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pu-Synthesis — A Non-Conservative Methodology
for Design of Controllers with Robustness
Towards Dynamic and Parametric Uncertainty

Steen Tegffner-Clausen and Palle Andersen

Aalborg University, Department of Control Engineering, Frederik Bajers Vej 7, DK-9220 Aalborg
@, Denmark.

Abstract: This paper provides an introduction to p-synthesis. The main purpose of this work is
to illustrate how to utilize the structured singular value p in design of control systems which achieve
robust performance in face of both dynamic and parametric uncertainty. The emphasis will be
on practical design studies rather than mathematical subtleties. A brief introduction to u-theory
will be given. As it turns out, the theory is comprehensibly simple and straight forward. The
reason for it not being more well known and recognized comes from the fact that its simpleness is
usually hidden in lengthy messy mathematical expressions connected with the problems concerning
the computation of u. We will try to avoid this pitfall. Comparisons with standard H., control
theory will be made. It will be shown how much of the conservativeness inherent in H, design
may be avoided using p methods. Specifically performance and robustness requirements can be
decoupled as opposed to H design. Furthermore parametric uncertainty can be handled without
conservativeness. The difference between complex and mixed real and complex p synthesis will be
emphasized. The latter unfortunately turns out to be rather difficult. However a new approach to
this special case will be suggested. Several case studies will be performed using both complex and
mixed p-synthesis.

Keywords: Robust control, structured singular values, p analysis, p synthesis, paramet-
ric/dynamic uncertainty.

1 Introduction

Design of controllers with guarantied closed loop stability and performance for uncertain plants has been
the focus of active research for almost 2 decades now. Most of the research on robust control has focused on
H oo like problems. However it turns out that many practical problems do not readily fit the standard H .
problem setup since the involved model uncertainty is structured rather than unstructured. This causes
any H., controller design to be potentially conservative and thus limits the obtainable performance of the
closed loop system. In [1] it is furthermore shown that estimated frequency domain model uncertainty
ellipses cannot be represented accurately using an unstructured perturbation set.

Fortunately theory exists that non-conservatively handles these problems, namely the structural singular
value or p theory. In many practical applications p theory is more appropriate for system analysis and
controller synthesis. p theory has not been as widely recognized as H o, theory, probably due to the small
amount of literature on u and to the computational difficulties associated with p. Recently however
algorithms for computing p! have become commercially available through the MATLAB? p-Analysis and
Synthesis Toolbox [2]. Also the literature on y is slowly getting better, see e.g. the excellent introduction
to p-analysis by Holohan [3].

IMore accurately: upper and lower bounds on u.
2MATLAB is a registered trademark of The MathWorks, Inc.



An approach to controller synthesis using u for complex perturbations, frequently denoted D-K-iteration,
has been known for some time now [4] and controller synthesis for structured complex perturbation sets
can be accomplished with the aid of the MATLAB p toolbox.

Unfortunately many practical application problem calls for the use of mixed real and complex perturbation
sets. E.g. analysis of plant parameter variations which is an often encounted problem rely on the use of
mixed or even purely real perturbation sets. Until recently controller synthesis under mixed perturbation
sets was an unsolved problem. A solution to this problem has been given by Young [5, 6]. Unfortunately
the synthesis procedure proposed by Young is quite involved. Even though it relies on the same priciples
it is certainly more mathematically complex than the D-K iteration procedure used for purely complex
perturbation sets.

A different approach for mixed u synthesis has been proposed by Tgfiner-Clausen et al. [7]. This approach,
denoted p-K-iteration is computationally much simpler than the procedure proposed by Young and has
been shown to produce quite promising results [1, 7].

The main purpose of this paper is to provide an introduction to robust controller synthesis using the
structured singular value p. However, in order to put things into perspective, a survey of robust control
design methods using the H, approach will be given initially. The role of singular values will be discussed
as will some of the commonly used singular value bounded unstructured uncertainty descriptions. The
potential conservatism inherent in an unstructured uncertainty assumption will be emphasized. It will
be shown how the nominal performance problem and the robust stability problem can be addressed with
Hoo methods. However, it turns out that the robust performance problem cannot be nonconservatively
formulated in an Ho, framework. Then it will be shown how the structured singular value may be used
to overcome the shortcommings of the H., approach. Controller design using p will then be presented
both for purely complex and for mixed real and complex perturbation structures. Finally two examples
will be included to illuminate the different methods.

The remainder of the paper is organized as follows. In Section 2 an introduction to robust control analysis
and synthesis is given using singular values (). In Section 3 robust stability and performance will be

addressed using the structured singular value (u). Finally in Section 4 two design examples will be given
to illustrate the methods and a few general conclusions will be drawn.

2 Robust Control Design using Singular Values
Consider the general multivariable feedback scheme shown in Figure 2.1. The plant and controller transfer
function matrix are denoted G(s) and K (s) respectively. Notice that this is a one-degree-of-freedom

control configuration. Often a precompensator is included to improve the transient response of the closed
loop system. In that case the feedback controller K (s) is designed to fulfill mainly the following goals:

e Nominal closed loop stability.
e Nominal performance (disturbance rejection).
¢ Robust closed loop stability.

e Robust performance.

Robust stability means that the closed loop system is stable under all possible perturbations to the plant
G(s). Robust performance will be used to indicate that the nominal performance requirements are met
under all possible perturbations to the plant G(s).

2.1 Nominal Stability

The stability of a multivariable feedback control system is determined by the extended or generalized
Nyquist stability criterion [8]. .



Figure 2.1: General feedback control configuration.

Theorem 2.1 (Generalized Nyquist Stability Criterion I) If the open loop transfer function ma-
triz G(s)K(s) has p poles in the right-half s-plane, then the closed loop system is stable if and only if
the map of det(I + G(s)K(s)), as s traverses the Nyquist D contour once, encircles the origin p times
anticlockwise assuming no right-half s-plane zero-pole cancellations have occurred forming the product

Remember that the Nyquist D contour goes up the imaginary axis from the origin to infinity, then along
a semicircular arc in the right half plane until it meets the negative imaginary axis and finally up to the
origin. If any poles of G(s)K (s) are encountered on the imaginary axis the contour is intented so as to
include these poles.

An equivalent criterion can be established using characteristic loci. If A\;(w) denotes an eigenvalue of
G(jw)K (jw) the characteristic loci is defined as the graphs of \;(w) for 1 < i < n where n is the size of
the product G(s)K (s) as jw encircles the Nyquist D contour. Now let A arg [rad] denote the change in
the argument as s traverses the D contour so that A arg/(2m) equals the number of origo encirclements.
Since the determinant equals the product of the eigenvalues we then have that

Aarg {det(I + P(s))} = Aarg {H (I + P(s))} = Aarg {H 1+ )\i(P(s)))}

= Z Aarg (14 Xi(P(s))) (2.1)

Since the number of encirclements of 1 + A;(P(jw)) around origo equals the number of encirclements
of \;(P(jw)) around the Nyquist point -1 we thus have the equivalent generalized Nyquist criterion in
Theorem 2.2.

Theorem 2.2 (Generalized Nyquist Stability Criterion II) If the open loop transfer function ma-
triz G(s) K (s) has p poles in the right-half s-plane, then the closed loop system is stable if and only if the
characteristic loci of G(s)K (s) encircle the point (—1 + 0j) p times anticlockwise assuming no right-half
s-plane zero-pole cancellations have occurred.

The Generalized Nyquist Stability Criterion will be used in assessing not only nominal stability but also
robust stability of an uncertain closed loop system, see Section 2.3.



2.2 Nominal performance

From Figure 2.1 it is easily seen that

y(s) = To(s) (r(s) —n(s)) + So(s)d(s) (2.2)
eo(s) = So(s) (r(s) — d(s) —n(s)) (2.3)
e(s) =r(s) —y(s) = So(s) (r(s) — d(s)) + To(s)n(s) (2.4)
u(s) = Mo(s) (r(s) — n(s) — d(s)) (2.5)
where
To(s) = (I + G(s)K(s)) ™' G(s)K (s) = G(s)K (s) (I + G(s)K (s)) " (2.6)
So(s) = (I +G(s)K ()™ (2.7)
M,(s) = K(s) (I + G(s)K (s)) "' = (I + K(s)G(s)) "' K(s) (2.8)

are the complementary sensitivity, sensitivity and control sensitivity functions respectively. The subscript
() emphasizes that the sensitivity functions are all evaluated at the plant output. Since matrix multipli-
cation is not commutative G(s)K (s) # K(s)G(s) in general. It is thus necessary to distinguish between
the sensitivity functions evaluated at the plant input and at the plant output, i.e. at the actuators and
the sensors respectively. The sensitivity functions at the plant input are given by:

Ti(s) = K(s)G(s) (I + K(s)G(s)) " = (I + K(s)G(s)) ' K(s)G(s) (2.9)
Si(s) = (I + K(s)G(s)) ™" (2.10)
M;(s) = (I+ K(s)G(s)) ™" K (s) (2.11)

It is seen that M;(s) = M,(s) = M(s), so the control sensitivity is independent of the chosen loop
breaking point. The relevance of the input sensitivities will become clear shortly.

Now let 6(s) = r(s) — d(s) denote the “generic” external disturbance. Then from Equation (2.2)-(2.5)
the following observations can be made

e For good disturbance error reduction, that is for §(s) to affect e(s) to the least extent, (2.4) shows
that the sensitivity S,(s) should be small.

e For good sensor noise error reduction, that is for n(s) to affect e(s) to the least extent, (2.4) shows
that the complentary sensitivity T,(s) should be small.

e For disturbances d(s) and noise n(s) to affect the control input u(s) to the least extent Equation (2.5)
shows that the control sensitivity M (s) should be small.

For scalar systems the size of the (scalar) transfer functions S,(s), T,(s) and M (s) are naturally measured
by the absolute value of the complex valued frequency responses |S,(jw)|, [T, (jw)| and | M (jw)|. However,
for multivariable systems the frequency responses S,(jw), T,(jw) and M (jw) will be comples valued
matrices. Thus some scalar measure of the size of a complex valued matrix is needed. Since eigenvalues
are used in Theorem 2.2 it is tempting to use the spectral radius p

p(A) = max |X;(4)] (2.12)

as measure. It is however a well documented fact, see e.g. [9], that eigenvalues may give poor indication of
the “gain” of a transfer function matrix G(jw) if the gain is measured as the 2-norm ratio of the output to
the input. Instead it has become standard practice to use singular values as gain measure. The singular
values of a complex matrix A € C"*™, denoted o;(A), are the k largest nonnegative square roots of the
eigenvalues of A A where k = min{n,m} and A¥ denotes the complex conjugate transpose of A. Thus

oi(A) = N(AFA)  i=1,2-- )k (2.13)

It is usually assumed that the singular values are ordered such that o; > o;41. It is then a well known

fact that the maximum () and minimum (¢) singular values are also given by

_ - . |A’LL|2 _
5(4) = 01(4) = max L5 =14l (2.14)

N . . |Au|2
a(A) = ox(4) = min uls

= A7, if A7 exists (2.15)



Thus the gain of a complex matrix is limited by the maximum and minimum singular value as the input
vector u varies over all possible directions. Equations (2.14) and (2.15) are one of the main reasons for
using singular values to represent the gain of a transfer function matrix. The ratio between the maximum
and minimum singular value is denoted the condition number &:

K(A) = % (2.16)
Using largest singular value as measure, for good disturbance rejection one would thus require:

7 (So(jw)) € 1 (2.17)
Similarly, for good sensor noise rejection one would require:

a(To(jw)) < 1 (2.18)
and for low sensitivity of the input

7 (M(jw)) <1 (2.19)

However, because T,(jw) + S,(jw) = I the sensitivity S,(jw) and the complementary sensitivity T, (jw)
cannot both be small in the same frequency range. Consequently it is demonstrated by (2.17) - (2.18)
that optimal tracking or disturbance rejection and optimal sensor noise rejection cannot be obtained in
the same frequency range! This is a well-known result from classical control. Fortunately the spectra
of disturbances §(s) are usually concentrated at low frequencies whereas the spectra of measurement
noise n(s) is concentrated at higher frequencies. Thus one may shape the complementary sensitivity
T,(jw) and the sensitivity S,(jw) such that &(S,(jw)) is small at low frequencies and (7, (jw)) is small
at high frequencies. In modern process control systems, sensor noise will frequently not be of practical
importance. However, as we shall see in the next section, robustness to unstructured uncertainty places
bounds on the sensitivity functions as well.

