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ABSTRACT

Participants in the energy market are at greater risk of making decisions due to the nonlinear and volatile
characteristics of electricity prices. Accurate short-term electricity price forecasting (EPF) is essential to ensure
improved resource allocation, grid stability and enable market participants to manage their decisions efficiently.
This study proposes a novel two-stage forecasting framework for day-ahead EPF using time series decomposition
methods and hybrid deep learning algorithms. In the first stage, features related to EPF at the next time step are
predicted. In this stage, the highest-frequency component extracted via Empirical Mode Decomposition (EMD) is
further decomposed using Variational Mode Decomposition (VMD) so as to better capture rapid fluctuations and
improve the overall prediction accuracy. Moreover, a decentralized deep learning architecture is designed in
which Gated Recurrent Unit (GRU) networks are employed for high-frequency components, while Long Short-
term Memory (LSTM) networks are used for the remaining components. In the second stage, EPF is generated
using a hybrid LSTM and GRU structure, which incorporates both features estimated in the first stage and his-
torical electricity price data. Finally, hyperparameters of the deep learning models are optimized using Bayesian
Optimization to enhance performance. To validate the proposed framework, real market data from the DK1
region of Denmark is used. The proposed hybrid prediction framework is evaluated against both machine
learning methods and deep learning-based architectures. Experimental results demonstrate that the proposed
method achieves approximately 27.15% lower RMSE compared to traditional machine learning models, and
around 28.24 % lower RMSE compared to LSTM-based models.

1. Introduction

1.1. Motivation

1.2. Literature review

Recent studies show that deep learning, machine learning, and
intelligent algorithms are increasingly favored for electricity price pre-

In the competitive electricity market, accurate electricity price
forecasting (EPF) is critically important for market participants engaged
in buying and selling transactions in order to maximize their profit.
Market participants rely on price forecasts to determine their bidding
strategies, allocate resources efficiently, and plan facility investments
(Gong et al., 2025). In such a competitive environment, any participant
who can accurately predict future electricity prices can gain additional
advantage and achieves greater profits. The supply-demand relationship
among participants plays a key role in determining electricity prices
under market conditions. These decisions are heavily influenced by the
participants’ own price forecasts. Therefore, the ability to act efficiently
in the market depends on the accurate implementation of EPF.

diction. Researchers primarily aim to achieve accurate forecasts despite
the presence of price volatility and sudden spikes. Earlier studies in this
field largely relied on statistical models particularly time series ap-
proaches such as Autoregressive Integrated Moving Average (ARIMA)
(Rajan and Chandrakala, 2021), (McHugh et al., 2022), (Abdellatif et al.,
2023) and Generalized Autoregressive Conditional Heteroskedastic
(GARCH) (da Silva Leite and de Lima, 2023), (Janczura and Puc, 2023).
However, these methods often fall short in capturing the complex and
non-linear dynamics of electricity markets, making them less responsive
to abrupt price changes. ARIMA methods are successful in modeling
linear relationships and seasonal trends and are suitable for systems that
do not show major changes over time and operate in a predictable and
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balanced manner. However, they are inadequate in modeling the com-
plex and variable structure in energy systems. In order to increase the
prediction accuracy in future studies, Computational Intelligence (CI)
models and hybrid models have begun to be used. Initially, in the CI
field, intelligent system methods were frequently preferred for EPF. In
intelligence systems, Artificial Neural Network (ANN) (Panapakidis and
Dagoumas, 2016), Fuzzy (Plakas et al., 2023) and Neuro-fuzzy (Setayesh
Nazar and Eslami Fard, 2021) and, Random Forest (de Castilho Braz
et al., 2024) methods have been used in electricity price forecasting
studies. These methods can capture nonlinear dependencies and inte-
grate external factors into the models used in the estimation phase. The
use of these methods in the EPF field has increased over time.

Later, with the use of big data in the EPF field, these models, despite
their strengths, were insufficient to extract complex relationships in the
data. Models such as ARIMA and simple ANNs can generally only see
surface relationships; They are insufficient to capture deeper relation-
ships in the data related to electricity prices. For this reason, deep
learning methods have begun to be used in EPF studies. The preferred
deep learning methods in EPF can be Deep Neural Network (DNN)
(Huang et al., 2021), Support Vector Machine (SVM) (Zhang et al.,
2020), Recurrent Neural Network (RNN) (Kaya et al., 2023), Gated
Recurrent Unit (GRU) (Yang and Schell, 2020), Long Short-term Mem-
ory (LSTM) (Wang et al., 2023), and Convolution Neural Network (CNN)
(Khan et al., 2020).

Previously some of the stand-alone models used in the EPF field were
successful under certain conditions. However, it became clear that these
methods were unable to fully capture the deep relationships in elec-
tricity price data with complex, volatile, and non-stationary structure (i.
e., statistically changing over time). To overcome this difficulty, re-
searchers began to develop “hybrid” models that combine multiple
methods. A hybrid model is one that combines several different
methods, and as a result, it becomes more powerful and flexible than a
single model, and is therefore capable of producing more accurate and
reliable results. Moradzadeh et al. in (Moradzadeh et al., 2025) aimed at
short-term electricity price forecasting using hourly Ontario energy
price data from Canada and they proposed a hybrid deep learning
model. In this paper, Bidirectional LSTM and Gated Recurrent Unit are
hybridized to improve the prediction performance. The obtained results
were compared with Extreme Learning Machine (ELM), CNN-LSTM and
Autoencoder + BiLSTM (AE-BiLSTM) to demonstrate the success of the
proposed method. Similarly, in (Pourdaryaei et al., 2024), a method that
can model both spatial and temporal relationships in market fluctua-
tions more effectively by using multi-head attention and 1D-CNN
together with feature selection for short-term electricity price predic-
tion was developed. With the proposed model, low error rates were
obtained in the analysis for each season.

The use of hybrid models provided high estimates in complex and
dynamic EPF. Due to the complex structure of hybrid models and the fact
that parameter tuning involves a large number of possibilities, the use of
methods such as Bayesian optimization in parameter tuning increases
the predictive performance of the model. In (Dai and Yu, 2024), the
parameters of prediction model developed by integrating CNN, TCN,
Attention mechanism were optimized by Bayesian optimization method.
Jayanth and Manimaran in (Jayanth and Manimaran, 2024) have opti-
mized the parameters of the proposed hybrid forecasting method
(Double Exponential Smoothing + Dual Attention Encoder-Decoder +
Bi-Directional GRU) in order to maximize the performance of the model
using Bayesian Optimization.

These methods assist only in tuning parameters that lie outside the
learning process-that is, parameters the model cannot learn on its own
and must be predefined. However, tuning these external parameters
alone is not sufficient to ensure the model’s efficiency. To address these
limitations and enhance model performance, time series decomposition
techniques have been integrated with deep learning algorithms. Another
hybridization option to deal with the complexity of EPF time series data
is the use of time series decomposition methods such as Wavelet
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Transform (WF) (Osorio et al., 2018), Empirical Mode Decomposition
(EMD) (Zhang et al., 2021), Variational Mode Decomposition (VMD)
(Xiong and Qing, 2023), (Xu et al., 2025), Ensemble EMD (EEMD) (Khan
etal., 2021), etc. In this regard, Xiong and Qing (2023) have proposed a
new hybrid method that, after the feature selection step, performs signal
decomposition on the selected features using the VMD method for noise
reduction and information extraction. The parameters of the LSTM
model used in the estimation method were optimized with Bayesian
Optimization and Hyperband. Likewise, in (Tan et al., 2023), time series
data is decomposed into low-frequency and high-frequency components
with ICEEMDAN to better model the complex volatility of prices in
day-ahead electricity price forecasting for the Australian national elec-
tricity market (in NSW). In addition, Inspired Grey Wolf Optimizer
(IGWO) was used for hyperparameter optimization in this study.

