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Sequential Error Concealment for Video/Images by
Sparse Linear Prediction

Ján Koloda, Jan Østergaard, Senior Member, IEEE, Søren H. Jensen, Senior Member, IEEE,
Victoria Sánchez, Member, IEEE and Antonio M. Peinado, Senior Member, IEEE

Abstract—In this paper we propose a novel sequential error
concealment algorithm for video and images based on sparse
linear prediction. Block-based coding schemes in packet loss
environment are considered. Images are modelled by means
of linear prediction and missing macroblocks are sequentially
reconstructed using the available groups of pixels. The optimal
predictor coefficients are computed by applying a missing data
regression imputation procedure with a sparsity constraint.
Moreover, an efficient procedure for the computation of these
coefficients based on an exponential approximation is also pro-
posed. Both techniques provide high quality reconstructions and
outperform the state-of-the-art algorithms both in terms of PSNR
and MS-SSIM.

Index Terms—Error concealment, block-coded images/video,
convex optimization, missing data imputation, sparse represen-
tation

I. INTRODUCTION

BLOCK-based video coding standards, such as MPEG-4 or
H.264/AVC, are widely used in multimedia applications.

Video signals are split into macroblocks that are coded using
inter- or intraframe prediction. Quantization is carried out
in the DCT domain and lossless arithmetic compression is
applied [1]. This leads to low distortions at moderate bit-rates.
However, achieving high quality reception is a challenging
task since data streams are usually transmitted over error-prone
channels.

For real-time transmission applications, the H.264/AVC
standard has introduced several error resilience tools, such
as arbitrary slice order (ASO) and flexible macroblock or-
dering (FMO) [2]. Macroblocks within a frame can be split
into several slices. A slice forms the payload of a network
abstraction layer unit (NALU), which is a data sequence
that can be decoded independently [1]. The loss of a NALU
will therefore not affect other macroblocks within the current
frame. However, due to temporal interframe prediction, error
propagation does occur.

H.264/AVC allows both bit- and packet-oriented delivery.
For bit-oriented transmissions, an error burst that surpasses
the channel-coding protection may result in loss of synchro-
nization as well as fatal data damage since H.264/AVC utilizes
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variable length coding (VLC) or Exponential-Golomb coding
for lossless compression [3]. Errors would thus propagate
throughout the packet, making the current slice unusable. In
packet oriented delivery, damaged packets, containing NALUs,
are usually detected and discarded by network or transmission
layers. Also, there may be packets which are not received at
all due to congestion, routing problems, etc. In both cases, we
are facing the problem of the loss of, at least, one slice.

Error concealment (EC) techniques form a very challenging
field, since QoS is of utmost importance for the users. In
many cases, retransmission of lost data is not possible due to
real-time constraints or lack of bandwidth. This last case also
applies to additional transmission of media-specific forward
error correction (FEC) codes which, in addition, may not
be standard compliant [4]. In contrast to channel coding
techniques, which are carried out at the encoder and are
designed to minimize the negative impact of packet losses,
EC is applied at the decoder and can significantly improve
the quality of the received stream [5]. EC algorithms can
be classified into two categories: spatial EC (SEC), which
relies on the information provided within the current frame
and temporal EC (TEC), which utilizes temporal information
such as motion vectors (MV) and previous or already available
future frames. Some TEC techniques use both temporal and
spatial information for image restoration and they are often
referred to as combined or hybrid SEC/TEC algorithms. Both
categories, SEC and TEC, exploit the redundancy due to the
high spatial and temporal correlation within a video sequence.
Temporal correlations tend to be higher than the spatial ones,
so TEC techniques usually provide better results. This would
be the straightforward choice when concealing a P/B-frame
(intercoded). However, utilizing temporal information for the
recovery of I-frames (intracoded) is not always possible, since
they may be inserted to reset the prediction error when a
change of scene occurs. Thus, when all the available temporal
information belongs to a different scene or there is no temporal
information available, SEC algorithms are necessary. Every
I/P-frame in the video sequence usually serves as a prediction
template for, at least, one intercoded frame. Thus, high quality
concealment is required since any reconstruction error will
be propagated until the next I-frame arrives and resets the
prediction error.

Several SEC techniques have been proposed for block-
coded video/images. Many of them are based on some type
of interpolation, trying to exploit the correlations between
adjacent pixels. In [6], a simple spatial interpolation is used.
In [7] a directional extrapolation algorithm was proposed,
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which exploits the fact that high frequencies, and especially
edges, are visually the most relevant features. An algorithm for
preservation of edges and borders in the transformed domain
based on projections onto convex sets has been also proposed
[8]. A technique including edge detectors combined with a
Hough transform, a powerful tool for edge description, was
utilized in [9]. A more advanced Hough transform based
method was proposed in [10]. However, the performance of
these methods drops when multiple edges or fine textures are
involved. Modelling natural images as Markov random fields
for EC was treated in [11]. This scheme produces relatively
small squared reconstruction errors at the expense of an over-
smoothed (and, therefore, blurred) image. The authors in [12]
combined edge recovery and selective directional interpolation
in order to achieve a more visually pleasing texture reconstruc-
tion. A content adaptive algorithm was introduced in [13]. A
simple interpolation is applied if there are only a few edges
crossing the missing macroblock and a best-match approach
is applied if the macroblock is decided to contain texture.
For this algorithm, and in general for all switching SEC
techniques, a correct classification is critical since an erroneous
decision on the macroblock behaviour could have a very
negative effect on the final reconstruction. Inpainting-based
methods can also be adopted for SEC purposes [14] [15].
Sequential pixel-wise recovery based on orientation adaptive
interpolation is treated in [16]. As we will show later, pixel by
pixel recovery usually suffers from smoothing high frequency
textures. In [17], Bayesian restoration is combined with DCT
pyramid decomposition. Bilateral filtering exploiting a pair
of Gaussian kernels is treated in [18]. The algorithm seems
quite competitive although some high frequency textures may
be found overfiltered. Recently, SEC techniques in transform
domains [19] have shown promising results although ringing
can be observed in some cases.

