
Aalborg Universitet

Adaptive RD Optimized Hybrid Sound Coding

H. van Schijndel, Nicolle; Bensa, Julien; Christensen, Mads Græsbøll; Colomes, Catherine;
Edler, Bernd; Heusdens, Richard; Jensen, Jesper; Jensen, Søren Holdt; Kleijn, W. Bastiaan;
Kot, Valery; Kovesi, Bala Zs; Lindblom, Jonas; Massaloux, Dominique; A. Niamut, Omar;
Nordén, Fredrik; H. Plasberg, Jan; Vafin, Renat; Van De Par, Steven; Virette, David; Wûbbolt,
Oliver
Published in:
Journal of the Audio Engineering Society

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
H. van Schijndel, N., Bensa, J., Christensen, M. G., Colomes, C., Edler, B., Heusdens, R., Jensen, J., Jensen,
S. H., Kleijn, W. B., Kot, V., Kovesi, B. Z., Lindblom, J., Massaloux, D., A. Niamut, O., Nordén, F., H. Plasberg,
J., Vafin, R., Van De Par, S., Virette, D., & Wûbbolt, O. (2008). Adaptive RD Optimized Hybrid Sound Coding.
Journal of the Audio Engineering Society, 56(10), 787-809.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

https://vbn.aau.dk/en/publications/35b45e20-b643-11dd-852c-000ea68e967b


Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: July 04, 2025



Adaptive RD Optimized Hybrid Sound Coding*

NICOLLE H. van SCHIJNDEL,1 AES Member, JULIEN BENSA,2 MADS G. CHRISTENSEN,3

CATHERINE COLOMES,2 BERND EDLER,4 AES Member, RICHARD HEUSDENS,5 JESPER JENSEN,5

SØREN HOLDT JENSEN,3 W. BASTIAAN KLEIJN,6 VALERY KOT,1 BALÁZS KÖVESI,2
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Traditionally, sound codecs have been developed with a particular application in mind,
their performance being optimized for specific types of input signals, such as speech or audio
(music), and application constraints, such as low bit rate, high quality, or low delay. There is,
however, an increasing need for more generic sound codecs, created by the emergence of
heterogeneous networks and the convergence of communication and entertainment devices.
To obtain such versatility, this study employs hybrid sound coding based on operational
rate-distortion (RD) optimization principles. Applying this concept, a prototype coder has
been implemented with emphasis on (dynamic) adaptation to the input and to application
constraints. With this prototype, listening tests have been performed for different application
scenarios. The results demonstrate the versatility of the concept while keeping competitive
sound quality compared to dedicated state-of-the-art codecs.

0 INTRODUCTION

Many sound codecs currently exist, based on different
coding techniques. Each codec has its own strength and is
dedicated to a specific type of input signal and to con-
straints such as bit rate or delay. For coding of audio
(music) signals, general methods include transform coding
(MPEG-1/2 layer I, II, III (MP3), MPEG-2/4 AAC [1]) for

high bit rates and parametric (sinusoidal) coding ([2],
MPEG-4 HILN [3], MPEG-4 SSC [4]) for low rates. For
coding speech signals, predictive coding techniques are
generally used, such as the GSM-EFR codec, which is
widely used in our mobile phones today, and the 3GPP
AMR-WB codec [5]. However powerful within their des-
ignated application areas, all these codecs are much less
efficient for other types of signals and bit rates. As a result,
the application flexibility of an individual codec is limited.

The emergence of time-varying heterogeneous net-
works and the convergence of traditional consumer elec-
tronics with mobile communications have created, how-
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ever, a growing need for more flexible and adaptive—
preferably even generic—codecs, and the key question in
the fields of speech and audio coding is whether generic
coding technology is feasible.

Such generic or, in other words, universal coding is able
to adapt seamlessly and in real time to application-
imposed constraints and (time-varying) network-imposed
constraints on coding attributes, such as bit rate, quality,
and latency, and also to the time-varying characteristics of
the input signal and to user preferences. As a result of its
versatility, a generic codec can be applied in a broad range
of applications, such as Internet radio, solid-state audio
playback, and mobile communications, without the risk of
a mismatch between codec and application.

First steps toward generic coding have been taken in the
creation of the MPEG-4 audio standard (see [6]). This
standard essentially consists of a large set of codecs, each
designed for a specific set of conditions. Switching be-
tween these codecs is based on user settings. However,
this is not equivalent to true versatility, because the user or
system designer is burdened with the task of selecting the
right codec for a particular application.

Also hybrid codecs, such as MPEG-4 HE-AAC [7],
3GPP AMR-WB+ [8], [9], ITU-T G.729.1 [10], MPEG-4
CELP+AAC [11], MTPC [12], and SSC+RPE [13], can be
interpreted as first steps toward universality, since they
exploit the possibility of simultaneous use of several cod-
ing techniques. For example, in SSC+RPE a sinusoidal
coder, working at 24 kbit/s, captures the tonal parts of the
signal; what is left from the target bit rate is used by the
predictive coder, based on regular pulse excitation (RPE),
to code the residual signal. Since a single coding technique
that works well for all bit rates and input signals has not
been found, combining the strengths of several techniques
is a promising approach for generic coding. However, the
key question—how to combine the coding techniques
properly—is still open. There is a need for a generic ap-
plication methodology instead of heuristic methods, which
do not suffice for generic coding, because such a method-
ology should be able to handle changing input signals and
constraints, ensuring that for every input signal as well as
for every application, network, or user constraint the best
possible sound quality or, equivalently, the lowest per-
ceived distortion is attained.

Such demands are in principle inherently met if opera-
tional rate-distortion (RD) optimization techniques are
employed where a perceptually relevant measure of dis-
tortion is used. Building on classical RD optimization
[14], these techniques ensure optimal and achievable per-
formance within a given practical coding framework. Au-
tomatically setting coder parameters like bit allocation
(rate) such that the resulting distortion is minimal, such
techniques allow for coding schemes that can, in principle,
dynamically adapt to source characteristics and bit rate or
other constraints, thereby ensuring excellent coding per-
formance. Apart from flexibility, operational RD optimi-
zation methods allow to balance bit-rate spending in dif-
ferent aspects of the signal representation optimally. In
this way, in principle, the best solution for distributing bits

is found given certain constraints on, for example, the bit
rate. The use of a perceptual distortion measure, which
predicts the audibility of the signal distortion that is intro-
duced by the encoder, is essential for achieving full benefit
from the RD optimization techniques for the listener.

Operational RD optimization was introduced by
Shoham and Gersho in their paper on efficient bit alloca-
tion [15] and was applied to image compression by Ram-
chandran and Vetterli [16]. For efficient sound modeling,
an approach based on operational RD optimization is de-
scribed by Prandoni and coworkers [17]–[19] in the con-
text of sinusoidal and predictive coding. Prandoni used a
measure based on simple signal characteristics: the mean
squared error of the approximated signal. However, since
it is the quality as perceived by the listener that counts in
the end, the distortion measure should have perceptual
relevance. Heusdens and van de Par [20] introduced a
perceptually relevant distortion measure in operational RD
optimized sinusoidal coding. Van de Par and Kohlrausch
[21] confirmed that operational RD optimization leads to
better results than the conventional approach where per-
ceptual distortions are distributed equally over time and
frequency. The conventional rate and distortion loops in
the quantization stage of AAC aim to keep the quantiza-
tion noise for each frequency band and time instance be-
low the masking threshold. In contrast, with operational
RD optimization the encoder can encode a difficult-to-
encode segment with relatively poor quality to have extra
bits available to create a larger quality improvement in
other segments that are easier to encode. The overall per-
ceived quality improves as a result of such optimization.
Recently this approach has been described in the context
of AAC [22].

This study1 extends the use of RD optimization to hy-
brid coding. By combining the strengths of several coding
techniques using perceptual operational RD optimization
mechanisms to ensure flexibility and adaptivity, a broad
range of applications comes within reach, such as broad-
casting, storage, and communication. Accordingly the aim
of this study is to investigate the feasibility of an RD
optimization framework for generic sound coding. Basi-
cally the complete coding framework is controlled by RD
optimization. Besides applying this for a combination of
several coding techniques, it is used for segmentation and
for the selection of internal coder settings, such as model
selection, component selection, and bit allocation. Apart
from flexibility and efficiency, this approach has the ad-
vantage that there is no need for specific tuning as is the
case for most state-of-the-art codecs.

Our adaptive RD optimized hybrid sound coding frame-
work is described in Section 1. For validation of the con-
cept, listening tests are presented in Section 2 using a
prototype coder which incorporates the essential aspects of
the framework. This paper ends (Section 3) with a discus-

1This paper reports the results of the E.U.-funded project
ARDOR (Adaptive RD Optimized sound codeR). For more in-
formation, see also the project’s website: http://www.hitech-
projects.com/euprojects/ardor.
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sion and conclusion about the feasibility of using opera-
tional RD optimization for generic sound coding.