1.3. Contribution of this work

This research proposes a two-stage day-ahead electricity price fore-
casting (EPF) algorithm, recognizing the importance of EPF for both
researchers and industry stakeholders. In the first stage, the input fea-
tures for price prediction are decomposed into frequency components
using EMD. The most complex component is further processed using
VMD and modeled with GRU, while the remaining components are
modeled with a LSTM network. The results are then combined to
generate a precise t+1 price prediction in the next stage. Indeed, in the
second stage, a 24-h electricity price forecast is performed using the t+1
feature values predicted in the first stage, applying a decentralized
LSTM + GRU framework. Finally, the main contributions of the paper
can be summarized as follows:

e A novel two-stage hybrid forecasting framework is introduced,
combining signal decomposition with a heterogeneous deep learning
architecture to separately model low- and high-frequency compo-
nents of electricity price time series, enabling component-specific
learning and improved forecast accuracy.

o A decentralized deep learning structure is developed, integrating
LSTM and GRU networks to simultaneously capture long-term de-
pendencies and short-term fluctuations in price signals, optimized
through Bayesian methods for enhanced predictive performance.

o Comprehensive real-world validation is conducted using DK1 market
data from Denmark, demonstrating the proposed model’s superiority
over conventional ML/DL methods in terms of accuracy and
robustness in day-ahead electricity price forecasting.

The rest of the paper is structured as follows. Section 2 introduces the
proposed framework and presents details regarding the dataset, per-
formance metrics, and hyperparameter optimization process. Section 3
provides a comprehensive analysis of each stage within the two-stage
estimation process and compares the results with benchmark methods
using various performance metrics. Finally, Section 4 summarizes the
key findings of the study and offers recommendations for future research
directions.

2. Method of research

The effectiveness of accurate price forecasting can be assessed from
the perspectives of both grid producers and consumers. For producers,
precise forecasts support informed production allocation decisions,
enabling optimal use of generation resources across regions to maximize
profitability. On the other hand, consumers depend on accurate price
predictions to plan budgets, manage consumption patterns, and mitigate
the impact of price volatility. In today’s increasingly volatile energy
markets, the ability to anticipate price fluctuations with high accuracy is
essential-not only for securing profit but also for avoiding unexpected
financial losses. To address this challenge, this section proposes a new
framework that employs a hybrid two-stage forecasting approach



1.0O. Aksu et al.

designed to enhance predictive accuracy. The proposed model consists
of two main stages: (i) Multi-step feature forecasting (multi-step fore-
casting of selected features) and (ii) Electricity price prediction model
for the specific bidding zone. (day-ahead price prediction using these
forecasted inputs). The following sections provide detailed explanations
of the framework consisting of these two steps. An overall schematic
representation of the proposed methodology is illustrated in Fig. 1.

2.1. Introduction of decomposition techniques used in the developed
model

Time series of key variables in energy markets are often complex and
consist of multiple frequency components. Decomposition techniques
are employed to decompose the time series into sub-series with distinct
frequency characteristics. The goal is to break down the time series into
simpler components, allowing each to be analyzed separately for better
interpretability and predictive accuracy. Decomposition techniques can
generally be applied in either a single-step or multi-step approach. In
single-step decomposition, a single method is used to decompose the
time series into sub-series based on frequency components. However, a
single decomposition method may not fully capture all the structural
features of the series. Therefore, hybrid decomposition methods are
employed to leverage the strengths of multiple techniques. In multi-step
decomposition, additional methods are applied after the initial decom-
position to extract all relevant structural characteristics of the time
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series more effectively. In this study, EMD and VMD techniques are
preferred.

2.1.1. Empirical Mode Decomposition (EMD)

EMD is a signal decomposition technique widely used in conjunction
with deep learning methods to analyze and process nonlinear and non-
stationary data (Huang et al., 1998). This method was developed as an
alternative to theoretical decomposition techniques, such as Fourier
decomposition, to address the challenge of selecting an appropriate
decomposition method for non-stationary signals with time-varying
mechanisms (Taheri et al., 2021). When applied to complex real-world
signals, EMD decomposes the original signal into multiple simple com-
ponents known as Intrinsic Mode Functions (IMFs) and one residue
component. Two conditions are taken into account when decomposing
the signal into IMF components: (i) in each IMF component, the number
of local extrema (maximum and minimum values) and the number of
zero crossing points should be either equal or differ by at most one, (ii)
the signal should be symmetric with respect to the local zero mean. The
process of the decomposition includes 5 steps which can be explained as
follows:

Step 1: The local maximum and minimum points of the original signal
(X(t)) are determined.

Multi Step Feature Forecasting
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Step 2: The local minimum (emin(t)) and maximum (emax(t)) points
required to form the envelope are determined and interpolated be-
tween these points.

Step 3: The average envelope is calculated using Eq. (1). The formula
for this step is as follows:

M(t) = [emin(t) + emax(t))/2 o

Step 4: To test whether the new signal is IMF, the mean value is
subtracted from the original signal using Eq. (2)

S(t)=X(t) — M(¢t) (2)

Step 5: Finally, if the resulting signal satisfies the IMF criteria (zero
crossing point and symmetry), it is considered an IMF and set
IMF, (t) = S(t). If not, S(t) is used as the new input signal and we
return to the first step. Finally, the mathematical formulation of EMD
would be as follows:

X(t)="> IMF,(t) + ra(t) (3)

neN

where, X(t) is the original signal data. IMF,(t) and ry(t) denote n
intrinsic mode function (IMF) and the residues, respectively. The re-
sidual component is defined as the remaining signal after subtracting the
IMFs. Since IMF_1 represents the highest frequency component of the
original signal, it contains the most random noise and rapidly varying
elements. Therefore, IMF_1 is regarded as the noisiest component.

2.1.2. Variational Mode Decomposition (VMD)

VMD is an adaptive, non-recursive signal processing method
(Dragomiretskiy and Zosso, 2013) that decomposes a real-valued signal
into a finite number of sub-signals. Each component is nearly compact
around its corresponding center frequency. This decomposition tech-
nique effectively addresses the limitations of EMD, such as mode mixing
and endpoint effects. The signals decomposed using VMD exhibit high
accuracy and strong noise robustness. If one seeks to decompose a
real-valued signal X(t) into K VMFs each component x; must be
concentrated around its corresponding center frequency wy. The
different steps of this decomposition technique are mentioned as
follows:

Step 1: To obtain a single-sided frequency spectrum, the correlation
analysis signal for each mode (u) is calculated using the Hilbert
transform.

Step 2: The frequency spectra obtained for each mode are positioned
to the baseband using an exponential function adjusted by the esti-
mated center frequency.