TEC techniques take advantage of temporal and/or spatial
redundancy as well. A joint video team (JVT) reference
software TEC algorithm includes frame copying and motion
vector copying [20]. A more advanced recovery of lost mo-
tion vectors is based on the boundary matching algorithm
(BMA) [21] that minimizes the squared error between the
outer boundary of the lost macroblock and the inner bound-
ary of macroblocks found in the reference frame. A slight
modification of BMA, overlapping BMA (OBMA), matches
the outer boundaries of both the missing macroblock and
the reference, leading to more accurate reconstructions [21].
These techniques, however, consider a linear movement and
assume that the entire macroblock has been moved the same
way. This issue is palliated by a multi-hypothesis approach
(based on BMA) [22] which, however, lacks in generality.
In [23], MV’s are estimated by a Lagrangian interpolation of
previously extrapolated MV’s. This technique is entirely based
on MV’s so maintaining spatial continuity may be an issue.
An edge-directed hybrid EC algorithm was proposed in [24].
Strong edges are estimated first and regions along these edges
are recovered afterwards. Another combined EC technique is
presented in [25]. It is a modification of the classic BMA
under spatio-temporal constraints with an eventual posterior
refinement based on partial differential equations. However,

the improvement over the BMA is rather moderate. A MAP
estimator, using an adaptive Markov random field process,
is used to conceal the lost macroblocks in [26]. A statisti-
cally driven technique, based on a Gaussian mixture model
is obtained in [27] from spatial and temporal surrounding
information. This model, however, requires an extensive offline
training. A computationally lighter version is described in
[28]. Interesting results are obtained in [29] where a sparse
representation based on local dictionaries is used for image
reconstruction. This method, however, lacks in flexibility when
complex textures are present and the concealment in scanning
order may not always be appropriate. Recently, refinement
technique [30] based on spatial and temporal AR models
has been proposed. However, it is highly dependent on the
previous MV estimate (using BMA, for example) and it
assumes that (small) groups of macroblocks can be modelled
using the same AR process which for low resolution videos
or complex scenes may be inaccurate.

In this paper we propose an error concealment technique
that automatically adapts itself to SEC [31], TEC or a com-
bined SEC/TEC scheme according to the available informa-
tion. Our proposal tries to fix or palliate some of the weak
points of the previously referenced work such as blurring,
blocking or filling order. The lost regions are recovered
sequentially using a linear predictor whose coefficients are
estimated by an adaptive procedure based on sparsity and
a missing data imputation approach. First, we formulate the
problem of estimating the predictor coefficients (only for SEC)
as a convex optimization problem and then we derive an
efficient alternative based on an exponential approximation.
Although different exponential estimators have been used in
EC algorithms [17] [18], a thorough treatment, combined
with a linear prediction model, sparse recovery and sequential
filling is proposed in this paper. This leads to a more generic
and flexible EC technique. We also show that our EC scheme
can be straightforwardly extended to also account for temporal
correlations in video sequences (TEC and SEC/TEC). The
experimental results show that our proposals provide better
performance than other existing state-of-the-art algorithms on
a wide selection of images and video sequences. In particular,
the exponential approximation provides the best perceptual
results.

The paper is organized as follows. In Section II we for-
mulate the problem and introduce the linear prediction image
model employed in the optimization process as well as the
estimator (linear predictor) used for EC. The convex optimiza-
tion based error concealment algorithm and its exponential
approximation are presented in Section III. The model for
video sequences is treated in Section IV. Simulations results
and comparisons with other SEC and TEC techniques are pre-
sented in Section V. The last section is devoted to conclusions.

II. LINEAR PREDICTION MODELLING AND ITS
APPLICATION TO ERROR CONCEALMENT

Our aim is to conceal a lost region by optimally exploiting
the correlations with the correctly received and decoded pixels
in its neighbouring area. These correlations will be modelled
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and exploited by means of vector linear prediction as it is
described in the next section.

The following subsections describe how this model can be
suitably estimated and applied to our concealment task.

A. Vector LP-based spatial modelling

Let us assume that our image can be modelled as a station-
ary random field. Then, we can expect that every pixel z can
be linearly predicted from a small set of surrounding pixels.
The corresponding linear prediction (LP) model is defined by,

z =
∑

(k,l)∈Rz

w(k, l)z(k, l) + ν (1)

where w(k, l) are the LP coefficients, Rz is the region of
surrounding pixels employed for prediction, and ν is the
residual error. We will assume integer pixel values belonging
to Ψ = [0, 255] for each colour space component.

In our case, we are interested in LP-based reconstruction of
groups of lost pixels. Thus, it is convenient to re-formulate the
above LP spatial modelling into a vector form by replacing the
pixels z(k, l) in (1) by pixel vectors. Let z be an arbitrarily
shaped group of pixels that we want to express in terms of
our LP model. Writing z as a column vector, we have that
z ∈ Ψn, where n is the number of pixels contained in z.
Also, let Z = {z1, . . . ,z|Z|} be the set of all possible spatially
shifted versions of z which are employed to predict it. Then,
the whole region employed to predict z is,

Nz =

|Z|⋃
j=1

zj . (2)

Again, we can expect that prediction can be carried out with a
small number |Z| of neighbouring vectors. Now, Eq. (1) can
be extended to a vector form as follows, 1

z =

|Z|∑
j=1

wjzj + ν, (3)

where ν is the corresponding vector of residuals and wj ≥ 0
for all j = 1, . . . , |Z|.

