Perfect simulation and moment properties for the Matérn type III process

Møller, Jesper; Huber, Mark L.; Wolpert, Robert L.

Publication date: 2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain. You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 25, 2019
Perfect simulation and moment properties for the Matérn type III process

by

Jesper Møller, Mark L. Huber and Robert L. Wolpert

R-2009-12 June 2009
Perfect simulation and moment properties for the Matérn type III process

Jesper Møller* Mark L. Huber† Robert L. Wolpert‡

2009 June 14

Abstract

In a seminal work, Bertil Matérn introduced several types of processes for modeling repulsive point processes. In this paper an algorithm is presented for the perfect simulation of the Matérn III process within a bounded window in \mathbb{R}^d, fully accounting for edge effects. A simple upper bound on the mean time needed to generate each point is computed when interaction between points is characterized by balls of fixed radius R. This method is then generalized to handle interactions resulting from use of random grains about each point. This includes the case of random radii as a special case. In each case, the perfect simulation method is shown to be provably fast, making it a useful tool for analysis of such processes.

Keywords: cluster size, dependent thinning, hard core point process, packing density, random sequential adsorption model.

1 Introduction

Bertil Matérn introduced in his seminal D. Sc. thesis work (Matérn, 1960) several important spatial models, including what are now known as the Matérn

*Department of Mathematical Sciences, Aalborg University, Fredrik Bajers Vej 7E, DK-9220, Aalborg, DK
†Department of Mathematics and Computer Science, Claremont-McKenna College, Claremont, CA 91711, USA
‡Department of Statistical Science, Duke University, Durham, NC 27708, USA
hard core point processes of types I and II (hereafter just called Matérn I and II) (see Matérn, 1986, pp. 47–49 and, e.g., Stoyan, Kendall, and Mecke, 1995, p. 121). Given a hard core parameter \(R \geq 0 \) and a stationary Poisson point process in \(\mathbb{R}^d \) with intensity \(\lambda > 0 \), which (following Matérn) we call the primary process, Matérn I is the secondary point process obtained by retaining every primary point which is not within distance \(R \) from another primary point. Upon assigning to the primary points independent time marks chosen uniformly from the interval \([0, 1]\), Matérn II is the secondary point process obtained by retaining every primary point \(z \) which is not within distance \(R \) from another primary point with a lower (or ‘earlier’) time mark. Matérn briefly mentioned a third type of hard core process, where instead every primary point \(z \) is retained if no earlier secondary point is within distance \(R \) (Matérn, 1986, page 48); the details are given in Section 2.

This paper deals with this less well-known but for many applications more appealing or realistic hard core point process model which we refer to as the stationary Matérn hard core process of type III or simply Matérn III. Although Matérn discusses the model no further after noting that ‘even an attempt to find the [packing density] tends to rather formidable mathematics’, the Matérn III process on spaces such as \(\mathbb{R}^d \) can be constructed and simulated (implicit in Penrose, 2001). Likelihood-based inference for a version of the Matérn III process on bounded sets is considered by Huber and Wolpert (2009), whereas the focus in the present paper is on the stationary (and hence infinite) Matérn III process from a probabilistic and a stochastic geometry perspective. We shall also consider various extensions of the Matérn III process.

As the primary intensity \(\lambda \to \infty \), the Matérn III model converges to the jamming limit of the random sequential adsorption (RSA) model long used by physicists and chemists studying the irreversible binding of proteins to surfaces. In its most common form this model constructs a hard core process as a sequence of points, each drawn within some bounded region \(S \subset \mathbb{R}^2 \) from the uniform distribution on the complement of the unions of disks of radius \(R \) centered at each of the previously-drawn points. When this union (whose connected components are called ‘cavities’) is empty, making it impossible to add another point in \(S \) whose distance to each previous point exceeds \(R \), the jamming limit has been reached and the process halts. Variations include using replacing the disks with squares or other geometric shapes, constructing the process in \(\mathbb{R}^d \) rather than the plane, employing independent random radii \(R_i \), stopping after a specified number of points
have been drawn, stopping after a specified number of attempts have been made using acceptance/rejection, etc. For more details and some of the historical development, see Döge (2001); Feder (1980); Finegold and Donnell (1979); Pálasti (1960); Schaaf, Voegel, and Senger (1998); Solomon (1967); Tanemura (1979).

