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a b s t r a c t

Good management in animal production systems is becoming of paramount importance.
The aim of this paper was to develop a dynamic monitoring system for farrowing rate.
A farrowing rate model was implemented using a dynamic generalized linear model
(DGLM). Variance components were pre-estimated using an expectation-maximization
(EM) algorithm applied on a dataset containing data from 15 herds, each of them
including insemination and farrowing observations over a period ranging from 150 to
800 weeks. The model included a set of parameters describing the parity-specific
farrowing rate and the re-insemination effect. It also provided reliable forecasting on
weekly basis. Statistical control tools were used to give warnings in case of impaired
farrowing rate. For each herd, farrowing rate profile, analysis of model components over
time and detection of alarms were computed. The model provided a good overview of the
development of the parity specific farrowing rate over time and the control charts were
able to detect impaired results. Suggestions for future improvements include addition of
parity-specific control charts, calibration of the charts for use in practice and inclusion of a
sow effect in the farrowing model.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

One aspect of paramount importance in the swine
industry is reproduction. According to Hughes and Varley
(1980), reproduction includes different aspects, of which
one of them is conception. Conception is conditioned by
several factors, such as boar and time of insemination,
seasonal effects, feed intake, age and genotype, artificial
insemination, lactation length, etc. The measurement of

“conception rate” is not very precise, since it has to be
measured indirectly as the percentage of sows that do not
return to oestrus 21 days after service, or be based on
pregnancy diagnosis at about 30 days post-service. The
farrowing rate is a more reliable numeric indication of the
success of the conception: it is defined as the ratio of the
total number of farrowings divided by the total number of
matings, expressed as a percentage (Hughes and Varley,
1980).

The influence of several aspects on reproductive per-
formance has been largely reported in the literature.
Several authors have reported an influence of parity on
farrowing rate in sows (Hoving et al., 2010; Hughes, 1998;
Jørgensen and Ali, 1993; Koketsu et al., 1997; Kristensen
and Søllested, 2004a; Le Cozler et al., 1998; Tummaruk
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et al., 2010). The general pattern seems to be that first
parity sows have a relatively low farrowing rate which
increases over the first few parities with a maximum
around Parity 3, whereafter it again decreases. In addition,
Jørgensen and Ali (1993) estimated a modest reduction in
farrowing rate for gilts and sows returning to oestrus. The
reduction increased with the number of times the sow
returned to oestrus. Lower farrowing rates after insemina-
tion 2, 3, and 4 have been assumed in several published
replacement models, as for instance Huirne et al. (1991)
and Jalvingh et al. (1992) (the latter referring to Bisperink,
1979). Even though the referred studies agree on reduced
farrowing rates for sows returning to oestrus, there are
diverging opinions about the magnitude. According to
Jørgensen and Ali (1993) it is only modest (2–3 percentage
units per re-insemination), whereas the other authors
assume it to be very significant, with 20 percentage units
less for second insemination and 35 for third (compared to
first insemination).

Literature provides detailed studies in many fields
concerning the reproductive performance of sows. How-
ever, no information is available on dynamic monitoring of
farrowing rate influenced by parity. A simple average of
parities is not suitable for monitoring, because it depends
heavily on the age structure and, to some extend, on the
number of re-inseminations in the herd. An appropriate
monitoring system for farrowing rate must adjust for these
systematic effects, be able to capture correlations between
categories (parity and insemination number), and to develop
over time.

An attempt to improve the monitoring of pig produc-
tion has recently been presented by Bono et al. (2012). In
that study, the static litter size model proposed by Toft and
Jørgensen (2002) was re-parameterized and implemented
in a dynamic linear model. The dynamic setting allowed
for sequential weekly updating of parameters at herd and
sow level. Furthermore, statistical control tools were
applied and implemented to give warnings in case of
impaired litter size results. Also the possibility of making

predictions was taken into consideration. Nevertheless,
other factors, such as farrowing rate, need to be included
in order to achieve a more complete monitoring system.

The aim of the work presented in this paper was to
further improve methods for monitoring pig production by
also including dynamic monitoring of the farrowing rate in
sow herds. Farrowing being a binary trait required that a
new multivariate binomial filtering technique had to be
developed. The paper presents the results of this work in
terms of a dynamic generalized linear model (DGLM).
Parity and insemination number are the main effects
included in the model. To detect systematic deviations,
changes or other factors that may influence the farrowing
rate, statistical control tools are implemented in order to
give warnings in case of impaired farrowing rate results.

The paper is organized as follows: an explorative data
analysis is carried out in order to support the formulation
of a farrowing rate model. The filtering technique with
sequential estimation of parameters is described in the
next section with details of the method given in an
appendix. After introduction of the detection techniques,
the results from the model (including examples of its use)
are presented and discussed.

2. Explorative data analysis

Data used in the current study have been provided by
the Danish Advisory Center. The dataset consists of 15
herds (also used in Bono et al., 2012), which are only
identified by numbers to ensure the anonymity of the
farmers. The traits included in the study are: sow identity,
parity number, inseminations (by date and insemination
number) and resulting farrowings (by date).

