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Abstract

A new class of spectro-temporal signal transforms often called Mod-
ulation Transforms has recently been introduced. They add a new di-
mension to the classical time/frequency representations, namely the
modulation frequency. Very efficient in many applications, especially
at the analysis level, these transforms show however their limits when
it comes to signal processing in the transform domain. The modulation
spectrum is commonly obtained by spectral analysis of the sole tempo-
ral envelope of the sub-band signals. Simple filtering in this domain has
been shown to create serious distortions. We detail here some of the
reasons for this and propose the use of a complex wavelet transform as
a more appropriate envelope and phase processing tool. By working in
an alternative transform domain coined as Modulation Sub-bands, this
transform shows very encouraging denoising capabilities and suggests
new approaches for joint spectro-temporal analytic signal processing
in general.

This work was supported by the European Union via a Marie Curie Fellow-
ship (EST-SIGNAL program http://est-signal.i3s.unice.fr) under contract
No MEST-CT-2005-021175.)



Introduction

Many natural signals can be seen as the sum of low frequency modulators of
higher frequency carriers. For instance the concept of modulation frequency
[1, 2, 3, 4] appeared to be very useful to analyze speech or broadband acous-
tic signals in general. The focus of this paper is to build a proper modulation
frequency sub-band analysis and take advantage of all the information and
possibilities the spectro-temporal transform may provide for signal process-
ing. The starting point is to highlight the fact that so far, the phase signal
in the modulation sub-bands was either ignored or processed in an ad-hoc
way with many efficiency/artifacts compromises.

In this paper we first show the relevance and importance of spectro-
temporal approaches for audio and speech signals in particular. Then we
describe and explain the limitations of the usual implementations. This mo-
tivates the need for alternative ways of building the transform. Then to get
analyticity, we explain the motive behind using complex wavelets instead of
a classical Fourier analysis. We detail our filterbank method and show some
interesting outcomes of this transform on envelope and phase analysis first
and then on denoising. We finish by a discussion on the results and propose
methods for future improvements in order to get Complex Wavelet Modula-
tion Sub-bands decompositions and conclude with its legitimacy for future
speech related applications and general spectro-temporal signal processing.

1 Spectro-temporal signal processing

1.1 Concept of modulation spectrum

Recent researches have explored three-dimensional energetic signal repre-
sentations where the second dimension is the frequency and the third is
the transform of the time variability of the signal spectrum. This signal
spectrum is a time-acoustic frequency representation, i.e. a usual short-
time or long-time Fourier decomposition of the signal. The third dimen-
sion is usually called the “modulation spectrum1” . The second step of
this spectro-temporal decomposition can be viewed as the spectral analy-
sis of the temporal envelope in each acoustic frequency band. It provides
three-dimensional information from the signal with two-dimensional energy
distributions St(η, ω) along time t with η being the modulation frequency
and ω the acoustic frequency.

1The name of Modulation Spectrum may vary from author to author.
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1.2 Physiological background for audio signals

In the speech and audio signal processing communities, there has been
a strong motivation to thoroughly study the modulation structures since
Drullman et al. [5], refined later by Greenberg [1], showed that the modula-
tion frequency range of 2-16Hz has a special role for speech intelligibility. It
reflects the syllabic temporal structure of speech [1]. It is also demonstrated
that the modulation frequencies around 4 Hz are the most important for
human speech perception. In general, low frequency modulations of sound
seem to carry significant information for speech and audio. The modulation
spectrum is thus particularly well fitted for speech signals. But it is also
a very delicate representation to work on [6]. Any artifact introduced in a
speech signal is obvious and changes very easily its “natural” sounding. This
is a call for a better understanding of the modulation structures in speech
but also for alternative representations in which the perceptually important
spectro-temporal information should be better decorrelated so as to allow
efficient and non-destructive processing in that domain.

For acoustical signal processing in general there are more important facts
to take into account. The first aspect is the signal phase too often ignored
when it comes to digital audio processing: two signals with identical mag-
nitude spectra but different phases do sound different. Ohm’s acoustic law
stating that human hearing is insensitive to phase is persistent but wrong.
For instance, Lindemann and Kates showed in 1999 [7] that the phase rela-
tionships between clusters of sinusoids in a critical band affect its amplitude
envelope and most important, affect the firing rate of the inner hair cells.
Thus the major issue is to preserve the phase during a modulation trans-
form otherwise amplitude envelopes will be modified. Magnitude in a signal
gives information about the power while phase is important for localization.
For the human hearing, studies like [8] showed that the basilar membrane
in the cochlea, basically acts like a weighted map that decomposes, filters
and transmits the signal to the inner hair cells. If the phase is altered
the mapping on the membrane may be slightly shifted hence the different
sounding.