In this paper, we present a construction of Matérn III that creates a sequence of ‘generations’ of points. This point of view is inspired from our simulation algorithm for the process rather than from the relationship to RSA. Section 2 presents this construction in a form similar to that found in Stoyan and Schlather (2000), but in greater detail.

Section 3 then presents the basic simulation algorithm, which is perfect in the sense of Propp and Wilson (1996) in that it has a random running time but returns samples drawn exactly from the desired distribution. This method was derived independently from but is similar to an algorithm given implicitly in Penrose (2001). Later in the section an improvement to the basic method is given that drastically speeds up the algorithm.

Next comes an analysis of the running time of the algorithm. In Penrose (2001) and Schreiber, Penrose, and Yukich (2007) it is shown that the chance that the presence of a particular point in the process affects another point declines exponentially in the distance between them. Section 3.2 shows that the expected number of points that must be examined in order to determine whether or not to include as a secondary is bounded above by a simple function of an easily calculated parameter of the process. This result is quite general, which we illustrate by an extension of the basic Matérn III process to allow random radii or more generally to replace balls with random sets, and also to allow spatial inhomogeneity.

While first and second order moment properties can easily be derived for Matérn I and II (Matérn, 1986, page 48), no closed form expressions are available for Matérn III (Matérn, 1986, page 49). On the other hand, the likelihood function for a finite version of the marked Matérn III process can be derived in closed form (Huber and Wolpert, 2009), while this seems to be impossible for Matérn I and II. As demonstrated in this paper, although it is harder to simulate from Matérn III than from Matérn I or II, it is still feasible to make perfect simulations and hence to study the properties of Matérn III experimentally. Section 4 provides Monte Carlo estimates of the packing density of Matérn III, which can be much higher than for Matérn I or II, and increases to the jamming limit of RSA as $\lambda \to \infty$.

3
2 Dependent thinning constructions

In this section, a construction for the Matérn III process is given that utilizes a generation approach whereby points are removed from a dominating process or added to the Matérn III process at each generation. This is similar to an approach described in Stoyan and Schlather (2000) that was suggested by the first author.

We shall only consider point processes expressible as locally-finite subsets of \(\mathbb{R}^d \) or \(\mathbb{R}^d \times [0, 1] \). As described in detail below, for a given hard core parameter \(R \geq 0 \), the stationary Matérn I–III processes denoted \(X_1, X_{II}, X_{III} \), respectively, can all be constructed by dependent thinnings from a Poisson point process \(Y \) on \(\mathbb{R}^d \times [0, 1] \) with intensity \(\lambda > 0 \). In Matérn’s terminology, \(Y \) is the primary process, and \(X_1, X_{II}, X_{III} \) the secondary processes. When we later write “by stationarity”, we have in mind that the distribution of \(Y \) is invariant under translations in \(\mathbb{R}^d \).

Often it is useful to view \(Y = \{(z_1, t_1), (z_2, t_2), \ldots \} \) as a marked Poisson process, where the points \(Z = \{z_1, z_2, \ldots \} \) constitute a stationary Poisson point process on \(\mathbb{R}^d \) of intensity \(\lambda \), and the marks \(\{t_1, t_2, \ldots \} \) are independent uniformly distributed on \([0, 1]\) and independent of \(Z \). We shall refer to \(t_i \) as the time associated with point \(z_i \). It turns out that an equivalent marked Poisson process to \(Y \), with i.i.d. \(t_i \) following an arbitrary continuous distribution on \(\mathbb{R} \), will lead to the same definitions of Matérn I–III as below, since the times then will have no ties (with probability one). It is also useful to view \(Y \) as a spatio-temporal point process, where we say that \(z_i \) is older than \(z_j \) (or \(z_j \) is younger than \(z_i \)) if \(t_i < t_j \).

