All P3-equipackable graphs

Randerath, Bert; Vestergaard, Preben D.

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
All P_3-equipackable graphs

by

Bert Randerath and Preben Dahl Vestergaard

To appear in Discrete Mathematics

R-2008-10

October 2008
All P_3-equipackable graphs

BERT RANDERATH
Institut für Informatik
Universität zu Köln
D-50969 Köln, Germany
randerath@informatik.uni-koeln.de

PREBEN DAHL VESTERGAARD
Department of Mathematical Sciences
Aalborg University
DK-9220 Aalborg 0, Denmark
pdv@math.aau.dk

October 7, 2008

Accepted for publication in Discrete Mathematics

Abstract

A graph G is P_3-equipackable if any sequence of successive removals of edge-disjoint copies of P_3 from G always terminates with a graph having at most one edge. All P_3-equipackable graphs are characterised. They belong to a small number of families listed here.

Keywords: Packing, equipackable, randomly packable, covering, factor, decomposition, equiremovable

2000 Mathematics Subject Classification: 05C70, 05C35

1 Introduction

Let H be a subgraph of a graph G. An H-packing in G is a partition of the edges of G into disjoint sets, each of which is the edge set of a subgraph of G isomorphic to H, and possibly a remainder set. For short, $E(G)$ is partitioned into copies of H and maybe a remainder set. We list some references to an extensive literature at the back. A graph is called H-packable if G is the union of edge disjoint copies of H. An H-packing is maximal if the remainder set of edges is empty or contains no copy of H. An H-packing is maximum if $E(G)$ has been partitioned into a maximum number of sets isomorphic to H and a possible remainder set. A graph is called H-equipackable if any maximal H-packing is also a maximum H-packing, i.e., a graph G is H-equipackable if successive removals of copies of H from G can be done the same number of times regardless of the particular choices of edge sets for H in each step. If every maximal H-packing of a graph G uses all edges of G, then G is called randomly H-packable. Equivalently, G is randomly H-packable if each H-packing can be extended to an H-packing containing all edges of G, see e.g. [1, 2, 5, 6].

Zhang and Fan [9] have studied H-equipackable graphs for the case $H = 2K_2$. We shall consider path packing and in the following H will always be assumed to be the graph P_3, the path of length two, and we may omit explicit reference to it. A graph G is then (P_3-) equipackable if successive removals of two adjacent edges from G can be done the same number of times.
regardless of the particular choices of edge pairs in each step. A component consisting of one vertex is called trivial, a non-trivial component contains an edge. A graph has order $|V(G)|$ and size $|E(G)|$. A graph of odd (even) size is called odd (even). A vertex of valency one is called a leaf. A star is called even if its size is even, and by $K_{1,2k}$ we denote the even star with $2k$ leaves.

Observation 1 A graph is randomly H-packable if and only if it is H-packable and H-equipackable.

Theorem 2 A connected graph G is randomly packable if and only if $G \cong C_4$ or $G \cong K_{1,2k}$, $k \geq 1$.

Lemma 3 A connected graph is packable if and only if it has even size.

This immediately implies Corollary 4 below.

Corollary 4 If a connected graph is equipackable, a maximal packing either contains all edges or all but one edge of the graph.

From B.L. Hartnell, P.D. Vestergaard [4] and P.D. Vestergaard [8] we have the following observation.

Observation 5 Let G be an equipackable graph. Then any sequence of P_3-removals from G will produce an equipackable graph.

From Corollary 4 and Observation 5 we obtain

Corollary 6 Let G be a connected graph. If there is a sequence of P_3-removals from G that creates more than one component of odd size, then G is not equipackable.

We now state our main result, a characterisation of all equipackable graphs with at most one non-trivial component:

Theorem 7 Let $G = (V,E)$ be a graph with at most one non-trivial component. Then G is equipackable if and only if its non-trivial component belongs to one of the thirteen families listed in Figure 1 or can be obtained by a sequence of P_3-removals from such a graph.

Clearly, we wish those thirteen families listed to be maximal w.r.t. P_3-removals, i.e., no graph from one of the families can be obtained as a subgraph of a larger equipackable graph by removing a P_3 from it.

In the figures below we indicate by an arrow from which family of graphs we may obtain the given graph by a sequence of P_3-deletions. The shaded vertex sets may vary in cardinality.
We will prove this characterisation in the following section.