The previous LP model can be applied to estimate z from
the known neighbour vectors in region Nz as,

ẑ =

|Z|∑
j=1

wjzj . (4)

In order to obtain optimal LP coefficients, the residual energy

ε(w) , ‖ν‖2 =

∥∥∥∥∥∥z −
|Z|∑
j=1

wjzj

∥∥∥∥∥∥
2

2

(5)

is usually minimized by solving a system of normal equations.

1Note that the intraprediction scheme used the in H.264 codec is a particular
case of (3).

B. Application to error concealment: sparse LP
We will denote S as the set of known pixels and L will

denote the set of lost pixels (see Fig. 1(a)). When applying
the above LP estimator of Eq. (4) to compute a lost group of
pixels z, we are facing two problems:

1) Since z is not known, it is not possible to find the resid-
ual energy function ε(w) exactly. In order to solve this
problem, a solution based on missing-data imputation is
proposed later in this section.

2) The region Nz required for prediction is not known
either. Instead, we have to employ a support area S of
available (correctly received and decoded) pixels which
provides us with a set Z ′ containing M = |Z ′| available
neighbour vectors zj (j = 1, . . . ,M ), that is,

S =

M⋃
j=1

zj . (6)

Then, some pixels required for prediction in (4) may
be missing. Also, since the image is, in general, non-
stationary, the support area S may include a high number
of alien pixels not useful for predicting z (M � |Z|,
typically). As a result, the usual least-squares solution
based on solving a system of normal equations is not
suitable in our case. Typically, this solution involves the
inversion of a huge M ×M correlation matrix of small
rank which would lead us to a poor solution. This small
rank indicates that the number of vectors zj ∈ S useful
for prediction is quite small. In other words, we can say
that the solution w = (w1, . . . , wM )

t we are seeking
will be a sparse vector.

In order to overcome this last problem, the classical least-
squares estimation of the LP coefficients can be replaced
by a joint optimization of the squared error of Eq. (5) and
the level of sparsity of the solution (typically represented
by the `0-norm), which leads to a sparse linear prediction
(SLP) scheme [32]. This scheme yields an unconstrained
minimization problem, that we will represent as the following
constrained optimization [33]:

minimize ε(w) =

∥∥∥∥∥∥z −
M∑
j=1

wjzj

∥∥∥∥∥∥
2

2
subject to ‖w‖0 ≤ δ0 and w � 0.

(7)

where δ0 is a parameter that controls the sparsity level and
w � 0 is imposed to prevent negative pixels from the esti-
mator (9) which is introduced later in this section. Moreover,
preliminary experiments have shown that not using this last
constraint would yield a worse performance.

This optimization involves two problems that will be ad-
dressed in the next section. First, we have that the `0-
norm is non-convex and unfortunately also computationally
infeasible for problems of higher dimensions. This problem
is usually solved through convex relaxation. Second, we have
the problem of selecting a suitable maximum value for sparsity
parameter δ0. We will shortly see that convex relaxation of (7)
also provides a natural and smart solution to this issue which
is proposed in Section III.
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The LP formulation in (7) provides us with an adaptive
procedure which dynamically obtains both the LP coefficients
and the region of support Nz (defined by those vectors zj
with wj 6= 0) for every image block z. We still have the
problem of z being unknown. As a consequence, the squared
error ε(w) cannot be directly computed. In order to solve this,
we will adopt a missing data approach where lost pixels can
be imputed from known ones [34]. Instead of having a vector
z completely unknown, we will consider that it contains both
known and unknown pixels. Without loss of generality, let z
be a group of pixels as shown in Fig. 1(a). Let the vector
z = x ∪ y consist of the two subvectors x and y, where x
denotes the missing pixels and y denotes correctly received
and decoded pixels and can be seen as the spatial context of
x. Every zj ∈ Z ′ is split in a similar way, as shown in Fig.
1(a). Since z is (locally) stationary and y ⊂ z, then we can
approximate the weights obtained from (7) by means of the
following procedure:

minimize εy(w) =

∥∥∥∥∥∥y −
M∑
j=1

wjyj

∥∥∥∥∥∥
2

2
subject to ‖w‖0 ≤ δ0 and w � 0.

(8)

Section III will be devoted to the search for solutions to this
optimization problem.

Finally, according to (4) the concealed group of pixels, x̂,
can be approximated by a linear combination of blocks within
its neighbourhood

x̂ =

M∑
j=1

w∗jxj , (9)

where w∗ = (w∗1 , . . . , w
∗
M )t is the vector of optimal weights

(LP coefficients) obtained by (8).

C. Application to error concealment: sequential filling

The H.264/AVC encoder packetizes the stream by slices so
a loss of one packet implies a loss of, at least, one 16×16
macroblock. Applying (9) to x ∈ Ψ16×16 would lead to
significant imprecisions due to blocking as well as blurring
since it is often not possible to find a combination of xj’s
suitably matching x due to the high number of dimensions
in Ψ16×16. This means that the residual error from (3) may
still carry significant energy. This is the reason why the
H.264/AVC standard also includes submacroblock prediction
[3]. In order to manage with this problem, we introduce
sequential recovery. Thus, the macroblock is recovered using
a set of square patches x̂ ∈ Ψp×p with 1 ≤ p ≤ 16. Pixel-wise
reconstructions (p = 1), as in [16], may introduce considerable
blurring when high frequencies are involved (Fig. 11(b)). By
using groups of pixels the correlation within a group is better
preserved and so is the texture (Fig. 11(c)). Let us consider,
without loss of generality, p = 2 and let y include all the
received and already recovered pixels within the 6×6 block
with the lost pixels x placed in its centre, as shown in Fig. 1(a).
The macroblock is recovered sequentially by filling it with x̂
obtained by applying (8) and (9). The filling order is critical

(a) (b)