Step 3: In this step, the method transforms the decomposition prob-
lem into an optimization problem to determine the modes using Eq.
4):

mian«HkZ Pe |:<.u(t) + é) * uk(t):| e Wit
k ’ 4)

s.t. Zuk =X(t)
k

2

where X(t) is the original time series signal. u represents the Dirac dis-
tribution and * represents the convolution operation. ux and wy denote
the modes and the center pulsations, respectively. u(t) shows the mode
functions.
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2.2. Introduction of deep learning networks

Deep learning methods are mainly used in nonlinear and time-
varying time series activities. The basic method of this field is Recur-
rent Neural Networks (RNNs). RNN differs from Artificial Neural
Network (ANN) by incorporating a feedback structure, allowing them to
retain information from previous time steps and effectively process time-
dependent data. RNNs are the basic method in this field, but gradient
explosion and gradient disappearance problems make their training
difficult (Ceni, 2025). In addition, due to these problems, RNNs have
difficulty using system state information used for a long time. Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) have been
proposed to overcome these limitations. While LSTMs can preserve
long-term information thanks to the memory cells and gate mechanisms
in their structures, GRUs show similar performance with a simpler
structure. The schematic representation of the structures of the methods
is given in Fig. 2.

2.2.1. Long Short-Term Memory (LSTM)

LSTM is a special type of RNN designed to cope with the problems of
RNNs even with long delays (Hochreiter and Schmidhuber, 1997). In
this method, the long-term memory of RNNs is encoded in weights that
change slowly during the training of the model, so the method is called
LSTM. While RNNs in the LSTM structure maintain long-term memory,
temporary activations exchanged between nodes provide short-term
memory as shown in Fig. 2 (Waqgas and Humphries, 2024). LSTMs
consist of three gate mechanisms: Forget Gate, Input Gate, Output Gate.
To enhance clarity, let the network input be x; € R™™ and the hidden
units be h. Define n as the number of samples and m as the number of
features. Let h,_; represents the hidden state from the previous time
step. The input gate is given by I, € R™", the forget gate by F; € R™", and
the output gate by O, € R™". The forget gate determines how much of
the previous cell state will affect the current cell state. Input and output
gates are the gates through which the cell is entered and exited. The
equations for the gates are as follows (see Eq.s (5), (6) and (9)):

F, = sigmoid (x,Ws + he_1 Uy + by) )

The sigmoid layer of the input gate determines which information
needs to update as follows.

I, = sigmoid(x.W; + h,_1 U; + b;) (6)

The tanh layer of the input layer creates a new candidate vector (C,).
The current cell state is updated as follows:

C,=tanh(x,W, +h,_1U; +b;) 7

Co=iC, + Cen &)

In the last step, the output gate value of LSTM is calculated as
follows:

O, = sigmoid(x;W, + h;_1 U, + b,) 9)

Wi, W,, Wy, W, and U;, U,,, Uy, U, are weights of the neural network.
b, bo, by , b, are biases. LSTMs differ from RNNs with the gates they use in
hidden states. These gates solve the problems in RNNs by deciding when
to update the hidden state. The hidden state update is as follows:

h, = O,tanh(C;) (10)

2.2.2. Gated Recurrent Unit (GRU)

Gated Recurrent Unit (GRU) introduced in (Cho et al., 2014) makes
predictions by combining the information from previous time steps with
the current time information. The GRU structure is shown in Fig. 2. The
GRU architecture is similar to the LSTM architecture. These networks
consist of gates and the information flow is controlled using these gates.
The gate architecture allows the model to recognize temporal
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Fig. 2. Schematic representation of Artificial Neural Network (ANN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and GRU architectures.

relationships and manage long-term memory (Greff et al., 2016). In
GRU, the gate architecture of LSTM is made simpler and more efficient.
While LSTM uses three main gates, namely input, forget and output
gates, GRU combines the input and forget gates to form the update gate
and associates the output gate directly with the hidden state. Reset gate
controls how much of the previous memory information is forgotten.
The update gate (z;) and reset gate (r;) are obtained as follows:

2, = sigmoid(W, * (x;, h;_1)) [¢5))
1, =sigmoid(W; x (x;,h;_1)) 12)

where t is the time index. x; is the input signal at time t. h;_; is the prior
hidden state. W, and W, are weight matrix of the update and reset gates,
respectively. While calculating the candidate’s hidden layer as shown in
Eq. (13), past time information is preserved. The past time information is
controlled by adjusting the r(t) value.

h, =tanh(W * (r; * he_1, X0)) (13)

where W is the weight matrix. In the last step, the final hidden state is
calculated by combining the previous hidden state (xh;_;) with the new
candidate hidden state () as follows:

he=(1 —2)xhe1 + 2 * h, 14

2.3. Multi-step feature forecasting approach

The simulation phase includes three distinct scenarios, designed to
account for the structural differences in the model used during the input
feature estimation phase. The series of independent variables is first
decomposed into different frequency components using EMD, aiming to
extract meaningful features from the time series. The initial decompo-
sition identifies the most rapidly changing fluctuations and noise, with
the first component typically containing random fluctuations, high-
frequency noise, and short-term variations. To further refine the fre-
quency components, the IMF-worst (high-frequency signal) undergoes
VMD decomposition. This step enhances the model’s ability to capture
finer frequency details hidden within the IMF-worst. Finally, deep
learning methods are applied to the resulting IMFs, and the predicted

value is obtained by aggregating the outputs from each decomposition
step. The parameters of the applied deep learning methods are opti-
mized using the Bayesian tuning method. The output of this stage is used
as input for the subsequent electricity price prediction model in the
specific bidding zone. The details of three different scenarios, in which
the methods used at this stage are analyzed based on their structural
differences, are presented below.

2.3.1. Scenario 1: EMD + LSTM

In the first scenario, a single-step decomposition is performed, where
EMD is applied to extract IMFs with different frequency components.
Each IMF is then individually predicted using LSTM networks, and the
results are combined to generate the final forecast as shown in Fig. 3.
This approach enhances the capture of diverse frequency components in
the time series and improves forecasting accuracy by leveraging deep
learning models. In this scenario, separate forecasting models are
employed for each component (sub-series) extracted through EMD. Each
component is individually forecasted and later aggregated to generate
the final prediction. After that, LSTM is applied to each component,
which has been separated into different frequency ranges using the
decomposition method, and the individual forecasts are aggregated to
obtain the final prediction.

2.3.2. Scenario 2: EMD + VMD + LSTM

In this variant, a dual-stage decomposition is applied. In the first
stage, N intrinsic mode functions (IMFs) are extracted based on the
signal’s frequency structure. After applying decomposition using EMD,
the highest frequency IMF (IMF_1) primarily contains noise and short-
term variations. In the second stage, the most complex and variable
IMF (IMF_1) extracted by EMD is further decomposed using VMD,
resulting in K new variational mode functions (VMFs) as shown in Fig. 4.
By leveraging the smoothing filter capability of VMD, noise is effectively
isolated and removed, enhancing the clarity and predictability of the
decomposed components (Chen et al., 2017). All extracted IMFs and
VMFs are individually predicted using the LSTM model to capture their
temporal patterns and generate accurate forecasts.
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2.3.3. Scenario 3: EMD + VMD + LSTM + GRU

In this model, different prediction models are applied for high fre-
quency components. The low-frequency components obtained from
EMD decomposition are used for longer-term predictions and usually
have less uncertainty. The highest frequency IMF (IMF_1), which con-
tains noise and short-term variations, is further decomposed using VMD
in this step. Subsequently, GRU is employed to predict each VMF signal
as shown in Fig. 5. By analyzing dependencies and variable interactions
over time, GRU demonstrates strong forecasting performance. Notably,
GRU has been observed to outperform the LSTM method when dealing
with noisy data (Qi et al., 2023).

2.4. Day-ahead electricity price prediction model

The estimated values from the previous stage are used as inputs to
the price forecasting model in this stage. The model is trained on these
inputs to learn the underlying relationships. As a result, it generates
forecasts for all 24 h of the next day, producing a complete set of hourly
electricity price estimates.

