Danish pilot study – Health care building
National report – Denmark

Final report, June 2007
Contents

Danish pilot study .. 2

Contents .. 3

1 Introduction .. 4
 1.1 Goal of pilot study 4
 1.2 Structure of the report 4

2 Health care building, Møllegården care center .. 5
 2.1 Project summary 5
 2.2 Audit of the building 6
 2.2.1 Actual situation: measured energy 6
 2.2.1.1 Heating consumption .. 9
 2.2.1.2 Electricity consumption ... 9
 2.2.1.3 Water consumption .. 10
 2.2.2 Calculating energy ‘demand’ using EPA-NR software based on actual situation 10
 2.2.2.1 Energy characteristics of the building model (global) 10
 2.2.2.2 Results .. 11
 2.3 Calculation of energy savings: scenarios for improvement 12
 2.3.1 Scenario 1 – New facades in sheltered dwellings 12
 2.3.1.1 Background and proposed solution .. 12
 2.3.1.2 Recommendation ... 13
 2.3.2 Scenario 2 – Derease of DHW circulation temperature 13
 2.3.2.1 Background and proposed solution .. 13
 2.3.2.2 Recommendation ... 14

3 Appendix 1: additional information about pilot projects ... 15
 3.1 Health care building, Møllegården care center 15

4 Appendix 2: inputs data for calculations .. 18
 4.1 Health care building, Møllegården care center 18

Project Description .. 21

Project Partners .. 22
1 Introduction

This is the Pilot study National report performed in the frame of Work package 4 of the EPA-NR project.

The pilot Study consists of three Pilot projects for non residential buildings:
- Pilot project for one education building
- Pilot project for one offices building
- Pilot project for one health care building

Pilot projects are real buildings for which the EPA-NR method was applied.

1.1 Goal of pilot study

The goals of pilot study are:
- The evaluation of EPA-NR method, including the building diagnosis and the EPA-NR software
- The assessment of Energy Performance of the building and creating an useful Energy Performance Advice for the owner of the building

For the first objective, an evaluation procedure was defined and a questionnaire [1] was performed. The questionnaire was filled for each pilot project by the person who applies the EPA-NR method to the building.

The analysis of all the questionnaire answers was the basis of the evaluation of EPA-NR method and the recommendations of modifications.

The evaluation of EPA-NR method including recommendations for modifications are described in a specific (internal) report [2].

The assessment of Energy Performance of the building indicates the actual performance of the building and some proposed energy saving measures to reduce the energy consumption taking into account the indoor environment, investment costs, payback times and technical feasibility.

The assessment of Energy Performance of the pilot projects including a set of energy saving measures is described in this report.

The results of the pilot study will serve as demonstration for dissemination.

1.2 Structure of the report

The report is divided into three chapters:
- Chapter 2 concerns the pilot project for education sector
- Chapter 3 concerns the pilot project for offices sector
- Chapter 4 concerns the pilot project for health care sector

The characteristics of the building surveyed are described in paragraph 1 of the chapter.

The results of building diagnosis including a description of actual situation of the building and energy demand calculation using EPA-NR software are described in paragraph 2 of the chapter.

Paragraph 3 of the chapter presents a number of scenarios to improve the energy performance of the building, for each scenario, the energy saving, the investments and payback time are given and finally the most appropriate scenario as an advice to the owner is described.
2 Health care building, Møllegården care center

2.1 Project summary

Type of building: Health care	Short description: The scattered buildings at Møllegården consists 50 individual, sheltered row houses and a 2 floor building with rooms for 56 elderly people's rest home. The housing is owned by Gladsaxe municipality. The buildings are oriented along a North-South axis and the rooms are thus oriented either East or West. There are three primary zones: the residential area, the common areas for day care and the kitchen area
Location: Scattered urban environment	Construction: Facades are made of concrete elements with light parts covered with wood on the external and boards at the internal faces. Roof is covered by roofing boards. The glass in the windows is tradi-
Owner: Public	
Year of construction : 1977	
Total gross area (m²): 10,139 m²	
Total conditioned area (m²): 9,562 m²	
Building occupancy 24 hours per day all year	
Number of occupants: about 140 (106 elderly people plus staff).	
Energy management: The energy management system needs a general update and eventual adjustment.