We say that \(z_i \) and \(z_j \) are (\(R \)-close) neighbours if their Euclidean distance satisfies \(0 < \|z_i - z_j\| \leq R \), in which case \((z_i, t_i)\) and \((z_j, t_j)\) are also said to be neighbours. For any subprocesses \(U \subseteq Z \) and \(V \subseteq Y \) and points \(z_i \in U \) and \((z_i, t_i) \in V \), call

\[
\partial(z_i, U) := \{z_j \in U : 0 < \|z_i - z_j\| \leq R\}
\]

the neighbours of \(z_i \) within \(U \), and

\[
\partial_c((z_i, t_i), V) := \{(z_j, t_j) \in V : \|z_i - z_j\| \leq R, t_j < t_i\}
\]

the older neighbours of \((z_i, t_i)\) within \(V \).

Let \(B_R(z) \) denote the closed ball in \(\mathbb{R}^d \) with centre \(z \) and radius \(R \). The random graph with vertex set \(Z \) and edges connecting any two neighbouring points \(z_i, z_j \) corresponds to the Poisson process of balls \(B_{R/2}(z_i), B_{R/2}(z_j) \).
$z_i \in Z$, where intersecting balls are neighbours. Restricting this graph to any subprocess $Z' \subseteq Z$ and considering the corresponding marked subprocess $Y' = \{(z_i, t_i) : z_i \in Z'\}$, we refer to the subprocesses of Z' given by the maximal connected components of the subgraph with vertex set Z' as the Z'-clusters, and also to the corresponding subprocesses of Y' as the Y'-clusters.

For $d \geq 2$, we have continuum percolation (Meester and Roy, 1996), since there exists a critical value $\lambda_c > 0$, such that for $\lambda > \lambda_c$ there is a positive probability that an infinite cluster exists, while for $\lambda < \lambda_c$ almost surely no infinite cluster exists. The critical value is not known precisely in general. For $d = 2$ and $R = 2$, we have $0.174 < \lambda_c < 0.843$ (Meester and Roy, 1996, Theorem 3.10).

For Matérn I, a primary point $z_i \in Z$ is retained as a secondary point if and only if z_i has no neighbours in Z. Thus the time t_i plays no role, and

$$X_I = \{z_i \in Z : \partial(z_i, Z) = \emptyset\}$$

is the set of isolated Z-clusters (those with only one member).

For Matérn II, a primary point $z_i \in Z$ is retained as a secondary point if and only if the corresponding marked point (z_i, t_i) has no older neighbours, so

$$X_{II} = \{z_i \in Z : \partial_{<}((z_i, t_i), Y) = \emptyset\}.$$

Each Z-cluster contributes to X_{II} its locally oldest members, i.e., those with no older neighbours.

Matérn’s definition of his third type of hard core point process is that a primary point $z_i \in Z$ is retained as a secondary point if and only if z_i is not an R-close neighbour to an older retained secondary point z_j (i.e., $t_j < t_i$). Thus, while in Matérn II a point $z_i \in Z$ will always be thinned by an older neighbour $z_j \in Z \cap B_R(z_i)$, in Matérn III it will not be thinned by that z_j if z_j was already thinned by a yet earlier point.

To make this spatio-temporal definition more clear, consider the following iterative construction, which is illustrated in Figures 1–3. Begin with $Y^{(1)} := Y$, a Poisson point process on $\mathbb{R}^d \times [0, 1]$ with intensity $\lambda > 0$, and, for
\[Z^{(1)} := Z, \ i = 1, 2, \ldots, \] set
\[
X^{(i)} = Y^{(i)} \setminus \bigcup_{(z,t) \in Y^{(i)}} B_R(z) \times (t, 1], \quad (1a)
\]
\[
Y^{(i+1)} = Y^{(i)} \setminus \bigcup_{(z,t) \in X^{(i)}} B_R(z) \times [t, 1]. \quad (1b)
\]