2 Proof of Theorem 7

By Lemma 3 and Theorem 2 a graph with at most one non-trivial component, which has even size, is equipackable if and only if its non-trivial component is a 4-circuit or an even star (Figure 2). Thus it only remains to characterise equipackable graphs with at most one non-trivial component of odd size.
In [8] P.D. Vestergaard examined equipackable graphs with all degrees \(\geq 2 \) and stated the following result.

Theorem 8 A connected graph \(G \) with all degrees \(\geq 2 \) is equipackable if and only if \(G \) is one of the graphs listed in Figure 3.

![Figure 3: All connected \(P_3 \)-equipackable graphs \(G \) without leaves](image)

Observe that this solution contributes to our characterisation five graphs (\(F_6, F_3, F_4, F_5, F_9 \)) maximal with respect to \(P_3 \)-removals. All other graphs of this solution are obtained by a sequence of \(P_3 \)-removals from graphs of the thirteen graph families of our characterisation. Thus it now remains to characterise equipackable graphs \(G \) which have only one non-trivial component, say \(H \), where \(H \) has odd size and contains a leaf.

Since \(H \) has a leaf, it also has a bridge. Let \(b = xy \) be a bridge of \(H \). Throughout we shall denote the two components of \(H - xy \) by \(H_1 \) and \(H_2 \) with \(x \in V(H_1), y \in V(H_2) \). We shall first treat the case that \(G \) has a non-leaf bridge, then the case that all bridges are leaf bridges.

Case 1: Assume \(b = xy \) is a non-leaf bridge of \(G \), i.e., \(\deg(x) \geq 2, \deg(y) \geq 2 \).

Subcase 1.1: Assume further that \(H \) has a maximum \(P_3 \)-packing \(\mathcal{P} \) which does not contain \(b \). Since \(\mathcal{P} \) by Corollary 4 contains all but one edge of \(G \) and \(b \notin \mathcal{P} \), we have for \(i = 1, 2 \) that \(\mathcal{P} \cap H_i \) is a \(P_3 \)-packing of \(H_i \) and therefore \(H_1 \) has even size \(\geq 2 \).

Let \(z \in N(x) \setminus \{y\} \). By \(P_3 \)-removal of \(zxy \) we obtain an equipackable graph which has an odd component contained in \(H_1 - xz \), and \(H - \{zx, xy\} \) also has the even component \(H_2 \) which is connected, randomly packable and hence, by Observation 1, is either a 4-circuit or an even star. By symmetry also \(H_1 \) is a 4-circuit or an even star. Therefore \(H \) belongs to one of the families of graphs depicted in Figure 4.
Figure 4: Connected, P_3-equipackable graphs in Case 1.1

Note that only three new graph families (F_7, F_8, F_{10}) maximal with respect to P_3-removals contribute in this case to our characterisation. All other graph families of this subcase are obtained by a sequence of P_3-removals from graphs of the thirteen graph families of our characterisation.

Subcase 1.2: Assume now that each non-leaf bridge of H is contained in every maximum P_3-packing.

With notation as above let $b = xy$ be a non-leaf bridge of H, the components of $H - xy$ are H_1, H_2. Their sizes have the same parity since H has odd size. If H_1, H_2 both had even size they would be P_3-packable and H would have a maximum P_3-packing not containing b in contradiction to assumption. Therefore H_1, H_2 both have odd size.

Claim: At least one of H_1, H_2 is an odd star.

Proof. P_3-removal from H of zxy, $z \in N(x) \setminus \{y\}$, creates an odd size component, namely H_2. If H_2 is an odd star we are finished. Otherwise, we can isolate an odd component inside H_2: If $\deg_{H_2}(y)$ is even we P_3-remove all edges incident to y in pairs and if \deg_{H_2} is odd we P_3-remove all but one edge incident to y in pairs and that remaining edge yw, $w \in N(y)$, together with $wr, r \in N(w) \setminus \{y\}$ (Since H_2 is not an odd star there has to exist at least one such vertex w). Then $H_1 \cup \{xy\}$ is even, connected, randomly packable and hence is either a 4-circuit or an even star. Since $H_1 \cup \{xy\}$ contains a leaf, it is an even star and hence H_1 is an odd star. That proves the claim. □

Suppose H_1 and H_2 are both odd stars. Now assume that, say x, is not the center of H_1 and let v be the center of H_1. Since vx is a non-leaf bridge and there obviously exists a maximum P_3-packing P which does not contain vx, we obtain a contradiction to the assumption of Subcase 1.2. Hence we find that H is obtained by adding an edge between the centers of H_1 and H_2 (see Figure 5). Consequently H can be obtained from one of the graphs of the family F_{12} in our characterisation by P_3-deletions.
If, say, H_2 is an odd star and H_1 is not, then P_3-removal of zxy from H, $z \in N(x) \setminus \{y\}$, gives that $H_1 - xz$ has even size.