An explorative data analysis was performed on the
dataset. Farrowing events for up to eight consecutive parities
and up to four inseminations are taken into account for each
sow in the explorative analysis. Table 1 shows the number of
inseminations per parity, according to the insemination
number. For instance, for Parity 1, 46 266 sows were
inseminated for the first time. Out of the 7050 that failed
to conceive, 4449 were inseminated for the second time.
Then out of the 4449, 1298 failed to conceive and 453 were
inseminated for the third time. This process is repeated for
the four inseminations, for each parity. The difference, in
number of sows, between the empty sows and the re-
inseminated ones is likely to be culled sows.

Table 2 presents an overview of the farrowing rate
according to parity and insemination number. For any
given parity, the first insemination has a noticeable higher
rate than the following inseminations, even at Parity 8
(0.87). Already from the second insemination there is a
reduction of the farrowing rate, as compared to the first
insemination (0.87 vs 0.70 on average). Inseminations 3
and 4 have low values and high standard deviations due to
a fewer number of observations as compared to the first
and the second inseminations.

The explorative analysis gave an overview of the data and
confirmed the influence of the parity number on the farrow-
ing rate, as documented by several authors (Hoving et al.,
2010; Hughes, 1998; Jørgensen and Ali, 1993; Koketsu et al.,
1997; Kristensen and Søllested, 2004a; Le Cozler et al., 1998;

Table 1
Number of farrowings according to parities and inseminations.

Parity Event Insemination

1 2 3 4

1 Inseminated 46 266 4449 453 90
No farrowing 7050 1298 224 51

2 Inseminated 34 139 2707 218 27
No farrowing 4132 665 84 17

3 Inseminated 26 830 1656 118 13
No farrowing 2787 443 38 7

4 Inseminated 21 206 1321 107 15
No farrowing 2339 357 51 4

5 Inseminated 16 259 1000 85 6
No farrowing 1860 304 34 5

6 Inseminated 11 460 593 53 3
No farrowing 1332 199 26 2

7 Inseminated 5834 306 34 7
No farrowing 771 122 23 5

8 Inseminated 2411 111 7 0
No farrowing 318 31 4 0
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Tummaruk et al., 2010). It also confirmed a lower farrowing
rate for gilts and sow returning to oestrus, and that the
farrowing rate is further reduced after each consecutive
insemination (except here, for the fourth insemination at
Parity 4; the number of sows was only 15). The farrowing
model applied in this study will therefore reflect the literature
findings and the patterns observed in this explorative analysis.

3. The farrowing rate model

A simple average is not suitable for monitoring farrow-
ing rate, because it depends heavily on the age structure
and, to some extend, on the number of re-inseminations in
the herd. A monitoring system for farrowing rate must
adjust for these systematic effects and be able to capture
the correlations between categories (parity and insemina-
tion number) and their development over time.

Since conception is a binary trait it is natural to model
the farrowing rate on the logistic scale. We shall denote
the farrowing rate as pnj for parity n insemination j (where
j41 corresponds to sows returning to oestrus) and the
corresponding logistic transform as ηnj where

ηnj ¼ log
pnj

1−pnj
: ð1Þ

A simple model for the systematic effects of parity and
insemination number could be as follows:

ηnj ¼
θn−ðj−1Þθ7; n≤5
θ5−ðn−5Þθ6−ðj−1Þθ7; n45:

(
ð2Þ

The model allows the adaptation of the farrowing rate
based on the parity number. Thus, the mean farrowing rate
of the first five parities (θ1 to θ5) is directly specified in the
parameter vector θ, whereas the following parities need
the consideration of the negative slope ðθ6Þ. The effect of
re-insemination ðθ7Þ is also included. It reflects the
decrease of farrowing rate according to the insemination
number for a given reproductive cycle of a sow.

4. Sequential estimation technique

A multivariate dynamic generalized linear model (DGLM)
consisting of an observation equation and a system equation
will be applied. We will use weekly observations of farrowing

to update the herd profile as described by Eq. (2). The latent
parameter vector for week t will be

θt ¼ ðθ1t ; θ2t ; θ3t ; θ4t ; θ5t ; θ6t ; θ7tÞ′; ð3Þ
where the parameters θ1t–θ5t correspond to the farrowing
rate for the first five parities at week t, θ6t represents the
negative slope and θ7t is the effect of the re-insemination.

4.1. Observation equation

The observation vector Yt consists of elements, ynjt,
corresponding to all combinations of parity n and insemi-
nation number j. The individual observation ynjt is the
number of inseminations resulting in a farrowing no later
than week t þ 17 out of Nnjt inseminated at week t, where
17 weeks correspond to the maximum gestation length of
sows. Combinations of n and j where Nnjt ¼ 0 are left out of
the observation vector.

The observation equations linking the observations to
the parameters have the general form

ynjt jθt∼BðNnjt ;pnjtÞ; ð4Þ
where B denotes the binomial distribution. The farrowing
rate pnjt is equal to ðexpð−ηnjtÞ þ 1Þ−1 (cf. Eq. (1)), and it
depends on the parameter vector θt as follows:

ηt ¼ F′tθt ; ð5Þ
where Ft is called the design matrix. The number of
columns corresponds to the size of θt , and the number of
rows corresponds to the number of non-zero values of Nnjt.

Now assume that, in week t, Nnjt sows are inseminated
and ynjt of them will farrow no later than week t þ 17.
Assume for week t that the sows for different combina-
tions of parity n and insemination number j are character-
ized as shown in Table 3. The observation vector would
then be Yt ¼ ð10;1;1;9;…;4;0;3Þ′, and the design matrix
will then look as follows (cf. Eq. (2)):

F′¼

1 0 0 0 0 0 0
1 0 0 0 0 0 −1
1 0 0 0 0 0 −2
0 1 0 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 1 −3 0
0 0 0 0 1 −3 −1
0 0 0 0 1 −4 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

ð6Þ

Table 2
Observed farrowing rate according to parities and inseminations.