At each stage \(i \), \(X^{(i)} \) is obtained by thinning \(Y^{(i)} \) in exactly the same way as in Matérn II, that is, \(X^{(i)} \) consists of the locally oldest members of the \(Y^{(i)} \)-clusters. As verified later in Corollary 1, with probability one, within each \(Y^{(i)} \)-cluster there will be at least one locally oldest member, and as exemplified in Figures 1 and 3 there may be more than one locally oldest member. Furthermore, \(Y^{(i+1)} \) consists of those elements in \(Y^{(i)} \) which are neither in \(X^{(i)} \) nor thinned by an element of \(X^{(i)} \). We call \(Y^{(i)} \), \(X^{(i)} \), and \(Y^{(i)} \setminus X^{(i)} \) the \(i \)th generation primary, secondary, and complementary processes, respectively. Finally, the Matérn III process is
\[
X_{\text{III}} = \bigcup_{i=1}^{\infty} \{ z : (z,t) \in X^{(i)} \}, \quad (1c)
\]
the projection of \(\bigcup_{i=1}^{\infty} X^{(i)} \) onto \(\mathbb{R}^d \). Note that the projection of \(X^{(1)} \) onto \(\mathbb{R}^d \) is just the Matérn II process \(X_{\text{II}} \).

The coupling of the Matérn I–III processes is given in the following proposition and illustrated in Figure 4.

Proposition 1. With probability one, \(X_{\text{I}} \subset X_{\text{II}} \subset X_{\text{III}} \subset Z \).

Proof. Since \(X_{\text{I}} \) is the set of isolated \(Z \)-clusters, and \(X_{\text{II}} \) is the projection of \(X^{(1)} \) onto \(\mathbb{R}^d \), it follows that \(X_{\text{I}} \subseteq X_{\text{II}} \subseteq X_{\text{III}} \subseteq Z \). Hence, for \(R > 0 \), since there is a positive probability that \(X^{(1)} \neq X^{(2)} \), it follows that the intensity of \(X^{(1)} \) is strictly smaller than that of \(X^{(2)} \), and so \(X^{(1)} \subset X^{(2)} \) almost surely. In a similar way we obtain that \(X^{(2)} \subset X^{(3)} \) and \(X^{(3)} \subset Z \) almost surely. \(\square \)

3 Perfect simulation

Efficient simulation procedures are important for theoretical investigations as well as for model checking based on, e.g., the reduced second moment or \(K \)-function (Ripley, 1981, §8.1). Matérn I and II can easily be simulated within
Figure 1: An illustration of a single cluster of the primary process in the one-dimensional case $d = 1$. The horizontal line segments are centered at the marked points (z_i, t_i) of the cluster and have length $2R$. The first (top panel) and second (bottom panel) generation secondary marked points are the filled circles, and the first (top panel) and second (bottom panel) generation complementary marked points are the open circles. There are no higher order generation marked points.
Figure 2: Perfect simulation of a Matérn III process within a rectangular region, with $\lambda = 10$ and $R = 1$. The circles are centered at the Matérn III points and are all of radius $R/2$. The integers $i = 1, 2, \ldots$ at circle centers are points of the i^{th} generation secondary process $X^{(i)}$. The dots are the primary points removed by older Matérn III points within distance R.
Figure 3: Perfect simulation of a Matérn III process within $W = [0, 10]^2$, with $\lambda = 100$ and $R = 1$, with 70 Matérn III points in W. The disjoint circles of radius $R/2$ are centered at the Matérn III points. The integers i are points of the i^{th} generation secondary process $X^{(i)}$ within the cluster. The numbers of secondary points within W of generation i are 38, 12, 11, 7, 1, 1 for $i = 1, \ldots, 6$, respectively. The estimated packing density (see Section 4) is $(70/100)\pi(R/2)^2 = 54.98\%$.
Figure 4: Planar Matérn hard core point processes at four intensities, with $R = 1$ in all cases: (a) $\lambda = 0.10$, (b) $\lambda = 1.0$, (c) $\lambda = 10.0$, (d) $\lambda = 100$. Empty circles are Matérn I–III; triangles are Matérn II–III; filled circles are Matérn III. Packing densities (see Section 4) of Matérn II–III are 5.5%, 31.4%, 47.9%, and 48.7%, respectively — well below the two-dimensional perfect-packing density of $\pi/\sqrt{12} = 90.7\%$, but for (b)–(d) well above the maximal Matérn II density of 25%.
a bounded region $W \subset \mathbb{R}^d$, since they do not depend on those $(z_i, t_i) \in Y$ for which the distance from z_i to W exceeds R. This section shows how to make a perfect simulation of $X_{\text{III}} \cap W$, the Matérn III process within W, without ignoring the fact that $X_{\text{III}} \cap W$ may depend on $(z_i, t_i) \in Y$ for z_i arbitrarily far away from W.