The second important fact to take into account for digital audio and
speech processing is the mechanical role of the human hearing system and
particularly the middle ear and the cochlea. Different studies [6] showed that
for frequencies below approximately a threshold of 1.5-2kHz (and gradually
up to 6kHz) the firing rate of the inner hair cells depends on the frequency
(and on the amplitude and duration) of the stimulus. At those frequencies
it is called time-locked activity or phase locking, i.e. there is a synchrony
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between the tone frequency and the auditory nerve response that becomes
progressively blurred over this threshold. From 2kHz and above 6kHz, the
response of the inner hair cells is function of the stimulus signal envelope
and the phase is less important [9].

1.3 Applications

Multiple topics have been investigated with relative success over the past
few years with this modulation transform: pattern classification and recog-
nition [3], content identification, signal reconstruction, watermarking, single
channel source separation, audio compression, automatic speech recogni-
tion, just to name few. It was also experimented in the area of speech
enhancement (pre-processing method) for improving intelligibility in rever-
berant environments [10, 11] or speech denoising [12] but there again with
some limitations. The experiments had to face either a production of severe
artifacts or a recourse to post-processing in order to get rid of musical noise.

1.4 Analytic modulation spectrum

The classical computation of the modulation spectrum relies on the envelope
detection of analytic signals or quadrature representations obtained using
the Hilbert transform in each sub-band. More precisely, the input signal
x[n] is decomposed into M sub-band signals Xk[n] using typically a bank
of modulated filters hk[n] where k = 0, . . . , M − 1 is the sub-band index.
When using real filters as in the ubiquitous MDCT, the extraction of the
envelope in each sub-band is usually done with the Hilbert transform H{.}
by introducing X̃k[n] := Xk[n] + jH{Xk[n]}, i.e. an analytical extension of
Xk[n]. Each sub-band signal can be decomposed into its envelope

Ak[n] := |X̃k[n]| (1)

and its instantaneous phase

pk[n] := cos(ϕk[n]) (2)

with X̃k[n] = Ak[n].ejϕk[n]. We then get for real-valued sub-bands, Xk[n] =
Ak[n]pk[n]. The modulation spectrum in the kth sub-band is then obtained
by computing the Fourier transform of the envelope signal Ak[n].

With this approach, any filtering or processing of the sub-bands intro-
duces artifacts and distortions at the reconstruction. As stressed in [13],
this is essentially due to the way the envelope signal is obtained. Also,
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using, as described in [3], a real-valued wavelet transform on the envelope
signals Ak[n] instead of the classical Fourier transform doesn’t bring much
improvement since the core issue is really the envelope extraction. Namely,
processing the modulation spectra without taking much care of the phase
signals pk leads to a leakage of energy from the modified sub-band to other
sub-bands. The reconstructed sub-band being the product in time-domain
of the modified envelope and the original carrier (giving a convolution in
the Fourier domain), the bandwidth of the modified sub-band may then
be wider than the original one. This will lead to imperfect alias cancella-
tion between the sub-bands and thus artifacts. Phase degradations imply a
bad envelope reconstruction and severe artifacts that are very noticeable in
speech signals.

An adaptative way to circumvent this problem for modulation filtering
was proposed by Schimmel and Atlas [13]. In order to reconstruct sub-
bands achieving narrow bandwidth and thus little leakage and artifacts,
they suggested the use before-hand of a “coherent” carrier detection to get
a ϕ̃k[n] signal closer to the true phase of the signal but also narrowband. It
implies that both the envelope and the carrier are now complex, so equations
(1) and (2) become:

Ac
k[n] := X̃k[n].e(−jϕ̃k[n]) (3)

and

pc
k[n] = ejϕ̃k[n] (4)

where ϕ̃k[n] is a low-pass filtered version of the estimated phase signal. Their
idea is to design this low-pass filter by compromising the desired amount
of distortion and the effectiveness of modulation filters stop-band attenua-
tion. However, by its highly adaptative and non-linear nature, this approach
makes it again quite difficult to do any processing in the transform domain.