Parity Inseminations

1 2 3 4

1 0.85 0.71 0.51 0.43
2 0.88 0.75 0.61 0.37
3 0.90 0.73 0.68 0.46
4 0.89 0.73 0.52 0.73
5 0.89 0.70 0.60 0.17
6 0.88 0.66 0.51 0.33
7 0.87 0.60 0.32 0.29
8 0.87 0.72 0.43 –

Mean7SD 0.8770.015 0.7070.084 0.5070.111 0.4370.177

Table 3
Example of insemination results for sows inseminated in week t grouped
by parity and insemination number within parity in a herd.

Parity n Insemination
number j

Inseminations Nnjt Resulting
farrowings ynjt

1 1 12 10
1 2 2 1
1 3 1 1
2 1 10 9
⋮ ⋮ ⋮ ⋮
8 1 5 4
8 2 1 0
9 1 3 3

C. Bono et al. / Livestock Science 155 (2013) 92–10294



with the corresponding parameter vector θt ¼ ðθ1t ; θ2t ; θ3t ;
θ4t ; θ5t ; θ6t ; θ7tÞ′.

4.2. System equation

The system equation expresses how the parameter
values may change over time. The general form of the
system equation is

θt ¼ Gtθt−1 þwt ; ð7Þ
where Gt is called the system matrix, and wt∼N ð0;WÞ
where 0 is a vector of zeros and Wt is a variance–
covariance matrix describing the evolution variance of
each of the parameters (and the covariance). Since no
particular systematic trend or pattern is expected, we
assume that Gt ¼ I, where I is the identity matrix. For the
variance–covariance matrix Wt the following structure is
assumed:

Wt ¼

W11 W12 W13 W14 W15 0 0
W12 W22 W23 W24 W25 0 0
W13 W23 W33 W34 W35 0 0
W14 W24 W34 W44 W45 0 0
W15 W25 W35 W45 W55 0 0
0 0 0 0 0 W66 0
0 0 0 0 0 0 W77

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
: ð8Þ

As it is seen, the changes of the parameters θ1;…; θ5 are
assumed to be mutually correlated, but independent of
changes in other model elements.

4.3. Weekly updating

The concept of univariate DGLM is theoretically well
described in the literature (e.g. West and Harrison, 1997;
West et al., 1985). For an example of application in pig
production using binomially distributed data, reference is
made to Cornou and Lundbye-Christensen (2012). When it
comes to multivariate binomial models no applications
known to the authors have been published even though
Jørgensen et al. (1996) presented a generalized approach
for multivariate time series of mixed types. However, the
method does not allow for binary data to be analyzed. In
this paper, the univariate binomial technique is extended
also to cover multivariate models. In Appendix A an
updating technique relying on Taylor expansion of the
conditional probability function of ynjt given ηnjt is briefly
described. A key property of the technique is the fact that,
for given ηt , the observations ynjt are independent. Using
the described technique, it is possible to obtain weekly
updated estimates for θt and thus ηt .

4.4. Initialization

In order to have a full specification of the DGLM, the
initial information θ0∼N ðm0;C0Þ before anything has been
observed in the herd must be defined. Because a binomial
model is considered for farrowing rate, the values are on
logistic scale. The initial means based on the results of the
explorative data analysis (Table 2) of the seven parameters
are, in order from θ1 to θ7: 1.71, 1.98, 2.15, 2.08, 2.04, 0.05

and 1.03. For the variance–covariance matrix it is just
assumed, that the seven standard deviations correspond to
a coefficient of variation of 40% and that the parameters
are mutually independent. This crude approach is justified
by the fact that as soon as the DGLM is applied to data
from a specific herd, the model will automatically adapt to
the conditions of that herd. The initial settings are there-
fore of minor importance.

4.5. EM-algorithm

System variance (W) is estimated trough the use of the
expectation-maximization (EM) algorithm. It is an iterative
algorithm based on maximum likelihood (ML) estimation.
The free software R (R Development Core Team, 2012) was
used to compute the algorithms. The EM technique is
described in more details by Bono et al. (2012).

5. Detection of impaired farrowing rate results

Monitoring tools are applied in order to detect any
critical changes in the farrowing rate. The deviations
between the observations and the predicted values are
analyzed in a short and long time periods. For the short
term control, charts inspired by Shewhart (Montgomery,
2005) are used in order to detect alarms on a weekly basis.
For the long term, a V-mask applied to the cumulative sum
(Cusum) control chart is used to detect level changes in the
farrowing rate. For further details about these monitoring
methods reference is made to Bono et al. (2012).

For both short and long term monitoring, the following
components are extracted from the model: the forecast for
the observation vector at time t which has the mean μt
(A.14) and the variance Σt (A.16), shown in Appendix A.

Let 1 ¼ ð1; ;1Þ be a row vector consisting of only
elements with value 1. The forecast for the total number
of farrowings in week t is therefore 1μt with variance
1Σt1′ and the observed total number is 1Yt . Thus the
weekly forecast error, et, is

et ¼ 1Yt−1μt : ð9Þ
For the control charts, the observation in week t is et and
the standard deviation used for control limits, is

st ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1Σt1′

p
: ð10Þ

Thus, the numerical value of st will depend heavily of the
number of sows farrowing at week t.