3.1 The basic algorithm

Suppose $W \subset \mathbb{R}^d$ has finite volume (Lebesgue measure). To support inference about λ and R, when only a finite point pattern $\{z_i\}_{i \in I} \subset W$ is observed and modeled by a finite version of the Matérn III process within W, Huber and Wolpert (2009) developed a perfect simulation algorithm of the latent times $\{t_i\}_{i \in I}$ and the removed marked points but without accounting for edge effects. Here we address a different problem — the perfect sampling of both the positions and times for the Matérn III process, with full accounting of the edge effects.

Our first algorithm, Algorithm 1, is implicit in early work of Penrose (2001) and was rediscovered independently by the authors. The pseudo code in Algorithm 1 below describes our perfect sampler, and Figures 5 and 6 illustrate the algorithm.

Algorithm 1 Perfect simulation of Matérn III

Input: $W \subset \mathbb{R}^d$ of finite volume, $\lambda > 0$, $R \geq 0$

Output: $X_W = X_{\text{III}} \cap W$, a Matérn III process within the window W

```plaintext
1: $X_W \leftarrow \emptyset$, $U \leftarrow W$
2: draw $Y_U \leftarrow \text{Poi}(U \times [0,1], \lambda)$
3: while $Y_U \cap (W \times [0,1]) \neq \emptyset$ do
4:   let $(z, t)$ be the marked point in $Y$ with smallest time
5:   draw $Y' \leftarrow \text{Poi}([B_R(z) \setminus U] \times [0,1], \lambda)$
6:   $U \leftarrow U \cup B_R(z)$
7:   $Y_U \leftarrow Y_U \cup Y'$
8:   if $(\forall (z', t') \in Y') (t < t')$ then
9:     $Y_U \leftarrow Y_U \setminus (B_R(z) \times [0,1])$
10:    if $z \in W$ then $X_W \leftarrow X_W \cup \{z\}$ end if
11: end if
12: end while
```

Algorithm 1 begins by setting $U = W$ and generating a primary Poisson
point process Y_U of intensity $\lambda > 0$ on $U \times [0, 1]$; Y_U may be viewed as $Y \cap (U \times [0, 1])$ for the Poisson point process Y constructed in Section 2 on all of $\mathbb{R}^d \times [0, 1]$. The output of the algorithm is a subset $X_W \subseteq Z$, which as verified later is distributed exactly as $X_{\text{ui}} \cap W$. In order to determine whether or not a particular primary point $z \in Z_U$ with associated time t should be included in X_W, we need to consider the other marked points $(z_i, t_i) \in Y$ with $z_i \in B_R(z)$. Therefore, if $B_R(z)$ does not lie entirely in U, we first extend the primary Poisson point process Y_U to all of $B_R(z) \times [0, 1]$. If z is older than each such z_i (i.e., with $t_i > t$), then z is included in X_W. Even if it is not the oldest, it will still be retained if each older point $z_i \in B_R(z)$ (i.e., $t_i < t$) is removed by some other retained point. To find out if that happens, we must examine recursively whether or not each such z_i is retained in X_W.

For any marked point $(z, t) \in Y$, denote by $C(z, t)$ the ‘directed Y-cluster’ starting at (z, t), defined recursively as the union of (z, t) and the union of all directed Y-clusters $C(z_i, t_i)$ for $(z_i, t_i) \in \partial_c((z, t), Y)$, i.e., with $\|z - z_i\| \leq R$ and $t_i < t$. These are the only marked points that might possibly influence whether or not z is retained in X_W. By Theorem 1 below, with probability one, each such directed cluster is finite for any $\lambda < \infty$. Consequently, Algorithm 1 will complete in finite time for any set $W \subset \mathbb{R}^d$ of finite volume.