Now assume that zx is a leaf bridge of H (and likewise of H_1), i.e., $\deg_{H}(z) = 1$.

Then P_3-removal of zxy leaves the odd component H_2 and $H_1 - xz$ with one non-trivial even component. Thus the non-trivial even component of $H_1 - xz$ is either a 4-circuit or an even star. The former yields easily a non-equipackable graph, the latter gives that H_1 is an odd star, a contradiction to assumption on H_1.

Suppose now that zx is a non-leaf bridge of H (and likewise for H_1).

The two components of $H_1 - xz$ have sizes of same parity. That cannot be odd since $G - zxy$ would then have three odd components in contradiction to Corollary 6. It cannot be even either because then we could easily construct a maximum P_3-packing P which does not contain the non-leaf bridge xz, a contradiction to the basic assumption of this subcase.

So we may for all $z \in N(x) \setminus \{y\}$ assume that xz is not a bridge of H (and H_1).

P_3-removal of zxy for $z \in N(x) \setminus \{y\}$ produces the connected, even component $H_1 - xz$ which is then randomly P_3-packable and hence is either an even star or a 4-circuit. If $H_1 - xz$ is a 4-circuit we are immediately led to H not being equipackable because, if a, b, c, d are the edges of this 4-circuit (in cyclic order) then the packing $\{xy, a\}, \{xz, c\}$ cannot be extended to a maximum packing of H. Observe that we have $N(x) \setminus \{y\} = \{z_1, z_2, \ldots, z_p\}$ with $z_1 = z$ and $p \geq 2$. Thus for all $z_i \in N(x) \setminus \{y\}$ the connected graph $H_1 - xz_i$ is an even star. It follows that $p = 2$ and $H_1 - xz_1$ must always be isomorphic to a $P_3 = K_{1,2}$ with a center vertex z_{3-i} having neighbours x and z_i for $i = 1, 2$. Thus H_1 is a 3-circuit with vertices x, z_1, z_2 with x joined to y, and y has an odd number of leaves attached (see Figure 5).

![Figure 5: Connected P_3-equipackable graphs in Case 1.2](image)

Observe that none of these equipackable graph families are new families maximal with respect to P_3-removals for our characterisation. Both graph families of this subcase are obtained by a sequence of P_3-removals from graphs of the graph families (F_{12}, F_{13}) of our characterisation. We may now assume that there exist no non-leaf bridge of H.

Case 2: All bridges of H are leaf bridges and there exists at least one bridge $b = xy$ of H, i.e. $H_2 = \{y\}$.

If all $xz, z \in N(x) \setminus \{y\}$, are bridges of H, then they are leaf bridges and H is an odd star, derivable from a member of our characterisation by a sequence of P_3-removals. Thus we may assume that x is contained in at least one cycle of H_1 and there exist at least two edges incident to x, which are not bridges.

If x has an even number of neighbours in H_1 we can isolate xy by pairing up and P_3-removing all $xz, z \in N(x) \setminus \{y\}$. If x has an odd number of neighbours in H_1 we isolate xy by P_3-removing...
all \(xz, z \in N(x) \setminus \{y\}\), and one further edge \(zw, w \in N(z) \setminus \{x\}\) (observe that such an edge has to exist). For simplicity, let \(E'\) be the set of edges of all \(P_3\)'s necessary to remove in order to isolate the bridge \(xy\) and \(H' = H - E'\). Since \(xy\) is isolated in \(H'\) and \(H'\) is equipackable, we obtain by Lemmas 3, Observation 5 and Corollaries 4, 6 that all non-trivial components \(D\) not containing \(x\) and \(y\) are randomly packable and therefore of even size \(\geq 2\). Thus every such non-trivial component \(D\) is either a 4-circuit or an even star.

Assume that one of these components is a 4-circuit \(C\) with vertices \(\{c_0, c_1, c_2, c_3\}\) and edges \(\{c_i c_{(i+1) \text{mod} 4} \mid 0 \leq i \leq 3\}\). As all bridges of \(H\) are leaf bridges, with \(E_C = \{xc \mid c \in N_{H_1}(x) \cap V(C)\}\) we have \(|E_C| \geq 2\). It is easy to see that we can remove two (if \(|E(C)| = 2\)) or three \(P_3\)'s from the subgraph of \(H\) induced by \(\{x\} \cup V(C)\) to produce two (if \(|E(C)| = 3\)) or three isolated edges (including \(xy\)) in contradiction with Corollary 6.