As mentioned earlier, in this stage, the model’s aim is to make the
day-ahead (H = 24) electricity price forecast for day D, i.e. Yp = (Yp;,
Ypa, -, YD,H). The following 62 input variables are used in the estima-
tion models:

[E====sss 1
| Decomposition |
L

e Past day-ahead prices for a previous day, i.e. Yp_1 = (Y(D,l)_l,
Yo-1)2, Yo-1)1)
o Total load forecasts for the current day, X5 = (Xf)’1 X5, ---,Xfw>,
e Electricity generation (at D and H = 1) from
o Thermal energy sources, X5,
o Hydropower sources, X327,
o Solar sources, X3 ,;,
o Onshore wind power sources, X3V,
o Offshore wind power sources, X35V,
o Other renewable sources, X55,,
e Amount of the electricity exchange amounts (at D and H = 1), X5%,,

o Dummy variables representing the day of the week, X3°"for D =1,2,
---,7, here each variable specifies a specific day with a binary value.

Among the aforementioned inputs, past day-ahead prices (Yp_1) and
total load variables (Xf)) have a dimension of (H=24), while the
remaining variables (X%, XB5,, X3, XpN, XPh , XBS,, X55,) are repre-
sented as single values. In addition, seven binary dummy variables
representing the day of the week (X5°").

The first hourly power generation forecasts for the following day can
be predicted one day in advance by system operators or models. To
ensure the model remains realistic in terms of data availability, these

Input
Data

— Ly Predicted

|
Value

Fig. 5. Hybrid EMD-VMD decomposition with LSTM-GRU forecasting framework.
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initial forecasts are preferred. In addition, using only a single time point
instead of taking all 24-h energy production series as input reduces the
input size of the model and provides faster learning. In addition, since
spot prices are directly related to production capacity and supply-
demand balance, especially in the first hours of the day, the input data
of the model is organized in this way in this study. Then, a deep learning
model with an LSTM-GRU hybrid architecture is developed to predict
day-ahead electricity prices over a 24-h horizon. The model adopts a
decentralized architecture in which each feature is processed individu-
ally through separate LSTM and GRU layers. The outputs of these layers,
representing the learned patterns for each feature, are then concate-
nated to form a unified feature representation. This structure allows the
model to capture feature-specific temporal dynamics more effectively.
Finally, the combined vector is passed through a two-layer dense
network to generate the 24-h price forecasts.

2.5. Introduction of hyperparameter optimization model in the developed
model

In the data processing methods used, selecting the hyperparameters
of the model is the principal disadvantage. Comprehensive search
methods such as Grid Search (GS) and Random Search (RS) have been
used determining the optimal hyperparameters. However, these
methods have disadvantages such as computational cost, stochastic
structures and long running times (Hanifi et al., 2024). In these methods,
hyperparameter settings are considered independently of each other.
Instead, using the information from previous parameter trials in the
improvement of the next search space can provide improvements in
terms of time and cost. For this reason, probabilistic methods are sug-
gested for hyperparameter optimization. A goal of optimization is to find
a point that minimizes a problem’s objective function. In this field,
Bayesian Optimization Algorithm (BOA) enables the search process to be
completed efficiently using the defined information. At each step, it
makes new estimates using the information it has previously obtained
(Eleftheriadis et al., 2024).

The Bayesian Optimization method is based on the Bayesian Gauss
Theorem and uses an acquisition function when evaluating the next
hyperparameter value. The Bayesian optimization problem is expressed
as follows:

X" = arg minygf(x) (15)

Where x* represents the optimized hyperparameter combination. R and
f(x) denote set of hyperparameter and objective function, respectively.
In this work, the objective function is defined as the error of the results
obtained from the prediction model with respect to the actual values.
In this study, the Bayesian Optimization method was used to search
the parameter values of the estimation methods. Possible parameter
values were selected from predefined value ranges. The Gaussian Pro-
cess model evaluates each parameter combination, makes the best es-
timate based on the results of the tested parameters and determines
which parameter combination should be tested in the next step. In this
process, it is aimed to optimize the parameters that will give the best
result among certain values. As a result, the performance of the model is
improved by finding the most appropriate combinations on the discrete

Table 1
Optimized hyper-parameters and value ranges in deep learning
algorithms.

Hyper-parameters Value range

Number of LSTM units
Number of GRU units
Number of dense units
Dropout rate

Learning rate

Batch size

(32, 128), step=16
(32, 128), step =16
(64, 256), step =32
(0.1, 0.5), step =0.05
Log-scale [0.0001-0.03]
{16, 32, 64}
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parameter space. The search values of the prediction models used in the
study are given in Table 1.

2.6. Performance metrics

To evaluate the forecasting performance of the methods, four error
criteria are used as given in Table 2.

In addition, in this work, the significance testing has been done using
the Diebold-Mariano (DM) test which is a popular paired comparison
method (Diebold and Mariano, 1995) to compare the forecasting per-
formance of two time series models and determine which model’s
forecasts are superior. One of the advantages of this test is that it can be
used with different loss functions. This feature allows for a more
comprehensive comparison between forecasting models.

The DM test was designed to compare two time series forecasts based
on a user-defined loss metric. The difference in loss, d;, between the two
forecasts is calculated as:

d; =L(errorg,) — L(errory,) (16)

Errors calculated at time t for model g and model h are represented as
errory, and errory, and loss function is given as L(.). The average loss is
calculated as:

S 1
d=2> d. a7

teT

And the DM test statistic is calculated as follows:

DM statistic — % (18)
Var(d)

where, Var(d) is the variance of the mean loss differential. A typical
normal distribution is asymptotically followed by the DM statistic,
meaning that when the sample size is large enough, the DM test statistic
approaches the standard normal distribution. This property increases
the reliability of the test and makes it easier to determine whether the
performances of different prediction models are statistically significant.
In this study, three different significance thresholds (« =0.01, 0.05, 0.1)
were used to determine the significance level of the DM test. This in-
dicates that hypothesis testing was conducted at different confidence
levels, corresponding to 90 %, 95%, and 99 % confidence intervals,
respectively.

2.7. Case study

To meet its ambitious 2030 and 2050 carbon-neutral society goals,
Denmark heavily relies on clean energy sources for electricity

Table 2
Error criteria and their equations.
Index Abbreviator ~ Equation
Root Mean Square Error RMSE RMSE =
\/ % ZHE N (Xammz - xpredicted)z
Mean Absolute Error MAE

1
MAE = NZHEN‘XacmaI - xpredictcd‘

Symmetric Mean Absolute sMAPE SMAPE =
Percentage Error
l Z Xactual — Xpredicted
N &=neN (‘xactual‘ + |xpredicted‘)/2
Relative Root Mean Square rRMSE rRMSE =

Error 1 )
N Ponen (Xactual - xpredicted)

ZneN(xactual)z

Note that, Xscuar and Xpregiced Tepresent the real and predicted output values,
respectively. N is the number of data points and n is the data index.
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production, primarily wind turbines (WTs). In addition, the Danish
electricity market is part of the European electricity market and operates
within Nord Pool. The Danish power grid is divided into two main
bidding zones: the Western grid (DK1 - Jutland and Funen region) and
the Eastern grid (DK2 - Zealand region), which are interconnected via
the Great Belt power connection.