1 FRAMEWORK

1.1 Introduction
The basic idea of this study is to employ operational RD

optimization techniques, using advanced perceptual dis-
tortion measures (explained in Section 1.4) consistently
throughout the coding framework. An operational RD con-
trol combines the strengths of several coding techniques
and adapts to the time-varying input signal, taking into
account constraints such as bit rate, which can also be
time-varying. To that end the control uses an advanced
perceptual distortion measure. Three different coding tech-
niques have been investigated in the framework: sinusoi-
dal coding, transform coding, and CELP coding. (For an
overview of these methods, see [23].) These coders are
working in cascade, on the residue of their predecessor
(multistage coding). In Fig. 1 this is illustrated for the
combination of sinusoidal coding followed by transform
coding. The control determines how bits are best distrib-
uted among the coding techniques on the basis of a per-
ceptual distortion measure. More information about this
bit-distribution mechanism is given in Section 1.2.

Operational RD optimization principles are also used to
control the time segmentation and bit allocation per seg-
ment, which can be different for the different coding tech-
niques. This is illustrated in Fig. 2, which shows the con-
tents of the coding blocks, that is, those saying
“sinusoidal” and “transform,” of Fig. 1. Fig. 2 shows that
the situation is more complex than suggested in Fig. 1,
because in between the hybrid RD optimization and the
coding techniques, there is another RD optimization layer
that controls the segmentation and bit distribution over
segments. More information about this can be found in
Section 1.3.

Operational RD principles also determine the internal
settings of the coding techniques, such as parameter quan-

tization, as illustrated in Fig. 3. So this is the third layer of
RD optimization in the framework. For efficient quanti-
zation, the masking curve is used. This curve is derived
from the excitation pattern, which is a perceptually mean-
ingful representation of the spectral energy distribution of
the input signal (see [24]). The excitation pattern is deter-
mined by the excitation pattern coder based on the original
input signal and available to the other coding techniques,
which is illustrated in Fig. 4 for the combination of sinu-
soidal and transform coding. Furthermore, the excitation
pattern information is put in the bit stream and used in the
decoder to complete missing parts in the spectrum in case
the coding techniques together are not able to model the
input signal totally, for instance, at low bit rates. In such
cases the decoder adds spectrally shaped noise, conse-
quently retaining the timbre of the original input. More
information about the coding techniques is given in Sec-
tion 1.5. Section 1.6 addresses how the framework can
handle stereo input signals.

A full optimization of all encoding parameters that in-
fluence rate and distortion is bound to lead to high com-

Fig. 2. Segmentation and bit allocation over segments.

Fig. 1. Operational RD optimized hybrid coding framework. Fig. 3. Internal RD optimization of coding techniques.
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putational complexity, and methods for a reduction of
complexity are discussed in Section 1.7.

Whereas the foregoing is giving a broad outline of the
operational RD optimized hybrid coding framework, more
explanation is given in the following subsections. Delib-
erately the term framework has been used and not coder,
because the aim of this study is to examine the concept,
more specifically its feasibility for generic sound coding,
and for that several aspects of the technology have been
investigated separately. Nevertheless, much of the frame-
work has been integrated in a complete prototype coder,
which has been evaluated in listening tests, as will be
shown toward the end of this paper.

1.2 Distribution of Bit Rate among the Coding
Techniques and Framing

To combine the strengths of the coding techniques used,
an operational RD optimization mechanism distributes the
available bit rate among the techniques during encoding
such that the predicted perceived distortion is minimal.
This distribution is obtained by checking several bit-
distribution options in an analysis-by-synthesis type pro-
cedure, and selecting the one with lowest distortion. The
distribution can vary over time. Thus the bit allocation
over the coding techniques is not fixed a priori, but flex-
ible, allowing adaptation to the (time-varying) input signal
and (time-varying) bit rate.

The coding techniques work in succession, that is, the
first technique works on the original signal, the second one
on the residue of the first one, and so on. The techniques
can therefore encode parts of the signal that overlap both
in time and in frequency. For a discussion of this multi-
stage coding approach, see [25].

The coders work in a particular order for the complete
duration of the signal. In our framework we made a pre-

selection of coder order, because certain coder orders are
more logical than others, for example, to use model-based
(CELP, sinusoidal) coders to describe certain signal fea-
tures first and then apply more generic waveform (trans-
form) coders. In addition, complexity is reduced signifi-
cantly because only a single coder order needs to be
optimized instead of all possible coder orders. Note that
the framework does not prohibit optimization of the coder
order in any way, but this has not been investigated within
this study for the reasons given.

The bit-rate allocation is done within an optimization
frame the length of which can be varied. This allows the
coding framework to adapt to delay constraints. Given that
a constant bit budget is used for each coding frame, the
length of the optimization frame is the fundamental cause
for algorithmic delay (assuming that further processing
such as the optimizations and sequential coding can be
made in real time). The longer the delay, the more degrees
of freedom the optimization algorithm has and the higher
the coding efficiency. The segmentation of the coding
techniques is aligned within the frames. Since such global
segmentation is typically too large for the coding tech-
niques, they also have their own segmentation, as visual-
ized in Fig. 5 and described in the Section 1.3.

The bit-distribution algorithm spends the bits according
to the strengths of the coding techniques. For example, in
the hybrid configuration CELP and transform, the CELP
coding technique plays the dominant role for speech sig-
nals, whereas for music signals the transform coding tech-
nique dominates. Nevertheless, for these “extreme” sig-
nals there is also an advantage of combining the two. As
a result this hybrid configuration performs well for both
speech and music signals. For more detailed results see
[26]. Another hybrid example is the combination of sinu-
soidal and transform coding. In this case the sinusoidal

Fig. 4. Illustration showing position of excitation pattern coding.

Fig. 5. Time aspects of hybrid coding framework.
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coder codes the tonal components—its speciality—and
then lets the transform coder handle the more spectrally
flat residue, which is a better suited input signal for this
technique [27], [25]. In this way the two techniques
complement each other nicely, improving coding effi-
ciency. Apart from adaptation to the input signal, this hy-
brid configuration can also handle the need to tailor the bit
distribution to bit-rate constraints. For low bit rates our
algorithm invests relatively more bits in the sinusoidal
coder, which is model based and therefore more efficient
at these bit rates than the transform coder, but at high bit
rates the transform coder is outperforming the sinusoidal
coder, and correspondingly relatively more bits are given
to the transform coder. This behavior of the hybrid sinu-
soidal and transform coder is described in [28]. Figures
about the bit allocation over the coding techniques will
also be given in Section 2.

1.3 Segmentation and Distribution of Bit Rate
over Segments

As described before, the optimization frame length de-
termines a global segmentation, which is the same for all
coding techniques. In addition, within this frame, each
coding technique employs its own segmentation into vari-
able-length segments (see Fig. 5) in order to adapt to local
signal characteristics and bit-rate constraints.

In nearly all current coding techniques the input signal
is segmented into time intervals that are coded separately.
The optimal length of such segments depends on the avail-
able bit budget and on the input signal. For a long station-
ary signal a long segment is usually more efficient than a
sequence of short segments, whereas for rapidly varying
signals short segments are usually preferred. Note that
coding efficiency is not only determined by the segment
length, but also by its starting and ending point. Preferably
these should be selected such that the signal is stationary
within the segment. Specifically when frequency domain
encoding techniques are used, such as transform coding or
sinusoidal coding, stationarity within a segment will tend
to lead to a more sparse spectrum, which can be encoded
more efficiently. Due to these dependencies of coding ef-
ficiency on segmentation, the optimization algorithm can
select a flexible segmentation that is often more efficient
than uniform segmentation. For CELP coding on the other
hand, which encodes signals in the time domain, less ad-
vantage is expected from flexible segmentation, since sta-
tionarity of signals is exploited using long-term predictors.

In this study segment length is defined as the distance
between the crossover points of neighboring segments,
also known as update rate. With many coding techniques
overlapping windows are employed. So in the case of a
50% overlap, a segment length of 10 ms corresponds to a
window length of 20 ms.

In AAC running at a sampling frequency of 48 kHz, for
example, there are two options—a long segment of 21 ms
or several short ones of 2.7 ms. A long segment is split
into eight short ones in case this segment contains a tran-
sient. For GSM codecs, on the other hand, the segment
length does not depend on the input signal, but different

parameters have different update rates, such as 20 ms for
the update of LPC coefficients and 5 ms for the gains.

