Computational Fluid Dynamics Study on the Influence of Airflow Patterns on Carbon Dioxide Distribution in a Scaled Livestock Building

Rong, Li; Nielsen, Peter V.; Tong, Guohong; Ravn, Peter; Zhang, Guoqiang

Published in:
AgEng2008 : International Conference on Agricultural Engineering

Publication date:
2008

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

? You may not further distribute the material or use it for any profit-making activity or commercial gain

? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
COMPUTATIONAL FLUID DYNAMICS STUDY ON THE INFLUENCE OF AIRFLOW PATTERNS ON CARBON DIOXIDE DISTRIBUTION IN A SCALED LIVESTOCK BUILDING

Li Rong¹, Peter V. Nieslen¹*, Guohong Tong², Peter Ravn³, Guoqiang Zhang³

¹ Department of Civil Engineering, Aalborg University, Sohngaardsholmsvej 57, DK-9000 Aalborg e-mail: pvn@civil.aau.dk
² College of Water Conservancy, Shenyang Agricultural University, Shenyang 110161, China e-mail: guohongtong@yahoo.com.cn
³ Department of Agricultural Engineering, Research Centre Bygholm, University of Aarhus, Schuttesvej 17, DK-8700 Horsens, Denmark, e-mail: guoqiang.zhang@agrsci.dk

Airflow patterns and airflow rate have an important influence on contaminant distribution in swine buildings. The objective of this paper is to model and evaluate the effect of airflow rates and airflow patterns on CO₂ concentration distribution. Contaminant sources are assumed to be modeled as a constant concentration on the manure surface. Three different ventilation rates and three different deflector degrees are studied, in which the deflector is used to change the airflow patterns. A CFD (Computational Fluid Dynamics) commercial software code has been applied to simulate the air velocity and contaminant distribution. Experimental data of tracer gas concentration distribution in the chamber are obtained to validate the turbulence model in CFD software. Simulation results show that different ventilation rates and airflow patterns effect the contaminant distribution within the room.

With increasing the airflow rate, the emission of CO₂ will increase and the dimensionless CO₂ concentration above the slatted floor will also increase slightly, while the absolute CO₂ concentration in the room will decrease with increasing the airflow rate. Here the dimensionless CO₂ concentration is defined as:

\[c^* = \frac{c - c_0}{c_r - c_0}, \]

\(c^* \) is the dimensionless CO₂ concentration, \(c \) is the CO₂ concentration in the room, \(c_0 \) is the inlet CO₂ concentration, \(c_r \) is the outlet CO₂ concentration.

![Figure 1 model for simulation](image_url)
Figure 2 CO₂ concentration distribution in the middle plane with Z=0.31m

Figure 3 Comparison of dimensionless CO₂ concentration between simulation result and measurement above the slatted floor of y=0.51m with 45 degree’s deflector

Figure 4 Comparison of dimensionless CO₂ concentration among three various airflow rates along the line y=0.51m above the slatted floor with 45 degree’s deflector

Reference