3.2 Results

Before stating Theorem 1 we need to introduce some notation and results. For $(z, t) \in \mathbb{R}^d \times [0, 1]$, let $Y^{(z,t)} = Y \cup \{(z, t)\}$. By stationarity (i.e., the distribution of Y is invariant under translations in \mathbb{R}^d), for any fixed $(z, t) \in \mathbb{R}^d \times [0, 1]$, we have the following: $(z, t) \not\in Y$ almost surely; the expected size of the directed $Y^{(z,t)}$-cluster starting at $(z, t) \not\in Y$ does not depend on z, so we can set

$$g(t) = \mathbb{E}[\#C(z, t)];$$

and for an arbitrary Borel set $A \subseteq \mathbb{R}^d$, by the Slivnyak-Mecke theorem (Slivnyak, 1962; Mecke, 1967) (see also Möller and Waagepetersen, 2004, pp. 20–22),

$$\mathbb{E} \sum_{(z,t) \in Y: z \in A} \#C(z, t) = \lambda |A| \int_0^1 g(t) \, dt,$$

where $|A|$ is the Lebesgue measure of A. Finally,

$$b = \lambda \omega_d R^d$$
denotes the expected number of points of $Z \cap B_R(z)$ for an arbitrary fixed location $z \in \mathbb{R}^d$, where $\omega_d = \pi^{d/2}/\Gamma(1 + d/2)$ is the volume of a unit ball.

Theorem 1. For all $t \geq 0$ we have the bound

$$g(t) \leq e^{bt},$$

and with probability one, for all $(z, t) \in Y$, $\#C(z, t) < \infty$.

Before tackling the tight bound (4), it will be useful to have a weaker bound in place:

Lemma 1. For some fixed $B < \infty$ and all $0 \leq t \leq 1$, $g(t) \leq B$.

Proof. First note that $g(0) = 1$ and that $g(t)$ is non-decreasing. Let Z^0 denote the projection of $Y^{(0,t)}$ onto \mathbb{R}^d, and $G(\lambda) \leq \infty$ the expected size of the (undirected) Z^0-cluster containing 0. Since there is an upper bound on the number of $Z^0\{0\}$-clusters which has a member which is a neighbour to 0, it follows from Meester and Roy (1996, Theorem 3.2) that there exists $\lambda_c > 0$ such that $G(\lambda) < \infty$ for $\lambda \in (0, \lambda_c)$. Since the projection onto \mathbb{R}^d of $Y^{(0,t)}$ is an undirected Z^0-cluster of the projection onto \mathbb{R}^d of $Y^{(0,t)} \cap \{(\mathbb{R}^d \times [0, t])\}$, the union of $\{(0, t)\}$ and a Poisson point process of intensity λt, we have $g(t) \leq G(t\lambda)$. It follows that

$$g(t) \leq G(\lambda_c/2) < \infty \quad \text{whenever } 0 \leq t \leq \lambda_c/(2\lambda).$$

Let $\{(z_1, t_1), \ldots, (z_N, t_N)\}$ denote the older neighbours $\partial_<((0, t), Y^{(z,t)})$ of $(0, t)$. Then $C((0, t))$ is the union of $\{(0, t)\}$ and $\bigcup_i C(z_i, t_i)$, so $\#C(0, t) \leq 1 + \sum_{i=1}^N \#C(z_i, t_i)$, and taking expectations yields

$$g(t) \leq 1 + \mathbb{E} \left[\sum_{i=1}^N \#C(z_i, t_i) \right].$$

Since $\{(z_1, t_1), \ldots, (z_N, t_N)\}$ is a Poisson process on $B_R(0) \times [0, t]$ with intensity λ, the Slivnyak-Mecke theorem and (2) imply that