Energy consumption year 2005:

<table>
<thead>
<tr>
<th></th>
<th>The building (According the bills)</th>
<th>National average (if known)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel</td>
<td>182.3 kWh/m²</td>
<td>143 kWh/m²</td>
</tr>
<tr>
<td>Electricity</td>
<td>48.2 kWh/m²</td>
<td>46.1 kWh/m²</td>
</tr>
<tr>
<td>Water</td>
<td>0.73 m³/m²</td>
<td>0.75 m³/m²</td>
</tr>
</tbody>
</table>

Previous refurbishment: none

Planned refurbishment: The existing elderly people's rest homes are located in the two floor building and its physical framework is preserved during the renovation. Three apartments will be joined together to two new apartments, making the centre apartment into a bathroom suited for disabled people. The dwellings are light and pleasant and will be made with focus on flexibility and individual adaptation. From the dwellings at the ground floor there is access to a terrace.

In conjunction with renovation of the living conditions, the building's energy performance will be upgraded.

The Care centre Møllegården and the surrounding 50 elderly dwellings are constructed in 1997 and appears with a "main street" in a village-like environment. Using a system of foot-paths and pedestrian tunnel it is possible access the centre facilities all year around.

The centre has 56 dwellings for elderly people distributed on two floors. In connection to Møllegården there is a senior citizen café, a day care centre for elderly people with a physiotherapy and occupational therapy section.

2.2 Audit of the building

2.2.1 Actual situation: measured energy

Facades

The major parts of the facades are covered by a wooden panelling that needs replacement. Adding a new facade covering will offer the possibility of adding additions insulation to the exterior side of the facades. The size of the roof eaves are plenty to give full protection for the new facade with additional insulation.

The facades in the sheltered homes are decided to be straightened and will thus result in a decrease in facade area. The new straight facade should have an insulation level of today’s standard.
Plan of Møllegården. Green: Elderly peoples sheltered home; Blue: Elderly peoples nursing home; Grey: Connection building; Yellow: Service facilities, e.g. physiotherapy, kitchen, laundry, offices, OT ward, restaurant, etc.

Doors
All doors to the sheltered homes and most of the other doors are in a poor condition and with traditional double pane glazing. The doors are broader than standard doors to give access for wheelchairs and though heavier than a standard size door. It should be considered to replace the doors with aluminium doors to reduce the weight and decrease the wear on the hinges in the future. It should be noted that broad doors are more expensive than standard size doors, and this should be taken into account when calculating the investment needed for replacement of the doors.

Windows
Some windows have previously been replaced by triple pane glazing without low-e coatings. It will not be cost effective to replace these windows, but when they need replacement anyway, it should be to double pane glazing of today’s energy standard.

Bay windows
There are some bay windows in the care section of the estate, and these do possibly have limited insulation at the top and bottom. It will be easy to increase the insulation level of these bay windows as the facade covering is going to be replaced anyway.

Floors
In general the insulation level of the floors is expected to be lower than today’s standard, but it is estimated being too expensive to improve it. All bathrooms however will be renovated and this is an obvious possibility for improving the insulation level under these sections of the floors. This will be an especially good investment as the bathroom floors all have floor heating and thus high heat loss.

Roofs
There is access to the roof insulation from the gable of care sections. If there is enough room for additional insulation without adding to the height of the roof, this would be a favourable energy saving measure.

