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Abstract

In this paper it is explained how the damping can be
estimated using the Frequency Domain Decomposition
technique for output-only modal identification, i.e. in the
case where the modal parameters is to be estimated
without knowing the forces exciting the system. Also it is
explained how the natural frequencies can be accurately
estimated without being limited by the frequency
resolution of the discrete Fourier transform, Itis
explained how the spectral density matrix is decomposed
into a set of single degree of freedom systems, and how
the individual SDOF auto spectral density functions are
transformed back to time domain to identify damping
and frequency. The technique is illustrated on a simple
simulation case with 2 closely spaced modes. On this
example it is illustrated how the identification is
influenced by very closely spacing, by non-orthogonal
modes, and by correlated input. The technique is further
illustrated on the output-only identification of the Great
Belt Bridge. On this example it is shown how the
damping is identified on a weakly exited mode and a
closely spaced mode.

Nomenclature
G Power spectral density matrix
¢ Mode shapes
s f : Angular frequency, frequency (Hz)
u Singular vectors
s Singular values
o) Logarithmic decrement
< Modal damping ratio
Q MAC limit value
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Introduction

Output-only identification of structures is normally
associated with the identification of modal parameters from
the natural responses of civil engineering structures, space
structures and large mechanical structures. Normally, in
these cases the loads are unknown, and thus, the modal
identification has to be carried out based on the responses
onfy. Real case examples on some civil engineering
structures can be found in Ventura and Horyna [1] or
Andersen et al. {2].

The present paper deals with the problem of damping
estimation using a relatively new technique for output-only
identification called Frequency Domain Decomposition
(FDD). The technique is described in Brincker ¢t al [3], [4].

The technique is closely related to the classical frequency
domain techniques where the modes are identified by
picking the peaks in the spectral diagrams, Bendat and
Piersol {5], Felber [6]. However, since the FDD technique
approximately decomposes the spectral density matrix into a
set of SDOF systems using the Singular Value
Decomposition (SVD), the main part of the uncertainty of
the classical technique is removed.

In this paper it is explained more detailed how the SDOF
auto spectral densities are identified using the modal
assurance criterion (MAC), how the bells are transformed
back to time domain, and how the damping and more
accurate natural frequency estimates are identified from the
corresponding free decays.




Identification Algorithm

In the Frequency Domain Decomposition (FDD)
identification, the first step is to estimate the power spectral

density matrix. The estimate of the output PSD G vy (Jo)

known at discrete frequencies @ = @, is then decomposed

by taking the Singular Value Decomposition (SVD) of the
matrix

A H
ny(JC'Ji) =U8;U; M

where the matrix {/; = [uﬂ,u,-z,. . .,u,-m] is a unitary
matrix holding the singular vectors #; , and S;is a

diagonal matrix holding the scalar singular values S - Near

a peak corresponding to the k th mode in the spectrum this
mode or may be a possible close mode will be dominating,
Thus, according to the FDD theory, the first singular vector

# 1 is an estimate of the mode shape

~

¢ =y (2)
and the corresponding singular value is the auto power
spectral density function of the corresponding single degree
of freedom system. This power spectral density function is
identified around the peak by comparing the mode shape

estimate ¢? with the singular vectors for the frequency lines
around the peak. As long as a singular vector is found that
has high MAC value with ¢ the corresponding singular
value belongs to the SDOF density function. If at a certain
ling none of the singular values has a singular vector with a
MAC value larger than a certain limit value (2 , the search
for matching parts of the auto spectral density function is

terminated. The remaining spectral pins (the un-identified
part of the auto spectral density function) are set to zero.

From the fully or partially identified SDOF auto spectral
density function, the natural frequency and the damping are
obtained by taking the spectral density function back to time
domain by inverse FFT.

From the free decay time domain function, which is also the
auto correlation function of the SDOF system, the natural
frequency and the damping is found by estimating crossing
times and logarithmic decrement. First all extremes 7, ,
both peaks and valleys, on the correlation function are
found. The logarithmic decrement & is then given by
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where 7;is the initial value of the correlation function and
1y is the k'th extreme. Thus, the logarithmic decrement and
the initial value of the correlation function can be found by

linear regression on k& and 2 ln('rk ‘) and the damping
ratio is given by the well known formula

S
c=——
V&2 +4x?