The segmentation algorithms as employed within the
framework under study are more flexible and based on
those described in [29], [30], [17], [18], which use dy-
namic programming (Viterbi) [31], [32]. The generic al-
gorithm allows for finding the segmentation q of resolu-
tion M that minimizes a cost function J. In our framework
J is a Lagrangian of perceptual distortion D and bit rate R,

J��, q� = D�q� + �R�q�, � � 0. (1)

Given a target bit rate Rt, the optimal Lagrange multiplier
� is found by maximizing J(�, q) − �Rt. Consider a signal
that is initially divided into N time units of M samples. Let
Jk,l denote the cost for the interval sk,l � [kM, lM − 1], that
is, the segment that consists of time units k to l. Then at
each iteration i � 1, . . . N, the best segmentation of the
interval [0, iM − 1] is found by solving

J i* = min
0�k�i

�J k* + Jk,i � (2)

where Ji* is the minimum cost for the interval [0, iM − 1].
The minimizing argument of Eq. (2), say ki*, given by

k i* = arg min
0�k�i

�J k* + Jk,i � (3)

is recorded as a split position and determines the optimal
segmentation. The algorithm terminates once JN* has been
found, and the optimal segmentation can easily be deter-
mined by backtracking the optimal split positions. An ex-
ample of this procedure is shown in Fig. 6 for N � 3.

Along with the segmentation, the allocation of bits over
the segments is also determined by RD optimization prin-
ciples, introducing an extra degree of freedom in the op-
timization formulas. Per optimization frame, a certain bit
budget is allocated, and this budget is then distributed over
the available coding techniques and segments. This makes
it possible to spend most bits in segments that contribute
most to the perceived quality instead of in segments that
are less important, such as segments with (almost) silence.
This is yet another possibility to adapt to the input signal,
and the resulting variable bit rate leads to flexibility and
increased coding efficiency. Moreover, the framework al-
lows using a different bit budget for each optimization
frame, which enables adaptation to changing channel
capacities.

In the following more detailed information about the
segmentation of the different coding techniques is given.

The sinusoidal coding technique uses a flexible segmen-
tation similar to the one described. Finding the best seg-
mentation is done efficiently by using dynamic program-
ming techniques. The use of these techniques, however,
implies the introduction of a long algorithmic delay since
the optimal segmentation is only known after observing
the complete excerpt, similar to the bit-distribution opti-
mization. A solution to this problem has recently been
presented in [33] and [34], where a suboptimal time seg-
mentation was found within a specified time span. The
loss in overall quality, however, turns out to be limited for
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sinusoidal coding. Above 20 ms such a constraint does not
have an important influence on the sound quality for si-
nusoidal coding [34]; effects are small between 20 and 50
ms, and above 50 ms they are negligible.

The transform coding technique also employs a dy-
namic-programming-based flexible segmentation algo-
rithm, similar to the algorithms described in [29], [30], and
[17]. However, since the transform windows typically
have tail shapes that vary with the segment length, asym-
metric transition windows are required at segment transi-
tions if a nonuniform segmentation is desired. The use of
such transition windows leads to a dependency between
neighboring segments in the segmentation algorithms and
thus requires customization of the existing segmentation
algorithms. The approach taken in [35] aims at neglecting
the dependencies that result from the use of transition
windows; that is, the initial computation and optimization
is done with regular symmetric transform windows. Once
the segmentation has been obtained, an additional trans-
form and coding step is performed for the given segmen-
tation, where the appropriate transition windows are ap-
plied. This approach leads to a suboptimal segmentation.
The actual performance loss incurred when neglecting the
dependencies is analyzed in [36]. There it is shown that an
optimal segmentation, in which all dependencies are taken
into account, can still be found within polynomial time and
that a slight increase in performance can be observed.
Nevertheless the complexity increase may still be signif-
icant, and it is justified to neglect the dependencies that
result from using transition windows.

Apart from flexible time segmentation, the transform
algorithm can also use two flexible frequency decompo-
sition algorithms. In [37] the use of signal transforms that
lead to a nonuniform frequency decomposition is dis-
cussed. These transforms are obtained by employing sub-
band merging [38], a technique originally devised to con-
struct nonuniform cosine-modulated filterbanks. Subband
merging allows for a time–frequency tradeoff within a
single transform window. Using the aforementioned dy-
namic-programming algorithms, a flexible frequency de-
composition into nonuniform subbands is obtained in [37],
where an operational RD control selects the optimal fre-
quency decomposition and the corresponding bit alloca-
tion. While this method for creating nonuniform frequency

decompositions may provide valuable insights into the sig-
nal characteristics, the method suffers from a high side-
information rate for coding the decompositions, which re-
duces the efficiency of the algorithm. The work in [39]
incorporates a second technique that leads to nonuniform
frequency decompositions, that is, frequency-domain lin-
ear prediction or temporal noise shaping [40]. Similar to
the work in [19], operational RD is used to select the
prediction filter orders and bit allocation that lead to the
lowest perceptual distortion for a given target bit rate.
Through listening tests it is shown that this algorithm can
increase the coding efficiency substantially [39].

Whereas the other coding techniques basically encode
structures in the frequency domain (and segmentation
helps to create spectral structures that can be encoded
efficiently, as also mentioned in Section 1.3), the CELP
coding technique encodes structures in the time domain.
Therefore flexible segmentation has less of an advantage
for this technique and was not used. However, the CELP
coding technique did have a flexible allocation of bits over
the segments (variable bit rate; see Section 1.5.3).

1.4 Perceptual Distortion Measures
The perceptual distortion measures are important com-

ponents of the operational RD optimization mechanisms
because they provide predictions of the perceptual distor-
tion or, equivalently, sound quality as perceived by a lis-
tener. With this information the optimization mechanisms
aim to code the perceptually relevant signal features as
well as possible, not wasting bits on irrelevant signal com-
ponents. To predict the perceived distortion, the distortion
measures need as inputs the original and the synthesized
signal resulting from particular coding settings. The output
is a scalar that quantifies the distortion. The optimization
mechanism will of course choose those settings that result
in the lowest distortion for the available bit budget. As a
consequence the accuracy of the perceptual distortion
measure is of vital importance, determining the quality of
the encoding.

To determine the optimal segmentation and bit alloca-
tion per segment, a relatively simple distortion measure is
used, which utilizes the spectral auditory masking proper-
ties of the input signal. This spectral distortion measure
uses a frequency-domain filterbank that mimics peripheral

Fig. 6. Flexible time segmentation algorithm using dynamic programming to build up optimal segmentations.
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auditory filtering. Within each filter the excitation is de-
termined resulting from the original (masking) signal, cre-
ating an excitation pattern across all filters, which, for the
simple distortion measure, captures all information neces-
sary to determine the spectral masking properties of the
original signal. When a certain distortion signal is intro-
duced due to the coding operation, the error signal power
is calculated within each auditory filter and divided by the
excitation power due to the original signal. This ratio pro-
vides an estimate of the perceived distortion within each
auditory filter. By assuming that perceived distortions are
integrated across auditory filters (see [41]), we obtain an
estimate of the overall perceived distortion (see [42] for
more detail).

To determine the optimal distribution of bits over the
coding techniques, a more complex distortion measure
needs to be used that takes into account the temporal
masking characteristics of the auditory system in addition
to the spectral masking characteristics. This measure will
be called the spectrotemporal distortion measure and is
based on the auditory model of Dau et al. [43]. Because
this model was developed to simulate listener behavior in
psychoacoustical experiments, computational complexity
was not an important issue. When applied in the context of
coding, where for each segment the perceptual distortion
has to be determined many times, complexity becomes an
issue. For this reason the spectrotemporal model was
changed into a two-stage model, where first the masking
properties of the original signal are determined once, fol-
lowed by a low-complexity stage, which determines the per-
ceptual distortion for each coding decision that is consid-
ered, reusing the masking properties of the original signal.

1.5 Coding Techniques

1.5.1 Sinusoidal Coding

One coding technique used in the framework is sinu-
soidal (parametric) coding, which is model based and
therefore particularly efficient for audio at low bit rates.

Parameter Estimation For the extraction of sinusoids,
a psychoacoustic matching pursuit [20], [44], [45] is used.
This algorithm nicely fits into the framework’s philosophy
of operational RD optimization by selecting, in each op-
eration, the sinusoidal component that is perceptually most
relevant (for a review of this method and related ones, see
[46]).