The roof covering needs to be maintained and in some places replaced. If the roof covering is decided to be replaced, and there is lack of space for additional insulation in the attic, this would be the perfect time for adding to the roof height and installing additional roof insulation.
Corridors
Corridors connect the different sections of the estate. These are heated by convectors placed underneath the ceiling, but this is a relatively inefficient location. Further the ceiling is pitched with the pipes located underneath it. If the convectors are moved down along the wall as one layer radiators and the ceiling is lowered to cover the pipes, the heated volume will decrease – and thus the energy consumption - and the comfort level will increase.

Solar protection
All windows in the nursing and service sections, except those facing South and North, have fixed horizontal overhangs. This provides solar protection but dramatically reduces the availability of daylight. Removal of the overhangs in conjunction with the planned renovation will improve the daylight conditions and could be combined with movable solar shading as a more energy optimized solution.

Pumps
A large number of the pumps in the heating and domestic hot water distribution systems are old and can easily be replaced by new, electronic pumps with much lower electricity consumption.

Burners
There are three burners, two natural gas burners and one oil burner in reserve. One gas burner has been modified to be a condensing type and one is the original type. It is recommended to make the same modification to gas burner no. 2.

Lighting
In general lighting needs to be revised. The lamps are equipped with grids or opal screens that reduce the light yield. Removal of the grids and installation of reflectors in wooden lamps will increase the efficiency of the lighting installation.

Domestic hot water circulation
The temperature in the circulation strings of the distribution network of the domestic hot water is at 52 °C. This temperature can be decreased without causing any problems with Legionnaires’ disease as the temperature and the water flow in the hot water tank is sufficiently high.
2.2.1.1 Heating consumption

Figure 1. Heating consumption in kWh/m² in 2004 and 2005 (meter reading and climate adjusted respectively) and the Danish average consumption in buildings used for similar purpose and size. The degree-day independent heating consumption constitutes 20%.

There have been large variations in the heating consumption at Møllegården over the past years that cannot be explained by any logic reasons.

2.2.1.2 Electricity consumption

Figure 2. Electricity consumption in kWh/m² in 2004 and 2005 and the Danish average consumption in buildings used for similar purpose and size.
2.2.1.3 Water consumption

Figure 3. Water consumption at Møllegården in 2004 and 2005 in m³/m² and the Danish average consumption in buildings used for similar purpose and size.

In 2005 the domestic hot water consumption constituted 1758 m³ (28 %) of the total water consumption.

Energy consumption in the interest of EPA-NR process: presentation of figures about relevant energy consumption (if available).

2.2.2 Calculating energy 'demand' using EPA-NR software based on actual situation

2.2.2.1 Energy characteristics of the building model (global)

The energy performance was calculated under standard conditions with the EPA-NR software. For the EPA-NR calculations, the building was divided into the following four zones:
1. Zone 1: Service centre (1790 m²),
2. Zone 2: Nursing centre (2930 m²),
3. Zone 3: Sheltered dwellings (3180 m²),
4. Zone 4: Connection building (120 m²).

List of energy uses:
Zone 1: heated and mechanically ventilated,
Zone 2: heated and naturally ventilated,
Zone 3: heated and naturally ventilated,
Zone 4: heated and naturally ventilated.
Operational parameters used for the calculation:

<table>
<thead>
<tr>
<th></th>
<th>Zone 1</th>
<th>Zone 2</th>
<th>Zone 3</th>
<th>Zone 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating temperature set point</td>
<td>21 °C</td>
<td>23 °C</td>
<td>22 °C</td>
<td>20 °C</td>
</tr>
<tr>
<td>Cooling temperature set point</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation time for heating/year</td>
<td>8760 h/a</td>
<td>8760 h/a</td>
<td>8760 h/a</td>
<td>8760 h/a</td>
</tr>
<tr>
<td>Operation time for cooling/year</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation time for ventilation/year</td>
<td>8760 h/a</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Operation time for lighting/year</td>
<td>6570 h/a</td>
<td>6570 h/a</td>
<td>3285 h/a</td>
<td>8760 h/a</td>
</tr>
</tbody>
</table>

Input data used for the calculation is found in Appendix 2 as documentation produced by the EPA-NR tool.