Fig. 1. (a) Example of configuration for the vectors x, y and z. S
denotes the set of known pixels and L denotes the set of lost pixels.
(b) Filling order for sequential reconstruction with 2×2 patches (p =
2). The regions illustrated by brighter level are recovered first.

and it should preserve the continuity of image structures [15].
In [15], the filling priorities of every patch are set in order
to maintain the continuity of isophotes and according to the
amount of information within the patch. Our proposal, due to
the shape of the context y, can achieve an appropriate filling
order in a much simpler way by using contexts reliabilities. We
define the reliability ρ of context y as the sum of reliabilities
of all its pixels. Initially, the reliability of a pixel is set to 1
if it has been correctly received and decoded. Missing pixels
have reliability zero. When a pixel x ∈ x is concealed, its
reliability is set to αρ/m, where 0 < α < 1 and m is the
number of pixels contained in y. We use α = 0.9 in our
simulations. The lost region x, whose context y produces the
highest reliability, is recovered first. The reliability is non-
increasing and the reconstruction evolves from the outer layer
towards the centre of the missing macroblock. Figure 1(b)
shows the filling order of a 16×16 macroblock using 2×2
patches. Note that the first patches to be concealed are the
corners as their contexts are the largest ones, and thereby
providing more reliable information (which leads to a more
accurate estimate of the LP coefficients).

III. LP PARAMETER ESTIMATION

The scheme proposed in the previous section requires the
computation of a set of LP coefficients by solving the op-
timization problem of Eq. (8). In this section, we propose
first a solution based on convex relaxation. Then, we derive a
computationally less expensive algorithm by applying several
approximations.

A. SLP via convex relaxation (SLP-C)

The main problem that arises when solving (8) is that
the `0-norm is non convex, so that this optimization usually
requires exhaustive search and is therefore computationally
prohibitive. Applying convex relaxation [35], the solution to
the optimization defined by (8) can be modified in terms of
the `1-norm as follows:

minimize εy(w) =

∥∥∥∥∥∥y −
M∑
j=1

wjyj

∥∥∥∥∥∥
2

2
subject to ‖w‖1 ≤ δ1 and w � 0.

. (10)
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Fig. 2. Histogram of pairs squared-error/weight (ξj , w∗
j ) for Lena.

Logarithmic scale is employed for more clarity. For reconstruction
purposes 2×2 patches are used and loss pattern from Fig. 6(b) is
applied.

In our simulations, this optimization is solved by the primal-
dual interior point (IP) method [36].

The remaining problem is the selection of a suitable sparsity
level δ1 (redefined under the `1-norm). In order to do this, we
will assume smoothness in the visual features of an image.
This implies that the reconstructed block should not contain
any singular features. In the particular case of luma, it means
that a reconstructed pixel could not be brighter (darker) than
the brightest (darkest) pixel in S. This requires that (9) must be
a convex combination and it implies that δ1 = 1. The resulting
technique will be referred to as SLP-C in the following.

B. SLP with exponentially distributed weights (SLP-E)

Although there are efficient algorithms for solving convex
optimization problems, such as the IP method employed above,
the processing time still remains very high and far from real-
time. In this section we develop a fast approximation for
solving the minimization problem in (10). Specifically, we
show that the optimal weights w∗ obtained from (10) can be
well modelled by an exponential function.

According to (10), every context yj has a weight w∗j
associated. Due to the high spatial correlation of an image, it
is likely that contexts that produce smaller squared error, ξj ,
would generate larger weights, where we define the squared
error ξj associated to a context yj as,

ξj =
‖y − yj‖22

m
. (11)

Figure 2 represents the joint 2D histogram of pairs (ξj , w
∗
j )

for the image of Lena. The loss pattern applied is the one
shown in Fig. 6(b). The histogram suggests that there is an
exponential relationship between the squared errors ξj and
the weights w∗j . With this in mind, we propose the following
approximation for the LP weights:

ŵj = Cexp

(
−1

2

ξj
σ2

)
, (12)

where σ2 is a decay factor that controls the slope of the
exponential and C is a normalization factor that ensures the

(a) (b)

Fig. 3. Example of the exponential estimated by means of the optimal
weights w∗ for two different patches.

Fig. 4. Comparison of the weights histograms obtained by SLP-E
(red) and SLP-C (blue) for the image of Lena. The vertical axis uses
a logarithmic scale for a clearer visualization and σ2 has been fixed
to 10 for the whole image.

sparsity constraint ‖w‖1 = 1, that is,

C =
1∑M

i=1 exp

(
−1

2

ξi
σ2

) . (13)

Note that this normalization always forces the solution ŵ
to have the maximum value of sparsity considered in (10),
i.e. δ1 = 1. The corresponding LP estimator is obtained
by replacing the optimal weights w∗j by their exponential
approximation ŵj in Eq. (9). The resulting EC technique will
be referred to as SLP-E in the following.

Let us analyze the approximation proposed in equations
(12) and (13). We can see that the exponential trend observed
in Fig. 2 cannot be written down as a single exponential
function for the whole image. In fact, the figure shows lots
of exponential contours. There are two reasons for this:

1) We must take into account the effect of the mild sparsity
constraint applied in (10). Thus, given several similar
contexts yj (representing a certain context type) with
small quadratic errors ξj (that is, relevant for reconstruc-
tion), the optimization algorithm picks one context and
suppresses the others instead of using all of them. On
the contrary, the exponential approximation relaxes the
sparsity constraint and keeps all the relevant contexts.

2) We must also consider that Fig. 2 shows all the pairs
(ξj , w

∗
j ) for all the patch linear predictors in the image.

However, clearly all these linear predictors are different
and must have a different factor σ2, since this is the only
free parameter in Eq. (12).
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(a) (b) (c)

Fig. 7. EC with SLP-E for different values of σ2: (a) σ2 = 0.5,
numerically unstable reconstructions are represented with white level,
(b) σ2 = 10, (c) σ2 = 50.