Often a performance specification for robust control is given as a weighted sensitivity specification:
(W2 (jw)So(jw)Wpi (jw)) <1 Yw (2.20)

where W1 (s) and Wpa(s) denotes the input and output weight respectively, see Figure 2.2. It is assumed
that the weights have been scaled such that a unity bound on the RHS makes sence.

&'(s)

— Wn (s)

i(s)

So(s) L W (s) LG

Figure 2.2: Output sensitivity S,(s) with input weight Wp1(s) and output weight Wpa(s).

The normalized input vector 6'(s) is assumed to belong to the set of normbounded functions

D ={¢

I ()5 <1} (2.21)

The input weight W1 (s) is used to transform the normalized inputs §'(s) to the physical inputs d(s) =
Wpi(s)d'(s). If e.g. the physical inputs are measured in different units, Wp (s) is used to normalize §(s)
such that ¢'(s) have equal relative magnitude. The physical inputs are thus assumed to belong to the set

D= {5 ‘ Wit (s)8(s)]2 < 1} . (2.22)

Treating sets of generic disturbances §(s) is attractive because at the design stage it is rarely possible to
predict exactly what type of setpoint changes r(s) or disturbances d(s) are going to occur during actual
operation. Of course, in principle, the control performance could deteriorate significantly if the assumed
disturbances for the design is not exactly equal to the input encountered in practice. Since the spectra
of ¢ is usually concentrated at low frequencies, Wp1(s) will generally be large at low frequencies and
small at high frequencies. If set-point changes for the different outputs are of primary importance then



Wpi(s) = s7'I is a reasonable weight. If, on the other hand, disturbance rejection is more important
then Wpi(s) = Gqa(s) where G4(s) is a disturbance model is more appropriate. See [8] for a thorough
analysis of input weights.

The output weight Wpa(s) is used to trade off the relative importance of the individual errors in e(s) and
to weigh the frequency range of primary interest.

The nominal performance objective is thus, given weighting functions W1 (s) and Wpa(s), to design a
stabilizing controller K (s) such that the cost function

Tnp = [[Wp2(8)So(8)Wp1(5) | o (2.23)
is minimized. Thus
K(s) = K(glef,cs [Wp2(8)So(8) W1 (8)]l (2.24)

where Kg denotes the set of all stabilizing controllers and inf(-) denotes the infimum. If a controller can
achieve [|[Wy2(8)So(s)Wpi(s)ll,, < 1, we say that the closed loop system has nominal performance. A
very convenient way of formulating the nominal performance problem is by use of the 2x2 Block Problem
Formulation. In Figure 2.3 it is shown how the weights W1 (s) and W2 (s) may be include into the closed
loop system in Figure 2.1. The augmented closed loop system may then be represented as a 2 x 2 block
problem. The generalized plant N (s) contains the nominal plant G(s) as well as weighting functions to
reflect nominal performance objectives. The reference 7(s) may be included in d'(s) or otherwise the
response to set-point changes may be formed separately by the use of prefilters.

b €' (s) d'(s)
W2 Wl
(s) (s) (s) o (s)
(s) (s) N y(s) "
") (%) 5) B85 s NG) IR u(s e(s
51 K0 [ 66 (@) = u(s) (5)

Figure 2.3: Nominal performance problem. Augmented closed loop system and corresponding 2 x 2 block
problem.

The transfer function from d'(s) to €'(s) is given by the linear fractional transformation (LFT):
e'(s) = Fi(N(s), K(s))d'(s) = (N11(s) + Ni2(s) K (s)(I — Nao(s)K(s)) " Na1(s)) d'(s) (2.25)
= Whpa(5) S, () Wi (s)d'(s) (2.26)
Now the optimal nominal performance problem is one of finding a controller such that:

K(s)= inf [[Fy(N(s), K(s))ll

2.27
K(s)eEKsgs ( )

oo °

The problem (2.27) is a standard Ho, problem which can be solved with well-known techniques, see
Section 2.5.

2.3 Robust Stability

At this point we will consider only unstructured complex perturbations like e.g.

e Additive uncertainty: G(s) = G(s) + A(s).



e Input multiplicative uncertainty: G(s) = G(s)(I + A(s)).

e Output multiplicative uncertainty: G(s) = (I + A(s))G(s).

e Inverse input multiplicative uncertainty: G(s) = G(s)(I + A(s))~'.
e Inverse output multiplicative uncertainty: G(s) = (I + A(s))"'G(s).

where A(s) obeys:
5(A(jw)) < Lw), VYw > 0 (2.28)

The perturbation A( jw) is thus a full complex matrix bounded only in magnitude. Usually two diagonal
weighting matrices Wy (s) and Wy2(s) are introduced such that

A(s) = W () A(s) Wi (s) (2.29)

and 6(A)(jw) < 1, Yw. If any structural information of A(s) is available, e.g. of the relative magnitude
of the individual elements, W, (s) and W,2(s) should be chosen in order to reflect this as adequately
or non-conservatively as possible, e.g. such that all elements in A(s) are of the same magnitude, see
Example 2.1. However, this is not naturally performed using unstructured perturbations. If structural
information of A(s) is available it is much more natural to use the structured singular value approach as
outlined in Section 3.

Example 2.1 (Structured Uncertainty with Full Perturbation B!ock) Assume that an uncertain-
ty analysis has resulted in an additive uncertainty model G(s) = G(s) + A(s) with

% K [ 10611 612 ]

Ale) = 1+7s | 01621 022 (2.30)

where §;; € C, |0;;] < 1. Notice that this corresponds to each element of the plant transfer function being
confined to a disc in the Nyquist plane at each frequency w. It is thus a structured description of the
uncertainty. Since &([10 1;0.1 1]) = 10.05 we have that

10.05K
T 14+ Tjw

5(A(jw)) <

(2.31)

We now must introduce weighting matrices such that the scaled uncertainty block A(s) satisfy 6(A(s)) < 1.
A simple choice would be

10.06K
1+7s

Wul (S) = - IQ, Wu2 (8) = IQ (232)

Then the corresponding A(s) would be

A(s) = 1 [ 10611 d12 ] ~ [ 011 0.161 ]

T 10.05 | 0.1021 a2 0.0185;  0.1855 (2.33)

Assuming an unstructured uncertainty description we will approximate (2.33) with a full complex block.
This will, however, be a rather conservative approzimation since the size of the different elements in A(s)
are different up till a factor 100. If we instead choose

11K [ 10 0
Wi (s) = Iy, Wz (s) = T+ 75 [ 0 1 ] (2.34)
Then the corresponding A(s) would be
_ i (511 0.1612
Al =17 [ 01001 ] (2.35)

and we have reduced the relative magnitude to 10. Consequently o full complex block approzimation will
be less comservative.

If no information of the structure of the perturbation A(s) is available, W1 (s) = I and Wa(s) = wy(s)-I
with |w, (jw)| = £(w) or visa-versa would be a natural choice.



2.3.1 The Small Gain Theorem

Now the celebrated Small Gain Theorem, see e.g. [10], will be introduced and applied in connection with
the above uncertainty structures. Consider the closed loop system in Figure 2.1 and let P(s) = G(s)K (s)
be a square transfer function matrix.

Theorem 2.3 (Small Gain Theorem) Assume that P(s) is stable. Then the closed loop system is
stable if the spectral radius p(P(jw)) < 1, Vw.

Proof of Theorem 2.3 (By contradiction) Assume that the spectral radius p(P(jw)) < 1, Vw and
that the closed loop system is unstable. Applying Theorem 2.1 instability implies that the map of
det(I + P(s)) encircles the origin as s traverses the Nyquist D contour. Because the Nyquist contour is
closed so is the map of det(I 4+ P(s)). Then there exists an € € [0,1] and a frequency w* such that

det(I + eP(jw*)) =0 i.e. the map goes through the origin (2.36)

& J[rT+ePGw)) =0 (2.37)

& 1 z-|— eX; (P(jw*)) =0 for some ¢ (2.38)

& Ai (P(jw™®)) = —% for some (2.39)

= [Xi (P(jw™)| >1 for some % (2.40)

which is a contradiction since we assumed that p(P(jw)) < 1, Vw. 0

Theorem 2.3 states that for an open-loop stable system, a sufficient condition for closed loop stability is to
keep the loop “gain” measured by p(P(jw)) less than unity. Fortunately this is only a sufficient condition
for stability. Otherwise the usual performance requirement of high controller gain for low frequencies
could not be achieved. Theorem 2.3 thus provides only a sufficient, that is a potentially conservative,
condition for stability.

The Small Gain Theorem will now be used to assess the closed loop stability under unstructured norm-
bounded perturbations like (2.28). This application is classic in H, control theory. A famous and often
quoted paper on this is [11]. Let us e.g. assume an additive perturbation:

G(s) = G(s) + Wua(s)A(s) W (s) (2.41)

where (A(jw)) < 1. This can be represented in block-diagram form as in Figure 2.4. Let P(s) denote
the transfer matrix “seen” by A, see also Figure 2.4. It is easily seen that P(s) = Wy (s)K(s)(I +
G(8)K(5)) 1 Waa(s) = Wy1(s) M (5)Wya(s). We then have the following theorem.

Wul(s)_’ A _’Wu2(3)

D)y K (s) 5 o) © = S P w(s)

P(s)

Figure 2.4: Closed loop system with additive perturbation. P(s) = Wyu1(s)K (s)(I + G(s)K(5)) 1 Waa(s)
denotes the transfer function “seen” by the perturbation A.

