10.1109/ACCESS.2024.3435683.

Kaya, M., Karan, M.B., Telatar, E., 2023. Electricity price estimation using deep learning 
approaches: an empirical study on Turkish markets in normal and Covid-19 periods. 
Expert Syst. Appl. 224, 120026. https://doi.org/10.1016/j.eswa.2023.120026.

Khan, Z.A., Fareed, S., Anwar, M., Naeem, A., Gul, H., Arif, A., Javaid, N., 2020. Short 
term electricity price forecasting through convolutional neural network (cnn). In 
web, artificial intelligence and network applications. Proceedings of the Workshops 
of the 34th International Conference on Advanced Information Networking and 
Applications (WAINA-2020). Springer International Publishing, pp. 1181–1188.

Khan, S., Aslam, S., Mustafa, I., Aslam, S., 2021. Short-term electricity price forecasting 
by employing ensemble empirical mode decomposition and extreme learning 
machine. Forecasting 3 (3), 28. https://doi.org/10.3390/forecast3030028.

McHugh, C., Coleman, S., Kerr, D., 2022. Hourly electricity price forecasting with 
NARMAX. Machine Learning with Applications 9, 100383. https://doi.org/10.1016/ 
j.mlwa.2022.100383.

Moradzadeh, A., Mouhammadpourfard, M., Weng, Y., Pol, S., Muyeen, S.M., 2025. 
Hybrid deep learning model for accurate short-term electricity price forecasting. In: 
2025 IEEE Texas Power and Energy Conference (TPEC). IEEE, pp. 1–6. https://doi. 
org/10.1109/TPEC63981.2025.10906930.
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