Because 1Yt is a sum of several different binomial
distributions with unknown value of the probability para-
meter, the distribution of the forecasted number of far-
rowings is not normal, so a standard Shewhart chart with
symmetric control limits is not well suited. Due to the
basically binomially distributed data with unknown prob-
abilities, the control limits must be un-symmetric. In order
to adapt the limits to this kind of data, a beta-binomial
distribution was fitted in such a way that the mean and
variance corresponded to the mean, 1μt , and variance,
1Σt1′, of the forecast distribution. The lower control limit
was defined as the 0.025 quantile of the beta-binomial
distribution, and the upper was defined as the 0.975
quantile. Both the limits were defined as integers: for the

C. Bono et al. / Livestock Science 155 (2013) 92–102 95



upper control limit, the integer was rounded up, and for
the lower control limit, the integer was rounded down.
This procedure broadens slightly the control limits, imply-
ing that for each limit (upper and lower) there is a
significance level that corresponds to less than 2.5%.

For the V-mask, the cumulative sum (Cusum) is defined
as the sum of the standardized forecast errors

Ct ¼ ∑
t

t ¼ 1

et
st
: ð11Þ

The value of the lead distance of the V-mask was set to
d¼10 and the slope of the arms of the mask was set to 0.4
in the examples shown in this paper. Detailed description
of the setting and its choice are available in Barnard (1959)
and Montgomery (2005).

6. Results

Results of the system variance estimation, of the model
application and of the monitoring methods are shown in
this section. All 15 herds are included in the analysis.

6.1. System variance

The values of the variance–covariance matrix
converged after 45 000 iterations of the EM-algorithm.
Convergence of the variance components of farrowing rate
for the first five parities and the correlation between them
are shown in Fig. 1(a) and (b). Convergence of the slope
and the re-insemination effect is shown in Fig. 1(c) and (d).

The values of the variance–covariance matrix are pre-
sented in Table 4. The variance of the parities parameters
θ1, θ2, θ3, θ4, θ5, the slope θ6 and the effect of the re-
insemination θ7 are presented in the diagonal. Correlations
between the five parities are shown below the diagonal.
The highest correlation was found between Parities 3 and
4 (0.99) and the lowest between Parities 1 and 5 (0.62).

6.2. Farrowing rate profiles

Fig. 2(a) shows the farrowing rate profiles of the 15
herds, for first insemination. The shape of the profiles is
not always as expected. A few herds show an increase of
farrowing rate between Parities 4 and 5. This may be
explained by a lower number of observations at Parity 5
(combined with the considerably higher variance for θ5
seen in Table 4), as compared to Parity 4. Herds 6 and 7
have a lower profile, as compared to the other herds, and
particularly the gilts seem to have problems with concep-
tion in these herds. The farrowing rate at Parity 1 in the
most cases confirms that the farrowing rate is lower for
gilts than for sows. On the other hand Herd 1 shows a high
farrowing rate at Parity 1, which subsequently decreases at
Parity 2. Herd 9 presents the highest farrowing rate's
profile. Fig. 2(b) presents the profile of the first four
inseminations for Herd 8. The distance between two
consecutive inseminations reflects the effect of the re-
insemination.

The estimated value of the seven model parameters for
the 15 herds, obtained at the end of the observation
period, is available in Table 5. In order to have an easier
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Fig. 1. Representation of convergence using the EM-algorithm, 45 000 iterations. (a) Convergence of the system variance in the first five parities.
(b) Convergence of system correlations in the first five parities. (c) Convergence of the system variance of the slope. (d) Convergence of the system variance
of the re-insemination.
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interpretation of the values, the first five parameters are
presented in a probabilistic scale (i.e. pn1 ¼ ðexpð−θnÞ
þ1Þ−1), while the last two (θ6, θ7) remain in the logistic
scale. Mean, minimum, maximum and standard deviation
are shown in the bottom part. The standard deviations

indicate the variation between herds, and Parity 1 shows
the most variation between herds, as depicted in Fig 2(a).

6.3. Model components

Fig. 3 shows a detailed analysis of the DGLM components
for Herd 8, over the last three years. Filtered mean for the first
five parities, θ1–θ5, are shown in Fig. 3(a), and the corre-
sponding smoothed components in Fig. 3(b). The smoothed
values of the slope (Fig 3(c)) and re-insemination effect (Fig. 3
(d)) appear almost constant. The evolution of the means over
time (both filtered and smoothed) indicates that the first four
parities follow a similar pattern, whereas Parity 5 shows a
sudden level change at the beginning of the period (around
week 300). The farrowing rate increases to a peak around
week 360 and decreases to a local minimum around
week 390.

Fig. 4 shows smoothed data of Herds 11 and 14, and
illustrates specific patterns observed over time. Herd 11
shows a very clear seasonal pattern, and Herd 14 shows a
parity-specific deviation (Parity 1). Whereas Herd 11 was
the only herd showing a clear seasonal variation, parity-
specific deviations were observed for six other herds.