With a basic sinusoidal coder, that is, one using con-
stant-amplitude basis functions, sudden changes (tran-
sients) in the signal cannot be modeled very efficiently.
This can be understood intuitively by looking at the un-
derlying model, which consists of (stationary) sinusoids.
By applying adaptive segmentation using RD optimiza-
tion, transients can still be handled, but to improve the
modeling of transient signals further, the algorithm can be
extended with amplitude modulation (AM). A number of
adapted signal models based on AM have been proposed
specifically for dealing with transients, and a number of
coders have been developed using these models [47]–[51]
(see also [52]). The models allow the individual sinusoidal

components to have time-varying envelopes within seg-
ments. The papers referenced differ in the model they
impose on this envelope. Since these models have addi-
tional parameters associated with them and since most
audio segments are stationary, these modified models will
not always be the best choice. However, any heuristic
switching is avoided by RD optimization. In [50] an am-
plitude-modulated sinusoidal audio coder was presented
that was based on a nonlinear model of the modulating
signal, characterized by an onset time, an attack parameter,
and a decay parameter (for definitions see [50]). This
model was demonstrated to improve greatly on the per-
ceived quality in a MUSHRA-like test (for an explanation
of the MUSHRA test, see Section 2.2.1) using critical
transient excerpts [50]. Specifically, the listening test
showed average improvements of 10 points on a
MUSHRA scale compared to the coder with no AM and
more than 30 points for some individual signals. The re-
sults reported in [50] prove that it is indeed efficient in
terms of bit rate to allow different modulating signals for
different components and that optimal segmentation and
adapted models are complementary coding techniques.
Furthermore, the optimal segmentation changes with the
signal model. In addition two other AM coders have been
developed. In [49] the amplitude modulating signal is
modeled as a linear combination of arbitrary basis vectors.
This coder was demonstrated in a preference listening test
to improve upon a sinusoidal coder, but although highly
flexible, it suffered from a high complexity. An implica-
tion of the AM coders and their complicated signal models
is the computational complexity associated with finding
the parameters. An amplitude-modulated sinusoidal audio
coder based on the theory of [47] and the results of [48]
was developed in [51]. It uses frequency-domain linear
prediction as a means of estimating and efficient coding of
the envelopes in critically sampled subbands. This coder has
very low complexity and requires little memory compared
to that of [50], and it was demonstrated in a MUHSRA-
like listening test to improve upon a baseline coder, that is,
one using constant-amplitude sinusoids [51].

Parameter Quantization In order to represent sinusoi-
dal components in the bit stream efficiently, sinusoidal
parameters need to be quantized. This quantization is also
based on RD principles. The scalar quantizers for sinusoi-
dal amplitudes, frequencies, and phases are optimized
jointly, such as to minimize, given a bit-rate constraint, a
perceptual distortion measure. As a result each and every
sinusoidal parameter is quantized differently, more accu-
rately for perceptually more relevant components at the
expense of less relevant ones. The perceptual importance
of components is defined by the masking curve, which is
available at both the encoder side and the decoder side as
a result of the transmission of the excitation pattern (see
Section 1.5.4).

The jointly optimal quantizers for sinusoidal parameters
are found analytically using high-resolution, or high-rate,
quantization theory. The analytical solutions make it pos-
sible to design quantizers at very low computational com-
plexity. High-resolution theory assumes that probability
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density functions (pdf) of input parameters can be approxi-
mated accurately as being constant within quantization
cells. Quantizers are expressed in terms of quantization
point densities, which for scalar quantizers are the inverses
of the quantization step sizes. The application of high-
resolution quantization theory to sinusoidal coding was
first presented for amplitudes and phases in [53], [54] and
further extended to frequencies in [55]–[58].

In this work the quantization of sinusoidal parameters is
implemented according to quantization method 3 of [56].
We minimize the following weighted mean-squared error
(WMSE):

D =
1

L �
l=1

L

�lDl (4)

where L denotes the total number of sinusoids, �l is the
perceptual weight defined as the reciprocal of the masking
curve evaluated at frequency �l, and Dl is the per-sample
MSE evaluated over a segment of length N samples. Using
the high-resolution assumption, the per-sample MSE can
be written as [54], [56]

Dl ≈ ��� fA,�,��a, �, 	�

×�gA
−2�a�

24
+ a2�g�

−2��, a�N2

288
+

g�
−2�	, a�

24 �� da d� d	

(5)

where fA,�,� (a, �, 	) is the joint pdf of amplitude a,
frequency �, and phase 	 and gA (a), g�(�, a), and g� (	,
a) are the quantization point densities of amplitude, fre-
quency, and phase, respectively. The distortion [Eq. (4)] is
minimized subject to an entropy constraint

H =
1

L �
l=1

L

Hl (6)

where Hl is the joint entropy of amplitude, frequency, and
phase quantization indices of the lth sinusoid. Using the
high-resolution assumption, the joint entropy of the quan-
tization indices is approximated as [54], [56]

Hl ≈ h�A, �, �� + ��� fA,�,��a, �, 	��log2�gA�a��

+ log2�g���, a�� + log2�g��	, a��� da d� d	 (7)

where h(A, �, �) is the joint differential entropy of am-
plitude, frequency, and phase.

We quantize sinusoidal amplitudes relative to the mask-
ing curve, that is, quantizers are designed for normalized
amplitudes ãl � al�l

1/2. The optimal quantization point
densities are then given by

g���� = g� = �N2
�Ã�

12
2 H̃−b�Ã��1	3

(8)

gÃ�ã� = gÃ = ��N2
�Ã�

12 �−1	2

2 H̃−b�Ã��1	3

(9)

g��	, ã� = g��ã� = ã��N2
�Ã�

12 �−1	2

2 H̃−b�Ã��1	3

(10)

where H̃ � H − h(Ã, �, �), b(Ã) � ∫ fÃ(ã) log2(ã) dã, and

(Ã) � ∫ fÃ(ã) ã2dã. The optimal quantizers are uniform
and, therefore, easy to implement. The parameters h(Ã, �,
�), b(Ã), and 
(Ã) are estimated a priori and stored at the
encoder and the decoder.

High-resolution theory can facilitate a number of further
optimizations and flexible analytical solutions in coding
applications. In [59], [60] it is used to facilitate the joint
optimization of variable-length time segmentation, distri-
bution of sinusoidal components over segments, and quan-
tization of sinusoidal parameters. In [61] differential quan-
tization of sinusoidal parameters is presented. In [62] it has
been shown that the quantizers can be improved by the
joint quantization of multiple sinusoids as opposed to
quantizing each sinusoid individually. This work has also
been extended to multiple descriptions for packet-based
networks [63]. In [27], [25] high-resolution theory is used
to find jointly optimal quantizers in multistage audio cod-
ing, where a sinusoidal coder is combined with a transform
coder, such as a modified discrete cosine transform coder.

1.5.2 Transform Coding
Another coding technique of the framework is trans-

form coding. Since this technique is waveform based, it
has strengths that are basically complementary to those of
sinusoidal coding, transform coding being most efficient
for sound at high bit rates. The transform coding technique
uses the modified discrete cosine transform (MDCT) be-
cause this transform has many desirable properties for
sound coding such as critical sampling, minimal blocking
artifacts, good channel separation, and perfect reconstruc-
tion in the absence of quantization. Different transform
lengths are used within the transform coder: 256, 1024,
2048, and 4096 samples. The short window length (256
samples) is effective for transient signals, whereas the
longer windows are more likely to be used for stationary
signals. The very long window with 4096 samples is es-
pecially effective for more stationary signals and a very
low target bit rate. The appropriate window lengths within
an optimization frame of the signal are determined by the
RD optimization (see in the preceding).

The resulting transform coefficients are quantized ac-
cording to RD principles. In other words, being beneficial
from a perceptual point of view, coarser quantization is
used for the coefficients where the masking curve indi-
cates a higher masking effect—quantization is less criti-
cal—and vice versa. This is obtained by weighting each
coefficient with a scale factor �[m], which is obtained
from the masking threshold M[�] at the corresponding fre-
quency m and one global scale factor gscf that applies to all
frequencies,

��m� = gscf � 
12 � M�m�. (11)

Afterward all weighted coefficients are quantized using
the same quantizer, a larger scale factor leading to coarser
quantization. This global scale factor is therefore used to
control the overall quality and bit rate for the segment and
is obtained/controlled by the RD optimization. In other
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words, by adaptation of the global scale factor for each
segment the target rate is reached.

A second function of the global scale factor is to deter-
mine the cutoff frequency of a low-pass filter, which is
applied before quantization [64]. Higher global scale fac-
tors lead to lower cutoff frequencies. This is to control the
tradeoff between audible coding artifacts due to a coarse
quantization and the coded bandwidth of the signal at a
given bit rate. This control is needed because distortions
that are related to modulation of the bandwidth across
segments are not captured by the applied distortion mea-
sure, because it operates on a single-segment basis.

For quantization a four-dimensional regular lattice vec-
tor quantizer with nonuniform quantization is used [65].
Afterward the quantized vectors are Huffman coded using
a dedicated technique, which is described in [64]. This
coding scheme is particularly effective for low bit rates, at
which many zero coefficients have to be coded. A more
detailed description of the transform coding technique can
be found in [64].

Based on the preceding, a separate coding technique for
transients has been developed. This multistage technique
is based on the detection and extraction of transient com-
ponents in a short-window MDCT spectrum. The quanti-
zation of these components is done according to the quan-
tization scheme described, that is, using a global scale
factor determined by RD optimization and considering
masking effects. In addition the sparseness of the transient
spectra is taken into account. The idea behind this transient
coder is that the residue, which results after subtracting the
transients and which is therefore free of transients, can
afterward be coded with an optimized coding technique
for stationary signals, such as transform coding using only
long windows. More information about this method can be
found in [66].

