New Formula for Stability of Cube Armoured Roundheads

Maciñeira, Enrique; Burchart, Hans F.

Published in:
Coastal Structures 2007

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
NEW FORMULA FOR STABILITY OF CUBE ARMOURED ROUNDHEADS

Enrique Maciñeira, Port Authority of La Coruña, University of la Coruña, Spain, emacine@puertocoruna.com
Hans F. Burcharth, Aalborg University, Denmark, Burcharth@civil.auc.dk

INTRODUCTION
Design of armour for rubble mound breakwater roundheads constitutes in many cases a problem due to the limitation of available data and guidelines. The objective of the paper is to present the results of a comprehensive model test study on the stability of cube armoured roundheads, resulting in a new stability formula.

MODEL TESTS
Port of La Coruña commissioned in the period 2002 to 2004 the Hydraulics and Coastal Engineering Laboratory of Department of Civil Engineering, Aalborg University, Denmark, to perform physical model tests of the stability of the cube armoured roundhead for the new port at Punta Langosteira, Spain. The tests, which were performed in a basin with multidirectional wave generators, included a parametric study of the influence of slope, radius and the mass density of the cubes as well as wave characteristics including angle of incidence.

STABILITY FORMULA
Analyses of the test results made it possible to develop the following stability formula:

\[H_s = \frac{1}{D_n} \cdot D_n \cdot \rho_s \cdot \cot \alpha \cdot D_n^{1.2} \cdot S_{op}^{1.4} + 2.08 \cdot S_{op}^{1.4} - 0.17 \]

Definitions and parameter ranges are given in Table 1.

Table 1. Definitions and validity ranges of parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D_n), cube side length</td>
<td>40mm</td>
<td>40mm</td>
</tr>
<tr>
<td>(\Delta = \rho_s / \rho_w - 1)</td>
<td>1.4</td>
<td>1.8</td>
</tr>
<tr>
<td>(\rho_s), cube mass density</td>
<td>2.40t/m³</td>
<td>2.80t/m³</td>
</tr>
<tr>
<td>(\rho_w), water mass density</td>
<td>1.00t/m³</td>
<td>1.00t/m³</td>
</tr>
<tr>
<td>(R_n), head diameter at SWL over (D_n)</td>
<td>11.75</td>
<td>19.25</td>
</tr>
<tr>
<td>(\cot \alpha), slope</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>(S_{op}), wave steepness</td>
<td>0.02</td>
<td>0.06</td>
</tr>
<tr>
<td>(D), relative number of displaced cubes in active zone</td>
<td>no damage</td>
<td>failure</td>
</tr>
</tbody>
</table>

Figure 1 shows the fitting of the laboratory data to the formula for given damage levels.

The paper provides further recommendations for head design.

REFERENCES:
Burcharth, H.F., Haagensen, P, Maciñeira, E., 2003, Stability of roundheads armoured with cubes, Coastal Structures'03
Burcharth, H.F., 2004, Parametric study of the round head for the new port of La Coruña at Punta Langosteira, Hydraulic and Coastal Engineering Laboratory, Aalborg University, Denmark
Burcharth, H.F., 2003 Report on model testing of rubble mound roundhead solutions (new port of La Coruña at Punta Langosteira), Hydraulic and Coastal Engineering Laboratory, Aalborg University, Denmark