If \(|E_C| = 2\) there exist \(i, j, k, \ell = \{0, 1, 2, 3\}\) such that \(xc_i, xc_j \in E_C\) and \(xc_k, xc_\ell\) are \(P_3\)'s of \(H\) that isolate the two independent edges \(c_0c_k, c_1c_\ell\) remaining in \(C\). By Corollary 6 then \(H\) is not equipackable, a contradiction. If \(|E_C| = 3\), without loss of generality we may assume that \(E_C = \{xc_0, xc_1, xc_2\}\) and in that case \(E' \cup \{c_0c_3, c_1c_2\}\) is an edge set of even size, which can paired up in \(P_3\)'s whose removal isolate two edges \(c_0c_1\) and \(c_2c_3\) on \(C\), by Corollary 6 that contradicts \(H\) being equipackable. If \(|E_C| = 4\), again \(E' \cup \{c_0c_3, c_1c_2\}\) has even size and can be paired up and \(P_3\)-removed to leave two independent edges \(c_0c_1\) and \(c_2c_3\) on \(C\), giving a contradiction to \(H\) being equipackable.

Hence every such non-trivial component \(D\) not containing \(x\) and \(y\) is an even star.

Now suppose there exist two different components \(R_1\) and \(R_2\) of this kind. Analogously to the previous argumentation let \(E_{R_i}\) be the subset of \(E'\) of edges incident to the vertices of \(R_i\) for \(i = 1, 2\). Since \(H\) is connected, and all bridges of \(H\) are leaf bridges there has to exist for each \(i = 1, 2\) at least two edges \(f'_i, f''_i\) of \(E_{R_i}\) adjacent to an edge of \(R_i\). Pairing up \(f'_i\) with one edge of \(E(R_i)\), say \(f_i, i = 1, 2\), and \(P_3\)-removing all remaining edges of \(E'(\text{their number is even, recall that } f_i \notin E')\) will isolate two odd stars \(E_{R_1} - f_1\) and \(E_{R_2} - f_2\), a contradiction to Corollary 6. Thus there exists only one non-trivial component \(R\) of \(H'\) not containing \(x\) and \(y\), and that is an even star.

We now distinguish between two cases depending on the parity of \(\deg_{H_1}(x)\). Assume that \(\deg_{H_1}(x)\) is even. Then obviously \(H\) is, regardless of whether the centre \(r\) of \(R\) is adjacent to \(x\) or not, a member of the graph family \(F_{12}\) or can be obtained by a sequence of \(P_3\)-removals from a member of \(F_{12}\).

Now it remains to consider that \(\deg_{H_1}(x)\) is odd, i. e. \(d_H(x)\) is even. As already noted at the beginning of Case 2 the vertex \(x\) must be contained in at least one cycle of \(H_1\) and there exist at least two edges incident to \(x\), which are not bridges. Since \(R\) is an even star \(K_{1,2l}\) with \(l \geq 1\) it is not difficult to deduce that the cycle has length \(\leq 5\). First let \(R\) be a star with at least four branches. Recall that \(E'\) is the set of edges of all \(P_3\)'s necessary to remove in order to isolate the bridge \(xy\) and let \(H' = H - E'\). Moreover, since \(x\) has an odd number of neighbours in \(H_1\) we isolate \(xy\) by \(P_3\)-removing all \(xz, z \in N(x) \setminus \{y\}\), and one further edge \(zw, w \in N(z) \setminus \{x\}\). Regardless of the choice of this additional edge \(zw\) the remainder will be an even star with at least four edges. Concatenation of all ingredients builds up a member of \(F_{12}\) or a graph that can be obtained by a sequence of \(P_3\)-removals from a member of \(F_{12}\). Therefore we conclude that \(R\) is always an even star with two branches regardless of the choice of the additional edge \(zw\). By
inspection we obtain that H is either the graph F_{11} or F_{13} depicted in Figure 6.

![Graphs](image)

Figure 6: Connected P_3-equipackable graphs in Case 2

This completes the proof of our main result. □

The proof can also be done by induction on $|E(G)|$, but the arguments are not shorter.

Acknowledgement: The authors thank the anonymous referees for careful reading and valuable comments on this text.

References