Theorem 2.4 (Robust Stability) Assume that the interconnection P(s) is stable and that the pertur-
bation A(s) is of such a form that the perturbed closed loop system is stable if and only if the map of
det(I — P(s)A(s)) as s traverses the D contour does not encircle the origin. Then the closed loop system



in Figure 2.4 is stable for all perturbations A(s) with (A(jw)) < 1 if and only if one of the following
three equivalent conditions are satisfied:

det(I — P(j )A(jw)) #0 Yw, VA(jw) 3 6(A(jw)) <1 (2.42)
& p(Pw)A( )) Vw, VA(jw) 3 0(A(jw)) < 1 (2.43)
& (P (Jw)) Yw (2.44)
& [Pl (2.45)

Proof of Theorem 2.4 Assume that there exist a perturbation A*(s) such that 5(A*(jw)) < 1 and
that the closed loop system is unstable. Then the map of det(I — P(s)A(s)) encircles the origin as s
traverses the Nyquist D contour. Because the Nyquist contour is closed so is the map of det(I—P(s)A(s)).
Consequently there exists an € € [0,1] and a frequency w* such that

det(I — P(jw™)eA*(jw*)) = 0. (2.46)
Since
o(eA*(jw*)) = ea(A™(jw")) <1 (2.47)

€A*(s) is just another perturbation from the set of possible perturbations. Thus the closed loop system is
stable if and only if (2.42) is satisfied. The sufficiency of (2.43) follows directly from Theorem 2.3. Since

p(P(jw)A(jw)) < 6(P(jw)A(jw)) < 6(P(jw))d(A(jw)) < 3(P(jw)) < [[P(s)ll5 (2.48)
both (2.44) and (2.45) are sufficient conditions for closed loop stability.

To prove necessity of (2.43) assume that is a A*(s) for which 6(A*(jw)) < 1 and a frequency w* such
that p(P(jw*)A*(jw*)) = 1. Then

M (P(jw*)A*(jw*))| =1 for some (2.49)
& X (P(jw*)A*(jw*)) = e’ for some ¢ (2.50)
& Xi(P(jw)e PP A*(jw*)) = for some 4 (2.51)
& M(P@EwH)A*(ju)) = +1 for some i (2.52)
where A*(s) is just another perturbation from the set and p(P(jw*)A*(jw*)) = 1. Therefore
det(I — P(jw*)A*(jw*)) =0 (2.53)

and the necessity of (2.43) has been shown.

To prove necessity of (2.44) we will show that there exists a perturbation A*(s) for which 7(A*(jw)) <1
such that det(I — P(jw*)A*(jw*)) = 0if 6(P(jw*)) = 1. To do so, let D = diag{1,0,---,0} and perform
a singular value decomposition of P(jw*):

P(jw*) =USVH (2.54)

where U and V are unitary matrices. Let A*(jw*) = VDU¥. Since U and V are unitary 6(A*) = 1
We then have that

det(I — P(jw*)A*(jw*)) = det(I — USVHVDUH) = det(I - USDUH) =
det (U(I — =D)UM) = det(U) det(I — £D) det(U") = det(] — D) =0 (2.55)

since the first row and column in I — XD are zero. In fact, there exists an infinite number of perturbations
for which (2.55) is fulfilled since we may choose D = diag{1,02,--- ,0%} where o; < 1fori=2,--- k.

The above proof is due to Lethomaki [12]. Theorem 2.4 states that if ||P(s)||c < 1, there is no perturba-
tion A(s) (6(A(jw)) < 1) which makes det(I — P(s)A(s)) encircle the origin as s traverses the Nyquist D
contour. Notice that we assumed that the absence of encirclements is necessary and sufficient to maintain



stability. This is the case, for example, when all perturbations A(s) are stable or when G(s) and G(s) has
the same number of unstable (right half plane) poles. One of these assumptions are standard in robust
control.

Notice that the co-norm constraint (2.45) in Theorem 2.4 is not conservative since we have bounded
the uncertainty in terms of the spectral norm (maximum singular value). Thus if |P(s)|lec > 1 there
exists a perturbation A*(s) for which 6(A*(jw)) < 1 that will destabilize the closed loop system. If
the uncertainty is tightly represented by A(s), then the singular value bound on P(jw) is thus a tight
robustness bound.

Now let us return to the additively perturbed closed loop system in Figure 2.4. From Theorem 2.4, robust
stability of the closed loop system is thus obtained if and only if

g(P(jw)) <1 Yw (2.56)
s & (Wu1 () K (jw) (I + GUw)K (jw)) ™" Was (jw)) <1 Vw (2.57)
& 0 (W1 (jw)M (jw)W,(jw)) < 1 Yw (2.58)

As for additive uncertainty, we may compute singular value bounds that ensure robust stability under
other perturbation models. In Table 2.1 results are given for the uncertainty structures introduced
previously.

Perturbation Stability demand Norm bound

Additive uncertainty Control sensitivity small Wi (s) M (8)Wya(s)||oo < 1
Input multiplicative uncertainty Comp. sensitivity (input) small W1 (8)T;(s)Waya(s)|leo < 1
Output multiplicative uncertainty | Comp. sensitivity (output) small | |[|[Wy1(8)Ts(8)Wu2(s)||eo < 1
Inverse input mult. uncertainty Input sensitivity small Wu1(8)Si(8) W2 (s)||eo < 1
Inverse output mult. uncertainty | Output sensitivity small Wau1(8)So(s) W2 (s)|loo < 1

Table 2.1: Different uncertainty descriptions and their influence on the sensitivity functions.

The robust stability objective is thus, given e.g. an additive uncertainty specification W2 (s)A(8) W1 (s),
to design a nominally stabilizing controller K (s) such that the cost function

Tu = [[Wur (8) M (8)Wy2(s)|| o (2.59)
is minimized. Thus

K(s) = inf ||Wui(s)M(s)Wua(s)]|

2.60
K(s)eEKs ( )

oo
where g denotes the set of all nominally stabilizing controllers. If a controller can achieve 7, < 1, we
say that the closed loop system is robustly stable. Notice then how the structure of the robust stability
problem (2.60) equals the structure of the nominal performance problem (2.24). Consequently the robust
stability problem may be formulated as a 2 x 2 block problem as well. Given an additive uncertainty
specification, a 2 x 2 block problem formulation may be derived, see Figure 2.5. Compare also with
Figure 2.4.

The transfer function from w(s) to z(s) s given by the LFT
2(s) = Fi(N(s), K(5))w(s) = War () K (5) (I + G(5)K (5)) ™ Waa(s)w(s)
= W1 (s) M (s)Wya(s)w(s). (2.61)
The optimal robust stability problem is thus one of finding the controller given by

K(s) = Kgg£K||E(N(S)7K(S)) (2.62)

Like the nominal performance problem, the robust stability problem (2.62) is a standard ., problem
with a known solution.
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Figure 2.5: Uncertain closed loop system and corresponding 2 X 2 block problem.
2.4 Robust Performance
The robust performance objective is of course derived from (2.23) with nominal sensitivity S,(s) replaced
by perturbed sensitivity S,(s):

o = |2 ()5 ()W (9)] (2.63)
where S,(s) denotes the perturbed sensitivity function. Let us once more illustrate with an additive
uncertainty model. The robust performance problem can then be formulated as in Figure 2.6.

T e'(s) ldl(S)
wis) [ ] 2
Woa(s) W () 2 A (s) [205) Wuz(j W ()
l , ,
7'(3)@ K(s) u(s) G(s) @_,( :) ﬂ, N d'(s) N(s) e'(s)
u(s) K(s) e(s)
Figure 2.6: Robust performance problem with additive uncertainty.
Let P(s) = Fy(N(s),K(s)). Then the transfer function from d'(s) to €'(s) is given by the LFT
e'(s) = Fu(P(s), A(s))d'(s) = [Pzz(S) + P (s)A(s) (I —Pn(S)A(S))_lPu(S)] d'(s) (2.64)
p2(5) (I + G(5)K (5) + G(5)Wua (5)A(5)Wan ()7 W (s) (2.65)
12(8) S0 (jw) Wp1 (5) (2.66)
The optimal robust performance problem can then be formulated
K(s) = Klnf I Fu(Ei(N(s), K(5)), A(s))ll (2.67)
(s)eK
If
1 Fu(F1(N(5), K (5)), A(s)lloo = [[Fu(P(s5), Als))]l o <1 (2.68)

we say that closed loop system has robust performance. Notice that the robust performance condi-
tion (2.68) is similar to the robust stability condition (2.45) in Theorem 2.4. Hence we conclude: the
system F,(P(s),A(s)) satisfies the robust performance condition (2.68) if and only if it is robustly
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Figure 2.7: Block diagram structure for robust performance check. The perturbation structure is aug-
mented with a full complex performance block Ay(s).

stable for a norm bounded matriz perturbation A,(s) with 6(A,(jw)) < 1. Thus by augmenting the
perturbation structure with a full complex performance block A,(s) the robust performance condition
can be equivalenced with a robust stability condition, see also Figure 2.7.

Let A(s) = diag{A(s),A,(s)} denote the augmented perturbation matrix. We then have the following
theorem.

Theorem 2.5 (Robust Performance) Assume that the interconnection P(s) = Fi(N(s), K(s)) is sta-
ble and that the perturbation A(s) is of such a form that the perturbed closed loop system in Figure 2.7
is stable if and only if the map of det(I — P(s)A(s)) as s traverses the D contour does not encircle the
origin. Then the system F,(P(s), A(s) will satisfy the robust performance criterion (2.68) if and only if

P(s) is stable for all perturbations A(s) with 5(A(jw)) < 1:

det(I — P(jw)A(jw)) #0  Vw, YA(jw) 3 6(A(jw)) < 1 (2.69)
o p(P(jw)AGw)) <1 Yw, VA(jw) 3 6(A(jw)) < 1 (2.70)
= IP(s)]l, <1 (2.71)

Proof of Theorem 2.5 Follows from Theorem 2.4. Since the structure on A(s) is restricted, (2.71) is
a sufficient condition only. 0

Clearly robust performance implies both nominal performance and robust stability. Thus a necessary
condition for robust performance in connection with additive uncertainty is:

Tnp = [[Wp2(8)So(8) W1 (s)|lo, <1 (2.72)
Tu = W (8) M (8)Waa(s)l o <1 (2.73)

A sufficient conditions for robust performance is that the transfer function F;(N (s), K (s)) from [w(s); d'(s)]
to [2(s); €'(s)] has oco-norm less than one. We may thus formulated an H, problem:

K(s) = inf |EF(N(s),K 2.74
()= it IRV K6l (2.74)

with a known solution. If
|IF: (N (s), K(5))|lo < 1 (2.75)

the closed loop system will have robust performance. However, since (2.71) is a sufficient condition only
it may be arbitrarily conservative. The next two examples will shed some light on this issue.