Let us consider first the issue of obtaining a suitable value of
σ2 for each patch predictor. This factor is related to the squared
error εy and, therefore, to the local predictability of the image
signal. In order to estimate a suitable value of σ2 for every
predictor, a logical solution is that of minimizing the prediction
error εy = εy(σ

2) defined in (10) but constrained to the LP
weights defined by Eqs. (12) and (13). Figure 3 illustrates
two examples of the optimal weights and their corresponding
exponential approximations with factors σ2 estimated as de-
scribed above. In the first example, the exponential function
mainly follows the most relevant optimal weights. However,
in the second one, the exponential approximation leads to
weights which are smaller than the optimal ones. In order
to understand this, we must take into account that there is
a considerable number of zero-valued optimal weights in the
small squared error area, which is due, as previously explained,
to the mild sparsity constraint. On the contrary, the exponential
approximation introduces a sparsity relaxation and the weight
assigned to a certain type of context is distributed among the
contexts of that type through the normalization in (13) and the
selection of a suitable σ2. We must point out that the sparsity
relaxation just described is quite limited. In order to see this,
the histograms for both optimal and exponential weights are
depicted in Fig. 4. We can see that although the exponential
approximation reduces sparsity, most of the weights are still
close to zero.

Table I shows the mean value and the standard deviation
of σ2 for several tested images. εy(σ2) minima have been
obtained by exhaustive search. In the following and for the
sake of computational simplicity, a fixed value of σ2 will be
used. Simulations reveal that this simplification, along with the
exponential approximation, leads to a factor of 100 of com-
putational saving with respect to SLP-C. For natural images,
σ2 values around 10 lead to visually good results (Fig. 7(b)).
Larger values of σ2 may lead to oversmoothing (Fig. 7(c))
while smaller values may lead to numerical instability and
should be avoided (Fig. 7(a)) (unless the image is extremely
stationary).

Finally, we must also point out that the approach developed
here can be alternatively interpreted as a non-parametric
kernel-based regression, in particular, as a Nadaraya-Watson
estimator.

σ2 Lena Clown Office Barbara Average
mean 6.70 12.01 7.35 12.99 9.76
std 14.69 35.53 15.50 20.09 21.45

TABLE I
ESTIMATED VARIANCE (MEAN VALUE AND STANDARD

DEVIATION) FOR TESTED IMAGES.

IV. TEMPORAL MODEL OF A VIDEO SEQUENCE

The importance of temporal correlations is reflected by the
fact that they are a crucial issue in video coding. However, in
the temporal domain, video signals tend to be non-stationary
due to motion. That is, the pixel z(i, j) in the current frame
usually cannot be predicted using the pixels with the same
location in previous frames [37]. This can be palliated by ap-
plying motion compensation. In fact, the H.264/AVC standard
encodes the submacroblock sMB

(n)
(i,j) belonging to the current

P-frame n as

sMB
(n)
(i,j) = sMB

(n−τ)
(i+MV (i),j+MV (j)) + r (14)

where MV (i, j) is the motion vector, r is the residual error
and τ is the temporal lag to the reference frame n. Note that
τ depends on visual properties of the video as well as the
dimension of the prediction buffer. Moreover, regardless of the
buffer size, the encoder selects the sparsest set of weights since
only one reference submacroblock is taken into account. For
B-frames and P-frames where weighted prediction is applied,
two reference submacroblocks are utilized.

The estimation scheme of Section II can be straightfor-
wardly extended in order to account for both temporal and
spatial correlations. In this case, Eq. (3) could be seen as a
generalization of (14). The stationary region Nz will now not
only comprise pixels from the current frame but also pixels
from the previous frames. As in the case of SEC, the stationary
3D region is unknown and the whole support area S needs to
be searched. We will set the support area to include all the
available neighbouring macroblocks from the current frame (as
in the previous section) and all the corresponding macroblocks
from the previous frame. For the sequences of Foreman and
Stefan, more than 99% of MV have τ = 1, so considering
only the previous frame is a reasonable simplification. Figure
8 illustrates an example where the corrupted frame utilizes
dispersed slicing and the previous frame is received without
errors.

In practice, the loss of a NALU implies that residual errors
as well as motion vectors are lost (unless data partitioning is
applied at the encoder side at the expense of a higher bit-rate)
[3]. In order to obtain high quality predictions, the support area
S should include all the motion compensated pixels located
within the corrupt macroblock. For a standard frame rate of 30
fps, the motion vectors between two consecutive frames are
likely to be moderate. In fact, Fig. 9 shows the histograms
of motion vectors norm for four different 30-frame video
sequences. It follows from the histograms that the support
area composed as described above covers more than 95% of
motion vectors. In other words, in less than 5% of cases the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 5. Comparison of reconstructions obtained by different procedures. (a) Original frame. (b) Received frame. (c) Reconstruction by average
MV replacement (PSNR = 21.36, MS-SSIM = 86.52). (d) Reconstruction by BMA (PSNR = 22.44, MS-SSIM = 90.24). (e) Reconstruction
by OBMA (PSNR = 24.14, MS-SSIM = 96.86). (f) Reconstruction by MHEC (PSNR = 24.37, MS-SSIM = 96.93). (g) Reconstruction by
SLP-E using spatial information only (PSNR = 18.56, MS-SSIM = 77.80). (h) Reconstruction by SLP-E using temporal information only
(PSNR = 25.79, MS-SSIM = 97.73). (i) Reconstruction by SLP-E using both spatial and temporal information (PSNR = 25.93, MS-SSIM
= 97.74).

motion compensated macroblock lies (completely or partially)
outside the support area (MV amplitude greater than 16).
For the sake of computational simplicity, we assumed that
the motion vectors were calculated using only the previous
frame. The more motion vectors that are covered, the better
reconstructions would be obtained as a more complete set
of motion compensated pixels (useful for prediction) is used.
However, the processing time increases with |S| so applying
the proposed support area is a reasonable trade-off. Using this
support area, the weights will be computed in the same way
as in (12).