In this study, an analysis of the DK1 bidding zone is conducted ac-
cording to the available data for the period September 1, 2023-February
1, 2024. A proposed forecasting framework is applied to predict vola-
tility and fluctuations in electricity prices by leveraging key market
characteristics. The dataset used in this study includes historical elec-
tricity prices, total load, and electricity generation data from various
renewable sources such as hydropower, solar, wind, and others for DK1.
Furthermore, it incorporates electricity generation from thermal sources
and electricity trade volumes with neighboring countries. The relevant
data is available and can be sourced from (Energidataservice web page).
The detailed information about the data set is given in Table 3.

2.7.1. Correlation analysis

As specified in Table 3, 14 features in the dataset are intended to be
used as input features in electricity price forecasting. Therefore, Mutual
Information and Spearman Correlation Analysis are utilized to examine
the relationship between electricity price and these features. These
methods can detect non-linear relationships, making them ideal for
studying the connections between the target variable and input vari-
ables in detail. In this way, the accuracy of the selection of input vari-
ables used in our dataset is ensured. When the results obtained with
different methods are analyzed, it is observed that the dependency
values vary as seen in Figs. 6 and 7. This is because each method eval-
uates the relationships in the data set from different aspects and has
different sensitivities.

2.7.2. Statistical analysis

The dataset has minimal missing values, making it consistent and
well-maintained. Missing data were filled by averaging the previous and
next feature values. Statistical Summary of energy market variables is
presented in Table 4. Having such a wide range of electricity prices in-
dicates the volatility of the market and underscore the importance of the
accurate price prediction.

Table 3
Description of the input and target features.

Input variables Description

Total Load Total consumption including transmission loss (MWh)

Biomass The average power generation from power plants where
biomass is the primary fuel source (MWh)

Fossil gas The average power generation from power plants where

fossil gas is the primary fuel source (MWh)
The average power generation from power plants where
fossil hard coal is the primary fuel source (MWh)

Fossil hard coal

Fossil oil The average power generation from power plants where
fossil oil is the primary fuel source (MWh)
Hydropower The average power generation from hydroelectric power

plants (MWh)

The average power generation from power plants where
other fuels is the primary fuel source (MWh)

Waste The average power generation from power plants where
waste is the primary fuel source (MWh)

Electricity generation from solar power plants (MWh)
Average electricity generation from onshore wind power
(MWh)

Electricity generation from offshore wind power (MWh)
It is the amount of exchange with Europe. Positive values
indicate imports, negative values indicate exports (MWh)
This is the amount of trade through the Great Belt
connection with DK2 region (MWh)

It is the amount of exchange with Norway and Sweden
(MWh)

It refers to day-ahead spot prices for DK1 zone (MWh)

Other renewable

Solar power
Onshore wind power

Offshore wind power
Exchange continent

Exchange Great Belt
Exchange Nordic

countries
SpotPrice in DK1
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Having filled in the missing data, the next step is to decide on the
input features to be used in the developed model. Considering the cor-
relation values given in Figs. 6 and 7, the inputs to be used in the model
are arranged. The variables for average electricity generation from
power plants where biomass and fossil resources are the primary fuel
sources are grouped together. Average electricity generation from power
plants where other fuels and waste are the primary fuel source is com-
bined and used as a single variable in the model. Amount of exchange
with Norway and Sweden, Europe and DK2 region are also combined.
While collecting the features, mean values were calculated to ensure
consistency in the dataset. The Spearman results shown in Fig. 6, which
capture ordered relationships, validate the accuracy of the combina-
tions, particularly for renewable energy sources and electricity trade
variables. Additionally, the Mutual Information results given in Fig. 7
confirm the strong linkage among thermal energy components as well as
the other two combinations. In order to reduce the risk of overfitting and
to ensure that the model focuses on fewer inputs, variables are grouped
among themselves according to the results of correlation methods.
Biomass, Fossil Gas, Fossil Hard Coal and Fossil Oil variables are
grouped as Thermal Energy Sources, Other Renewable and Waste vari-
ables are grouped as Other Renewable Sources and Exchange Continent,
Exchange Great Belt and Exchange Nordic Countries variables are
grouped as Electricity Exchange. As a result, final 8 features are obtained
to be used in the model.

A wide range of values can be found for the minimum and maximum
values of different variables. Hence, when modeling, it is important to
take into account these scale differences. The normalization process
brings variables of different scales to the same level, which ensures that
all inputs are equally focused. It also significantly reduces training time
and improves convergence (Sola and Sevilla, 1997).

2.7.3. Data preprocessing

After data selection in the preprocessing phase, the next steps are the
processing of null values and normalization. By completing these steps,
the data to be used in the prediction phase is made suitable for the al-
gorithm. In this study, the dataset contained a small amount of missing
data. This missing data was filled by averaging the previous and next
values.

Then, data normalization was performed to remove differences in
scale in the dataset. This method is a widely used preprocessing step in
machine learning and deep learning models. The specified data is scaled
to the range [0, 1].

o X~ mm(J.c) 19
max(x) — min(x)

In the final stage, to facilitate comparison with the original dataset,
the prediction results are inversely normalized as follows:

x = X (max(x) — min(x)) + min(x) (20)

Where x and x’ is input and output, respectively. min(x) denotes the
lowest value for variable x, and max(x) refers the highest value for
variable x.

3. Simulation and results

As mentioned earlier in the definition of the use case, the developed
forecasting model is applied to the DK1 bidding zone. The dataset was
split into approximately 80 % for training and 20 % for testing. A total of
2,928 data points from September 1, 2023, to December 31, 2023 is used
as training set and of the remaining 744 data points from January 1,
2024, to January 31, 2024 is used as test set. The study consists of two
stages. In the first stage, the input variables that influence the price of
electricity are forecasted. After that, forecasting of prices for the day
ahead is carried out. The pseudocode for the proposed framework is
given in Appendix A. In addition, pseudocode for the multi-step feature
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forecasting and pseudocode for the decentralized LSTM-GRU based day- performance of the developed model is analyzed in comparison with
ahead price forecasting framework is given in Appendix B and Appendix existing approaches, and a comprehensive evaluation is presented on the
C, respectively. basis of prediction accuracy and error metrics.

This section consists of three subsections prepared to evaluate the
effectiveness of the proposed model. In each subsection, the
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Table 4
Descriptive statistics of the input and target features between September 1st, 2023 and January 31st, 2024.
count mean median std min max

Total Load 3672 2646,65 2659,12 439,63 1477,89 3767,45
Biomass 3672 201,98 240,51 108,66 1,62 415,53
Fossil Gas 3672 174,11 129,34 118,36 37,55 482,02
Fossil Hard Coal 3672 321,57 211,57 282,4 34,86 1352,36
Fossil Oil 3672 22,49 15,37 12,72 5,38 70,61
Hydropower 3672 2,29 2,52 0,77 0,75 3,86
Other Renewable 3672 1,68 1,37 0,77 0,48 4,6
Solar Power 3672 126 0 290,17 0 1768,39
Waste 3672 44,35 46,2 16,17 8,09 111,73
Onshore Wind Power 3672 1258,94 1012,18 1007,83 3,44 3633,53
Offshore Wind Power 3672 689,43 718,89 410,08 0,83 1351,94
Exchange Continent 3671 —85,84 —360,06 1299,39 —3235,82 3299,8
Exchange Great Belt 3671 6,56 0 382,18 —590,85 600,32
Exchange Nordic Countries 3671 215,28 326,28 1491,44 —2377,36 2378,22
Spot Price (EUR) in DK1 3672 75,27 78,26 47,07 —8,54 524,27

3.1. Signal decomposition

Long-term trends and large-scale fluctuations in time series are
captured within low-frequency components, while high-frequency
components represent rapidly changing signals. Low-frequency com-
ponents generally exhibit lower uncertainty, making them easier to
forecast. In contrast, high-frequency components contain short-term
fluctuations and noise, making direct estimation more challenging due
to their chaotic nature as shown in Fig. 8. To improve predictability, an
additional decomposition step is applied to further refine the high-
frequency components as demonstrated in Fig. 9. In this step, three
different scenarios are employed for forward-time forecasting of the
features used in the prediction phase. Initially, time series are analyzed
by decomposing them into low- and high-frequency components using
EMD and the hybrid EMD-VMD approach. The original signals and the
frequency components extracted through EMD decomposition are pre-
sented in Fig. 8.