1.5.3 CELP Coding
The third coding technique that has been used is CELP

coding, which is based on predictive coding. Again, the
strengths of this technique are complementary to those of
the other techniques, CELP coding having exceptional ef-
ficiency for speech at low bit rates by its use of a speech
model. Our CELP coding technique has been derived from
the lower band (50–6400-Hz) part of the standard GSM/
3GPP AMR-WB codec [67]. The segment length of 256
samples has been kept, but the module works at 12.0-kHz
sampling frequency instead of 12.8 kHz.

The CELP module has been extended with an opera-
tional RD mechanism. For each segment nine RD operat-
ing points are obtained ranging from 0 to 21.75 kbit/s
(including extra bits needed for rate signalization) using
the spectral distortion measure as described in Section 1.4.
Thus a variable bit rate is obtained with a corresponding
improved coding efficiency.

Adaptations have been made such that the CELP coding
technique can function together with the other coding
techniques, because the CELP method needs to maintain
state variables (past input and output signals). These are
not always available, for example, in case the CELP codec

was not used in the previous optimization frame, and then
special provisions are taken [26].

The CELP codec encodes a limited bandwidth (6-kHz)
signal while the missing higher band can still contain im-
portant information. A bandwidth extension module has
therefore been designed for the CELP codec that is acti-
vated at the decoder when the CELP codec is the first
coder in the cascade. This feature operates in a similar way
as that in the AMR-WB+ codec [8]. The integration of the
CELP coder in the framework is detailed in [26].

1.5.4 Excitation Pattern Coding
Apart from the parameters of the coding techniques,

additional information is included in the bit stream—the
excitation pattern. This is a perceptually relevant repre-
sentation of the spectral envelope of the original signal and
is a model for the spectral energy distribution across au-
ditory filters in the human auditory system [24]. The pat-
tern is calculated for short segments of the input signal so
that it can quickly adapt to changes over time. The exci-
tation pattern information has two important functions.
First it enables the derivation of a masking curve at the
decoder side. Second it can be used to complement the
signal part that is generated by the coding techniques with
a synthetic noise signal.

The masking curve is derived from the excitation pat-
tern by determining for each frequency the threshold level
a probe tone should have in order to be just detectable,
given the excitation pattern resulting the original signal.
Since the excitation pattern information enables the gen-
eration of a masking curve both at encoding and at decod-
ing, the coding techniques have the opportunity to code
their parameters relative to this masking curve without
coding this curve themselves. This increases the coding
efficiency and is therefore exploited by the sinusoidal and
the transform coding techniques.

Furthermore the excitation pattern is used to comple-
ment the signal part of the coding techniques with a syn-
thetic noise signal to account for the missing parts in the
spectrum. In many situations the available bit rate is too
low to model the entire spectrum, which results in lower
signal energy in certain frequency regions and hence a
decrease of part of the excitation pattern. These missing
parts are then modeled with spectrally shaped noise, which
leads to better quality compared to the alternative of not
modeling these parts of the spectrum at all. To determine
the noise part, both the excitation pattern of the original
signal, that is, the excitation pattern information in the bit
stream, and the excitation pattern of the signal synthesized
by the coders, which is calculated in the decoder, are
needed. Then a noise signal is generated such that the total
of synthesis signals of the decoders plus the noise signal
result in an excitation pattern equal to the original excita-
tion pattern. This process is described in more detail in
[68].

To allow the transmission of the excitation patterns in
the bit stream a compact representation of these param-
eters is necessary. For example, differential pulse code
modulation (DPCM) coding of the properly quantized ex-

PAPERS ADAPTIVE RD OPTIMIZED HYBRID SOUND CODING

J. Audio Eng. Soc., Vol. 56, No. 10, 2008 October 795



citation patterns calculated every 128 samples (at a sam-
pling frequency of 48 kHz this corresponds to a new ex-
citation pattern every 2.67 ms) consumes as many as 45
kbit/s. This is far too much, compared to the bit rate
needed for the scale factors of, for example, an AAC audio
coder, which is approximately 4 kbit/s out of a total bit rate
of 48 kbit/s [69]. Therefore an optimized coding algorithm
for the excitation patterns was developed.

A number of subsequent excitation patterns is taken
together in an excitation pattern matrix. This matrix is
transformed using a two-dimensional discrete cosine
transform (DCT). Next the transform coefficients are
quantized and entropy coded. As the relevant transform
coefficients are not localized in a fixed region, due to
differences between transient and stationary signals, a
flexible algorithm is needed, which automatically covers
all these relevant coefficients and applies a suitable quan-
tization and coding. This is efficiently achieved by the set
partitioning embedded block (SPECK) coder, which was
effectively applied in image coding [70].

To further improve the coding efficiency for the exci-
tation patterns, additional linear prediction from the pre-
ceding excitation pattern matrix to the actual one is per-
formed. With this coding scheme it is possible to code the
excitation patterns at a suitable accuracy with a bit rate of
approximately 4 kbit/s. Therefore the coded excitation pat-
terns can be used as side information for low-bit-rate cod-
ing. A more detailed description of the coding algorithm of
the excitation patterns can be found in [71] and [64].

1.5.5 Lossless Coding
After parameterization of the input signal and quantiza-

tion of the resulting parameters, another coding step is
performed, lossless encoding, which removes the redun-
dancy from the quantized parameters. For this lossless
compression, Huffman coding [72] is used with one fixed
set of Huffman tables. So for all input signals, bit rates,
and so on, the same set of parameter statistics has been
used. These tables have been generated beforehand based
on the parameter statistics across many sound signals. If
during encoding a certain entry in the precalculated Huff-
man code word table appears to be missing, an escape
code is used, which happens only rarely.

In order to reduce the bit rate needed for the sinusoidal
parameters, the inter- or intrasegment correlation between
sinusoidal parameters can be exploited using differential
or predictive coding schemes. For example, [3], [4], [73],
[74] apply time-differential (TD) techniques, where sinu-
soidal components in the current segment are represented

using parameter differences or ratios relative to compo-
nents in the previous segment. By doing so, the probability
density function of the relative parameters is much more
peaked which results in a significant coding gain. Simi-
larly, [75] applies frequency-differential (FD) techniques
to represent sinusoids in a given segment relative to the
sinusoids in the same segment. In [76] it was shown that
when combined with variable segmentation, sinusoidal FD
coding can be as RD efficient as TD encoding. FD tech-
niques, however, have the additional advantage that they
are robust to packet losses when used in packet-based
transmission channels. Optimal entropy-constrained quan-
tization schemes for differential parameters have been pre-
sented in [61], which are valid for both the inter- and
intrasegment situation.

1.6 Stereo Coding
The RD optimized coding framework described in the

preceding section is mono, and since for many audio cod-
ing applications stereo or even multichannel coding is re-
quired, it has been investigated how this framework can be
extended to more channels. This can be obtained by add-
ing stereo preprocessing and postprocessing (see Fig. 7)
Being independent of the mono coding, the stereo coding
extension follows a hybrid approach combining paramet-
ric stereo coding with waveform coding, enabling a seam-
less transition from low to high bit rates and convergence
to transparent quality.

The stereo coding framework is based on sum–
difference coding of signals that are aligned in time. After
time and gain aligning the right and left channels, two
signals are formed—a sum signal, which is coded with the
mono coder, and a residual (difference) signal. The time
and gain alignment parameters capture the coarse stereo
image and may be transmitted using only a few kilobits
per second, implementing a pure parametric stereo exten-
sion. By encoding the residual signal using a waveform
encoder and an increasing number of bits, the stereo image
is encoded with finer and finer detail, and convergence
toward transparent quality is obtained.

The delay-compensated sum–difference stereo coding
framework is used in a perceptual filterbank structure and
generalizes to the multichannel (more than two channels)
case in a straightforward way. See [77] for more informa-
tion about this stereo coding framework and how it relates
to other methods, such as mid-side coding [78] and para-
metric stereo coding [79]–[81]. Incorporation of the stereo
coding part into the RD optimization framework is still
subject to future research.

Fig. 7. Stereo coding using pre- and postprocessing techniques. —— signals; - - - parameter bit streams. l: left channel; r: right channel;
m: time- and gain-matched sum of l and r; m̂: decoded sum of l and r; l̂: decoded left channel; r̂: decodecd right channel; S: stereo
extension bit stream.
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1.7 Complexity
Because of the operational RD optimizations, the en-

coding process of our framework is inherently complex.
This applies in particular to those optimizations that use a
closed-loop approach, that is, for each iteration, the en-
coding, decoding (synthesis), and distortion calculation
are done to deliver the required RD points for the optimi-
zation. This is done, for example, to decide on the bit
distribution among the coding techniques. The complexity
is not so much in the search among candidate settings, but
in the initialization thereof, namely, the generation of the
RD points among which the search has to be performed.
This initialization, however, can be parallelized. Further-
more, there are several other ways to lower complexity;
here we describe three.