6.4. Detections of alarms in farrowing rate

Monitoring methods on the short and the long term
period were applied for all 15 herds individually. The use
of a control chart for weekly monitoring is presented in
Fig. 5(a). The central line (black plain line) corresponds to
the differences between observed and predicted values.
The dotted lines are the (asymmetric) control limits.
No alarm was observed for the considered time-span

Table 4
System variance–covariance W(7�7). Values of the correlations are shown below the diagonal.

W θ1 θ2 θ3 θ4 θ5 θ6 θ7

θ1 0.00785 0.00512 0.00462 0.00477 0.00592 0 0
θ2 0.88 0.00431 0.00426 0.00428 0.00537 0 0
θ3 0.79 0.97 0.00444 0.00451 0.00565 0 0
θ4 0.78 0.95 0.99 0.00465 0.00582 0 0
θ5 0.62 0.76 0.78 0.79 0.01168 0 0
θ6 0 0 0 0 0 5.45e−09 0
θ7 0 0 0 0 0 0 4.25e−13
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Fig. 2. Farrowing rate profiles from the DGLM. (a) For first insemination, 15 herds. (b) For four inseminations, Herd 8.

Table 5
Estimated values of the model parameters for the 15 herds at the end of
the observation period. The estimated farrowing rates pnj for first

insemination at Parities 1–5 are calculated as pn1 ¼ ðexpð−θnÞ þ 1Þ−1 ;
n¼ 1;…;5. Bottom part: mean, minimum, maximum and standard
deviation.

Herd Farrowing rates (1st ins.), Par. 1–5 Slope Re-insemination

p11 p21 p31 p41 p51 θ6 θ7

1 0.90 0.85 0.86 0.86 0.84 0.05 0.75
2 0.87 0.91 0.91 0.89 0.84 0.04 0.96
3 0.88 0.91 0.92 0.90 0.85 0.05 0.78
4 0.84 0.88 0.90 0.90 0.93 0.06 0.59
5 0.88 0.87 0.88 0.87 0.91 0.06 0.59
6 0.66 0.83 0.85 0.84 0.83 0.05 0.93
7 0.66 0.71 0.82 0.81 0.79 0.05 0.69
8 0.88 0.91 0.92 0.90 0.91 0.04 0.88
9 0.93 0.94 0.95 0.93 0.93 0.05 0.88
10 0.86 0.88 0.90 0.88 0.86 0.06 0.91
11 0.85 0.86 0.86 0.85 0.86 0.05 0.69
12 0.81 0.89 0.87 0.87 0.86 0.04 0.93
13 0.88 0.88 0.90 0.88 0.89 0.06 0.69
14 0.80 0.89 0.91 0.91 0.91 0.06 1.11
15 0.85 0.84 0.86 0.90 0.89 0.06 0.79

Mean 0.84 0.87 0.89 0.88 0.87 0.05 0.81
Min 0.66 0.71 0.82 0.81 0.79 0.04 0.59
Max 0.93 0.94 0.95 0.93 0.93 0.06 1.11
SD 0.08 0.05 0.03 0.03 0.04 0.01 0.15
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(26 weeks). The long term monitoring is performed by the
use of Cusum combined with V-mask in Fig. 5(b). During
the three years period, two level changes are detected: at
weeks 360 and 390.

Table 6 shows the number of alarms detected applying
the V-masks (left panel) and the control charts (right
panel). A total of 42 alarms have been found in a 3 yr
period using the V-masks, which indicates an average of
0.93 alarm per herd per year. If only the negative alarms
are taken into account, the average is 0.64 alarm per herd
per year. The larger number of negative alarms (29 vs. 13)
may be explained by the fact that the V-mask is set equally
sensitive to changes in both directions (despite the skew
distribution). On the other hand, for the control charts,
where asymmetric control limits are used, a total of 49
alarms is reported. This indicates an average of 1.08 alarms
per herd per year (0.48 for negative alarms only). There

the total of positive and negative alarms is more consistent
(22 vs. 27).

7. Discussion

Variance components were pre-estimated using the
EM-algorithm technique. More than 40 000 iterations
were necessary before convergence was obtained. This is
far more than for the normally distributed litter size data
in Bono et al. (2012), where only 400 iterations were
needed. On the other hand, it is clear from Fig. 1(a) that the
changes in values seen after iteration 800 are only small
and insignificant. Even though the system variance of the
slope and re-insemination effect did not converge as
expected, the size of these values became so small that it
was considered irrelevant to carry on with more iterations.
High correlations between Parities 2 and 3 (0.97), Parities
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Fig. 3. Evolution of the model parameters for Herd 8 over the last three years. (a) Filtered parity components: θ1, θ2, θ3, θ4 and θ5. (b) Smoothed parity
components. (c) Smoothed slope (θ6). (d) Smoothed re-insemination effect (θ7).
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Fig. 4. Smoothed data of Herd 11 and Herd 14. (a) Seasonal pattern of Herd 11. (b) Parity-specific deviation (Parity 1) of Herd 14.
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3 and 4 (0.99) and Parities 2 and 4 (0.95) were found.
The lowest value of correlation was found between Parities
1 and 5 (0.62). High correlations imply that the farrowing
rate profiles will be maintained, i.e. that the farrowing rate
of the first five parities will not drift independently of
each other.