Since the amount of electricity generated from solar power is directly
influenced by the hourly variation in sunlight distinct daily periodic
patterns are observed in this time series. In Scenarios 2 and 3, the re-
decomposition of high-frequency components (IMF 1) disrupts these
periodic patterns, adversely impacting the model’s learning process.
When IMF 1 is re-decomposed using VMD, the inherent periodic struc-
ture is altered, leading to increased instability in the forecast results.
Consequently, further decomposition of components with short-term
variability makes the forecasting model overly sensitive, resulting in
higher error rates. Therefore, in the subsequent parts of the study, the
results obtained from the Scenario 1 framework were utilized for the
time series forecasting of electricity generation from solar power.

The EMD method applied in the first stage enables the time series to
be decomposed into components based on their different frequency
characteristics. Some of these components exhibit high noise levels and
short-term variability, leading to reduced accuracy in the forecasting
process. To address this issue, the high-frequency component is further
decomposed using VMD. The graphs below (Fig. 9) provides a detailed
illustration of the newly obtained components (excluding Solar Power
Generation) after the VMD process.

The discrete and deterministic structure of the solar power series at
different times of the day is shown in Fig. 10. Re-decomposition of high-
frequency components can disrupt this regular structure in series with a
distinctly periodic structure.

The decomposition structure in Scenario 3 disrupts the phase/energy
consistency of the signal by breaking down predictable components.
Therefore, the results from Scenario 1 were preferred for generation
from solar power. Since this distinct periodic structure was not observed
when examining the signals of the other features, Scenario 3 was suc-
cessfully implemented.

At this stage of the study, different scenarios were proposed to

10

demonstrate the success of the two-stage decomposition and the impact
of using different deep learning methods based on signal structures.
Therefore, it was decided to continue with Scenario 3 for the other
features. In this study, the results obtained for each variable were
examined to determine which scenario to preferred. Future work plans
to develop an adaptive scenario selection mechanism that can auto-
matically determine the most appropriate combination of decomposi-
tion and modeling based on the characteristics of each dataset.

3.2. Forecasting results and analysis

In this study, a decentralized architecture is implemented across
three different scenarios. The intrinsic mode functions obtained from the
decomposition phase are fed into separate forecasting models. Pre-
dictions are then generated under three distinct scenarios, and the re-
sults are evaluated based on various error metrics, as presented in
Fig. 11. This evaluation includes four metrics: RMSE, sMAPE, MAE, and
RRMSE. Additionally, to demonstrate the effectiveness of the decen-
tralized architecture, the results from the centralized structure are also
included for comparison.

As shown in Fig. 11, the decentralized architecture yields signifi-
cantly better results. Comparing RMSE values reveals that scenario 2
achieves approximately a 50 % improvement in forecasting generation
from other renewable sources compared to scenario 1. Moreover, pre-
dictions for load consumption, thermal energy generation, hydropower,
and onshore wind improve by about 20 % on average. Moving from
scenario 2 to scenario 3, further gains are observed: prediction accuracy
improves by around 10 % for onshore wind, offshore wind, thermal
energy, and other renewable sources, with smaller improvements in the
remaining variables. Overall, scenario 2 outperforms Scenario 1, while
Scenario 3 delivers the highest predictive accuracy across all criteria.

Among the three different scenarios, Scenario 3 demonstrates supe-
rior performance, achieving the lowest error rates across multiple error
metrics. Its success can be attributed to the hybrid decomposition and
forecasting approach, which enables a more effective analysis of various
frequency components within the time series. By accurately capturing
long-term trends in low-frequency components and enhancing the pre-
diction of short-term fluctuations in high-frequency components, this
framework significantly improves overall forecasting accuracy. As a
result, a comprehensive analysis of the forecast results obtained using
scenario 3 for seven different variables and scenario 1 for solar power
generation is presented in Fig. 12.

As seen, the model’s predictions are compared with actual values for
each variable, and performance is evaluated using various error metrics
to assess the accuracy and reliability of the forecasts. Furthermore, the
performance differences between the centralized and decentralized ar-
chitectures are highlighted by comparing the forecast results with those
of the centralized model. By processing the various components of the
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Fig. 8. Extraction of features based with EMD method (a)Load Consumption, (b)Generation from Thermal Energy Sources, (c)Generation from Hydropower, (d)
Generation from Other Renewable Sources, (e)Generation from Solar Power, (f)Generation from Onshore Wind Power, (g)Generation from Offshore Wind Power, (h)

Amount of Electricity Exchange.

time series independently, the decentralized architecture achieves lower
error rates and greater reliability.

3.3. Prediction of day-ahead electricity price in DK1

Electricity price time series forecasting plays a crucial role in the
energy market. However, complex characteristics such as high

11

frequency, nonlinearity, and volatility make this forecasting chal-
lenging. Therefore, this complex structure needs to be better modeled
with advanced time series forecasting methods.

In this study, electricity prices were forecasted one day in advance
using multiple prediction scenarios and relevant input factors as dis-
cussed previously. Machine learning and deep learning-based models
provide powerful tools for capturing the non-linear nature of electricity
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Fig. 8. (continued).

prices and accurately forecasting price fluctuations. At this stage of the
study, day-ahead electricity price forecasting leverages feature values
obtained from various scenarios to achieve the most precise price pre-
dictions possible. Fig. 13 compares the day-ahead electricity price
forecasts obtained using different forecasting methods with feature
values derived from multi-step forecasting. The black line represents the
actual electricity prices, while the predictions from different models are
shown with various colored lines. In general, all models follow the
overall trend of real electricity prices, but their forecasting accuracy
varies. A closer examination of the January 15-16 period reveals that
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some models align more closely with actual values than others, partic-
ularly in capturing peaks and troughs, which highlights their ability to
represent fine-grained price fluctuations.

Table 5 presents the error metrics for different forecasting models,
providing a numerical comparison of their performance. The results
clearly indicate that decentralized models outperform centralized ones.
Among them, the decentralizedLSTMGRU model achieves the lowest
RMSE (22.55), SMAPE (28.70), MAE (18.11), and RRMSE (30.19),
confirming that it delivers the most accurate forecasts. This suggests that
decentralization plays a key role in improving predictive performance.
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Fig. 9. Decomposition results of IMF-worst signal with VMD method (a)Load consumption, (b)Generation from thermal energy sources, (c)Generation from Hy-
dropower, (d)Generation from other renewable sources, (e)Generation from onshore wind power, (f)Generation from offshore wind power, (g)Amount of elec-

tricity exchange.