Example 2.2 (Robust Performance Problem I) Assume that a performance specification on the
output sensitivity function S,(s) of the form (2.20) is given. Also an additive robust stability specifi-
cation on the control sensitivity function M (s) of the form (2.58) is assumed. The problem considered is
thus the one illustrated in Figure 2.6. The closed loop system Fy(N(s), K(s)) is then given by

AV, KE) == | 5ot WSV 216



A sufficient conditions for robust performance is thus ||F;(N(s), K(s))||lco < 1. Furthermore since

IF(N(s), K(5))]loo < 1 (2.77)
| Wur(jw)M (jw)Weyz(jw) Wi (jw)M (jw) Wy (jw)
© U([sz’(ﬂ'w)so(jw)Wm(J'W) Wi (o) So (1) Wipn (jv) D“ oo (20
= max(&(WulMWug), ( ulMWpl) 5( pQS Wuz) ( pQSOWpl))<1 Yw (279)
= o(Wu(Ju)M (ju)Wee(jw)) <1, (Wpe(jw)S,(jw)Wpi(jw)) <1 Yw (2.80)

the robust performance condition will imply both robust stability and nominal performance. However, due
to the off-diagonal elements in Fy(N(s), K (s)), the robust performance criterion may be conservative in
the general case. If the weighting functions Wp1(s) and Wya(s) are restricted to scalar transfer functions
multiplied with a unity matriz of appropriate dimension, that is if

Wpi(s) = wpi(s) - I, Waz(s) = wua(s) - T (2.81)

where wp1(s) and wy2(s) are scalar systems, it is possible to show that the sufficient robust performance
conditions (2.71) is only slightly conservative. Because of (2.81) the uncertainty weights may be gathered
in Wyi(s) and the performance weights in Wya(s). The robust performance requirement can then be
written

(F(N(jw), K (jw))) < 1 Voo (2.82)
_ Wu (Jw)M (jw) Wi (jw)M (jw)
© ( [ Wea(G)So()  Wonje)So(s) D <t W (283)
_ Wt (jw) M (jw) 1
< ( [ Woa (i) S0 (i) ] </ v (2:84)
e max{E(W () M), 5(Wpa(w)S (@)} < 5 Ve (2.85)

The inequality (2.84) follows since

(Bt T )« o ([ B ) e

Thus (2.85) becomes a sufficient condition for robust performance. Consequently if the nominal per-
formance and robust stability criterions are satisfied with some margin — namely a factor 2 — robust
performance will be quaranteed. In order words, for an additive uncertainty and nominal performance
specification restricted as in (2.81), robust performance can not be arbitrarily poor if nominal perfor-
mance and robust stability is obtained. Fully equivalent results can be found for output multiplicative
uncertainty.

Example 2.3 (Robust Performance Problem II) Now let us assume a standard performance spec-
ification as in Erample 2.2 but an input multiplicative robust stability specification on the input com-
plementary sensitivity T;(s), see Table 2.1. We may rewrite this as an additive perturbation simply
by multiplying Wyo(s) in Ezample 2.2 with the plant transfer function G(s). The robust performance
condition then becomes

o(Fi(N(jw), K(jw))) <1 VYw (2.87)
Wi (jw) M (jw)G(jw) W (jw) W (jw) M (jw) W1 (jw)
S o ([ W2 (jw)So(jw)G(jw)Wye (jw) Wiy (jw)Se(jw) Wi (jw) ]) <1 Yw (2.88)

Note that M (s)G(s) = Ti(s). Again, due to the off-diagonal elements in F;(N(s),K(s)), the condi-
tion (2.88) may be conservative. In fact, even if the weightings are restricted as in (2.81) it will be shown
that (2.88) may be arbitrarily conservative. With weightings restricted as in (2.81) note that the robust
stability criterion becomes

d (W (jw)M(jw)G(jw)) < 1 Yw (2.89)
< 0(Wu(w)M(jw)o(G(jw))) < Vw (2.90)
& 0 (6(G(w))Wu (jw)M(jw)) < \& (2.91)

which corresponds to robust stability for an additive perturbation A(s)o(G(8))Wui(s). Thus if the system
is stable for the additive perturbation A(s)a(G(s))Wy1(s) it will also be stable for the input multiplicative
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Figure 2.8: Approzimating G(s) with its largest singular value in the uncertainty specification.

perturbation A(s)Wy1(s). Notice that this corresponds to approximating G(s) with its largest singular
value and moving it to the uncertainty input weight Wy (s), see Figure 2.8.

A sufficient condition for robust performance is then

o(F(N(jw), K(jw))) <1 Vw (2.92)
_ (| 7(G(w)Wu(jw)M (jw) (G (jw)) W (jw)M (jw)
@ "([ évpzuw)lsjmw) ! év S i) D <t Ve (299)
N a<[ 5(G({'4“,‘;)2)(%)1 jw)M D 7 Vo oo (2.94)
7(G(jw))a(Wu (JW)T (jw)G7!(jw)) < 5 Vw
= (2.95)
F(Wp2(jw)S,(jw)) < 3 Vw
( 2(Gw 5(War (jw)Ty(jw)) < & Vw
e { 2dGGw) (2.96)
| F(Wp2(jw)S,(jw)) < % Yw
( 1
o I < gy -
[ (Wp2(jw)S,(jw)) < 3 Vw

Thus (2.97) becomes a sufficient condition for robust performance. Inequality (2.97) shows that even
when nominal performance and robust stability are satisfied with reasonable margin, the (sufficient) robust
performance criterion can be violated by an arbitrarily large amount if the plant is ill-conditioned. On the
other hand, if K(G(jw)) = 1, Yw, robust performance can not be arbitrarily poor if nominal performance
and robust stability are obtained.

2.5 Computing the H,, Optimal Controller

Let us finally briefly present a solution to the Ho, optimal control problem. The problem of solving
minimizations of the form

K(s) =, inf (N, K ()]l (298)
was probably the single most important research area within the automatic control community in the
1980’ies. Probably thousands of papers was published on this particular problem. At first, only algorithms
that produced oo optimal controllers of very high order were available, see e.g. [13]. For polynominal
systems numerical algorithms were available which provided H, optimal controllers of the same order as
the augmented plant N(s). However, the numerics were only efficient for scalar systems. Then in early
1988, Doyle, Glover, Khargonekhar and Francis announced an state-space Ho, solution which, like the
LQG solution, involved only two Ricatti equations and yielded a controller with the same order as the
generalized plant. The results were presented at the 1988 American Control Conference and in the 1989
IEEE paper [14]. This was a major breakthrough for Hs, control theory. The parallels now apparent
between Ho, and LQG theory are pervasive. Both controllers have a state estimator-state feedback
structure, two Ricatti equations provides the full state feedback matrix K. and the output injection
matrix Ky in the estimator, respectively. The paper [14] is now known simply as the DGKF paper.



Given a block 2 x 2 system N (s) like in Figure 2.3 and a required upper bound -y on the closed loop infinity
norm |[|F;(N(s),K(s))|lco the solution returns a parameterization — which we will denote the DGKF
Parameterization — K (s) = Fj(J(s), Q(s)) of all stabilizing controllers such that ||} (N (s), K(5))|lco < 7-
Any stable transfer function matrix Q(s) satisfying ||Q(s)|lcc < v will stabilize the closed loop system
and cause ||F1(N(s), K(3))|loo < 7v- Any Q(s) which is unstable or has [|Q(s)||co > 7 will destabilize the
closed loop system, or cause ||F;(N(s), K(s))|lco > 7 or both. The solution is provided by the following
theorem.

Theorem 2.6 (H..-Suboptimal Control Problem) Let N(s) be given by its state-space matrices A,
B, C and D and introduce the notation:

A| B B
N(s)=| C1 | D11 D1 (2.99)
Cay | D21 Do
Make the following assumptions:
1. (A, By) and (A, By) are stabilizable.
2. (C1,A) and (Co, A) are detectable.
3. DT2D12 =1 and D21Dgl =1.
4. D11 = D22 =0.
Solve the two Ricatti equations:
A-— BQDECl ’7_2B1Bflr - BQB2T :|
X = Ric 2.100
[ _CT (I = DyuDT)" (I = DuD%) Gy — (A— ByDh,Cy)" (2.100)
. T T —29~TH _ AT
Y = Ric (f} BlD21C2)T oo G f? Cs (2.101)
—By (I - DL Ds) (I - DL Ds) BT — (A— B DIC,)
Form the state feedback matriz K., the output injection matriz Ky and the matriz Z:
K.= (D},C + B] X) (2.102)
K= (B.D}, +YCY) (2.103)
Z=(I-+2vXx)" (2.104)

If X >0 and Y > 0 exist and if the spectral radius p(XY) < 42, then the Hoo DGKF Parameterization
is given by:

A—ByK:+7 ’BiB{ X — ZK; (C2 + v *DaB{X) | ZK; Z(Ba2+7 Y C D1,)
J(s) = -K. 0 I (2.105)
—(C2 +~v ?Dxu B X) I 0

[ Jn(s) Jias)
= Bu(s) Janls) (2.106)

Stabilizing controllers K(s) may now be constructed by connecting J(s) to any stable transfer function
matriz Q(s) with [|Q(s)||ec < 7:

K(s) = Fi(J(s),Q(s)) = Ju1(s) + Jia()Q(5) (I = Jo2(s)Q(5)) " T (s) (2.107)
The oco-norm of the closed loop system Fy(N(s), Fi(J(s),Q(s))) satisfy:
lFy (N (s), Fi(J(s), Q(s)lloc <7 (2.108)

The controller obtained for Q(s) = 0 is known as the central Ho, controller.



Notice that Theorem 2.6 does not provide the optimal H ., control law. Rather it provides a control law
satisfying || F;(N(s), K(s))|lo < 7y after v has been specified, provided that a control law exists which
can do this. Consequently the designer must iterate on 7 to approach the optimal co-norm ~y. This
is different to the LQG-optimal control problem where the optimal solution is found without iteration.
The central controller obtained for @(s) = 0 is not generally the controller achieving the smallest oco-
norm of the closed loop system. However, since it is a valid controller, given the desired bound 7, it
is customary to choose this particular controller for implementation. Specifically, in the commercially
available software [15, 2], this is the controller returned by the o, control synthesis algorithms.

2.6 Conclusions

Let us recapitulate our results so far.

e Robust performance implies both nominal performance and robust stability. Consequently, in
general, our design objective should be robust performance.

e Given any of the unstructured complex perturbations introduced in Section 2.3 the closed loop
system may be rewritten in PA form as in Figure 2.4. Then, assuming that every plant in the
set described by A(s) with 6(A) < 1 can occur in practice, ||P(s)||oo < 1 is a non-conservative
condition for robust stability.

e The robust performance problem can be assessed by augmenting the robust stability problem with
a full complex performance block.

e Assuming a performance specification of the form (2.20) and either an additive or output multi-
plicative perturbation model, an sufficient Ho, condition for robust performance can be derived
which is only slightly conservative provided certain restrictions on the uncertainty and performance
weightings are enforced.

¢ On the other hand, if robustness to input multiplicative uncertainty is required, the H., condition
for robust performance may be arbitrarily conservative if the plant is ill-conditioned.

Notice that even though the robust stability criterion (2.45) is non-conservative, in formulating the
controller synthesis as a 2 x 2 block problem some conservatism will always be introduced when robust
performance is considered. For standard additive and output multiplicative uncertainty, the robust
performance condition will be reasonably tight, namely up to a factor 2. This applies also for standard
input multiplicative uncertainty provided the plant is well-conditioned. For ill-conditioned plants, robust
performance may be arbitrarily poor even though nominal performance and robust stability are obtained.
In other words, for ill-conditioned plants the closed loop properties at the plant input may be very different
from those at the plant output. For example, the robustness to output multiplicative uncertainty may
be satisfactory even though the robustness to input multiplicative uncertainty is very poor.

Generally it can be concluded, that if an unstructured complex perturbation model is tight, that is if all
plants included by the perturbation structure can occur in practice, and if the plant is reasonably well-
conditioned, the optimal H, controller will not be very conservative in the sense that robust performance
will not be arbitrarily poor given nominal performance and robust stability.

On the other hand, if an unstructured complex perturbation model is conservative or if the plant is
ill-conditioned, an 2 x 2 block problem H., optimal controller may be very conservative. In such cases
much is to be gained by a u approach. In the next section robust control design with structured singular
values will be considered.