Coefficients of variation (CV) were calculated to improve
the comprehension of the size of the system variance. For
instance, the weekly variance of Parity 3 (0.00444) indicates
a yearly variance of 0.23088. Compared to the average value
for Parity 3, which is 2.09 (logistic transform of the
probability 0.89 of Table 5) this implies an annual coeffi-
cient of variation of 0.23. This is a far higher value than seen
for litter size profiles in Bono et al. (2012) where a similar
coefficient of variation was estimated as low as 0.013. Thus,
the litter size profile seems to be a far more stable property
of a sow herd than the farrowing rate profile.

Herd 8 was used to illustrate the main results (Fig. 3(a)
and (b)). The smoothed mean at a given time includes the
knowledge from all observations (previous and future),
and is computed backwards. It allows therefore to reduce

the temporary random fluctuation observed in the filtered
data. Filtered and smoothed data are not directly compar-
able. With the filtered data, the farmer is able to see what
happens in real time. On the other hand smoothed data
enables the farmer to identify and follow up on problems
that may have occurred during the production process. See
Bono et al. (2012) for further details. For practical applica-
tion, if the smoothed data drift too much, hindering as
such the interpretation of results, it can be suggested to
reduce the size of the system variance (only for smoothing
purpose).

The farrowing rate profiles for first insemination for the
15 herds do not look as homogeneous as the litter size
profiles from Bono et al. (2012). This is a natural conse-
quence of the much higher system variance for the
farrowing rate. The peak of the farrowing rate is usually
around Parity 3. For Parity 1, Herd 1 showed a high
farrowing rate, likely due to a good quality of gilts.
However, already at the second parity the percentage
decreased sharply. Herds 4, 5 and 11 showed an increase
of the farrowing rate between Parities 4 and 5. This may be
due to the number of observations related to these parities
and the high system variance for Parity 5 (cf. Table 4).

As it has been described by several authors, the parity
number influences the farrowing rate (Koketsu et al., 1997;
Le Cozler et al., 1998; Tummaruk et al., 2010). The negative
slope used to describe the decrease in farrowing rate for
high parities is in this study remarkably small (cf. Table 5).
If there is a positive repeatability (i.e. a sow effect) in
farrowing results as suggested by Jørgensen and Ali (1993),
it means that data are censored because farmers tend to
cull sows returning to oestrus. Sows that survive until high
parity numbers will therefore also tend to have a better
fertility resulting in overestimation of farrowing rates for
high parities compared to an unrealistic situation with no
culling. This is a possible explanation for the small value of
the negative slope. A complementary explanation for the
unexpected profile of herds 4, 5 and 11, could also be the
absence of a sow effect in the model.

The value of the slope is an important component
of the shape of the profile. It reflects the trend of the
farrowing rate after Parity 5. A value of the slope close to 0

Fig. 5. Monitoring methods applied for Herd 8. (a) Short monitoring period (26 weeks). The central line represents the differences between observed and
predicted values. The dotted lines are the upper and lower control limits. (b) Long monitoring period (156 weeks) using a V-mask applied on a Cusum.

Table 6
Number of alarms in a 156 weeks period according to the detection
methods: V-mask (VM) and control chart (CC).

Herd number VM decrease VM increase CC decrease CC increase

1 1 0 3 2
2 1 1 1 0
3 0 0 2 0
4 2 1 0 1
5 4 0 1 1
6 3 2 4 3
7 5 1 2 3
8 1 1 2 1
9 1 1 1 4
10 2 0 1 0
11 3 3 0 1
12 0 0 1 0
13 3 2 2 4
14 2 0 2 3
15 1 1 0 4

Sum 29 13 22 27
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(Fig. 3(c)) indicates a persistent farrowing rate after Parity
5. This low reduction of farrowing rate was observed for all
herds, and may indicate that farmers adopt, in general, a
good culling strategy.

There are divergent opinions among authors about the
magnitude of the reduction of farrowing rate for sows
returning to oestrus. Jørgensen and Ali (1993) reported a
reduction in percentage units of 2–3 per re-insemination.
Other authors (Bisperink, 1979) found a much larger
reduction. In this study, the decrease of farrowing rate
per re-insemination is around 10 percentage units (Table
5). Again, an explanation for the larger reduction found in
this study compared to Jørgensen and Ali (1993) could be
the lack of a sow effect accounting for the repeatability in
our model. As described by Jørgensen and Ali (1993), the
size of the repeatability heavily influences the reduction of
farrowing rate for sows returning to oestrus. If a sow effect
had been included, the percentage of decrease of farrow-
ing rate per re-insemination might approach the one
reported by Jørgensen and Ali (1993).

The lowest farrowing rate was observed for Herd 7 and
the highest (more than 90%) for Herd 9. A seasonal pattern
was observed for Herd 11 only. A parity-specific deviation
was observed for Parity 1 for Herd 14, and points out a
problem specific to gilts from week 360 until the end of
the period analyzed. Deviation of a single parity during the
three years period was seen in almost half of the herds of
the dataset.

Detection methods were applied to monitor changes in
a short (weekly) and longer time-span. In Herd 8, no
alarms were triggered during the period used to illustrate
the short term monitoring (26 weeks). Nevertheless, the
values observed around weeks 415, 417, 421, 429 and 435
were at the control limits (Fig. 5(a)). As mentioned in
Section 5, the control limits were defined by integer
values, for which the rounding procedure resulted in
broader limits. It can therefore be discussed whether some
of these weeks should have been considered as proble-
matic. A potential tool to reduce the uncertainty during
the decision process is the addition of “warning limits”,
which would narrow the range of allowed deviations
before a “warning” alarm is triggered.