First, instead of the closed-loop approach, an open-loop
approach can be used [82]–[84]. This approach does not
require encoding, decoding, and distortion calculation for
each iteration, but instead predicts the RD points, reducing
complexity considerably. Fig. 8 illustrates this. First the
input signal is reduced to a property vector: a high-level
descriptor of the properties of the signal containing infor-
mation, such as loudness and spectral flatness, that is suf-
ficient for a required predictor accuracy. From this prop-
erty vector the distortion resulting from a particular coding
configuration, corresponding to a certain rate, is predicted.

The selection of a property vector from the input seg-
ment is of great importance for the performance of the
proposed framework. The selected property vector should
be a representative for the incurred distortion in the current
segment for the given coder. In more theoretical terms, the
random input segment s is processed by the encoder into
the distortion variable D and by the property extractor into
the property vector P. The basic task for the property
extractor f(�) is to extract properties P that contain suffi-
cient information about D for a required predictor accu-
racy. The amount of information that P contains about D,
or the suitability of a given property vector, can be mea-
sured by the mutual information I(D; P) as discussed in
[82]. A more practical approach to the selection of a good
property vector, based on a “deflation” strategy, was pro-
posed in [84]. Similar to pruning, the idea is to start out
with a large number of properties and then iteratively re-
move components until the estimation performance starts
to degrade over a given test set.

The second part of the open-loop approach is the pre-
dictor. The aim of the predictor g(�) is to find a prediction
̂ of the incurred distortion , based on an observation of the
property vector P � p. In [82] a model-based prediction

approach, based on Gaussian mixture models (GMM), was
proposed. Utilizing a pretrained GMM for the joint distortion
property pdf f D,P

(M) (, p), we approximate the minimum mean-
squared error (MMSE) at each coding instant as

̂�g(p)�� f D | P
�M� � |P = p� d (12)

where f D|P
(M) (|P � p) is the conditional model pdf, which

can be shown to be a mixture of Gaussian densities and is
easily derived from the joint model pdf f D,P

(M) (, p). In
practice this predictor calculates a weighted sum of con-
ditional means,

̂ = �
i=1

M

��imi,D | P = p (13)

where M is the number of mixture components, and {��i}
and {mi,D|P � p} represent the weights and the means of
the conditional model pdf f D|P

(M) (|P � p), respectively.
This distortion prediction approach has been tested for

various coders and coding scenarios [82]–[84], and it was
reported in [84] that this approach can lead to a complexity
reduction by a factor of 10 compared to a closed-loop
approach.

Second the complexity of the spectrotemporal distortion
measure can be reduced by means of a sensitivity matrix.
Under the assumption of small errors the distortion mea-
sure d(x, x̂) between the original signal block x and a coded
candidate x̂ can be approximated by a weighted quadratic
norm on the error signal [85],

d�x, x̂� ≈
1

2
�x − x̂�TM�x��x − x̂�. (14)

The so-called sensitivity matrix M(x) is obtained from a
linearization of the psychoacoustical model for the current
signal block [86], [87].

The reduction in complexity stems from the fact that the
psychoacoustical model is only used once per block to
calculate the sensitivity matrix M(x) from the original sig-
nal block x, instead of having to be called repeatedly for
every possible coded candidate x̂. Furthermore matrix
analysis on M(x) can be used to obtain important informa-
tion about the current state of the spectrotemporal model,
such as a masking curve [86], [87]. This information can
then be used in the different coding techniques.

Third the operational RD optimizations for the segmen-
tation can be avoided by applying upfront segmentation of
the signal. In this case the RD cost function [see Eq. (1)]
is replaced by a cost measure that is independent of dis-
tortion and rate, such as perceptual entropy [88]. Once the
segmentation has been obtained, the bit allocation for the
presegmented signal can still be performed using opera-
tional RD optimization. While this separation of segmen-
tation and bit allocation into two separate stages is subop-
timal, [89] has shown both numerically and through
listening tests that the loss of coding efficiency is negli-
gible. The decrease in complexity, however, can be as high
as 50%. While this method of upfront segmentation has
only been studied for the transform coder in [89], it may be
applied equally well to the sinusoidal coder. As such, for

Fig. 8. Open-loop approach for operational RD optimization by
predicting distortion for a particular signal s and coding configu-
ration c. Property extraction function f(�) processes s into a prop-
erty vector ps. Based on ps and given c, prediction function gc(�)
predicts distortion ̂s,c .
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hybrid coding situations, the resulting decrease in com-
plexity can be substantial.

In summary, although the operational RD optimization
approach results in high complexity of the encoder, there
are several ways to reduce this, which is important for
practical encoding applications. The operational RD ap-
proach does not increase the complexity of the decoder.

2 VALIDATION

2.1 Application Scenarios and Validation Design

The operational RD optimized hybrid coding frame-
work has been validated in extensive listening tests. Three
application scenarios have been considered for this vali-
dation: 1) broadcasting with (dynamic) adaptation to
network resources, 2) flexible storage, and 3) enhanced
communication.

The broadcasting scenario deals with streaming and
transmission applications at very low bit rates and with
situations where the bandwidth (bit rate) of the transmis-
sion network varies over time. Therefore the low-bit-rate
performance of the adaptive RD optimized hybrid codec
was evaluated at a bit rate of 20 kbit/s with the MUSHRA
method (see Section 2.2.1). In order to measure the per-
formance for varying bit rates, an ECQ evaluation test (see
Section 2.2.2) was performed with various temporally
varying bit-rate patterns where listeners gave continuous
(instantaneous) ratings of sound quality.

The flexible storage scenario deals with storage appli-
cations that essentially only impose requirements with re-
spect to the total amount of information that is associated
with encoding a particular file. In a first test the perfor-
mance of an adaptive RD optimized hybrid codec was
investigated for a high-storage-capacity scenario using a
bit rate of 64 kbit/s. Since quality was close to transpar-
ency, the ITU-R BS.1116 test was used (see Section 2.2.3).
For low-storage-capacity scenarios a MUSHRA test was
employed using the same codec at 24 and 48 kbit/s.

For the enhanced communication scenario an important
constraint is the algorithmic delay. Since the RD optimi-
zation requires a certain optimization frame for determin-
ing the encoder settings, lowering the algorithmic delay
can influence encoding efficiency. Two RD optimized hy-
brid coders were evaluated at two bit rates (20 and 48
kbit/s) using a MUSHRA test. The encoders were set at
different algorithmic delays (43 and 384 ms) to compare
performance.

In all evaluation tests relevant state-of-the-art encoders
were added to serve as a reference to compare performance.
In the broadcasting and communication scenario tests, both
speech and music excerpts were employed, the storage sce-
nario test used predominantly music excerpts. More infor-
mation about the coder settings is given in Section 2.3.

2.2 Methods and Excerpts

2.2.1 MUSHRA Method

The MUSHRA (multi stimuli with hidden reference and
anchor points) method [90] is dedicated to the assessment

of intermediate quality. It has been recommended by the
ITU-R as BS.1534. An important feature of this method is
the inclusion of a hidden reference and bandwidth-limited
anchor signals. In our test the chosen anchor points were
the low-pass-filtered originals with cutoff frequencies of
3.5 kHz (mandatory) and 7 kHz. Each listener (expert in
the audio domain) had a training session of about 15 min
in order to get familiar with the test methodology and
software and with the kind of quality they had to assess.
This was also an opportunity to adjust the playback level
that then remained constant during the test phase. As a
randomization process was used, the order of the excerpts
was different for each listener. Test instructions explained
to the listeners how the software worked (the CRC-SEAQ
software was used), what they were going to listen to
(briefly), how to use the quality scale (1–100, bad to ex-
cellent), and how to score the different excerpts. It was
also mentioned that there was a hidden reference signal to
score, which was later used in the rejection process of
listeners to verify whether this score was at least 90. The
tests were performed on the headphone STAX Signature
SR-404 (open model) and its amplifier SRM-006t. The
digital sound was played through the PC board Digigram
VX 222 and converted by a 24-bit DAC (3Dlab DAC 2000).

2.2.2 ECQ Method
The ECQ (continuous quality evaluation) methodology

[91] has been standardized in ITU-T Q12/7 (recommen-
dation P.880, 2004 May). It can be used for evaluating the
impact of time fluctuations in artifact levels on the instan-
taneous perceived quality (that is perceived at any instant
of a sequence) and on the overall perceived quality. The
method uses a two-part task—first instantaneous (continu-
ous) judgments during the sequence, and second an overall
judgment at the end of the sequence.

In contrast to the P.880 recommendation to have at least
24 naive listeners participating in a test, we used 16 trained
listeners for practical feasibility and for making the test as
critical as possible. Prior to the test, subjects were trained
by listening to two sequences. These sequences, 45 s long,
were extracted from the items used in the test and covered
different quality levels and different quality fluctuations
representative of the range of temporal fluctuations and
quality levels that the subjects encountered during the ac-
tual test.