3 Robust Control Design using Structured Singular Values

Gathering the analysis tools presented in Section 2, a general framework for robustness analysis of linear
systems can be illustrated as in Figure 3.1. Any linear interconnection of control inputs u, measured
outputs y, disturbances d', controlled outputs (error signals) e’, perturbations w and a controller K can
be expressed within this framework. In Section 2 we assumed that A(s) was a full complex block. Now



we will relax this assumption. Here A(s) is assumed to have a block diagonal structure so as to include
a much larger class of uncertainty descriptions, like e.g. parametric uncertainty, see e.g. [3].

General Framework

—1 A

U Y
— K
Analysis / \ Synthesis
w z
A d N ~ ¢!
w z u y
d P - ¢ K

Figure 3.1: A general framework for analysis and synthesis of linear control systems.

Within the general framework analysis and synthesis constitutes two special cases as illustrated in Fig-
ure 3.1. Like the 2 x 2 block problem, scalings and weights are conventionally absorbed into the transfer
function N in order to normalize d’, ¢’ and A(s) to norm 1. Notice that if we partition P(s) into four
blocks consistent with the dimensions of the two input (w, d') and two output (z, €') vectors we can
identify Pyq(s) as the transfer matrix P(s) in Figure 2.4.

3.1 p Analysis

Assume that A(s) is a member of the bounded subset:
BA = {A(s) € A|o(A(jw)) < 1} (3.1)

where A is defined by:

A= {diag (6{IT1, SRR PN TP PPN Sy AAS PR ,An) |07 € R,
5 eC,Aj e CTmr+mc+jxrmr+mc+j} (3.2)

Clearly, the block diagonal structure on A allows much more detailed uncertainty models compared with
the Ho, approach where A(s) is simply a full complex block. Notice that this is of course just a special
element of the above set A. Define also the corresponding complex perturbation set A.:

A, = {diag (6L, -85 1,

P VM tme T Tmy +me?

Aq,--- ’An) |5ZC € C,Aj € CrmrtmetiXTmytmestj } (3.3)

which we will use in connection with mixed p synthesis. Robust stability under structured perturbations
A(s) € BA is determined by the following theorem which is an extension of Theorem 2.4.

Theorem 3.1 Assume that the interconnection Pi1(s) is stable and that the perturbation A(s) is of such
a form that the perturbed closed loop system is stable if and only if the map of det(I — Pi1(s)A(s)) as s
traverses the Nyquist D contour does not encircle the origin. Then the closed loop system in Figure 3.1
is stable for all perturbations A(s) € BA if and only if

det(I — P11 (jw)A(jw)) #0 VYw, VA(jw) € BA (3.4)
& p(P11(jw)A(jw)) < 1 VYw, VA(jw) € BA (3.5)
= 6(P11(jw)) <1 Yw (36)



Proof of Theorem 3.1 The proof follows easily from Theorem 2.4 with A(s) € BA. 0

Note that (3.6) is only a sufficient condition for robust stability. The necessity of the similar condi-
tion (2.44) for unstructured perturbations follows from the fact that the unstructured perturbation set
include all A(s) with 6(A(jw)) < 1. Here, however, we restrict the set of perturbations to A(s) € BA
and therefore, in general, condition (3.6) can be arbitrarily conservative. Rather than a singular value
constraint we need some measure which takes into account the structure of the perturbations A(s). This
is precisely the structured singular value pu.

Given a matrix P € C™*™_ the positive real-valued function g is then defined by:

A 1
pa(P) = min {5(A) : A € A,det(I — PA) =0}

unless no A € A makes I — PA singular, in which case pa(P) = 0. Thus 1/ua(P) is the “size” of
the smallest perturbation A, measured by its maximum singular value, which makes det(I — PA) = 0.
Equivalently, 1/ua (P(jw)) is the size of the smallest perturbation A(jw) which shifts the characteric
loci of the transfer matrix P(s) to the Nyquist point —1 at the frequency w.

(3.7)

From the definition of p and Theorem 3.1 we now have the following theorem for assessing robust stability,
see also [16, 17]:

Theorem 3.2 (Robust Stability with u) Assume that the interconnection Pi1(s) is stable and that
the perturbation A(s) is of such a form that the perturbed closed loop system is stable if and only if the
map of det(I — P11(s)A(s)) as s traverses the Nyquist D contour does not encircle the origin. Then the
closed loop system in Figure 3.1 is stable for all perturbations A(s) € BA if and only if :

llea (Pri(s))lly <1 (3.8)

where:

s (P ()]l = sup fia (P (jw)) (3.9)

For robust performance the transfer function Fy, from d' to €' may be partitioned as a linear fractional
transformation:

e'(s) = Fy(P(s),A(s))d' (s) = [ng(s) + Po1(s)A(s) (I — Pyy(s)A(s)) ™" P12(3)] d'(s) (3.10)

Here P»2(s) is the weighted nominal performance function and F,(P(s),A(s)) is thus the weighted per-
turbed performance function. Now from (3.10) the robust performance objective becomes

1Fu(P(s), A(s))ll o = Sgpﬁ(Fu(P(jW),A)) <1 (3.11)

lloo

As in Section 2.4 we notice that the condition for robust performance is a singular value constraint
similar to the robust stability condition (2.44) and conclude: the robust performance objective (3.11) is
satisfied if and only if the interconnection F,(P(s),A(s)) is robustly stable for a norm bounded matriz
perturbation Ap(s) with 5(Ap(jw)) < 1. Hence by augmenting the perturbation structure with a full
complex performance block A,(s) the robust performance condition can be equivalenced with a robust
stability condition, see Figure 2.7.

We thus have the following theorem for assessing robust performance, see [16, 17]:

Theorem 3.3 (Robust Performance with p) Let an Hoo performance specification be given on the
transfer function from d' to €' — typically a weighted sensitivity specification — of the form:

1Fu(P(s), A(s))lloo = sup o (Fu(P(jw), A(jw))) <1 (3.12)

Then Fy(P(s),A(s)) is stable and ||Fy,(P(s),A(s))||, <1, YA(s) € BA if and only if
lna(P(s)]l,, <1 (3.13)

where the perturbation set is augmented with a full complex performance block:

A = {diag (A, Ap)|A € A, A, € CHF ) (3.14)



Theorem 3.3 is the real payoff for measuring performance in terms of the co-norm and bounding model
uncertainty in the same manner. Using p it is then possible to test for both robust stability and robust
performance in a non-conservative manner. Indeed, if the uncertainty is modeled exactly by A(s) —
i.e., if all plants in the norm-bounded set can really occur in practice, then the p condition for robust
performance is necessary and sufficient. Notice how the y theorems provides much tighter conditions for
robust performance compared with the Ho, results in Section 2.4. Performance and stability conditions
are now separated, much tighter uncertainty descriptions may be given due to the diagonal structure
on A and non-conservative results are provided for all perturbation models and even for ill-conditioned
systems.

Since A = diag{A,0} and A; = diag{0,A,} are special cases of A € A it is clear that
pa(P(jw)) > max{pa(Pi1(jw)), pa, (P2 (jw)) = 6 (P2 (jw)) } (3.15)

which implies that for robust performance it is necessary that the closed loop system is robustly stable
and satisfies the nominal performance objective.

3.2 Computation of y

Unfortunately Equation (3.7) is not suitable for computing p since the implied optimization problem
may have multiple local maxima [16, 18]. However tight upper and lower bounds for y may be effectively
computed for both complex and mixed perturbations sets. Algorithms for computing these bounds have
been documented in several papers, see e.g. [16, 19]. For simplicity assume that P € C™*" is square.
Define Bin as:

DPD-! oy~ 1
. Pl M el _ . 3 < ‘
Bmin ﬂ€R+,Cl¥nefG,DeD {6 g K 3 JG> (I+G?) ] < 1} (3.16)
then

P) < pa(P) < Prin 3.17
;Qnggp(Q ) <ua(P)<B (3.17)

Here Q is the set:
Q= {Q € A5 € [-1;11,08 6 = L,ATTA; =1, 4,0 } (3.18)

where (-) denotes complex conjugate transpose. D is the set of hermitian positive definite matrices:
D= {dlag (Dla s Diptmes dlIT'mT+mc+1’ toe ;anT‘m)
|D; € C"*"i, D = D; > 0,d; € R,d; >0} (3.19)

where 7, = T'm, +m.+n- Finally, G is the set:

G = {diag (G1,"** ,Gm,,Orp_41, "+ ,Or,) |Gi € C"¥7,G; = G } (3.20)

For purely complex perturbation sets (G = 0) the above bounds reduce to:
P) < pa(P) < inf 6 (DPD™* 3.21
max p(QP) < pa(P) < jinf o ( ) (3.21)

In Equation (3.17) and (3.21) the lower bound is actually an equality [19] but unfortunately the function
p(QM) is non-convex so we cannot guarantee to find the global maximum and hence we only obtain
a lower bound for g. In this paper the algorithms provided in the MATLAB p-Analysis and Synthesis
Toolboz were used for computing p-bounds.

3.3 u Synthesis

For robust synthesis the transfer function F from [w d']T to [z €']7 may be partioned as the linear
fractional transformation:

20 |- Eeven e | 5 |-



Noticing that F;(N(s), K(s)) = P(s) and using Theorem 3.3 a stabilizing controller K (s) achieves robust
performance if and only if for each frequency w € [0, 0], the structured singular value satisfies:

pa (Fi(N(jw), K(jw))) <1 (3.23)

Consequently the robust performance problem becomes one of synthesizing a nominally stabilizing con-
troller K (s) that minimizes px (Fj(N, K)) across frequency:

K(s)= o [ug (BON(s), K ()] (3:24)

where K denotes the set of all nominally stabilizing controllers.

3.3.1 Complex y Synthesis — D-K Iteration

Unfortunately (3.24) is not tractable since p cannot be directly computed. Rather the upper bound on
is used to formulate the control problem. For purely complex perturbations, m, = 0 in (3.2), the upper
bound problem becomes

K()=  inf swp inf {5 (D()F (Vi) K(iw) D7)} (3.25)
Unfortunately, it is also not known how to solve (3.25). However an approximation to complex p synthesis
can be made by the following iterative scheme. For a fixed controller K(s), the problem of finding
D(w) is just the complex p upper bound problem which is a convex problem with known solution.
Having found these scalings we may fit stable minimum phase transfer function matrices D(jw) to D(w)
such that the interconnection D(s)N(s)D~!(s) is stable. We may impose the extra constraint that the
approximations D(s) should be minimum phase (so that D~1(s) is stable too) since any phase in D(jw)
is absorbed into the complex perturbations. For a given magnitude of D(w), the phase corresponding
to a minimum phase transfer function system may be computed using complex cepstrum techniques.
Accurate transfer function estimates may then be generated using standard frequency domain least
squares techniques. For given scalings D(s) the problem of finding a controller K (s) which minimizes
the norm ||F;(D(s)N(s)D~1(s), K(s))|lsc Will be reduced to a standard H,, problem. Repeating this
procedure, denoted D-K iteration, several times will yield the complex p optimal controller provided the
algorithm converges. Even though the computation of the D scalings and the optimal #, controller are
both convex problems, the D-K iteration procedure is not jointly convex in D(s) and K(s) and counter
examples has been given [20]. However, D-K iteration has been succesfully applied to a large number of
applications. The D-K iteration procedure may be outlined as below.

Procedure 3.1 (D-K Iteration)
1. Given an augmented system N(s), let i =1 and P;(s) = N(s).