As for the long term monitoring, V-masks were applied
on the Cusums. As compared to the previous paper (Bono
et al., 2012), the method does not appear entirely satisfac-
torily. In order to balance the number of negative and
positive alarms, a different set up for the two arms of the
V-mask could be implemented (one narrower than the
other). Furthermore, it has been noticed that the method
was unable to detect changes in the model specific para-
meters. For instance, in Fig. 3(b), the “drop” of Parity 5
around week 310 was not detected. Similar situations were
noticed in Fig. 4(b) with a “drop” for Parity 1 after week
370, and for Herds 2–6 and 15. A suggestion for improving
the monitoring method may therefore be to implement,
concomitantly with the current method, a parity-specific
alarm system. Finally, the seasonal pattern observed for
Herd 11 triggered both positive and negative alarms at
each fluctuation. Some monitoring systems may gain from
including seasonal components in the model (Madsen and
Kristensen, 2005), if this feature is inherent to the

monitored variable. However, since it is desirable to keep
a stable farrowing rate throughout the year, any cyclic
variation should be detected (so that the farmer becomes
aware of the problem), and hence not modeled.

Results of the total number of alarms were presented
in Table 6. The percentage of alarms (positive and
negative) for the control charts was, in average, 2%. This
should be put in perspective with the 95% confidence
intervals used in this study, which then should have
resulted in about 5% of false alarms. It was arbitrarily
decided to round the integers to the higher (upper limit)
and lower (lower limit) values, which resulted in broader
control limits. The opposite way to find the integer values
would therefore result in more alarms, which may be
closer to the expected 5%.

Further developments for the suggested monitoring
system may include (i) the addition of a parity-specific
monitoring system, (ii) a modified V-mask, and (iii) the
inclusion of a sow effect in order to improve its accuracy.
This may add value for the replacement strategy at the
farm level (see Kristensen and Søllested, 2004a, 2004b).

The third and final step of this project is the develop-
ment of a dynamic monitoring system for the mortality
rate of sows and pre-weaned piglets which will be
described in a subsequent paper.

8. Conclusion

A system to monitor farrowing rate was developed. It is
based on a dynamic generalized linear model, with weekly
updates, combined with monitoring methods for short
(weekly) and long term periods. The farrowing rate profile
does not appear as homogeneous as expected, and may be
influenced by censoring. For practical implementation, a
calibration of the settings of the control chart and V-mask
under known production circumstances needs to be per-
formed. The combination of this model with the previous
work (Bono et al., 2012) and the inclusion of information
about mortality rate, will help developing a management
tool to help the farmers to monitor production, make
decision, prevent problems, and reduce economical losses.
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Appendix A. A multi variate binomial DGML

A.1. Sequential updating

The observation model is as specified in Eqs. (4) and (5)
and the system equation is given by Eq. (7). Let Dt ¼
fm0;C0g∪fY1;…;Ytg be the full information set at time t.
Denote as

ðθt−1jDt−1Þ∼N ðmt−1;Ct−1Þ ðA:1Þ
the posterior for the parameter vector at time t−1. It
follows from standard arguments that the prior for the
parameter vector at time t is

ðθt jDt−1Þ∼N ðat ;RtÞ ðA:2Þ
where

at ¼ Gtmt−1 and Rt ¼ GtCt−1G′t þWt : ðA:3Þ
Using standard rules in combination with Eq. (5) yields

ðηt jDt−1Þ∼N ðf t ;QtÞ ðA:4Þ
where

f t ¼ F′tat and Qt ¼ F′tRtFt : ðA:5Þ
We shall denote the farrowing rate corresponding to an
individual element fnjt of the vector ft as pfijt . Thus

pfijt ¼ ðexpð−f njtÞ þ 1Þ−1: ðA:6Þ

Since the individual observations ynjt are independent
given ηt it follows from Bayes' theorem that the posterior
distribution of ηt after observation of Yt ¼ ðy11t ;…;

ynjt ;…; ynjtÞ′ is given as

pðηt jDtÞ∝pðηt jDt−1Þ∏
n;j
pðynjt jηnjtÞ; ðA:7Þ

where p is the probability density function. It can be
shown by Taylor expansion of ð∂=∂ηnjtÞ log pðynjt jηnjtÞ
around ηnjt ¼ f njt that Eq. (A.7) can be approximated by

ðηt jDtÞ∼N ðf nt ;Qn

t Þ; ðA:8Þ
where

Qn

t ¼ ðQ−1
t þ V̂

−1
t Þ−1 and f nt ¼ Qn

t ðQ−1
t f t þ V̂

−1
t η̂t Þ; ðA:9Þ

with

V̂ njt ¼
1

Nnjtp
f
njtð1−p

f
njtÞ

; V̂ t ¼ diagðV̂ 11t ;…; V̂ njtÞ ðA:10Þ

and

η̂njt ¼ f t þ
ynjt−Nnjtp

f
njt

Nnjtp
f
njtð1−p

f
njtÞ

; η̂t ¼ ðη̂11t ;…; η̂njtÞ′: ðA:11Þ

Finally, the posterior for ðθt jDtÞ∼N ðmt ;CtÞ is identified by

mt ¼ at þ RtFtQ
−1
t ðf nt−f tÞ and Ct ¼ Rt−RtFtQ

−1
t ðQt−Q

n

t ÞQ−1
t F′tRt :

ðA:12Þ

A.2. Dealing with singular variance–covariance matrix

In cases where the rank of F′t is less than the number of
rows, the variance–covariance matrix Qt of Eq. (A.5)
becomes singular and cannot be inverted as it must in

Eq. (A.9). In those cases the following stepwise updating
technique is applied:

� Denote as F′t the full design matrix built as described in
Section 4.1.