A similar procedure is adopted for determination of the
natural frequency. The frequency is found by making a
linear regression on the crossing times and the times
corresponding to the extremes and using that the damped

natural frequency f;and de undamped natural frequency
[ is related by

Ja
I-¢

(4)

(5)

The extreme values and the corresponding times were found
by quadratic interpolation, whereas the crossing times where
found by linear interpolation.

Simulation case, closely spaced modes

The technique is illustrated on a case with 2 closely spaced
modes. The response of a 2 DOF system is simulated using a
vector ARMA model, Andersen {7], and assuming that both
degrees of freedom are loaded by Gaussian distributed white
noise un-correlated processes. Exact and identified modal
parameters ar¢ shown in Tables 1 and 2.

The first case considered is a case with a reasonable spacing
between the two modes. An auto spectral density and the
singular values of the decomposed spectral matrix are shown
in Figure 1. As it appears, the two modes are clearly visible
in both plots. Partial identifying of the auto spectral densities
of the two SDOF systems using the MAC as described
above yields the result as shown in Figure 2.

Taking the inverse discrete Fourier transform of the partially
identified auto spectral densities vields the corresponding
auto correlation estimate as shown in Figure 3, bottom. Top
part of the same Figure shows the linear regression on the
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Figure I. Case I with moderately spaced modes. Top: Aufo

spectral density. Bottom: Singular values of the decomposed

spectral density matrix.
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Figure 2. Partial identification of the two SDOF auto
spectral density functions.
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Figure 3. Top: Linear regression on extremes for estimation
of damping. Bottom: Time domain free decay obtained by
inverse FIT and estimated damping envelope.
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Figure 4. Case 2 with closely spaced modes. Top: Partial
identification of SDOF auto spectral density. Bottom:
Corresponding free decay with damping envelope.
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Figure 5. Case 3 with closely spaced modes, but where only
a very limited part of the SDOF density is identified
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Figure 6. Case 4 with moderately spaced modes. Mode
shapes not orthogonal.
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Figure 7. Case 5 with moderately spaced modes. Correlated
input.

extremes, and the bottom parts compares the free decay
function with the estimated damping envelope. As it
appears, the procedure is quite strait forward and the user
has a clear impression of the validity of the estimation
simply by inspecting the plots.

The second case considered is the case of closely spaced
modes as shown in figure 4. In this case it is assumed that a
reasonable part of the SDOF auto spectral density can be
identified on both sides of the considered modal peak. This
is possible in the most cases by specifying a lower (2 -
value. In this case, the identification is also strait forward
and the identified damping values compares reasonably well
with the theoretical values, Table 2.

In the third case it is assumed that only a quite small part of
the SDOF auto spectral density function can be estimated.
This can be the case if the spectral density is noisy due to
limited data, or if noise is contaminating the signal. In this
case however, since the data are simulated data meeting all
basic assumptions of the technique, the identified SDOF
density function shown in Figure 5 was obtained by using a
rather high value of the MAC limit () . As it appears, since
the number of active pins in the spectrum is cut
significantly, the Fourier series in the time domain becomes
truncated to a degree where the damping becomes
underestiniated, Table 2.

The fourth case shown in Figure 6 illustrates the influence of
non-orthogonal modes. In theory, to give exact results, the
FDD requires that the modes are orthogonal. All other cases
considered in this paper have orthogonal modes. For the

modes considered in this cases, the MAC matrix is
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1.0000 0.4226
0.4226 1.0000

In this case, the SVD still split the spectral matrix in
orthogonal components. This means, that even though the
dominant singular value and the corresponding singular
vector is a good estimate of the modal properties, the second
singular value and the corresponding vector is not so closely
related to the physics of the system. Thus, the right most
part of the left mode is badly estimated. Even though this is
the case, the modal damping estimate is still close to the
exact value, Table 2.

For the last considered case, case five, the loading is
moderately correlated. In case of correlated input the FDD
modal decomposition is approximate. In most practical cases
however, like wind loads, wave loads or traffic loads, it is
known that a ceriain spatial correlation is present. Thus it is
important to know the amount of influence such correlation
might have on the modal results. In this case the correlation
matrix between the two stochastic processes loading the
system was

1.0000 0.4724
0.4724 1.0000

The results of the modal identification and the
corresponding damping estimation of the first mode are
shown in Figure 7. Again we see a certain distortion of the
identified auto spectral density of the associated SDOF
system in the overlapping region between the two modal
peaks. However, the influence is rather small, the damping
estimation is strait forward, and the estimated damping is
close to the exact values, Table 2. Thus, moderate
correlation does not seem to significantly influence the
quality of the results.