When comparing centralized and decentralized deep learning models, it
is evident that decentralized approaches consistently yield superior re-
sults. While traditional machine learning models perform reasonably
well, they are outperformed by deep learning models. Despite their
robustness, centralized deep learning models struggle to fully capture
the complexities of price fluctuations, leading to higher error rates. In
conclusion, decentralized models, particularly LSTMGRU, effectively
minimize forecasting errors and enhance predictive efficiency, making

13

them highly suitable for real-world electricity price forecasting. Their
improved accuracy and ability to handle intricate market dynamics
suggest strong potential for future applications in energy market anal-
ysis and decision-making.

Residual graphs which illustrate the residual (error) values between
the actual and predicted values of various prediction models are shown
in Fig. 14.

Each method is illustrated with a separate residual graph for clear
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Fig. 9. (continued).

comparison. Although most models show residuals centered around
zero, some exhibit more extreme errors. The residuals of the machine
learning model (Fig. 14a—c) are more dispersed, with clusters of errors in
specific regions. In the LGBMRegressor method results, residuals are
moderately spread, but positive deviations increase as higher true values
increase. CatBoost exhibits a similar pattern to LGBMRegressor, but the
negative deviations are slightly less. In SVR, the majority of residuals are
between —75 and + 75. However, while it appears more balanced at
lower values, the model exhibits more positive deviations at higher
values. Among them, the SVR model displays the widest error spread,
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indicating higher variance.

When we examine centralized structures, we see that errors are
distributed over a wider range in CentralizedLSTM (—150 to +100). In
CentralizedLSTM2, residuals are slightly more densely distributed and
closer to the center than in the previous model. CentralizedLSTMGRU
also has a generally quite scattered structure.

In contrast, the centralized (Fig. 14d-f) and decentralized deep
learning models (Fig. 14g-i) show narrower error distributions, partic-
ularly in the decentralized case, which demonstrates fewer and less se-
vere residuals. This suggests that decentralization improves learning
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efficiency and model robustness. In DecentralizedLSTM, the errors are
quite tightly distributed, between +80 °C. A tighter distribution is
visually observed. The DecentralizedLSTM2 results appear consistent
with the model’s overall predictive performance. The residual graph for
DecentralizedLSTMGRU shows that this model has one of the most

evenly distributed graphs among all other models. Errors generally fall
between —60 and + 60, with the residuals being more concentrated
around the center.

These results demonstrate that the model offers the most stable and
predictable performance in terms of overall accuracy. Overall, the

15



1.0O. Aksu et al.

Actual vs. Predicted

4000 T T T T

3500 “
=
2
=
T 3000 - 4
=
3
E
E
]
§ 2500 .
3
°
©
o
3

2000 g

1500 . . L . . L .

0 100 200 300 400 500 600 700 800
Time (hour)
(a)
4 Actual vs. Predicted

Actual
Predicted

bd
o

w

25

Generation from hydropower (MWh)

15 :
0 100 200 300 400
Time (hour)

(©)

Actual vs. Predicted

500 800

1000 T T

Generation from solar power (MWh)

-200 - -

0 100 200 300 400 500 600 700 800
Time (hour)
(e
Actual vs. Predicted
1500
Actual
Predicted

1000

500

Generation from offshore wind power (MWh)

0 L A L L L
0 100 200 300 400 500

Time (hour)

€3]

700

600 800

Engineering Applications of Artificial Intelligence 163 (2026) 112721

Actual vs. Predicted

o
=1
3

Wi
IS
a
3

IS
=1
3

N
S
3

Generation from thermal energy sources (MWh)
]
g

200 300

500

400 600 700
Time (hour)

(b)

Actual vs. Predicted

0 100 800

=)
3

o
&

a
3

~
&

IS
3

@
S

N
53

N
3

Generation from other renewable sources (MWh)
w
&

400 600
Time (hour)

(d

Actual vs. Predicted

100 200 300 500 700

4000 T T

MWh)
8
8

T 3000

N
33
=3
3

2000

1500

1000

o
=]
3

Generation from onshore wind powel

o

&
3
3

600

0 100 200 300 400 500 700 800
Time (hour)
Actual vs. Predicted
1200
Actual
1000 Predicted |

@
=3
3

o
=3
3

~
=]
3

=)

-200 1

-400

Amount of electricity exchange (MWh)
N
8
S

-600

800 . L L . L L L
0 100 200 300 400 500 600 700
Time (hour)

(h)

800

Fig. 12. Forecast and regression analysis of variables in Scenario 3. (a)Load consumption, (b) Generation from thermal energy sources, (c) Generation from hy-
dropower, (d)Generation from other renewable sources, (e)Generation from solar power, (f)Generation from onshore wind power, (g)Generation from offshore wind

power, (h)Amount of electricity exchange.

proposed model delivers the highest prediction accuracy, with the
lowest error levels, outstripping all other approaches. Finally, the DM
test was conducted to evaluate the prediction performance of the pro-
posed model compared to other approaches. Three different loss func-
tions (MSE and MAE) were used for evaluation as shown in Table 6.

In this test, the p-value represents the statistical significance of the
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results, where a lower p-value indicates stronger statistical significance.
To enhance the clarity of the table, asterisks are used to denote different
significance levels. The key observation from the table is that the DM
statistics are significantly positive, indicating that the proposed model
outperforms the other approaches. The results show that the difference
in forecast accuracy between the compared models is statistically
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Table 5
Error metrics for different prediction models.
RMSE SMAPE MAE RRMSE
Machine LGBMRegressor 31.38 40.15 25.53 42.01
Learning Catboost 31.97 36.29 24.65 42.81
Methods SVR 29.54 37.41 24.20 39.55
Deep Learning  centralizedLSTM 3393 37.85 25.86 45.43
Methods centralizedLSTM2 30.66 37.69 24.01 41.05
centralized LSTMGRU 29.68 36.34 23.75 39.74
Improved decentralizedLSTM 25.22 30.64 20.06 33.77
Deep decentralizedLSTM2 24.04  29.62 19.17 32.19
Learning decentralizedLSTMGRU ~ 22.55  28.70 18.11  30.19
Methods

significant at the 1% level, meaning that the null hypothesis of equal
forecast performance is rejected with 99 % confidence. The results
illustrated that this model achieves significantly better accuracy in daily
price prediction for energy markets. Table 6 further highlights the ad-
vantages of decentralized resources by comparing them with centralized
methods. As depicted, the decentralized structure effectively enhances
prediction accuracy.

To conduct a sensitivity analysis to show how different input features
impact forecasting accuracy, we performed feature ablation experiments
by systematically removing each input and observing the corresponding
changes in prediction performance. The basic logic in this method is to
eliminate each feature or feature group and try different combinations of
input features (Yang et al., 2025). Then, prediction performance results
are examined to understand the impact of input features on prediction.
The results of the sensitivity analysis showing the impact of removing
each input feature on forecasting accuracy are presented in Table 7.