Note that pixels from the surroundings (within the current
frame) of the missing macroblock are also included. Thus,
the algorithm automatically decides whether to use SEC,
TEC or combined concealment. This is the consequence of
dynamically obtaining the LP coefficients and estimates the

Fig. 8. Support area S (grey 16 × 16 macroblocks) for combined
TEC/SEC. The striped macroblocks are lost.

stationary area Nz , as discussed in Section II-B. For example,
if the previous frame belongs to a different scene, all relevant
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(a) (b) (c)

(d) (e) (f)

Fig. 6. SEC for the image of Foreman (a) Original image, (b) Received data, (c) Reconstruction using CAD (PSNR = 31.46dB, MS-SSIM
= 97.54), (d) FSE (PSNR = 34.17dB, MS-SSIM = 98.03), (e) SLP-E (PSNR = 35.46dB, MS-SSIM = 98.73), (f) SLP-C (PSNR = 35.48dB,
MS-SSIM = 98.68).

PSNR BIL POC EXT SHT CAD AVC MRF INP BLF OAI FSE SLP-E SLP-C ORA
Average 26.92 25.94 26.76 27.19 29.12 28.08 29.12 28.78 29.71 30.15 30.20 30.32 30.90 31.36
Lena 30.00 28.04 29.39 30.47 30.44 30.42 32.17 30.88 32.15 32.82 32.72 32.55 32.85 33.41
Goldhill 30.00 28.50 29.57 29.97 30.24 31.27 31.12 30.40 30.91 31.54 31.78 31.54 32.07 32.97
Foreman 27.12 28.49 29.26 28.34 31.46 29.11 32.98 33.87 34.75 35.03 34.18 35.46 35.48 37.38
Barbara 26.19 24.30 25.85 26.40 26.78 26.85 27.99 28.04 29.91 29.66 30.84 30.79 31.91 32.15
Office 27.54 27.56 27.32 27.54 29.43 29.99 29.77 29.64 30.06 31.77 31.33 31.30 32.06 32.68
Cameraman 25.96 23.66 24.82 26.16 26.51 26.14 26.67 25.45 26.03 27.27 27.44 27.24 27.27 27.28
Baboon 24.15 24.63 24.72 24.14 24.92 25.42 26.14 25.06 26.05 26.06 26.02 25.70 26.21 25.93
Clown 27.76 24.36 26.30 27.62 29.12 28.55 28.23 27.89 28.73 29.75 29.19 27.39 30.79 31.00
Tire 23.59 23.92 23.82 24.10 24.47 25.43 27.00 26.37 28.76 27.42 28.31 28.77 29.32 29.43

MS-SSIM
Average 93.83 91.23 93.82 94.12 95.69 94.74 95.87 95.53 96.35 95.81 96.36 97.04 96.58 97.80
Lena 96.72 92.85 96.52 97.03 96.59 96.56 97.64 96.65 97.44 97.65 97.80 97.97 97.75 98.48
Goldhill 93.83 92.50 94.81 93.86 94.53 95.65 95.71 95.21 95.52 95.62 96.14 96.43 96.34 97.50
Foreman 95.16 93.09 97.16 95.65 97.58 96.87 98.10 98.22 98.15 98.68 97.92 98.70 98.65 99.19
Barbara 95.24 89.42 94.70 95.57 95.73 94.87 96.00 95.72 97.04 97.07 97.64 97.92 98.12 98.67
Office 93.93 93.24 94.84 93.92 95.66 95.77 96.21 96.35 96.12 97.27 96.90 97.45 97.39 98.32
Cameraman 93.38 87.22 93.14 93.47 94.87 93.72 94.95 93.96 95.97 93.87 94.31 96.55 92.93 96.83
Baboon 88.96 90.16 91.38 88.81 91.89 91.91 93.09 90.95 93.33 92.61 93.32 93.42 93.38 94.83
Clown 95.61 91.17 94.09 95.53 96.00 95.55 95.55 95.74 96.22 95.28 96.40 97.19 97.13 98.23
Tire 91.65 91.40 93.17 93.12 88.56 92.07 95.59 94.19 97.35 94.26 96.81 97.70 97.30 98.16

TABLE II
PSNR VALUES (IN DB) AND MS-SSIM INDICES (SCALED BY 100) FOR TEST IMAGES RECONSTRUCTED BY SEVERAL ALGORITHMS FOR

BLOCK DIMENSIONS 16 × 16. THE BEST PERFORMANCES FOR EACH IMAGE ARE IN BOLD FACE.

weights calculated by (12) will most likely come from the
current frame and the contribution of pixels from the previous
(uncorrelated) frame will be negligible. Nevertheless, temporal
correlation is usually higher than the spatial one and this
phenomenon is observed in the reconstruction process. Figure

10 shows the average weight associated with each pixel within
the support area for two different video sequences. We see that
the contribution of pixels belonging to the previous frame is
considerably higher than the contribution of those within the
current frame. Simulations show that for standard video test
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(a) (b)

(c) (d)

Fig. 9. Histogram of MV amplitudes for the video sequences of
(a) Foreman, (b) News, (c) Stefan and (d) Bus. Motion vectors were
obtained by minimizing the residual error and applying full range
search.

samples, composed by a single shot, the amount of information
(pixels) gathered from the previous frame is higher than 70%.
Moreover, in some particular cases there will be almost no
good template matches within the current frame, as shown in
Fig. 10(c) and 10(d). Unlike the pure spatio-temporal hybrid
algorithms, our proposal is applicable both for still images (or
I-frames) and video. Since temporal correlations tend to be
higher than spatial correlations, then smaller values of σ2 are
preferred. Moreover, due to the same reason, larger patches
may be utilized to speed up the algorithm and obtain higher
quality reconstructions. Here, σ2 is set to 5 and 8×8 patches
are employed.

