Comparison of discrete measurements by directed graphical models using Gibbs Sampling

Højbjerre, Malene

Publication date:
2007

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
June 2002

7th Valencia International Meeting on Bayesian Statistics

www.math.au.c.dk/~malene
malene@math.au.c.dk
Aalborg University
Department of Mathematical Sciences
Malene Højlund

Using Gibbs Sampling
by Directed Graphical Models
Comparison of Discrete Measurements
Which method is best to screen for cervical cancer?

- Biopsy analyzed in DNA smear analyzed by DNA
- Biopsy analyzed in microscopy smear analyzed in microscopy

For 106 women HPV in uterine cervix detected by 4 screening methods:

Screening for cervical cancer:

Motivation
Inference about Θ

Θ: parameters

λ: latent variables

γ: unobserved data and/or

X: observed data

where

$\Theta \cap \gamma \cap X = \Lambda$

| Vertices
| Termiology
| Directed Graphical Models

$\Lambda \cap \gamma \cap X = \Lambda$

Directed Local Markov Property:

$\lambda \cap \gamma \cap X = \Lambda$

Recursivity factorization:

$\delta \Theta \cup \gamma \cup X = \Lambda$

Directed Markov wrt to δ

Joint distribution of Λ is

$\Lambda \cup \gamma \cup X = \Lambda$

Directed Acyclic Graph

Defined by

$\Lambda \cup \gamma \cup X = \Lambda$

E: set of directed edges

$\Lambda \cup \gamma \cup X = \Lambda$

Directed Acyclic Graph

$\Lambda \cup \gamma \cup X = \Lambda$

Directed Graphical Models

Launhzen (1996)
Inference is based on summary statistics of simulated values

Marginalize by considering only parts of simulated values

\[\pi(x|\theta, \mathbf{b}) \]

Converges to a Markov chain with stationary distribution \(p(x|\theta) \)

\[\Theta \cap \Lambda \supseteq \Lambda \]

\[\prod_{\Sigma \subseteq \Theta} \left(\prod_{\Theta} p(\lambda|\theta) \right) \propto (\Lambda \setminus \Lambda|\Theta) \]

Successfully simulate values from the full conditionals

Gibbs Sampling:

\[\int p(x|\theta, \mathbf{b}) \, dx = (x|\theta) \, d(\theta) \]

Posterior

\[\int p(\theta) \, d(\theta) \]

Prior

Bayesian Inference: all quantities random

Bayesian Inference by MCMC Methods
Influence of prior

Prior sensitivity analysis by likelihood inference

- Prior: a prerequisite

- CODA (Convergence Diagnostics and Output Analysis)

- BUGS (Bayesian Inference Using Gibbs Sampling)

Software:
\[
\left(\frac{d\hat{\phi}^i(x|\theta)}{d\theta} \right) \frac{d\phi^j(x|\theta)}{d\theta} = \left(\frac{d\hat{\phi}^i(x|\theta)}{d\theta} \right) \frac{d\phi^j(x|\theta)}{d\theta}
\]

Likelihood Inference by MCMC Methods
Log-likelihood of function

3. Maximize wrt. log-likelihood value over bin to approximate profile

2. Bin pairs wrt. function value corresponding log-likelihood approximation

1. Compute function value of each grid point and pair this with profile log-likelihood

2. Maximize over the grid to approximate profile log-likelihood

1. Compute \(\log L(\theta|\theta_0)^N \) in grid formed by quantiles of Gibbs output

Profile log-likelihood Approximation by Gibbs Sampling:

\[
\log L(\theta|\theta) \downarrow \sup_{\theta} \log P_{\theta} = (x|\theta) \downarrow \log L(\theta|\theta_0)^N
\]
Directed Graphical Model: Screening for Cervical Cancer
Screening for Cervical Cancer
Screening for Cervical Cancer

<table>
<thead>
<tr>
<th>Prior 1</th>
<th>Prior 2</th>
<th>Prior 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>B(9.4, 281) b(1.2)</td>
<td>B(9.4, 281) b(1.2)</td>
<td>B(9.4, 281) b(1.2)</td>
</tr>
<tr>
<td>B(3.2, 1.5) b(1.2)</td>
<td>B(3.2, 1.5) b(1.2)</td>
<td>B(3.2, 1.5) b(1.2)</td>
</tr>
<tr>
<td>B(1.3, 8.2) b(2.1)</td>
<td>B(1.3, 8.2) b(2.1)</td>
<td>B(1.3, 8.2) b(2.1)</td>
</tr>
<tr>
<td>B(69.6, 2.2) b(2.1)</td>
<td>B(69.6, 2.2) b(2.1)</td>
<td>B(69.6, 2.2) b(2.1)</td>
</tr>
</tbody>
</table>

Quantities of Interest:

\[\text{Sens} = \frac{1}{1 - (1 - \text{Spec})(1 - \text{Prior})} \]

\[\text{Spec} = \frac{1}{1 - (1 - \text{Sens})(1 - \text{Prior})} \]
Prior sensitivity analysis by approximating profile log-likelihood

DNA has a few false positives

Prior 2 (large variance) contradicts the well-known fact that DNA has few false positives

Prior 3

Prior 2

Prior 1

Prior Great Influence

Posterior

Bayesian Analysis:

Screening for Cervical Cancer
Likelihood analysis reveals problems with default prior
Conclusions very dependent on prior

DNA has a few false positives

Projected log-likelihood
Screening for Cervical Cancer
measurements where true class unknown

Analysis forms basis for a general method to compare discrete

supplement to the Bayesian analysis

Likelihood analysis reveals problems with default priors

Prior sensitivity analysis is possible by MCMC likelihood inference

Discussion:

based on prior information that DNA has no false positives

Smear analyzed by DNA is most sensitive and most specific

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Posterior mean</th>
<th>95% Cred. Interval</th>
<th>MLE 95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sens</td>
<td>0.32</td>
<td>0.26 – 0.40</td>
<td>0.31</td>
</tr>
<tr>
<td>SensM</td>
<td>0.85</td>
<td>0.76 – 0.93</td>
<td>0.85</td>
</tr>
<tr>
<td>SensM8</td>
<td>0.48</td>
<td>0.48 – 0.67</td>
<td>0.48</td>
</tr>
<tr>
<td>SensM86</td>
<td>0.72</td>
<td>0.55 – 0.80</td>
<td>0.72</td>
</tr>
<tr>
<td>SensM865</td>
<td>0.79</td>
<td>0.69 – 0.89</td>
<td>0.79</td>
</tr>
<tr>
<td>SensM8654</td>
<td>0.86</td>
<td>0.76 – 0.96</td>
<td>0.86</td>
</tr>
<tr>
<td>SensM86549</td>
<td>0.97</td>
<td>0.86 – 0.98</td>
<td>0.97</td>
</tr>
</tbody>
</table>

Summary: (Prior 1 and Prior 3)

Screening for Cervical Cancer
Using Gibbs sampling Manual (version ii), MRC Biostatistics Unit, Cambridge.

Spielhalter, D. J., Thomas, A., Best, N. G., Gilks, W. (1999). BUGS 0.5 Bayesian inference

Højberge, M. (2002). Profile likelihood in directed graphical models from BUGS output, to
Mathematical Sciences, Aalborg University, Aalborg, Denmark.

directed graphical models by Gibbs sampling, Technical Report R-01-2030, Department of
Biostatistics, MRC Biostatistics Unit, Cambridge.

Højberge, M. (2001b). Analysis software for Gibbs sampling output, version 0.30, MRC Biostatistics Unit,

References