2. Find the Hoo optimal controller K;(s):
Ki(s) = inf ||E(Pi(s),K 3.26
(s) K(lzl)eic” 1(Pi(s), K (5)ll oo (3.26)

3. Find the scalings D7, (w) solving the complex pu upper bound problem

D) = inf {7 (DWF(N(). Ki(©)D™ @)} (3.27)

pointwise acroos frequency w.

4. Fit a stable minimum phase transfer function matriz D;i1(s) to the pointwise scalings Df ;(w).
Augment D;y1(s) with a unity matriz of appropriate size such that D;11(s) is compatible with N (s).
Construct the (stable) interconnection Piy1(s) = Diyq (s)N(s)D;rll(s).

5. Leti =i+ 1 and repeat from 2 until no further improvement in px (F1(N(s), K;)) can be achieved.

With the release of the MATLAB p-Analysis and Synthesis Toolbox commercially available software now
exists to support complex p synthesis using D-K iteration. The procedure 3.1 may be implemented quite
easily with the aid of the toolbox. Notice that an approximation to mixed real and complex p synthesis
can be achived by approximating the mixed perturbation set A with corresponding complex set A, that
is to approximate all real perturbations with complex perturbations.



3.3.2 Mixed n Synthesis — G,D-K Iteration

The general mixed real and complex p problem is unfortunately much more difficult than the purely
complex p problem. For the mixed problem the upper bound problem becomes

K(s) = inf inf  {Bw)|e(T(w)) <1} (3.28)

inf  sup
K(jw)eK o D(w)eD,G(w)eG B(w)ER+

where

[N

Iw) =

<D(w)Fl(N(jw), K(jw))D~"(w) (3.29)

Bw)

We will denote this a direct upper bound problem emphasizing that the problem is posed directly in line
with the way the upper bound is computed. Again no known solution to (3.29) exists. Rather it must
be solved iteratively similarly to D-K iteration. For fixed K(s) the problem of finding D(w), G(w) and
B(w) is just the mixed p upper bound problem. Having found these scalings we may fix 8* = max,, (w)
and fit transfer function matrices D(s) and G(s) to D(w) and jG(w). It can then be shown, see [5],
that, using spectral factorizations, we may form a stable interconnection Ppg(s) which approximates
I'(w) across frequency w. For given 8*, D(s) and G(s) the problem of finding the controller K (s) will
be reduced to a standard H ., problem. Unfortunately, for the general upper bound problem the scalings
cannot be restricted to be minimum phase since the phase is not absorbed into the (real) perturbations.
Thus the scalings must be fitted both in magnitude and phase. For example, we must require that the
phase of the diagonal elements of G(jw) is 90° for all frequencies w. The fitting of these purely imaginary
diagonal elements can only be obtained using high order all pass structures causing the controller order
to explode.

— jG(w)) (I+G*w))"~

This procedure of iteratively solving Equation (3.29) is usually referred to as D,G-K iteration. The fact
that (3.28) is not a singular value minimization, but rather a minimization subject to a singular value
constraint and the fact that that the formed augmented system must be stable enforces some minor
modifications to the general D,G-K algorithm. However it will be beyond the scope of this paper to
explain these changes in detail. The reader may consult [5]. It can be shown that the resulting D,G-K
iteration is monotonically non-increasing for perfect realizations of the scaling matrices transfer function
estimates and thus converges to a local minimum for the mixed g upper bound. Since the minimization is
not jointly convex in the scaling matrices and K we cannot guaranty convergence to the global minimum.

Successful results on G,D-K iteration has been reported for simple mixed p problems, see e.g. [6]. However,
the need for fitting purely complex scalings with high order all-pass transfer functions as well as the general
need for fitting both in phase and magnitude severly hampers the practical use of G,D-K iteration for
mixed p synthesis.

3.3.3 Mixed p Synthesis — u-K Iteration

As discussed above the general D,G-K approach for controller synthesis with mixed perturbation sets A
is much more complicated than D-K iteration for purely complex perturbations. Recently, however, a
different approach for mixed p synthesis, denoted p-K iteration, has been proposed which only require
the scalings to be fitted in magnitude [7]. This new approach is the subject of this section.

Whereas the D,G-K approach is a direct upper bound minimization, p-K iteration is an indirect upper
bound minimization in the sense that the augmented system matrix corresponding to Ppg(s) above does
not directly reflect the structure of the y upper bound as in (3.29).

The main idea of the proposed p-K iteration scheme is to perform a scaled D-K iteration where the
difference between mixed and complex p is taken into account through an additional scaling matrix I'(s).
The iteration is performed as follows:

Procedure 3.2 (u-K Iteration)
1. Given the augmented system N (s), let vo(s) =1, Do(s) = I and Py(s) be given by

Po(s) = | 0CMme Ol Dy(o)N (5) Dy (5) = To(s)Du(s) N () Dy (8) = N(s). (3:30)

u



Nya = dim {[w;d']} denotes the number of external inputs and n, = dim {u} denotes the num-
ber of controlled inputs. Let Ko(s) = Ki(s) be a stabilizing controller, compute the co-norm
1E1(Po(s), Ko(s))lloo and let i = 1.

2. Compute the mized and corresponding complex pn upper bounds iz (Fi(N (jw), K;(jw))) and
Ba, (Fi(N(jw), K;(jw))) at each frequency w. Note that the complex p upper bound equals

6(D;f‘(w)Fl(N(jw),Ki(jw))D;-"_l(w)) where the scalings D} (w) are found solving the minimization

Dj(w) = jnf & (DF(N(jw), Ki(jw))D™")  VYw>0. (3.31)

3. Compute (;(w) given by:

_ Ba (FB(N(w), Ki(jw))) 1 (3.32)

4. Fit, in magnitude, a stable minimum phase transfer function matriz D;(jw) to D} (w) across fre-
quency w and augment D;(s) with a unity matriz of appropriate size such that D;(s) is compatible
with N (s)

5. Determine an upper bound for the constant o € [0;1] according to

1F1(Pi-1(8), Ki—1(3))ll o _ if Bi(w
ai(w) = (5(Fl(Dz’(J'w)N(J'w)Di_I(W);Kz'(jw))) 1Yi1 () 1) A A0 (3-33)

1 if Bi(w) <0

6. If inf, a;(w) > 1, let inf, a;(w) = 1. Choose a constant o; = kinf, @;(w) where k € [0;1] and
compute

Ba (Fi(N(jw), Ki(jw)))

fig, (Fi(N(jw), Ki(jw)))’

7 (W) = (1 = ai)yi1 (jw)| + Vw > 0. (3.34)

Fit, in magnitude, o stable minimum phase transfer function v;(jw) to v (w) across frequency w.
7. Construct
Pi(s) =T;(s)D;(s)N(s)D; ' (s) (3.35)
and compute the optimal Hoo controller:

Kiy1(s) = inf ||Fy(Pi(s), K(s))ll

3.36
K(s)ek ( )

o -

8. Compute the mized and corresponding complex p upper bounds fix (Fi(N(jw), Kiy1(jw))) and
Ba_ (Fi(N(jw), Kiy1(jw))) at each frequency w.

9. Compute Bit1(w) given by:

(FIN(jw), Kiy1(jw))) 1
(Fi(N(jw), Kit1(jw))) [ri(§w)

Biv1(w) = 5_5 -1 (3.37)

10. If sup,, |Bit1(w)| > sup,, |Bi(w)| return to 6 and reduce k. Otherwise compute || F;(P;(s), Ki(8))]|oo
and let i =i+ 1.

11. Repeat from 4 until no further reduction in ||z (F1(N(jw), K;(jw))) |l can be achieved.

The full u-K iteration procedure may seen somewhat involved. However, the main idea is simple. Given
the augmented system N (s), the controller found in Step 2 for ¢ = 1 is simply the optimal H, controller
for N(s). We may then compute upper bounds for p across frequency given both the “true” mixed
perturbation set A and the fully complex approximation A.. In order to “trick” the H,, in the next
iteration to concentrate more on mixed p, we will construct a system P (s) with frequency response equal
to the mixed p upper bound just computed. This is fully equivalent to D,G-K iteration. In u-K iteration,



however, the structure of the approximation is different. P;(s) is constructed by applying two scalings
to the original system N (s). A D scaling such that &(P; (jw)) approximates the complex u upper bound
and a T scaling to shift from complex to mixed p. Assume perfect realizations of the D and T scalings
and that we may choose a; = 1. Then

& (Fi (P1(jw), Ki1(jw))) = Fi (T1(jw) D1 (jw) N (jw) D (jw), K1 (jw)) (3.38)
= |71 (jw)|5 (Fi (D1(jw)N (jw) Dy (jw), K1 (jw))) (3.39)

= mw)lpa, (Fi (N(jw), K1(jw))) (3.40)

= iz (Fi (N(jw), K1(jw))) fora; =1 (3.41)

and the controller K3(s) will minimize the oco-norm of an augmented system which closed with the
previous controller K (s) had maximum singular value approximating mixed p. New mixed and complex
1 bounds may then be computed and the procedure may be repeated. Unfortunately it is not possible
to choose a; = 1 in general since we may then suffer from “pop-up” type phenomena, where for some
frequencies a small increase in the maximum singular value of P;(s) creates a very large increase in .
This type of behavior is unfortunately possible with mixed p problems. However by reducing «, that
is by filtering v through a stable first order filter, the “pop-up” type phenomena may be avoided with
proper choice of a. In D,G-K iteration the absence of “pop-up” type phenomena are ensured by the
choice f* = max, f(w), see [5].

We then have the following lemma:

Lemma 3.1 The u-K iteration procedure described above is monotonically non-increasing in
[|F1(Pi(s), Ki(s))||co given perfect realizations of the D(s) and v(s) scalings. Provided ||3(w)||co converges
to zero the procedure will converge to a local minimum for ||ix (Fi(N(jw), K;(jw))) ||

Proof of Lemma 8.1 As noticed above, the 7 (F; (P;(s), K;(s))) equals the upper bound
pa (Fi (N(s),K;(s))) for perfect realizations of the scalings ~;(s) and D;(s) and for a; = 1. For a;; # 1
this is not true. However if

iz (BN (jw), Ki(jw)))

Vi1 (Jw)| = = . . 3.42
e R Gw) Ki(2) (342)
then from (3.34) and perfect realization of v;(jw):

[i-1(jw)| = (i)l (3.43)

and it is clear that
7 (Fi(Ti(jw) Di(jw) N (jw) D! (jw), Ki(jw))) = ha (Fi(N (jw), Ki(jw))) - (3.44)

Notice that Equation (3.42) implies that 8;(w) — 0. Thus in order to reach a local minimum for
|2z (F1(N(s), K(s)))|loo we must fulfill the following two criteria

1. The iteration must be monotonically non-increasing in || F;(P;(s), K;(s))||co, that is
I1E(Pi(5), Ki(5)lloo < |IF1(Pi-1(s), Ki-1(5))lloc Vi (3.45)
2. Furthermore the iteration must be monotonically non-increasing in ||3;(w)||co, that is

1B (W)lloo < IBi-1(W)llee Vi. (3.46)

In Appendix A it is shown that the criteria (3.45) can be met by choosing @;(w) as in (3.33). If
k then can be chosen to fulfill the criteria (3.46) the iteration will converge to a local minimum for

l2a (Fi(N(s), K(5)))lloo- O

Numerical evidence suggests that x can indeed be chosen to fulfill (3.46). However, it is likely that
examples may be constructed where no « fulfilling (3.46) can be found. Notice that for a = 0, Vi, u-K
iteration will reduce to standard D-K iteration and only the criteria (3.45) will be considered in the
iteration. If §;(w) > 0, for some w, then for k =1 it can be shown, see Appendix A, that

1 E1(Pi(s), Ki(8))lloo = [1Piz1(s); Ki-1(5))lloo- (3.47)

Thus in this situation, only the criteria (3.46) will be considered in the i’th step of the iteration. By
choosing a (or k) in between these two extremes, we may attempt to fulfill both criteria (3.45) and (3.46).