The results indicate that the removal of historical price information
leads to the most significant performance degradation, highlighting it as
the most critical variable for day-ahead electricity price forecasting. A
moderate increase in forecasting error is observed when load con-
sumption and day of the week features are excluded, suggesting their
substantial but secondary influence. In contrast, the exclusion of fea-
tures related to renewable energy generation results in comparatively
smaller changes in model performance, indicating a relatively lower
impact on price prediction.
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4. Conclusion

In this study, a two-stage hybrid model was proposed for day-ahead
electricity price forecasting with decomposition techniques. In the first
stage, forward prediction of the features of electricity price data was
made. In the second stage, the day-ahead price was forecasted using
both the estimated features and historical price data. To handle the
complex, multi-frequency structure of electricity price signals, the first
stage employed EMD to decompose the signal into sub-series. The most
complex high-frequency component is further decomposed using VMD.
GRU networks were utilized for VMD decomposed signals (VMFs), while
LSTM networks were employed for the prediction phase of EMD
decomposed signals (IMFs). The t+1 predicted feature values and his-
torical prices obtained from this step were then used in the second stage.
In the second stage, a decentralized structure was adopted, and day-
ahead forecasting was performed using a hybrid LSTM-GRU architec-
ture. The model was designed to effectively capture the complex and
high-frequency patterns commonly observed in electricity price data,
and aimed to improve prediction accuracy through hybrid deep learning
techniques. Bayesian optimization was applied for hyperparameter
tuning to enhance model performance. Experimental results showed
that the proposed method achieved significant improvements in fore-
casting accuracy. Compared to traditional machine learning models
such as LGBMRegressor, CatBoost, and SVR, the proposed approach
reduced RMSE by approximately 27.15 %, and compared to LSTM-based
models, by approximately 28.24 %, demonstrating superior perfor-
mance over benchmark methods.

In this study, some features were grouped for analysis. In future
research, applying feature selection techniques may further enhance the
model’s overall accuracy and robustness. In the proposed hybrid
discriminant-based prediction framework, sequential application of
EMD and VMD signal decomposition techniques in the first step allows
the prediction models to learn more detailed patterns, but it increases
computational time and has a high computational cost. Therefore, the
need for more processing power and time during the implementation
phase may limit the usability of the models. Therefore, future work can
explore strategies to reduce computational time. Furthermore, the
sensitivity of deep learning models to hyperparameter tuning also has a
significant impact on performance. While Bayesian optimization was
used for hyperparameter tuning in this study, future work may explore
the effectiveness of recently proposed parameter optimization
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Table 6
p-values of the Diebold and Mariano test with different criteria.
MSE MAE

Compared Model Loss_diff DM value p-value Loss_diff DM value p-value
LGBMRegressor 476,229 10,719 0 7,42 10,508 0
CatBoost 513,68 8,598 0 6,536 9,116 0
SVR 364,02 9,846 0 6,087 10,921 0
CentralizedLSTM 642,655 8,336 0 7,75 9,413 0
CentralizedLSTM2 431,523 8,028 4E-15 5,895 8,16 2E-15
CentralizedLSTMGRU 372,396 8,322 0 5,641 8,535 0
DecentralizedLSTM 127,712 7,711 4E-14 1,948 7,292 7,82E-13
DecentralizedLSTM2 69,352 7,121 2,538E-12 1,064 5,838 7,9E-09

algorithms to further improve model performance.

The hybrid deep learning framework proposed in this study achieved
high accuracy in predicting day-ahead electricity prices. Future work
could integrate the proposed framework into market systems with real-
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time data streams, making it a secure tool for market participants and
stakeholders to use in decision-making processes. Additionally, this
study used data from the DK1 region of the Danish energy market.
Future studies would be valuable in assessing the generalizability of the
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Appendix A

The pseudocode for the proposed framework is given in Algorithm 1.

Algorithm 1. The pseudocode for the proposed framework

Input: Raw dataset: hourly time series data (Load Consumption, Generation Sources etc.)
- Hyperparameters for deep learning models
Output: Forecasted 24-h ahead LMP values: y {T+1} = [p_1, p_2, ..., p_{24}]

1 Step 1: Preprocessing

2 - Handle missing values

3 - Normalize input features using MinMaxScaler

4 - Create lagged features for past day-ahead prices

5 Step 2: Feature Decomposition and Forecasting (Multi-Step Feature Forecasting)

6 For each selected input feature:

7 - Apply EMD to decompose the signal into IMFs: f — [IMF_1, ..., IMF_n]

8 - Select the most complex IMF (e.g., IMF_ worst)

9 - Apply VMD to further decompose this IMF into K modes: IMF_ worst — [v_1, ..., v.k]
10 - Group the resulting components into High-Frequency (HF) and Low-Frequency (LF) categories
11 - Train LSTM on LF components and GRU on HF components

12 - Forecast each component using the trained models

13 - Combine predictions to form multi-step forecasts for each feature: ?_{T+1}

14 Step 3: LMP Prediction

15 - Collect all predicted input features E{T+1} from Step 2

16 - Concatenate as input for the final model

17 - Train hybrid deep model to predict day-ahead LMP

18 - Forecast day-ahead LMP using the trained deep model: y_ {T+1} « Model( XAT+1)
19 - Inverse transform predictions to original scale

Appendix B

The pseudocode for the Multi-Step Feature Forecasting is given in Algorithm 2.

Algorithm 2. The pseudocode for the Multi-Step Feature Forecasting

Input: Raw dataset: hourly time series data (Load Consumption, Generation Sources etc.)
- Hyperparameters for deep learning models
Output: Forecasted signal: 24-h ahead values y {T+1} = [y 1,y 2, ..., ¥y {24}]

1 Step 1: Data Preprocessing
2 - Handle missing values and ensure numerical format
3 - Normalize the data using MinMaxScaler

(continued on next page)
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(continued)

4 Step 2: Apply EMD Decomposition

5 - Decompose the time series into multiple IMFs: IMF_1, IMF_2, ..., IMF_n
6 - Identify IMF_worst (highest frequency component)

7 Step 3: Apply VMD on IMF_worst

8 - Decompose IMF_worst into into K modes: IMF_ worst — [v_1, ..., v.k]
9 Step 4: Deep Learning-Based Component Forecasting

10 For each IMF from EMD:

11 - Scale IMF

12 - Apply LSTM

13 - Train the model and generate forecast
14 - Inverse scale and store predictions

15 For each VMD mode:

16 - Scale mode

17 - Apply GRU

18 - Train the model and generate forecast
19 - Inverse scale and store predictions

20 Step 5: Combine Predictions

21 - Sum predictions across all IMFs and VMD modes
22 - Generate final forecasted signal y_{T+1}
23 Step 6: Evaluation

24 - Compare y_{T+1} with actual values

Appendix C

The pseudocode for the Decentralized LSTM-GRU Based Day-Ahead Price Forecasting Framework is given in Algorithm 3.

Algorithm 3. The pseudocode for the Decentralized LSTM-GRU Based Day-Ahead Price Forecasting Framework

Input: Forecasted feature values obtained from Algorithm 2:
X = [Load forecast (T+1), Dummy DoW (T+1),
Generation features (T+1), Amount of Electricity Exchange (T+1),
Previous day Spot Prices (T)]
- Hyperparameters for deep learning models

Output: Forecasted 24-h ahead LMP values: y {T+1} = [p_1, p_2, ..., p_{24}]

1 Step 1: Data Preprocessing
2 - Handle missing values and ensure numerical format
3 - Normalize the data using MinMaxScaler
4 Step 2: Decentralized Input Structure
5 For each feature in X:
6 - Reshape as separate input
7 Step 3: Model Architecture
8 For each feature input:
9 - Apply LSTM Layer — Dropout — GRU Layer
10 - Store outputs
11 - Concatenate all outputs
12 - Apply Dense Layer(s)
13 - Final Dense Layer — Output 24 values (Spot Prices for T+1)
14 Step 4: Model Training
15 - Compile and train model
16 Step 5: Prediction and Inverse Scaling
17 - Predict Spot Prices values on test set
18 - Inverse transform predictions to original scale
19 Step 6: Evaluation
20 - Compare y_{T+1} with actual values
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