For the continuous judgment an electronic slider con-
nected to a computer was used for recording the instanta-
neous quality assessment from the subjects.2 The initial
slider position was always at about the midpoint of the
scale. Subjects were instructed to assess the sound quality
of the sequence continuously by moving the slider along
the scale such that its position reflected their opinion on

2The slider device had the following characteristics: slider
mechanism without any reset position (that is, no automatic re-
turn to a predefined position), linear range of travel of 110 mm,
fixed on test desk. The slider position was recorded twice a
second, and was coded from 0 (bottom of scale) to 255 (top of
scale).
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quality at that instant. Five labels were shown along the
scale: Excellent, Good, Fair, Poor and Bad to help the
subject associate the slider position with suitable ranges of
sound quality.

For the overall judgment a set of five buttons, numbered
from 1 to 5, was used. At the end of each sequence, sub-
jects were asked to rate its overall quality on the five-
category listening-quality scale also used in the continuous
judgment.

2.2.3 ITU-R BS.1116 Method
The ITU-R BS.1116 method [92] has been selected to

test whether near-transparent quality can be achieved. In
this method the listener compares two signals (a hidden
reference and the signal under test) to the original signal
and must decide which one is the signal under test. Then
the listener has to score along a five-grade scale the way
he perceives the degradation in this signal (5—imper-
ceptible, 4—perceptible but not annoying, 3—slightly an-
noying, 2—annoying, 1—very annoying).

As for the MUSHRA method, there was a training ses-
sion of about 15 min in order to familiarize the listeners
(experts in the audio domain) with the test methodology
and software and with the kind of quality they had to
assess. Listeners also had the opportunity to adjust the
playback level. Sound was played on Beyerdynamic DT
990 Pro headphones using a Marantz CDA-94 digital-to-
analog converter.

2.2.4 Test Items
The sampling frequency was 48 kHz for all excerpts.

The duration of the items ranged from 7 to 15 s. All
excerpts were normalized in amplitude at 80% of the full
digital scale in order to avoid too large differences in
loudness. Fade in and fade out were applied if necessary.

For the broadcasting test dedicated to streaming and
transmission, the test set contained more speech than mu-
sic. The items selected for this test were chosen to be
realistic types of excerpts as much as possible, keeping in
mind that they should remain as critical as possible as well
(that means that transparency is often not achieved by
state-of-the-art encoders when encoding those sequences).
In order to limit the duration of the test, only five items
were chosen. These are described in Table 1. For the ECQ
methodology only two items were chosen: one more speech
oriented (commentary of a basket ball match with ap-
plause and people shouting, 70 s) and another containing
music (jazz music with a female singer in English, 90 s).

For the storage test dedicated to high capacity, the test
set contained more music than pure speech. This made this
test more music oriented. Again the items were chosen to
be realistic types of excerpts as much as possible, keeping
in mind that they should remain as critical as possible as
well. In order to lighten the test, only six items were cho-
sen, as listed in Table 2.

For the enhanced communication test the test set con-
tained more speech than music, which made this test more
speech oriented. The first four excerpts from Table 1 were
used.

2.3 Coder Configuration
The encoder configuration that was used in the evalua-

tion tests was kept constant as much as possible, varying
only the constraints (bit rate and algorithmic delay) im-
posed by the application scenario. The RD optimization
was left to determine many of the detailed encoder deci-
sions according to its optimality criteria. One aspect of the
encoder configuration was decided beforehand, depending
on the bit rate, to restrict computational complexity. For
bit rates below 24 kbit/s a cascade of CELP and transform
coder was used because a CELP coder is highly efficient
at low bit rates for speech signals. The transform coder
was used as a residual coder and fallback option in case
the CELP coder was inefficient (such as for music). For 24
kbit/s and higher bit rates, a cascade of a sinusoidal and a
transform codec was used, where the sinusoidal codec was
specially suitable for highly tonal music excerpts while the
transform coder was used as residual coder for encoding
the less tonal sound components. Furthermore the bit-
distribution step was set to 25%, again for reasons of
complexity. In other words, the bit-distribution options
that were checked by the optimization mechanism were
100% to the first coder and 0% to the second coder, 75%
to the first coder and 25% to the other codecs, and so on.

Optimization frames were 384 ms long in most cases,
except for the communication scenario, where the frame
size was 43 ms. These frames were used to optimize the
bit-rate distribution between both codecs.

Within each frame the individual codecs could deter-
mine the optimal segmentation independently. For the si-
nusoidal codec, 11-, 16-, 21-, and 27-ms segments could
be used; for the transform codec, 2.7-, 11-, 21-, and 40-ms
segments could be used; for the CELP codec the segmen-
tation was fixed at 21 ms. Overlapping windows were used
for segmentation, but the resulting interactions between
the windows were not taken into account in the optimization.

Table 1. Excerpts used in broadcasting test.

Category Description

Speech with
noise (basket)

Commentary of a basket ball match
with applause and people shouting

Male speech German male speech
Female speech French female speech
Music jazz Jazz music with a female singer in English
Music pop Pop music with the female singer Tracy

Chapman (English)

Table 2. Excerpts used in storage test.

Category Description

Music Spanish Spanish music without any lyrics
Male speech German male speech
Harmonic signal Harpsichord
Transient signal Castanets
Music jazz Jazz music with a female singer in English
Music pop Pop music with the female singer Tracy

Chapman (English)
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The individual codecs were operated in a relatively simple
mono configuration excluding some of the advanced tech-
niques that have been discussed. This was done to reduce
computational complexity and because some of the tech-
niques were not mature enough to operate in a complete
coder framework. Specifically the aspects that were incor-
porated in the coding techniques are described next.

The sinusoidal codec employed a psychoacoustic
matching pursuit with constant-amplitude basis functions.
The codec used frequency differential linking of param-
eters, which are RD optimally quantized using point den-
sities as defined in Eqs. (8)–(10). For this codec the re-
sulting quantization errors are neither taken into account in
the residue that is given to the following coder nor in the
distortion calculations, because the distortion measures
were not designed for these errors. So for the cascade of a
sinusoidal and a transform codec, the transform coder
works on the unquantized residue of the sinusoidal coder.
This seems to contradict the conclusions of [27], [25].
There, two approaches are studied, referred to as the par-
allel and the sequential approach. In the parallel approach
a residual for the next coding technique is obtained by
subtracting an unquantized reconstruction of the previous
technique, whereas in the sequential approach the residue
is obtained by subtracting a quantized reconstruction.
These papers show that when combining a sinusoidal
coder with a waveform coder, a sequential approach leads
to higher performance. However, in our study the percep-
tual distortion measure was not designed for sinusoidal
quantization errors, and it was therefore better to use the
unquantized residual in this case. With respect to the other
coding techniques, the quantized residue was used.

The transform codec used an MDCT filterbank where
the prototypical filter shape and filter length were adapted
according to the segmentation. Low-pass filtering was ap-
plied with variable cutoff frequency. The transform coef-
ficients were quantized according to the description of Eq.
(11) and further on.

The CELP codec operated with variable bit rate, where
the bit rate was distributed optimally across segments
keeping the total bit rate within a frame constant.

In addition to the encoders described, the excitation
pattern was encoded at a bit rate of about 4 kbit/s, inde-
pendent of the RD optimization. At the decoder side this
excitation pattern was used to determine a masking curve
that was used by the other codecs as common information
to efficiently decode the signal. In addition, based on the
excitation pattern, a residual noise signal was determined
to substitute spectrotemporal components that were not
encoded by the other codecs.

2.4 Test Results
For the broadcasting scenario the coder has been com-

pared at 20 kbit/s to two codecs: Nero HE-AAC [7] and
3GPP AMR-WB+ [8]. Fig. 9 shows the results. Our coder
performs better than HE-AAC (30 points on the 100-point
quality scale), which is probably also due to the domi-
nance of speech-oriented signals in the test set. Our coder
performs 10 points worse than AMR-WB+, presumably

because the bandwidth extension method in our coder was
not as mature as that of AMR-WB+ [8]. Furthermore the
hybrid coder (CELP+Transf3) performs better than the in-
dividual coding techniques. An analysis of the encoding pro-
cess for the individual excerpts confirms our expectations
with respect to bit allocation over the coding techniques.
Table 3 shows that the RD mechanism predominantly se-
lects the transform coder for the music excerpts, whereas
the CELP coder is selected for the speech excerpts. This
shows that the hybrid operational RD optimization ap-
proach is promising for obtaining increased performance
compared to separate coding techniques by effectively ex-
ploiting the strengths of the underlying coding techniques.