Figure 5 shows a comparison of our proposal using only
spatial information, temporal information and a combination
of both with other techniques. In fact, it is observed, at
both objective and subjective levels, that using only spatial
information achieves poorer quality. The improvement of the
combined method over the pure TEC is small, as can be
also deduced from Fig. 10. Nevertheless, including spatial
information may provide a noticeable visual improvement as
can be observed comparing Fig. 5(h) and 5(i).

V. SIMULATION RESULTS

In order to better take into account the perceptual quality,
the multi scale structural similarity (MS-SSIM) index [38]
is used for comparison along with the PSNR measure. In
the former case, the image is sequentially low-pass filtered
and subsampled, so a set of images is obtained, including
the original resolution. Then, the SSIM index is applied
for every subimage within the set. The SSIM index aims
at approximating the human visual system (HVS) response
looking for similarities in luminance, contrast, and structure
[39]. This index can be seen as a convolution of a fixed-sized
mask with the residual error between the reference image and
the concealed image [40]. A unique mask size is used for each

(a) (b)

(c) (d)

Fig. 10. Average weight per pixel from S for the sequence of
Stefan (a)-(b) and Waterfall (c)-(d). The percentage indicates the total
contribution from pixels from the current frame ( (a) and (c) ) and
from the previous frame ( (b) and (d) ) to the final reconstruction.

(a) (b) (c)

Fig. 11. Example of PSNR and MS-SSIM response to different image
reconstructions. (a) Received image, (b) reconstructed by orientation
adaptive interpolation (OAI) [16] (PSNR = 27,22, MS-SSIM = 92,47)
(c) reconstructed using SLP-E (12) with p = 2 (PSNR = 25,56, MS-
SSIM = 94,76).

of the images within the set. Therefore fine as well as coarse
textures and objects are taken into account.

As shown in Fig. 11, the PSNR does not respond to
perceptual visual quality as well as the MS-SSIM index does,
since PSNR is a quality criterion merely based on the mean
squared error. In spite of that, the weights w∗ are obtained
according to the squared error (12) since the SSIM index tends
to marginalize the influence of changes in intensity [41]. This
is a desirable behaviour when measuring the overall perceptual
image quality but not when computing predictor coefficients.
Thus, the squared error is used when computing the weights
while the MS-SSIM index is preferred for an overall quality
measure. 2

The performance of our proposals in SEC mode is tested
on the images of Lena (512 × 512), Barbara (512 × 512),
Baboon (512 × 512), Goldhill (576 × 720), Clown (512 ×
512), Matlab built-in images Cameraman (256 × 256), Office

2Note that the MS-SSIM index lies in [-1; 1]. In this section, we have
scaled the index by 100 in order to better illustrate the differences.
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(a) (b)
Fig. 12. Average PSNR (a) and MS-SSIM (b) values vs. packet loss-
rates averaged for all the tested video sequences. Tested procedures:
SLP-E in the combined SEC/TEC mode, BMA, OBMA and MHEC.

(592 × 896), Tire (192 × 224) and the first frame of Foreman
(288 × 352) sequence. The test is carried out for 16×16
macroblocks and the rate of block loss is approximately 25%,
corresponding to a single packet loss of a frame with dispersed
slicing structure. We compare the performance with other SEC
methods such as bilinear interpolation (BIL) [6], projections
onto convex sets (POC) [8], directional extrapolation (EXT)
[7], a Hough transform based SEC (SHT) [10], content adap-
tive technique (CAD) [13], non-normative SEC for H.264
(AVC) [42], Markov random fields approach (MRF) [11],
inpainting (INP) [15], bilateral filtering (BLF) [18], frequency
selective extrapolation (FSE) [19] and orientation adaptive
interpolation (OAI) [16]. 3 Both SLP via convex relaxation
(SLP-C) and SLP with exponentially distributed weights (SLP-
E) are tested. In the simulations, σ2 is set to 10 and grey level
images are used. Note that a pixel reconstructed by any of
the aforementioned algorithms is usually real-valued and does
not necessarily belong to Ψ . Thus, reconstructed pixels are
rounded to the closest member of Ψ . A subjective comparison
of the different algorithms is shown in Fig. 6. As can be seen
in Table II, SLP-C provides the best PSNR results as expected,
but SLP-E outperforms all the other technique for all the tested
images in terms of MS-SSIM, leading so to higher perceptual
quality reconstructions. Moreover, the average MS-SSIM and
PSNR are superior to those of state-of-the-art algorithms. In
addition, an oracle SPL-E (ORA) is included, where the best
σ2 (the value which provides the best reconstruction) is applied
for every patch, and it represents the superior limit of the SPL-
E performance.

The proposed SLP-E technique in the combined SEC/TEC
mode is tested for H.264 coded video sequences of Foreman,
Stefan, Ice, Football, Bus, Irene, Flower and Highway. All
sequences employ the common intermediate format (CIF, 352
× 288) and they comprise 30 frames, where only the first
frame is intracoded and the remaining frames are predictive
coded. An aggressive block loss-rate is applied by utilizing a
dispersed slicing structure with two slices per frame (the so-
called chessboard structure, see Fig. 5(b)). In this scenario, a
loss of one packet implies a loss of 50% of the macroblocks
within a frame. However, note that our proposal can be easily
extended to other slicing modes. The quantization parameter
is set to 25 and the prediction buffer is one frame deep.