$$\mathbb{E} \left[\sum_{i=1}^N \#C(z_i, t_i) \right] = \lambda \int_0^t \left[\int_{B_R(0)} \mathbb{E}[\#C(z, s)] \, dz \right] \, ds = b \int_0^t g(s) \, ds.$$
Figure 5: Illustration of Algorithm 1 when $W = [0, 10]^2$, $\lambda = 10$, and $R = 1$. Small filled circles are Matérn III points, which are the centers of the large circles of radii R. Small open circles are primary points, which are removed by Matérn III points, as indicated by the line segments. The question mark is a point outside W whose status was still uncertain when the algorithm terminated.
Figure 6: Illustration of Algorithm 1 when $W = [0, 10]^2$, $\lambda = 10$, and $R = 1$. Circled integers $i = 1, 2, \ldots$ are Matérn III points of the i^{th} generation $X^{(i)}$; circles have diameter R. The dots are the primary points that were removed by older Matérn III points within distance R. The shaded region outside W indicates the larger region U where additional primary points had to be generated to discover whether or not points within W would be retained. The question marks (near the upper left corner of the window) are points outside W whose status was still uncertain when the algorithm terminated.
Hence
\[g(t) \leq 1 + b \int_0^t g(s) \, ds, \] (6)
and so, for any \(0 < r < 1\), since \(g\) is non-decreasing,
\[g(t) \leq 1 + bt \left[r g(rt) + (1 - r) g(t) \right]. \]

This implies that for \(b(1 - r) \leq 1/2\), \(0 \leq t \leq 1\), and \(k \in \mathbb{N}\),
\[
g(t) \leq \frac{1}{1 - bt(1 - r)} + \frac{btr}{1 - bt(1 - r)} g(rt) \leq 2 + (2br)g(rt) \leq 2 \left[1 + (2br) + \cdots + (2br)^{k-1} \right] + (2br)^k g(r^kt) \] (7)
where we have used induction to obtain (7). For \(k \geq \log(2\lambda/\lambda_c)/\log(1/r)\),
we have \(r^kt \leq \lambda_c/(2\lambda)\), and so by combining (5) and (7),
\[
g(t) \leq B := 2\left[1 + (2br) + \cdots + (2br)^{k-1} \right] + (2br)^k G(\lambda_c/2) < \infty. \]
\[\square \]

Now we turn to the theorem.

Proof of Theorem 1. Lemma 1 ensures that \(g(s)\) is integrable over \([0, 1]\), and
so (6) and the integral form of Grönwall’s inequality (Grönwall, 1919; Bell-
man, 1943) gives (4). The other assertion in Theorem 1 follows immediately
by combining (3) and (4).

Corollary 1. With probability one, for any \(i = 1, 2, \ldots\) and within any
\(Y^{(i)}\)-cluster there will be at least one locally oldest member, and the cluster
contains no infinite sequence of marked points \((z_1, t_1), (z_2, t_2), \ldots\) such that
\(z_j\) is a younger neighbour to \(z_{j+1}\) for all \(j = 1, 2, \ldots\).

Proof. Follows immediately from Theorem 1.

\[\square \]

3.3 Extensions

This section considers an extension of the basic Matérn III process to the case
where the ball \(B_R(z_i)\) associated to each time \(t_i\) is replaced by \(z_i + G_i =
\{ z_i + g : g \in G_i \}\), the translate by \(z_i\) of a random set \(G_i \subseteq \mathbb{R}^d\). At the
end of this section, we consider the inhomogeneous case where the intensity function of the underlying primary Poisson process is not constant.