� Mark all rows of F′t as “Not processed”.
� Set k¼0.
� Continue until all rows of F′t have been marked as

“Processed”:
○ Increment k by one.
○ Build the design matrix F′kt for step k row by row by

conditionally adding not processed rows from F′t . A
row is added if, and only if, the rank of F′kt remains
equal to the number of rows. If a row is added, it is
marked as “Processed” in F′t and the corresponding
observations of Nnjt and ynjt are added to the vectors
Nkt and Ykt.

○ The matrix F′kt and the vectors Nkt and Ykt are used
for updating to mkt and Ckt as described in A.1.

○ Set at ¼mkt and Rt ¼ Ckt .� Set mt ¼mkt and Ct ¼ Ckt .

A.3. Forecast distribution

The forecast distribution pðYt jDt−1Þ is deduced from the
simultaneous distribution pðYt ; ηt jDt−1Þ (where p denotes
the probability/density function). We first notice that
(according to standard rules)

pðYt ; ηt jDt−1Þ ¼ pðYt jηt ;Dt−1ÞpðηjDt−1Þ ¼ pðYt jηtÞpðηt jDt−1Þ;
where the last expression follows from the fact that ηt
summarizes all previous information. Similarly

pðYt ; ηt jDt−1Þ ¼ pðηt jYt ;Dt−1ÞpðYt jDt−1Þ ¼ pðηt jDtÞpðYt jDt−1Þ;
where the last term is the requested distribution. Combin-
ing the two expressions for pðYt ; ηt jDt−1Þ yields
pðYt jηtÞpðηt jDt−1Þ ¼ pðηt jDtÞpðYt jDt−1Þ
or

pðYt Dt−1Þ ¼ pðYt ηtÞ
pðηt jDt−1Þ
pðηt jDtÞ

:

����
���� ðA:13Þ

In Eq. (A.13) the probability pðYt jηtÞ is just the product of
probabilities from independent binomial distributions
with natural parameters ηnjt . We have

pðYt ηtÞ ¼∏
nj

Nnjt

ynjt

 !
ð1−ðe−ηnjt þ 1Þ−1ÞNnjt−ynjt

ðe−ηnjt þ 1Þynjt :

�����
The two conditional expressions pðηt jDt−1Þ and pðηt jDtÞ are
the multivariate normal density functions for the distribu-
tions known from Eqs. (A.4) and (A.8). Thus, for instance

pðηt Dt−1Þ ¼
1

ð2πÞjYt j=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Qt

p exp −
1
2
ðηt−f tÞ′Q−1

t ðηt−f tÞ
� �

:

�����
For the forecast mean we get

EðYt jDt−1Þ ¼ EðEðYt jηtÞjDt−1Þ≈diagðN11t ;…;NnjtÞp
f
t : ðA:14Þ

For the forecast variance–covariance matrix we use
the general rule for random variables X and Y that
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VarðXÞ ¼ EðVarðXjYÞÞ þ VarðEðXjYÞ and obtain

VarðYt jDt−1Þ ¼ EðVarðYt jηtÞjDt−1Þ þ VarðEðYt jηtÞjDt−1Þ: ðA:15Þ
The first term is approximated by the (independent)
binomial variances, i.e.

EðVarðYt jηtÞjDt−1Þ≈Δt

where

Δt ¼ diagðN11tp
f
11tð1−pf11tÞ;…;Nnjtp

f
njt

ð1−pf
njt

ÞÞ:

For the second term a Taylor expansion around ffjt is used.
Denoting the inverse of the logistic transform as the expit
function (cf. Eq. (A.6)) we get, element by element

Eðynjt jηnjtÞ ¼Nnjtpnjt ¼NnjtexpitðηnjtÞ
≈Nnjtexpitðf njtÞ þ Nnjtexpit′ðf njtÞðηnjt−f njtÞ
¼Nnjtexpitðf njtÞ þ Nnjtexpitðf njtÞ
�ð1−expitðf njtÞÞðηnjt−f njtÞ

¼Nnjtp
f
njt þ Nnjtp

f
njtð1−p

f
njtÞðηnjt−f njtÞ

where the third line follows from the fact that
expit′ðxÞ ¼ expitðxÞð1−expitðxÞÞ. In matrix notation we get

EðYt jηtÞ≈diagðN11t ;…;NnjtÞp
f
t þ Δtðηt−f tÞ;

and it follows, since Varððηt−f tÞjDt−1Þ ¼Qt , that

VarðEðYt jηtÞjDt−1Þ≈ΔtQtΔ′t :

With reference to Eq. (A.15) we therefore conclude that

VarðYt jDt−1Þ≈Δt þ ΔtQtΔ′t : ðA:16Þ
Thus, the partially specified forecast distribution is
approximately given by

ðYt jDt−1Þ∼½μt ;Σt �;
where

μt ¼ diagðN11t ;…;NnjtÞp
f
t and Σt ¼Δt þ ΔtQtΔ′t :

In cases where a stepwise updating is done, the forecasting
must be performed stepwise as well.
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