4 Examples

Now two design studies will be presented illustrating the u techniques given in the previous section. One
example considers control of an idealized C.D. player servo and is taken from [21]. The other example
deals with the control of a multivariable (2 x 2) water tank system, where the control problem can be
formulated as to maintain a specified level and temperature in the tank for a range of operating points
and effluent mass flows.

4.1 C.D. Player Servo

The servo arm for a computer disc drive or a compact disc player is essentially a small flexible structure,
whose dynamics will depend on various physical quantities. Provided the product is to be mass produced,
the control design for the servo should work for any product from the assembly line and thus the design
should be insensitive to variations in the parameters of the servo model.

Here a very simple idealized model of the servo is considered. The control problem formulation is identical
to that in [21]. It is assumed that the low frequency plant dynamics can be approximated by a double
integrator with an uncertain gain:

G(s) =2 0.1< k, < 10. (4.1)

Notice that the ratio of kpmes t0 kpmin is as large as 100. The model is assumed valid up to the
frequency w, = 100 rad/s. The parameters k, and w, do not necessarily reflects physical meaningful
numbers, however, this is of minor importance here, since the main objective is to illustrate different
design techniques. The robust performance control problem is thus to design a fixed dynamic controller
which stabilizes the plant and complies with performance demands for all possible plants. To ensure
that the controller rolls off at frequencies above w, a complementary sensitivity specification is included
into the design. Performance requirements are given as a standard sensitivity specification. The control
problem can then be specified as in Figure 4.1.

6’!‘
w(s) A, z(s)
2(8)
W,
Wp1(s er(s)
1 (s) W (s)—
B S E— (s
Vul (S — | ——————
I
o) '@/_ e(s) K(s) '@ G(s) '@ '@ v

Figure 4.1: Control problem set-up for the C.D. servo drive.

Notice that the perturbed low frequency plant (4.1) can be written
5.

_25 (1 + ﬁér) =G(s) (14 W,6") (4.2)

. 1
G(s) = 5 (5.05+4.950") = 505



where 6" € R is a real scalar perturbation 6" € [—1,1]. The sensitivity weights on S(s) and T'(s) are
standard weights taken from [21]:

W () = Waa(s) = W (43)
Wi (s) = Wia(s) = g2 (4.4

Notice that we have gathered the weighted sensitivity functions Wp2SWp1 and W, TW,» into a single
performance specification. Our first approach will be to design a complex u optimal controller:

Ky.(s) = inf i SUP KA, (Fi(N(jw), K(jw))) (4.5)

(jw)€

Hence, at first we approximate the real perturbation §” with a complex one §°. The complex p problem
was solved using D-K iteration as outlined in Procedure 3.1. The results from the iteration is shown in
Figure 4.2 and tabulated in Table 4.1. In Figure 4.2 pz_ (Fi(N(jw), K(jw))) for each iteration is shown
across frequency. As seen the iteration converges rapidly with a final complex p peak at 1.41. In Figure 4.2
also the mixed p result for the final controller K, (s) is shown. Notice how there is a noticable dive in
mixed p around 0.5 rad/s. It thus seem possible that a significant improvement in control performance
can be obtained by applying mixed p synthesis. The results in Figure 4.2 are equivalent to the results
presented in [21].
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Figure 4.2: Results from D-K iteration on the C.D. player servo. Shown are pg_(Fi(N(jw), K(jw))) for
each iteration and also px (Fi(N(jw), K(jw))) for the final complex p controller K, _(s).

In order to improve the results from the D-K iteration, u-K iteration as outlined in Procedure 3.2 was
applied to the servo problem. The complex p optimal controller K, (s) is then an obvious choice for
the initial controller Ky(s). In Table 4.1, the results of the p-K iteration is given. Notice how sup,, S(w)
converges to zero indicating that the «y scalings approximates the mixed to complex p ratio. The oco-norm
[|F1(Pi(s), Ki(s))||oo is monotonically decreasing as shown in Appendix A. The upper bound @&; were
equal to one except for the last 2 iterations. However, x had to be reduced for each iteration in order to
reduce the 8 peaks (mixed pu pop-up phenomena).

In Figure 4.3, mixed and complex y is shown for the initial (complex p optimal) and final mixed p optimal
controller. Mixed p peaks at approximately 1.03 and a 25% improvement has thus been obtained through



D-K Tteration p-K Tteration

Iteration No. 1 2 3 4 1 2 3 4 5 6

lua, (Fi(N(s), Ki(s))[| | 376 1.57 1413 1.406 2.46
lea (Fi(N(s), Ki(s) ||, 1.406 | 1.23 1.12 1.11 110 1.05 1.03
sup,, B;(w) 0.61 | 023 0.14 0.13 0.1 0.05 0.03
|EL(Pi(s), Ki(s))]l o 284 | 248 117 1.12 1.05 1.03 1.02
inf,, @;(w) 1 1 1 1 0.56 0.50
K 08 08 08 05 08 08

Table 4.1: Results from D-K and p-K iteration on the C.D. player servo.

25 T T T T T T T T T T T “»_““V T T
25 I: I
o .';
© !
= : _
E 15} : .
S SR S
2 ~ o ‘, : // \\
N L/ \
N ./ \
TR I \
1F T T i
\ / \
\ | \
\ / \v
\ / \
v
0.5 L Lol L Lol L Lol L e | L e | L1
10 10°° 10°° 10" 10° 10" 10°
Frequency [rad/s]

Figure 4.3: Results from p-K iteration on the C.D. player servo. Shown are px (Fi(N(jw), K(jw)))
(dashed and solid) and px_(Fi(N(jw), K(jw))) (dash-dotted and dotted) for the intial (complez p opti-
mal) and final mized p optimal controller respectively.



p-K iteration. Notice how this is achieved at the expense of complex u, which peaks at almost 2.5 for
the mixed p optimal controller K, (s).

In [21], G,D-K iteration is used to find a mixed p controller for the C.D. player servo. Here mixed p was
reported to peak at 1.25 for a ninth order realization of the final mixed p controller. In order to compare
this result with the p-K iteration result, the final controller K, (s), which had 28 states must be reduced
using model reduction. Using the routines provided in the MATLAB p toolbox, K, (s) was reduced to ninth
order with virtually no increase in 1. With the reduced order controller K, ,.(s) pux (Fi(N(jw), Ku,r(jw)))
also peaked at 1.03. For lower order realizations there were a significant increase in mixed g. In this
case, it thus seems that p-K iteration performs better than G,D-K iteration. We believe that the reason
for this is problems in fitting the G scalings. In Figure 4.4, the G(w) is shown for the final mixed pu
controller K, (s). Notice that G(w) is identically zero for a large part of the frequency range (namely at
those frequency points where mixed and complex u are identical) but rapidly rise to approximately 2-10*
at those frequencies where mixed and complex p differs. Fitting an all-pass transfer function to this kind
of data will be very difficult. The corresponding ~y scaling in p-K iteration behaves much better as can
be seen in Figure 4.4.
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Figure 4.4: G scalings to be fitted in G,D-K iteration (top) and v scalings to be fitted in p-K iteration
(bottom,).

4.2 Water Tank System

In this example level and temperature control of the watertank shown in Figure 4.5 will be considered.
In the figure m,, T,, my and T}, represent massflow and temperature of cold and hot water respectively.
H and T denote level and temperature in the tank which are the outputs to be controlled. The main
disturbance is the massflow m, of water tapped from the tank

From first principles the below linearized model of the watertank can be derived using concentrated
parameters

(me(s) + mn(s) —mo(s)) (4.6)

1
 meo(Ts + 1)

H(S) :A—ps

T(s) ((Te = Too)me(s) + (Th — Too)mn(s)) = Gr(s)(Keme(s) + Knma(s)) (4.7)



Cold water in Hot water in

Mixed water out
Figure 4.5: Water tank with cold and hot water supply.

where p is the density of water, A is the tank surface area and subscript 0 denote operating point value.
The timeconstant of the temperature system is

_ PAH,
Moo

T (4.8)

The valves have local control loops with a measurement of massflow giving them a unity DC gain. The
dynamics of the valves can be described by

e—sTv

me(s) = mmc,ref(s) = Gy(8)me,rey(s) (4.9)
efsTv

mn(s) = — n {Mhref (8) = Go(8)Mn,res (5) (4.10)

The delays will be approximated by first order Pade functions:
e*STu ~ 1- STU/2

N 4.11
14 sT,/2 (4.11)
The sensors have dynamics which can be approximated as first order systems.
1
H = H 4.12
() = ——H() (4.12)
1
T, = T 4.1
() = ——=T(s) (4.13)

There are several sources to uncertainty in this model, and only what is believed to be dominating
is considered. The uncertainty of the dynamical behavior of the valves is described as multiplicative
uncertainty with complex perturbations acting on each valve.

Goe(8) = Go(8)(1 + Wye(s)Aye) (4.14)
Gon(s) = Gy (8)(1 + Wyn(s)Ayn) (4.15)
s+ by

Wye(s) = Wyn(s) = Kuv (4.16)

S+ ay
Changes in operating point are important sources to uncertainty in Eq. 4.7 and can be separated according

to the induvidual variables forming the operating point.

Changing the operating point for the temperature give reason to changes in gain in K. and K}, so does
also changes in the temperatures of cold and hot supply water. This can convieniently be described by



multiplicative uncertainties with real perturbations.
K pert = Ko (1 +W:A,) (4.17)
Kh,pert = Kh(]- + WhAh) (418)

where A. and Ay, are in the interval [-1,1]. Gr(s) is affected by changes in the operating points meo pert =
meo(1+ Wy, Ap) and Ho pert = Ho(1 + Wy Ap) giving the change

1 1
er = 4.1
GT,pert(s) moo(1+ WinBm) |, 1+ WuBu (4.19)
1+ WA,
L (4.20)

- Won sTWa
1 1 A A
oo +8T)( + 14 s7 m + 14 s7 H)
As it is shown in Figure 4.6 this perturbation can be described by inverse multiplicative uncertainty with
real perturbations corresponding to deviations in operating point. In this construction dynamic weighting
functions are used. Wg and W, correspond to the maximum size of perturbations in H, and m,q with
Ap and A, beeing real in the interval [—1,1].

STWH
(s) = 4.21
War(s) = 221 (421)
W
Wum(s) = T+ or (4.22)
Wh 4
By V\{JH(S)
e ow z.,
+
ST

IR
m o (1+sT) A/

()

GT,pert

Figure 4.6: Inverse multiplicative perturbation of Gr(s).

The most important disturbance input to the system is load of tapped water m,. Load variations are
typically stepwise, and are modelled by a constant K .

mo(s) = Kaid)(s) (4.23)

where ||d1]]l2 < 1 Another disturbance is noise, dg, corrupting the level measurement. This noise is

concentrated in the high frequency domain.