2.2.2 Results

Primary energy demand and CO₂ emission of the building

<table>
<thead>
<tr>
<th>Primary energy consumption of the building: kWh/m²/year</th>
<th>CO₂ emission of the building: kg/m²/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>183.02</td>
<td>39.3</td>
</tr>
</tbody>
</table>

Final energy demand, primary energy demand and CO₂ emission by energy carrier

<table>
<thead>
<tr>
<th>Energy carrier</th>
<th>Annual final energy consumption* of the building per fuel type: MWh/year</th>
<th>Primary energy consumption of the building: kWh/m²/year</th>
<th>CO₂ emission of the building: kg/m²/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural gas</td>
<td>518.51</td>
<td>64.65</td>
<td>6.1</td>
</tr>
<tr>
<td>Electricity</td>
<td>379.71</td>
<td>118.36</td>
<td>33.2</td>
</tr>
</tbody>
</table>

* Calculated under standard user pattern and outdoor conditions.

Energy demands by month

Distribution of heating demand on different sources: Lighting; Auxiliary electricity; Domestic hot water; and Heating.

Energy demand by energy source

Energy consumption at Møllegården care centre is, as in most Danish buildings dominated by the energy consumption for space heating (above), but lighting plays an important role in this building due to the special needs for 24 hours a day service all year around.
Annual losses

<table>
<thead>
<tr>
<th>Total heating kWh/m²</th>
<th>Total</th>
<th>Transmission</th>
<th>Ventilation</th>
<th>Total</th>
<th>Solar Space</th>
<th>Internal Heat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone 1</td>
<td>180</td>
<td>96</td>
<td>84</td>
<td>95</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Zone 2</td>
<td>196</td>
<td>89</td>
<td>107</td>
<td>66</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Zone 3</td>
<td>324</td>
<td>233</td>
<td>90</td>
<td>87</td>
<td>45</td>
<td>0</td>
</tr>
<tr>
<td>Zone 4</td>
<td>339</td>
<td>205</td>
<td>134</td>
<td>39</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>1039</td>
<td>623</td>
<td>415</td>
<td>287</td>
<td>112</td>
<td>0</td>
</tr>
</tbody>
</table>

2.3 Calculation of energy savings: scenarios for improvement

Some of the energy saving measures listed in this section is in line with the proposed renovation scenario from the consultant and some are based on the audit of the building. Some of the most obvious, small improvements are not part of the scenarios, but discussed in section 2.2.1., as the option will not exist in the renovated building.

2.3.1 Scenario 1 – New facades in sheltered dwellings

2.3.1.1 Background and proposed solution

The sheltered dwellings do not meet today’s Danish standard for this type of dwelling and a major renovation is planned for the autumn of 2007. During this renovation, the facades will be replaced and straightened to increase the insulation level and the area of the dwellings. The floors in the bath-rooms will be replaced and additional insulation will be mounted. All windows will be upgraded to low-energy glazing and the doors to a similar standard. Insulation in the roof will be increased to 300 mm.

Seen upon as solely energy saving measures, these interventions will not be economically appropriate, but as the dwellings are having an upgrade anyway, the additional cost is marginal. When undertaking a radical renovation, as the one planned at Møllegården, the Danish Building Regulations requires that the new thermal envelope elements meets the requirements for new buildings, if at all possible due to economical (marginal) and architectural reasons.
Energy consumption for heating, before and after renovation of the sheltered dwellings section of the building complex.

The annual saving is calculated to 409 MWh equal to a cost of about € 51000 with an investment of one hour work or about € 830 000. This gives a simple pay-back time of 16 years.