Damping identification of the Great Belt Bridge

In the following the efficiency of the proposed damping
identification technique is illustrated on ambient response
data of the Great Belt Bridge. The Great Belt Bridge is a
suspension bridge with a free span of 2.6 km.

Different ways of identifying the modal damping of this
bridge including the application of the FDD technique as
described here is invesiigated in Brincker et al. [8].

In the following it 1s iflustrated how the identification works
on two difficult cases often realised in practical output-only
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Figure 8. Singular values of the spectral density matrix
obtained from the ambient response of the Great Belt
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Figure 9. Partially identification of auto spectral density
associated with a weakly excited mode.
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identification: a weakly excited mode and a closely spaced
mode.

The weakly excited mode is indicated in figure 8. As it
appears it so weakly excited that only a careful inspection of
the singular value decomposition of the spectral matrix or of
the auto and cross spectral densities reveals that a mode is
present. It is well known, that when using parametric
methods like ARMA models or the Stochastic Subspace
Identification algorithm, or partly parametric techniques like
the Tbrahim Time Domain, the Eigen Realisation Algorithm
or the Polyreference identification technique, it is normaily
very difficult to get reliable modal estimates and especially
damping estimates in a case like this.

Figure 9 shows that the FDD clearly identifies z reasonable
part of the auto spectral density of the associated SDOF
system, and a damping estimate that must be judged as
reliable can be obtained from the free decay function.

The closely spaced mode case is also indicated in Figure 8,
and this case is relatively difficult too. Even though most of
the parametric and partially parametric techniques identifies
closely spaced modes without major problems, this still is
difficult in cases like this with a high number of modes
present in the response.

As shown in figure 10, the FDD technique identifies a large
part of the auto spectral density of the associated SDOF
system, and the corresponding free decay in the time domain
must be considered as a good time representation of the
frequency domain information. In this case, the estimated
damping is very low, ¢ = 0.24%, and the correlation
function is far from being vanished for maximum time lag.
This indicates that the damping is biased by leakage
introduced in the estimation of the spectral density
functions.

Conclusions

In this paper the estimation of damping has been introduced
and illusirated for the Frequency Domain Decomposition
(FDD) output only identification technique.

The basic idea of the proposed identification procedure has
been illustrated on a 2-DOF simulation case whete it has
been shown how the technique works in different cases of
closely spaced modes including non-orthogonal modes and
correlated input.

Further it has been illustrated how the technique works in
the case of identification of two difficult modes of the Great
Belt Bridge.



It can be concluded, that the FDD technique is a reliable and
efficient modal estimator, that the damping estimation is
casily controlled by adjusting the MAC limit value {2 , and
that the quality is easily validated by inspecting simple plots
like the plots presented in this paper. The major errors
introduced is the error associated with the truncation of the
Fourier scries for the time domain functions and the bias
introduced by the leakage. As it is well known from the
literature, the truncation will course the damping to be
under-estimated whereas the leakage will cause the damping
to be over-estimated

The technique has been applied successfully to several civil
engineering cases, Brincker et al. [9] and to several cases of
identification in mechanical engineering where the structure
was loaded by rotating machinery, Brincker et al. [10], [11]
and Maller et al. [12].

Table 1. Exact and estimated natural frequencies

Case Exact Exact Estimate | Estimate
S | ) | f @y | f, M
1 14.235 15.916 14.241 15.907
2 15.532 15.916 15.508 15.896
3 15.532 15916 15.526 15.888
4 14.309 15.834 14 .433 15.679
5 14.235 15.916 14.226 15.931
Table 2. Exact and estimated damping ratios.
Case Exact Exact Estimate | Estimate
51O 6 [ S | S %
1 0.894 1.000 0913 1.164
2 0.976 1.000 0.966 0.938
3 0.976 1.000 0.670 0.579
4 2.225 2.539 2.589 3.113
5 0.894 1.000 1.083 0.986
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