The coder also benefits from its ability to adapt to the
bit rate dynamically, as was demonstrated by the ECQ test.
Besides the expected latency and smoothing effects in the
judgments, this test showed that the switching between bit
rates and the corresponding quality levels does not lead to
a quality penalty because the overall quality obtained with
dynamic adaptation is similar to that obtained with con-
stant equal-average bit rate (see also [93]). The benefit is
therefore clear: dynamic bit-rate adaptation performs sig-
nificantly better than operation at the lowest (that is, guar-
anteed) bit rate. Thus the coder can be used for streaming/

3CELP+Transf indicates the hybrid coder configuration of the
CELP coder followed by the transform coder.

Fig. 9. Results of broadcasting test (20 kbit/s). Error bars denote
95% confidence intervals for mean (15 listeners).

Table 3. Bit-rate distributions in hybrid codec for
broadcasting test.*

CELP
(kbit/s)

Transform
(kbit/s)

Excitation
Pattern
(kbit/s)

Speech with noise (basket) 4.9 12.2 4.9
Male speech 12.0 5.0 5.0
Female speech 12.8 3.9 4.2
Music jazz 1.0 15.3 3.6
Music pop 1.8 14.8 5.3

* Bit rates are expressed as average bit rates across full excerpt.
Target bit rate was 20 kbit/s.
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transmission and can adapt to the momentary available
network bandwidth (such as GSM/GPRS access, shared
Internet connection) without a scalability loss.

For the storage scenario the performance of the coder
has been evaluated at three bit rates (a high bit rate of 64
kbit/s, an intermediate bit rate of 48 kbit/s, and a low bit
rate of 24 kbit/s) and has been compared to the state-of-
the-art coders MPEG-2 AAC [1] at the high and interme-
diate bit rates and MPEG-4 SSC [4] at the low bit rate. For
the high bit rate the results are shown in Fig. 10. At this
rate the coder is close to transparent, although not as good
as the AAC coder, as can be seen in the mean results of the
figure. This may be due to noise that was added by the
excitation pattern coder at places where it was not desired.
At these very high bit rates the relatively coarse quantiza-
tion of the excitation pattern probably needs to be adapted
for a more accurate noise synthesis. It is expected that
as a result of such an adaptation, no (or hardly any) noise
will be added at this high encoding bit rate. Furthermore,
as described in Section 1.5.2, the Huffman tables used for
the transform coding technique are optimized for very low
and low bit rates. Switchable Huffman tables optimized
for different target bit rates, as used, for example, in AAC,
may also contribute to a better quality at higher bit rates.

Results for intermediate and low bit rates are shown in
Fig. 11 for both the individual coding techniques and our
hybrid coder. In addition state-of-the-art coders are shown.
As can be seen, at intermediate bit rates (48 kbit/s) the
hybrid coder performs better than AAC. This figure also
shows the results for the low bit rate (24 kbit/s) at which
the coder performs equal to SSC. Also in this test the
hybrid combination of different coding techniques leads to
improved efficiency compared to using coding techniques
alone, again showing that the hybrid RD optimization
method allows for the creation of a combined codec that is
better than its constituent codecs. It should be noted, how-
ever, that at 48 kbit/s the transform coder plays a dominant
role and the addition of a sinusoidal coder does not lead to
improved performance because at this rate the quality of

the hybrid coder and that of the transform coder alone are
statistically indistinguishable.

Tables 4 and 5 show the bit-rate distributions for the
target bit rates of 24 kbit/s and 48 kbit/s, respectively. As
can be seen, most of the bit rate is given to the transform
codec, which is most pronounced for the least tonal signal,
the castanet signal. For this transient excerpt the bit budget
is almost completely allocated to the transform codec. At
24 kbit/s only 12% of the bit rate available for the hybrid
optimized codecs is allocated to the sinusoidal codec. For
the remaining excerpts this percentage is 35%. At 48 kbit/s
these numbers are 8% and 22%, respectively. So as in
[28], and in agreement with Fig. 11, we can conclude from

Fig. 11. Results of storage test at 48 and 24 kbit/s (16 listeners).
For explanation error bars, see Fig. 9.

Table 4. Bit-rate distributions in hybrid codec for
low-storage-capacity test.*

Sinusoidal
(kbit/s)

Transform
(kbit/s)

Excitation Pattern
(kbit/s)

Music Spanish 8.9 12.0 3.8
Male speech 5.6 15.6 5.0
Harmonic signal 6.2 14.9 2.9
Transient signal 2.4 17.8 3.3
Music jazz 7.6 13.7 3.6
Music pop 8.9 12.0 5.3

* Bit rates are expressed as average bit rates across full excerpt.
Target bit rate was 24 kbit/s.

Table 5. Bit-rate distributions in hybrid codec for
intermediate-storage-capacity test.*

Sinusoidal
(kbit/s)

Transform
(kbit/s)

Excitation Pattern
(kbit/s)

Music Spanish 8.3 38.7 3.8
Male speech 9.8 35.0 5.0
Harmonic signal 12.0 32.4 2.9
Transient signal 3.5 39.9 3.3
Music jazz 9.8 35.0 3.6
Music pop 11.2 33.3 5.3

* Bit rates are expressed as average bit rates across full excerpt.
Target bit rate was 48 kbit/s.

Fig. 10. Results of storage test at 64 kbit/s. Listening test results
averaged across 15 listeners for AAC (circles) and our coder
(diamonds). For explanation error bars, see Fig. 9.
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these numbers that with increasing bit rate a larger per-
centage of the available rate is given to the transform
codec, although in absolute terms the rate spent on the
sinusoidal codec tends to increase.

Results for the communication scenario are shown in
Fig. 12. The performance of the coder has been evaluated
at two delays, a high delay of about 384 ms (Hd) and
medium delay of about 43 ms (Md). This has been done
for two bit rates, 48 and 20 kbit/s. At 48 kbit/s the sound
quality does not suffer much from the more severe delay
constraint, but at 20 kbit/s the difference in quality between
high and medium delay configurations is rather high. This
may have resulted from increased switching between cod-
ing techniques because of shorter optimization frames. It
should be noted that Fig. 12 presents only results for lis-
tening quality, not counting for conversational quality;
lower delay will improve conversational quality.

In summary these tests validate that the operational RD
optimized hybrid coder can be used in a wide range of
applications, in which it performs comparable to the state-
of-the-art: the coder performs on average as well as AAC
(64 and 48 kbit/s) and SSC (24 kbit/s), better than HE-
AAC (20 kbit/s), and slightly worse than AMR-WB+ (20
kbit/s). In addition the results show that the hybrid coder
provides an improvement over the individual coding tech-
niques used in this coder. Apparently the RD control was
able to select the most efficient coding technique, or com-
bination thereof—even with a coarse bit-distribution step
of 25%—exploiting the individual strengths of the differ-
ent coders effectively.

3 DISCUSSION AND CONCLUSION

As also shown by the recent MPEG call for proposals
on “Unified Speech and Audio Coding,” there is a clear
need for generic sound coding technology, which can be
used in a wide variety of applications, in contrast to the
multitude of existing codecs that are dedicated to a par-

ticular application. Operational RD optimization is a
promising method for generic sound coding, and this study
describes a framework based on these principles. The en-
coding consists of a control unit, a perceptual distortion
measure, and several coding techniques, namely, paramet-
ric (sinusoidal) coding, CELP coding, and transform cod-
ing, each having its own strengths. Given a particular input
signal and constraints such as bit rate and delay, the con-
trol unit combines the strengths of the techniques in an
efficient way. This approach is general and flexible. For
example, the set of coding techniques is not limited to the
ones mentioned, but in principle any method could be
plugged into the control unit.

The framework has been validated in subjective listen-
ing tests. These tests show that the framework can indeed
be used in a wide range of applications, such as broad-
casting, storage, or communication, in which it is com-
petitive with the state of the art. Furthermore the hybrid
framework performs better than the individual coding
techniques. In other words, the framework is able to com-
bine the strengths of different coding techniques, which
results in higher coding efficiency and flexibility. The
framework not only adapts to the input signal, but also to
constraints such as bit rate and delay, without the need for
specific tuning, as is the case for the state-of-the-art codecs.

It should be noted, however, that more research and
development is needed before this technology can be used
in applications and services. This especially applies to its
complexity, which has to be decreased substantially, and
for this the property vector, or similar approaches, can play
an important role. Furthermore there is still much room for
performance improvement, for example, by improving the
coding techniques and especially the distortion measure
that determines the bit distribution over these techniques.

In conclusion, this paper shows the feasibility of generic
sound coding. A generic sound coding framework has
been developed, which obtains its versatility by opera-
tional RD optimization techniques. This makes such tech-
nology or derivatives thereof candidates for applications
of generic sound coding, which will undoubtedly arise in
the future.
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Supérieure des Télécommunications, Paris (Telecom
ParisTech), France, in 1979 and received an engineering
doctorate in automatics and signal processing at the Image
Laboratory of Telecom ParisTech in 1982.
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