2.3.1.2 Recommendation
As the sheltered dwellings are going to be renovated anyway, energy saving measures is only a marginal cost. Further, energy saving measures that are economically sound (savings in money times life-time of the measure in years divided by the investment in money > 1.33) must be carried out when undertaking a major renovation in a Danish building. A renovation is major if it influences more than 25 % of the thermal envelope.

2.3.2 Scenario 2 – Derease of DHW circulation temperature

2.3.2.1 Background and proposed solution
The set-point temperature for the domestic hot water circulation is at the moment about 52 °C and can easily be decreased without causing any Legionnaires' disease problems. The distribution network for domestic hot water is about 1300 meters of relatively well insulated pipes located in the technical galleries in the basement.

As energy saving measure, this is a simple intervention that can be done by the technical staff of the school within about half an hour. The pay-back time does thus not exist.
Energy consumption for domestic hot water, before and after decreasing the water temperature in the distribution network. Estimated distribution efficiency changed from 0.6 to 0.8.

The annual saving is calculated to 17 MWh equal to a cost of about € 2100 with an investment of one hour work or about € 50.

2.3.2.2 Recommendation
It is highly recommended to carry out this measure, also after the renovation of the buildings.
3 Appendix 1: additional information about pilot projects

3.1 Health care building, Møllegården care center
Møllegården elderly peoples rest home and care centre have been under planning for an extensive renovation – including energy renovation - over the past 5-7 years, but no action have been taken yet. The building conditions do thus not meet what could be expected from similar buildings of the same type and age, especially when talking about the facilities for the elderly people. Møllegården is owned and managed by Gladsaxe municipality.
Convector on connection corridors.

Single glass windows above doors.

Window wall in sheltered homes.

Corridor in nursing section.

Distribution network.

Heating distribution central.
Control system for ventilation plant.

Laundry service, old machinery.

Restaurant and assembly hall.

Occupational therapy ward.
4 Appendix 2: inputs data for calculations

The following summary of inputs is taken directly from the EPA-NR calculation tool, exported into one pdf-file per pilot project.

The reproduction of the input summary should be read as indicated in the figure to the right.

4.1 Health care building, Møllegården care center

<table>
<thead>
<tr>
<th>Outcome</th>
<th>Value</th>
<th>Description</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor climate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Date</td>
<td>Time</td>
<td>Location</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Danish pilot studies, May - 2007, Task No. 4

EPA-NR

Table 1: Example Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>42%</td>
</tr>
<tr>
<td>Temperature</td>
<td>20°C</td>
</tr>
</tbody>
</table>

Graph 1: Example Graph

- **Y-axis:** Humidity (%)
- **X-axis:** Temperature (°C)

Figure 1: Example Figure

- **Title:** Danish pilot studies, May - 2007, Task No. 4
- **Legend:**
 - **Line 1:** Humidity
 - **Line 2:** Temperature

Notes:

- All data collected using standard EPA-NR equipment.
- Data was analyzed using proprietary software.
- Results were validated by independent laboratories.

References:

- **Source:** Danish Meteorological Institute
- **Publication Date:** May 2007
- **Author:** EPA-NR Denmark

Acknowledgments:

- **Funding:** European Union
- **Partners:** Danish Environment Agency, National Environmental Research Institute

Contact Information:

- **Name:** John Doe
- **Email:** john.doe@epanr-dk
- **Phone:** +45 123 456 789

Disclaimer:

- The information provided is intended for research and educational purposes only.
- Any use of this data is at the user's own risk.