K, by
dns) = TECT0R) () - W51 (o) (1.24)
S+ ago
where ||dz||2 < 1. Changes in setpoint are not important and have been disregarded in the design set-up.

Errors in the outputs H and T should be minimized in the way, that low frequency and DC errors are
punished harder than high frequency errors. This will be done forming weighted outputs e’ with lowpass
weighting functions.

el(s) = Ky j: 21; H(s) = Wy (s)H(s) (4.25)
e4(5) = Kpp “ U2 T (5) = Wio(5)T(s) (4.26)

s+ ap1



This specification can bow be put into the y framework see Figure 3.1 with

|

Me,ref
Mhp,ref

Wt
WTh
Wm
Wh,
Wye
Wyh

B
Y= i T,
2Tec
ZTh
Zm
Zh
Zve
Zvh

| a-

'd’l]
| d

where the elements in w and z represent obvious signals in the perturbations described above.

Data used in design is shown in the Table 4.2.

Plant data A | 7x0.12m? Operating point | T, 10°C
p 1000 kg/m? T 60 °C
TH 0.3 sec Two 30°C
T 15.0 ; sec Hy 04m
Ty 0.15 sec meo | 0.3 kg/sec
T, 0.4 sec Disturbance Kq1 | 0.3 kg/sec
Uncertainty | W, 0.75 weights Ko 0.02m
weights Wy, 0.67 age | 5.88 sec™!
Wi 0.67 baz | 0.33 sec™!
Wy 0.75 Error Weights K, 50 m 1
W, 2.0 ap1 0.1 sec!
Ay 6.7 by 1.0 sec™!
buw 268 Ky | 1.0°C1
apz | 0.01 sec™!
bpr | 0.1sec!

Table 4.2: Design data for the water tank control problem.

(4.27)

The control problem formulated for the water tank is thus a mixed g problem with two complex and
four real scalar uncertainty blocks. The uncertainty structure is augmented with a 2 x 2 full complex
performance block. At first the corresponding complex problem was solved using D-K iteration. Again
the iteration converged quickly. After 5 iterations, no significant improvement in pz _ (Fi (N (jw), K;(jw)))
could be obtained, see Figure 4.7 and Table 4.3. Complex u peaked at 1.30 and robust performance was
consequently not obtained. The final complex u controller K,,_(s) was then tested using the true mixed
perturbation set. The result is shown in Figure 4.7. Notice that similarly to the servo example there is
a decrease in mixed p in the mid frequency area. However, the difference between complex and mixed pu
is not as large as for the servo controller. Thus in this case the complex perturbation approximation is
better and only slight improvement seems possible using mixed p methods like G,D-K or u-K iteration.
Nevertheless u-K iteration was applied to the system. The results are given in Table 4.3.

D-K Tteration p-K Tteration
Iteration No. 1 2 3 4 1 3 5 7 9
[na, (Fi(N(s), Kq(s)[| [ 193 1.3¢ 1.30 1.30 1.42
|ea (Fi(N(s), Ki(s))] .. 1.30 | 1.27 127 1.24 122 1.208
sup,, Bi(w) 0.21 | 0.19 0.10 0.09 0.073 0.065
|EL(Pi(s), Ki(s))ll oo 1231 | 1.31 1.24 1.17 1.15 1.14
inf,, &;(w) 1 1 045 0.5 0.006
K 02 05 05 05 1.0

Table 4.3: Results from D-K and u-K iteration on the water tank system.

Notice that both sup,, 3;(w) and || F;(P;(s), K;(s))||cc are monotonically decreasing. The algorithm con-
verges somewhat slower this time. In Figure 4.8 mixed and complex p is shown for the initial (complex u
optimal) and final mixed p optimal controller. Here mixed p peaks at approximately 1.20. Consequently
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Figure 4.7: Results from D-K iteration on the water tank system. Shown are pz_(Fi(N(jw), K(jw))) for
iteration 1, 2 and 5 and also px (Fi(N(jw), K(jw))) for the final complex p controller K, _(s).



the obtained improvement over complex g is rather small. The improvement is obtained at the cost of
much higher order of the controller. Whereas the final complex p controller had 51 states, the final mixed
p controller had 87 states. Both controllers, however, could be reduced to 25th order with very little
degradation in p.

15 T T T T T T T R | T R |

14

Magnitude

0.8 L MR | L MR | L MR | L PR | L PR |

1072

-1

10 0

1

10 10 10

Frequency [rad/s]

10

Figure 4.8: Results from p-K iteration on the water tank system. Shown are px (Fi(N(jw), K(jw)))
(dashed and solid) and pg_(Fi(N(jw), K(jw))) (dash-dotted and dotted) for the intial (complex p opti-
mal) and final mized p optimal controller respectively.

Since robust performance could not be obtained for the given problem, the robust stability and nominal
performance conditions will be checked. Recall that

pa (Fi(N(jw), K(jw))) <1 < robust stability (4.28)

supa (Pe(jw)) <1 & nominal performance (4.29)
w

In Figure 4.9 tests for robust stability and nominal performance are shown. It is seen, that the robust
stability condition is violated since pa (F;(N(jw), K(jw))) peaks at 1.14. The closed loop system will
therefore become unstable for the given perturbations and the mixed g controller. Since sup,, & (P2 (jw))
nominal performance is achieved.

Thus an alternative design must be made, where e.g. either the performance demands or the range of
operating points could be relaxed.

5 Conclusion

This paper give an introduction to methods for analysis and synthesis of robust controllers based on
Hoo and p theory. In chapter 2 a convienient way to specify performance using singular values and the
Hoo norm is presented along with The Small Gain Theorem which give give a necessary and sufficient
condition for robust stability for plants with unstructured perturbations with frequency dependent bounds
on singular values.

The H oo optimal controller which is also presented can solve the robust stability problem and the nomi-
mal performance problem seperately. However it is demonstrated by the use of examples that a non-
conservative controller for the robust performance problem will in generally not be obtained as an Hy
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Figure 4.9: p and Hoo conditions for robust stability (solid) and nominal performance (dashed).

optimal controller. For plants with simple output multiplicative or additive uncertainty specification can
be conservative by a factor 2, whereas plants with input multiplicative uncertainty can be arbitrarily
conservative if they are ill conditioned.

In Section 3 the structured singular value p is presented and is used to formulate tight conditions for robust
stability and robust performance for plants with structured or unstructured uncertainty descriptions.

1 synthesis using D-K iteration can be effectively used for design of controllers for systems with complex
uncertainty blocks. For systems with mixed real and complex uncertainty blocks synthesis with Peter
Young’s G,D-K iteration can be used, see [5]. An alternative to this algorithm is the u-K iteration
developed by Tgffner-Clausen et al. [7] which seem to have some advantages.

Two design examples are given. A C.D. Player Servo problem is borrowed from Peter Young in order
to be able to compare results from the two algorithms for mixed p synthesis. The results show some
difference in favor of the y — K algorithm. The other example is a watertank level and temperature is
controlled. It is demonstrated how uncertainties coming from changes in operating point can be expressed
via uncertainty blocks with real perturbations. For components with partly unmodelled dynamics the
uncertainty can be expressed via blocks with complex perturbations. For the water tank example analysis
of a controller designed on the basis on only complex perturbations showed that complex and mixed p
only differed little meaning that this controller was close to optimal. The subsequent mixed -y synthesis
gave only marginal improvements.



Appendices

A Proof of Lemma 3.1

Here it will be shown that the minimizations:

Kils) = int | sup {0 (FL (Peoa (), K )} (A1)
D} (w) = 11[1)fa (DF,(N(jw), K;(jw))D™'), Yw (A.2)

are monotonically non-increasing in ||F;(P;, K;)|| . Given a controller K;(s) and scaling matrices I';(s)
and D;(s) it is clear from (3.39) that:

I (Pi(s), Ki(s)ll oo = sup vi(jw)|o (Fi (Di(jw)N (jw) D7 (jw), Ki(jw))) (A.3)

Furthermore, assuming perfect realizations of the 7;(s) scalings, we have that

s (F (N (jw), Ki(jw)))
)] = (1= ai)ica (j) + a2 l N(]w) % Go) (A.4)
( jw), Ki(jw))) 1
= |yi—1(jw) (14—0@( Aia. i) K G) 1G] 1)) (A.5)
= [Yi-1(jw)[ (1 + aiBi(w)) (A.6)

Consequently:
IF(Pi(s), Ki(s)lloo = sup (1 + @i (w)) [vim1 (jw)|7 (Fi (Di(jw)N(jw)D; ' (jw), Ki(jw))) (A7)
w
In order to achieve a monotonically non-increasing algorithm it is thus required that

sup (1 + @iBi(w)) vi-1(jw)|5 (Fr (Di(jw)N (jw) D; * (jw), Ki(jw))) < IFi(Pimi(s), Kim1 ()l (A-8)

We now have the inequalities

[Yi-1(jw)|7 (F (D;i(jw)N(jw)D; ' (jw), Ki(jw)))
< m 1(jw)|& (Fy (Di-1(jw)N(jw) D (jw), Ki(jw))) (A.9)
< sup i 1(jw)|& (F} (D1 (jw)N (jw) D (jw), Ki(jw))) (A.10)
< Suplw 1(jw)|7 (Fy (Di—1(jw)N (jw)D; ', (jw), Ki—1(jw))) (A.11)
= ||Fz(Pz— (8), Ki—1(8))l oo (A.12)

The first inequality follows from (A.2) with perfect realizations of the scalings D;(s). The last inequality
follows from (A.1). Since a; € [0;1] and 3;(w) > —1 it then becomes clear from (A.9-A.12) and (A.7)
that if §;(w) <0, Vw > 0 then

I1Fi(Pi(s), Ki(s))lloo < I1F1(Piz1(5), Kiz1(8))loo »  for sup fi(w) <0 (A.13)

and the algorithm will be monotonically non-increasing for all values of a;;. We may hence choose a; = 1.
If B;(w) < 0, Yw > 0 it is thus guaranteed that the co-norm || F;(P;(s), K;(s))||co Will be reduced during
the ith step of the iteration.

If B;(w) > 0 for any frequency w we must choose a so that (A.8) is fulfilled. Since the frequency at which
the supremum is reached depends on a; we must solve the inequality for all frequences w. Let @; denote
the solution to (A.8) with inequality replaced with equality. It is easily verified that

a;(w) = |F(Pi—1(s), Ki—1(3))]| o B 1) 1
i & (Fi(Di(jw)N (jw)D; ' (jw), Ki(jw))) |1 (jw)] Bi(w)

(A.14)



Thus if we choose a; such that «; < min, @;(w) then (A.8) will be fulfilled and the algorithm will be
monotonically non-increasing if a; > 0. From (A.9) we have that

1F(Pi1(8), Ki—1 ()l 2 0 (F(Di(jw)N (jw) D (jw), Ki(jw))) [ri-1(jw)] (A.15)

where the equality holds only if D;(jw) = D;—1(jw) and K;(jw) = K;_1(jw) at the particular frequency
at which the supremum is reached. Since f§;(w) > 0 it is then clear from (A.14) and (A.15) that a > 0.
If min,, @;(w) > 0 we may choose a; > 0 and it will be guaranteed that the co-norm || F;(P;(s), K;(s))|leo
is reduced during the ith step of the iteration. n
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