1.5 Necessity of a new approach

We introduce here an alternative method that simply avoids the computa-
tion of the envelope signals but nevertheless provides a time-scale version
of the modulation spectrum for each sub-band. The underlying idea in our
approach is motivated by the fact that extracting the envelope is “similar”
to extracting the polynomial part of the signal. And this is a typical job in
which wavelet transforms do well. Hence, the principle is now to perform
wavelet transforms on each sub-band to extract the polynomial parts. More
precisely we will use complex-valued wavelets as they allow us to deal prop-
erly with the phase in the signals. The goal is to achieve a decomposition of
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each subband signal into different complex-valued modulated components
living each into disjoint sub-spaces tiling the modulation frequency dimen-
sion. Strictly speaking, this spectro-temporal approach cannot be called
modulation spectrum anymore as we work with polynomial approximations
coming from the wavelet processing. This decomposition should be called a
Modulation subspaces decomposition instead. With this new approach, many
improvements should be possible not only in speech or audio enhancement
but also in spectro-temporal related application domains in general.

2 Complex wavelet method

The problem with most spectro-temporal or modulation frequency frame-
works is often the lack of resolution at the crucial low modulation frequen-
cies. This drawback comes again from using the Fourier analysis as second
transform in the process as it only permits a uniform frequency decom-
position which yields to uniform modulation frequency resolution. A log
frequency scale allows to adapt the precision on the important modulation
frequencies between 2 and 16 Hz [3]. Moreover, from a psychoacoustic point
of view [14], such a scale matches better the human perceptual model of
modulation frequencies, hence again the idea of using a wavelet transform
as second step of the modulation transform, especially for natural or speech
signals.

2.1 complex vs. real valued wavelets

The discrete wavelet transform has been a successful new tool in many fields
of signal processing and especially in image processing. In brief, the idea
underlying wavelets is to replace the infinitely oscillating sinusoidal basis
functions of Fourier-like transforms by a set of time/scale localized oscillat-
ing basis functions obtained by the dilatations and translations of a single
analysis function, the wavelet. Nevertheless, with the first generation of
real-valued wavelets, it was difficult to deal properly with both amplitude
and phase informations in a signal. This explains partly their limited suc-
cess in audio and speech processing. However, the recent developments of
new complex-valued wavelet-based transforms [15] alleviate most of these
limitations. Complex wavelets have the property to deal properly with both
amplitude and phase of the signal which is a crucial matter as seen earlier
in section 1.2.
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2.2 Filterbank specifications

It has been shown that by using complex wavelets, one can implement new
filterbank structures that ensure the analyticity of the analysis [16]. As
usual, the filterbank will be used in an iterated manner. Indeed, the analysis
of a signal at several scales (multi-resolution analysis) can be accomplished
by iterating the filterbank on the low-pass sub-band. The idea of filterbank
trees is to cascade this iteration up to a certain level l. We then have l + 1
signals: a coarse version and l detail signals. The original signal can then
be reconstructed from these sub-band signals by iterating on the synthesis
filterbank with the following specifications:

Signal phase As seen before, the focus of our work around modulation
transforms is on the signal phase information. The filterbank has to
deal properly with it in order to cautiously characterize the energy
localization of the signal.

Polynomials Working with wavelets means we are not anymore in the
frequency domain, the result is not a spectrum. The transform has
to process and preserve polynomials from scale to scale of the multi-
resolution wavelet decomposition.

Analytic Hilbert-like transform An analytic transform is needed but
wavelets are not appropriate to compose a Hilbert transform so the
goal is to approximate it. Van Spaendonck et al. showed in [16] that
two separate high-pass complex filters are able to distinguish high
positive frequencies from high negative ones. Hence, the real and
imaginary parts of the resulting complex wavelets would be similar
to Hilbert transform pairs.

Redundancy vs. Orthogonality If we want the results to be well decor-
related to do some sub-band filtering or any thresholding it is easier
if the filterbank is orthogonal. However, in 2001, Selesnick [17] pro-
posed a shift-invariant complex wavelet transform where the scaling
and wavelet functions form an Hilbert transform pairs. This so called
dual-tree complex wavelet transform has a major drawback to be re-
dundant but provides a tight frame structure with redundancy two
that makes it at least as efficient as an orthogonal framework. We
first aim here at a unidimensional filterbank but research with redun-
dant dual-tree transforms will most surely be investigated in the future
to see if they could bring any further improvement.
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FIR Filters must have a finite impulse response to guarantee good time
localisation.