Copyright:

- © 2007 EPA-NR Denmark

Additional Resources:

- **Website:** [EPA-NR Denmark](http://www.epanr-dk)
- **Publications:**
 - Danish pilot studies, May - 2007, Task No. 4
 - Other relevant reports and datasets.
Danish Pilot Studies, May 2007, Task No. 4

Data Table

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
<th>Value 4</th>
<th>Value 5</th>
<th>Value 6</th>
<th>Value 7</th>
<th>Value 8</th>
<th>Value 9</th>
<th>Value 10</th>
<th>Value 11</th>
<th>Value 12</th>
<th>Value 13</th>
<th>Value 14</th>
<th>Value 15</th>
<th>Value 16</th>
<th>Value 17</th>
<th>Value 18</th>
<th>Value 19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>23.5</td>
<td>24.2</td>
<td>25.0</td>
<td>25.5</td>
<td>26.0</td>
<td>26.5</td>
<td>27.0</td>
<td>27.5</td>
<td>28.0</td>
<td>28.5</td>
<td>29.0</td>
<td>29.5</td>
<td>30.0</td>
<td>30.5</td>
<td>31.0</td>
<td>31.5</td>
<td>32.0</td>
<td>32.5</td>
<td></td>
</tr>
<tr>
<td>Light intensity</td>
<td>1000</td>
<td>1200</td>
<td>1500</td>
<td>1800</td>
<td>2000</td>
<td>2500</td>
<td>3000</td>
<td>3500</td>
<td>4000</td>
<td>4500</td>
<td>5000</td>
<td>5500</td>
<td>6000</td>
<td>6500</td>
<td>7000</td>
<td>7500</td>
<td>8000</td>
<td>8500</td>
<td></td>
</tr>
<tr>
<td>Humidity (RH)</td>
<td>40</td>
<td>50</td>
<td>60</td>
<td>70</td>
<td>80</td>
<td>90</td>
<td>100</td>
<td>110</td>
<td>120</td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td>210</td>
<td>220</td>
</tr>
</tbody>
</table>

Comments

- Data collected from Danish pilot studies conducted in May 2007.
- Task No. 4 of 22.

Note: The table includes various parameters such as temperature, light intensity, humidity, and other environmental conditions. The data are presented for a range of values, indicating variability in the study conditions.
Project Description

EPA-NR is a project in the framework of the ‘Intelligent Energy – Europe’ Programme (IEE) of the European Commission. EPA-NR provides an assessment method for the Energy Performance Certificate according to the Energy Performance of Buildings Directive (EPBD) and offers additional advice for existing non residential buildings. The project, in which seven EU Member States are participating, is co-ordinated by EBM-consult, The Netherlands. It started in January 2005 and will last for two years.

The EPA-NR method consists of an energy calculation model and process supporting tools like inspection protocols, checklists and building component libraries. The EPA-NR method produces an Energy Performance Certificate for non-residential buildings with the possibility for additional advice. The two major target groups are policy makers and practitioners who are each addressed with a tailored set of deliverables.

<table>
<thead>
<tr>
<th>Policymakers</th>
<th>Practitioners of EPA-NR</th>
</tr>
</thead>
<tbody>
<tr>
<td>State-of-the-art report: need for instruments and policy framework</td>
<td>Description of the method and instruments</td>
</tr>
<tr>
<td>National reports on pilot projects</td>
<td>Checklist for the intake interview</td>
</tr>
<tr>
<td>Overall report on pilot projects</td>
<td>Building inspection protocol</td>
</tr>
<tr>
<td>Recommendations for the application of EPA-NR in practice</td>
<td>EPA-NR software</td>
</tr>
<tr>
<td>Dissemination</td>
<td>Report on the functionality of the instruments</td>
</tr>
<tr>
<td>Brochures (general and thematic)</td>
<td></td>
</tr>
</tbody>
</table>

The EPA-NR method:
- is in line with the EPBD and CEN-standards
- takes into account the local framework with respect to legislation, technical aspects, design-and building maintenance processes and acceptance by actors in the market
- is modular and flexible and therefor easily adjustable to the national context, the diversity in the market and new or modified CEN-standards
- is tested through pilot projects in seven EU Member States
- can be further developed and maintained at low cost due to the joint efforts
- offers additionally policy recommendations addressing all levels of authorities in Europe
- guarantees simple transfer to all EU Member States