Biogas from Italian ryegrass and oil seed radish: Effect of nitrogen application on biomass yield and methane production.

Molinuevo-Salces, Beatriz; Larsen, Søren U.; Ahring, Birgitte Kær; Uellendahl, Hinrich

Publication date: 2013

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Biogas from Italian ryegrass and oil seed radish: Effect of nitrogen application on biomass yield and methane production.

B. Molinuevo-Salces, S.U. Larsen, B.K. Ahring, and H. Uellendahl

Section for Sustainable Biotechnology, Aalborg University Copenhagen, AC Meyers Vænge 15, 2450 Copenhagen SV, Denmark.

Agrotech – Institute for Agri Technology and Food Innovation, Agro Food Park 15, DK-8200 Aarhus N, Denmark.

Center for Bioproducts and Bioenergy, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA.

*Corresponding author. Tel. +45 9940 3571, E-mail address: bms@bio.aau.dk

BACKGROUND

Catch crops are grown as supplementary crops after harvest of primary crops to bind nutrients in the soil. Their green biomass constitute a by-product of sustainable crop production that could be used as a biomass source for biogas production.

In order to obtain an economically feasible use of catch crops as feedstock for biogas production, it is necessary to increase the net energy yield per hectare, m3 CH4/ha, which was shown to depend mainly on the biomass yield per hectare. The biomass yield per hectare may depend on the time of the seeding, on temperature and rainfall during the growing season, on the amount of available nitrogen (N) in the soil and on the time of harvest.

OBJECTIVE (Catchcrop2biogas)

To investigate the potential of catch crops as a sustainable source of biomass for biogas production.

APPROACH

Effect of N-application (0, 50 and 100 kg N/ha) on biomass yield and specific methane yield of two catch crops:

- Italian ryegrass (IR) (Lolium multiflorum)
- Oil seed radish (OSR) (Raphanus sativus var. oleiformis)

Both of them were sown in two different locations in Denmark, namely Holstebro and Haderslev.

RESULTS AND CONCLUSIONS

Biomass yields (t volatile solids (VS)/ha) were increased by up to 77% and 52% for IR and OSR, respectively, when applying 100 kg N/ha. Biomass yield and its response to N fertilization varied largely between locations. This fact could be attributed to the higher precipitation registered in Haderslev (180 mm in August 2011).

In Haderslev, harvest of the biomass recovered N amounts equivalent to or higher than the amount applied whereas the amount of N recovered was below the N dosage applied in Holstebro.

No significant difference in specific methane yield was observed among the different N dosages or between locations.

The threshold for an economically feasible biogas production from catch crops was stated as 700 m3 CH4/ha. The net energy yields per hectare obtained in Haderslev were greater than 700 m3 CH4/ha for IR and OSR when applying 50 and 100 kg N/ha.

The dry matter (DM) content was generally higher for IR (22.8 ± 2% DM) than for OSR (15.8 ± 3% DM); the low dry matter content for oil seed radish could be problematic for storage due to the risk of percolate run-off.

✓ Nitrogen application enhances biomass yield, which determines net energy yield per hectare and therefore, the economic feasibility of the process.

✓ Nitrogen application had no effect on the specific methane yield.

✓ Rainfall could play a major role on biomass production and, hence, N recovery of catch crops.

✓ The higher dry matter content coupled with the lower ash content make Italian ryegrass (IR) more suitable for biogas production than oil seed radish (OSR) since it would be easier to store.

Table 1. Agricultural calendar for both catch crops.

<table>
<thead>
<tr>
<th>Month</th>
<th>Holstebro</th>
<th>Haderslev</th>
</tr>
</thead>
<tbody>
<tr>
<td>MARCH</td>
<td>100 kg N/ha</td>
<td>130 kg N/ha</td>
</tr>
<tr>
<td>APRIL</td>
<td>11/4 Barley Sowing</td>
<td>4/4 Barley Sowing</td>
</tr>
<tr>
<td>MAY</td>
<td>9/5 IR Sowing</td>
<td>8/4 IR Sowing</td>
</tr>
<tr>
<td>JUNE</td>
<td>70 kg N/ha</td>
<td>70 kg N/ha</td>
</tr>
<tr>
<td>JULY</td>
<td>19/7 OSR Sowing</td>
<td>18/7 OSR Sowing</td>
</tr>
<tr>
<td>AUGUST</td>
<td>13/8 Barley Harvest</td>
<td>4/8 Barley Harvest</td>
</tr>
<tr>
<td>SEPTEMBER</td>
<td>0.50,100 kg N/ha</td>
<td>0.50,100 kg N/ha</td>
</tr>
<tr>
<td>OCTOBER</td>
<td>24/10 IR Harvest</td>
<td>25/10 IR Harvest</td>
</tr>
</tbody>
</table>

Figure 1. Biomass yield (above), specific methane yield (middle) and net energy yield per hectare (below) for Italian ryegrass (IR) and oil seed radish (OSR) in both locations with nitrogen dosages of 0, 50 and 100 kg N/ha.

ACKNOWLEDGEMENTS

The Catchcrop2biogas project (project no. 10683) is financially supported by Energinet.dk, the Danish supplier of the electricity and gas grid.