2.3 Complex Wavelet Modulation Sub-Bands

Here, by working with complex wavelets, we avoid the limitations of the
usual Hilbert envelope approaches caused by the separate processing on the
magnitude and the phase of the modulation spectrum in the sub-bands. In
our approach the sub-band signals Xk[n] = X[n, k] are obtained using a
complex modulated filter-bank (a Short Time Fourier Transform here) for
k = 0, . . . , M − 1 and further decomposed using an orthogonal complex
wavelet filterbank as shown in
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where X1[n, k] is a coarse version of the sub-band signal X[n, k] and Y +
1 [n, k]

and Y −

1 [n, k] are respectively the positive and negative frequency compo-
nents of the associated detail signal. The complex wavelet filterbank is then
iterated N times on each lowpass signal obtained X1[n, k], X2[n, k], . . .. Here,
motivated by their good phase behavior, we took h0[n], h1[n], g0[n] and
g1[n] to be orthoconjugate complex Daubechies wavelet filters [18]. More
precisely, we did our experiments using the complex Daubechies filters of
length 10 based on the the low-pass filter g0[n] given in Table 1.

Now, q[n] is a bandpass orthogonal filter that satisfies the conditions
given in [16] to get analyticity, i.e. it is obtained from a complex-valued
lowpass orthogonal filter u[n] satisfying

U∗(1/z)U(z) + U∗(−1/z)U(−z) = 2.

In our case we took q[n] := jnu[n] where

u[n] =

√
3

16
[−1, 0, 5, 5, 0,−1] + j

√
5

16
[0, 1, 3, 3, 1, 0]. (5)
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Table 1: Coefficients for orthoconjugate complex Daubechies filters of length
10

n g0[n]

0 0.01049245051230 +0.02059043708702j
1 -0.00872852869034 -0.01712890812780j
2 0.08063970414533 +0.11794747353812j
3 -0.09422365674476 -0.15137970843150j
4 0.64300323451588 +0.18285216450551j
5 -0.18285216450551 +0.64300323451588j
6 -0.15137970843150 +0.09422365674476j
7 -0.11794747353812 +0.08063970414533j
8 -0.01712890812780 +0.00872852869034j
9 -0.02059043708702 +0.01049245051230j

The reconstruction is then done using the complementary synthesis filter-
bank.

-

-

�

��

�

��

↑2

↑2

-

-

g0[n]

g1[n]

--

-

�

��

�

��

↑2

↑2

-

-

q∗[n]

q[−n]

-

Y
−

1
[n, k]

Y
+

1
[n, k]

X1[n, k]

STFT−1

x[n]

X[n, M − 1]

X[n, 0]

Now, we omit some details of the signals at the reconstruction by picking
only the relevant coefficients in the decomposition - this is the underlying
principle of denoising by sparse representations [19, 20]. Indeed, for a well
designed reconstruction basis, the noise is not picked in the sparse coefficients
used to reconstruct the signal, hence the denoising. The “quality” of the
reconstructed signal depends largely on the choice of the basis vectors with
which the reconstruction is performed. In our case, the dual stage synthe-
sis, inverse Complex-DWT followed by inverse STFT, gives reconstruction
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vectors that are well adapted to acoustical signal processing, as proved be-
low, namely dilated windowed sinusoidal functions similar to scaled Gabor
functions.

Furthermore, this decomposition separates the complex-valued compo-
nents obtained (i.e. with proper magnitude and phase) into orthogonal
spaces. With this method, if we do any thresholding or remove sub-bands
from the wavelet decomposition, we do not create aliasing problems between
the sub-bands. Typically, if some uncorrelated noise is spread on the mod-
ulation sub-bands, for each of them the phase and the magnitude can be
properly cleaned. We are thus insured not to widen the spectral bandwidth
of the sub-band and thus not to smear on the near-close sub-bands.

3 Detection and denoising experiments

The purpose of our experiments is to illustrate the relevance of the second
part of the transform, i.e. the complex wavelet filterbank, as a proper
envelope and phase “detector”. The test signals are taken to be windowed
complex chirps (see Fig. 1). So, the sub-band signals Xk[n] from the first
transform are assumed to be sampled versions of the type

c(t) = w(t).ej2π(ω1tr+ω0)

where w(t) is a piecewise polynomial envelope, ω0, ω1 frequency parameters
and r characterizes the frequency evolution. This is a good model for the
sub-bands signals Xk[n] when x[n] is assumed to be voiced speech and the
first transform is a STFT as in this paper. Fig. 1 gives the real and imagi-
nary parts of Xk[n] on 218 samples with a quadratic envelope and parabolic
phase.