3Implementations of most of these techniques, as well as the implementa-
tion of our algorithm, is available online at [43].

Method PSNR MS-SSIM
PLR

5% 10% 15% 20% 5% 10% 15% 20%

Foreman
BMA 35.56 34.03 33.60 32.82 97.35 96.88 96.73 96.48
OBMA 37.69 36.33 35.61 34.90 97.81 97.49 97.30 97.13
MHEC 37.51 36.25 35.70 35.03 97.79 97.51 97.36 97.20
SLP-E 38.12 37.33 37.05 36.53 97.82 97.67 97.63 97.52

Stefan
BMA 29.59 28.18 28.01 27.37 93.84 92.89 92.80 92.37
OBMA 30.46 29.15 28.88 28.31 94.79 94.08 93.96 93.62
MHEC 30.61 29.25 28.98 28.42 94.87 94.14 94.05 93.65
SLP-E 31.27 30.31 29.96 29.36 95.10 94.56 94.40 94.03

Football
BMA 30.37 28.84 28.64 27.95 93.31 92.03 91.75 91.30
OBMA 31.07 29.34 28.93 28.16 93.86 92.44 91.91 91.29
MHEC 30.76 29.15 28.70 28.03 93.60 92.18 91.59 91.14
SLP-E 31.53 30.06 29.79 29.08 94.11 93.04 92.71 92.27

Ice
BMA 34.54 32.39 31.19 31.10 97.76 97.31 97.01 96.92
OBMA 35.25 32.85 31.55 31.16 98.09 97.57 97.23 97.04
MHEC 34.74 32.61 31.24 31.00 97.97 97.45 97.07 96.88
SLP-E 35.48 33.57 32.53 32.40 98.11 97.76 97.52 97.44

TABLE III
AVERAGE PSNR AND MS-SSIM VALUES FOR DIFFERENT PLR
FOR VIDEO SEQUENCES OF Foreman, Stefan, Football AND Ice.

TESTED PROCEDURES: BMA, OBMA, MHEC AND SLP-E. THE
BEST PERFORMANCES FOR EACH SEQUENCE ARE IN BOLD FACE.

Sequence [24] [15] SLP-E BMA
Foreman 13.28 13.65 9.24 1.00
Irene 9.71 13.13 9.27 1.00

TABLE IV
AVERAGE ERROR CONCEALMENT TIME FOR A CORRUPTED FRAME

COMPARED TO BMA.

Packet losses are randomly generated at rates of 5%, 10%,
15% and 20%. For each packet loss rate (PLR), the sequence
is transmitted 20 times and the average PSNR and MS-SSIM
values are calculated. The proposed technique is compared
with other TEC algorithms, namely BMA [21], OBMA [21]
and multi-hypothesis EC (MHEC) [22]. The search range for
BMA, OBMA and MHEC is [-16, 16] using the zero MV as
the starting point, i.e. BMA, OBMA, MHEC and our proposal
all work with the same information gathered from the previous
frame. The proposed SLP-E outperforms the other techniques
for all the tested sequences both in terms of PSNR and MS-
SSIM. The results for half of the eight sequences are shown in
Table III. PSNR and MS-SSIM values, averaged over all the
tested sequences, are shown in Fig. 12. Finally, a subjective
comparison is shown in Fig. 5.

Regarding the computational complexity, Table IV shows
the processing time ratios of [24], [15] and SLP-E to BMA.
We can observe that our proposal requires less processing
time than some of the state-of-the-art techniques. Moreover,
the average gains of [24] over BMA are approximately 2dB
for Foreman and 1dB for Irene and it outperforms [15] for
both cases. Utilizing the same simulation setup as in [24]
(dispersed slicing, quantization parameter set to 25 and PLR
of 3%, 5%, 10% and 20%), SLP-E achieves average gains
over BMA of 2.55dB and 1.20dB, respectively. Thus, SLP-
E outperforms both [24] and [15] with less computational
burden. Due to the nature of our algorithm, the processing time
per MB is approximately constant regardless of the sequence
and its resolution, as has been confirmed by the simulations.

Finally, given a multi-scene sequence, the error may occur
in the border frame (usually intracoded). In such a case, MV
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based techniques fail since they try to extract the concealment
information from the previous, and therefore uncorrelated,
frame. Modified BMA and OBMA are able to gather the
information from the current frame although the reconstruc-
tions tend to be of poor quality since both algorithms seek
the best match for the entire missing macroblock and this
approach usually does not lead to the lower residual energy.
Note that the H.264/AVC codec overcome this problem by
allowing submacroblock prediction. Moreover, OBMA cannot
be applied for all the slicing modes, e.g. this method is unable
to conceal the chessboard loss pattern utilizing only the spatial
information. On the contrary, due to the sequential filling and
the dynamic adaptation to the available information, none of
the aforementioned scenarios is an issue for our proposal in
the combined SEC/TEC mode.

VI. CONCLUSIONS

We have developed a sparse linear prediction estimator,
which recovers lost regions in images by filling them se-
quentially with a weighted combination of patches that are
extracted from the available neighbourhood. The weights are
obtained by solving a convex optimization problem that arises
from a spatial image model. Moreover, we show that the
weights can be approximated by an exponential function,
so that the resulting method can be alternatively interpreted
as a kernel-based Nadaraya-Watson regression. The proposed
techniques automatically adapt themselves to SEC, TEC or
a combined scenario and can be thus successfully applied to
both still images and video sequences.

Our proposals achieve better PSNR and perceptual recon-
struction quality than other state-of-the-art techniques. SLP-
C is optimized for squared error so it achieves better PSNR
than the approximated method. Simulations reveal, however,
that SLP-E provides better MS-SSIM. Finally, by applying the
approximated algorithm SLP-E the processing time is reduced
in a factor of 100.
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