3.1 Detection

The thresholding of the coefficients obtained in the Modulation sub-bands
provides approximations of the polynomial parts of the envelope and the
phase signals.

When choosing to reconstruct without thresholding with all the sub-
bands the reconstruction is perfect. Now, for instance in Fig. 3 if we choose
an order of 10, i.e. we lowered the resolution by 8 scales at the reconstruction
by keeping only the coarse Modulation sub-band X8[n, k]. This represents
a simple yet severe thresholding of the higher sub-bands (and compression
by a factor of 28). Nevertheless, the reconstruction is still almost perfect.
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Figure 1: Input signal Xk[n]: real (dashed) and imaginary (solid) parts
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Figure 2: Original signal: amplitude and phase

Figure 3: Reconstructed signal: amplitude and phase

Amplitude and phase remain almost identical to the original ones. This
means our analysis/synthesis structure is well adapted to signals of this
kind. This implies good denoising possibilities because the thresholding is
altering neither the envelope nor the phase. This is what we wanted so as to
work properly on the sub-bands of the spectro-temporal transform without
causing artifacts like described earlier in section 1.

3.2 Denoising

To evaluate the denoising capacities of the transform by a simple hard
thresholding, we tested the same protocol of reconstruction on the same
original signal but now drowned in severe white noise, as shown in Fig. 4.
The hard threshold used is of the form T = σ

√

2 loge N (with σ2 the noise
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Figure 4: Noisy signal: amplitude and phase

variance and N the size of the basis we reconstruct with, [21, 20]).
Results of the reconstruction with thresholding at resolution scale 210

out of 218 are shown in Fig. 5. The envelope has been recovered and most
of the noise has been removed, which was expected from wavelet polynomial
approximation of piece-wise continuous signals. The novelty concerns the
phase which has been also nicely smoothed. This is a major improvement
on the wavelet approach described in [3]. For comparison, we applied their
approach on the same signal: our noisy sub-band signal is split into its
amplitude and phase signals, wavelet thresholding is performed on the sole
amplitude signal and at a final stage the original phase is glued back on the
denoised amplitude signal to reconstruct a denoised version of the sub-band
signal. As illustrated in Fig. 6, this typical way of doing signal processing
on the modulation spectrum shows its limits: only the outer-envelope of the
noisy signal is restored and the phase is completely lost.

As stated in section 2.3, magnitude and phase of the signal are cleaned
jointly. Furthermore, for a future spectro-temporal processing we do not
want the spectral bandwidth of a sub-band to be widen. Indeed, with this
transform, a clean signal is perfectly reconstructed and if the signal un-
dergoes denoising, phase and envelope are smoothed hence the sub-band
spectrum can only become narrower.

4 Discussion

With this example, we illustrated some of the properties of this complex
wavelet transform. The envelope and the phase are indeed well processed
and this second part of the transform provides a nice framework for more
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Figure 5: Denoising results with the complex wavelet transform on the en-
velope and phase - comparison with the original signal (dashed)

Figure 6: Denoising results obtained with the usual approach - comparison
with the original signal (dashed)
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advanced processing tools to work on the modulation structures. However
some work is still to be done on the first part of the transform. Namely,
in this paper we used a STFT, which provides a good access to the phase
information but also some limitations on the sparsity of the representations
we can achieve. Namely, the denoising performances depend on the capacity
to approximate the signal with very few basis vectors.

Also, in this paper, to motivate our approach, we used a very coarse
method for denoising: skipping some sub-bands with basic thresholding of
coefficients. In general, denoising by wavelet thresholding can be done in
(quasi-minimax) optimal ways. In our case, a refined multi-scale SURE
thresholding, i.e. adaptive thresholds in the sub-bands, would be a much
more adequate technique. There exist also more advanced algorithms like
Orthogonal Matching Pursuit and other sparse representations techniques
that gives better results for specialized distortion measures [20].

Conclusion

In this paper we introduced a new way to process modulation frequencies
using complex wavelets. We proved the legitimacy of this approach since
the transform we proposed is based on complex wavelets which deal properly
with both magnitude and phase informations in the signal. We showed that
envelope and phase are processed very properly which provides a big margin
for denoising. On a rather simple experiment of hard thresholding in the
sub-bands, some basic but very efficient denoising has been shown. In a near
future, other options for the first part of the full transform (a STFT so far)
will be investigated to take better profit of the second part, the complex
wavelet filterbank. Also, more sophisticated denoising tools coming from
the sparse representations theory will be tried on some real-life examples.
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