Specifically, let Ω denote the space of random closed subsets of \mathbb{R}^d equipped with the usual σ-algebra (see e.g. Stoyan et al., 1995, p. 94), and let Q denote a probability distribution for a random closed set. Let G_1, G_2, \ldots be a sequence of i.i.d. random closed sets with distribution Q. This sequence is assumed to be independent of the Poisson process $Y = \{(z_1, t_1), (z_2, t_2), \ldots\}$ on $\mathbb{R}^d \times [0, 1]$ with intensity $\lambda > 0$. In other words, $Y^+ := \{(z_1, t_1, G_1), (z_2, t_2, G_2), \ldots\}$ is a Poisson process on $\mathbb{R}^d \times [0, 1] \times \Omega$ with intensity measure $\lambda \, dz \, dt \, dQ(G)$. In the stochastic geometry literature, z_i is called a germ, $z_i + G_i$ a grain, and the union of the grains a germ-grain model or a Boolean model, where it is often assumed that G_i is compact (see e.g. Stoyan et al., 1995, p. 59 and p. 216). It turns out that the only condition we need in the sequel is that

$$b := \mathbb{E}[\#(Z \cap G_0)] = \lambda \mathbb{E}[|G_0|]$$

(8)

is finite, where G_0 follows Q and is independent of Y^+ (this implies the last equality in (8)). If, as previously in this paper, $G_0 = B_{R}(0)$ and $R \geq 0$ is fixed, then clearly $b = \lambda \omega_d R^d$ is finite. If instead R is a random variable, then condition (8) follows if $\mathbb{E}[R^d] < \infty$. If $d = 2$ and G_0 is an ellipse with random minor and major axes a and b and orientation, then (8) follows if $\mathbb{E}[ab] < \infty$.

For any $(z_i, t_i, G_i) \in Y^+$, we think of $z_i + G_i$ as a ‘demand space’ and define

$$\partial_<((z_i, t_i, G_i), Y) = \{(z_j, t_j) \in Y : z_j \in z_i + G_i \text{ and } t_j < t_i\}$$

to be the subprocess of older neighbours to (z_i, t_i, G_i). By definition, the grain G_j of an older neighbour to (z_i, t_i, G_i) plays no role, explaining why we are only considering $\partial_<((z_i, t_i, G_i), Y)$ as a subprocess of the original primary Poisson process Y. This is advantageous when establishing Theorem 2 below, while the situation will be more complicated if we allowed older neighbours to depend on their grains.

Now, we construct the extended Matérn III process by retaining a point z_i only if it is not adjacent to an older neighbour that has already been retained (cf. Section 2). In other words, a Matérn III point z_i arriving at time t_i ‘demands’ that $z_i + G_i$ does not contain any previously generated Matérn III point, and survives only if that demand is met.
In a similar way as in Section 2, for any fixed \((z, t, G) \in \mathbb{R}^d \times [0, 1] \times \Omega\), define the directed \(Y(z,t,G)\)-cluster starting with \((z, t, G)\) and denote it \(C(z,t,G)\). Note that \((z, t, G) \not\in Y^+\) almost surely. Let
\[
g(t) = \mathbb{E}[\#C(z,t,G_0)]
\]
be the size of a directed cluster when \(G\) is replaced by the generic grain \(G_0\), noticing that \(g(t)\) does not depend on \(z\). The following theorem bounds \(g(t)\) above and establishes that the directed clusters \(C(z_i,t_i,G_i), i = 1, 2, \ldots\), are almost surely finite, so our perfect simulation algorithm (Algorithm 1 modified to the case of the extended Matérn III process) completes in finite time.

Theorem 2. The conclusions in Theorem 1 remain true for the extended Matérn III process.

This is verified below. As in Section 3.1, it is easier to begin with weaker results.

Lemma 2. If \(0 \leq t < 1/b\), then \(g(t) \leq 1/(1 - tb)\).

Proof. The idea is to compare the directed cluster \(C(0,t,G_0)\) to a branching process. Let \(A_0 = \{(0,t)\}\), and for \(i = 1, 2, \ldots\), let \(A_i\) denote the set of points in \(Y\) that reach \((0, t, G_0)\) in a directed path of \(i\) older neighbours in \(C(0,t,G_0)\). For each \((z_j, t_j) \in A_i\), there exists at least one \((z_k, t_k) \in A_{i-1}\) such that \(z_j \in z_k + G_k\) and \(t_j < t_k \leq t\). Recall also that \(G_0, G_1, G_2, \ldots\) are i.i.d. and independent of \(Y\). Moreover, conditional on \((z_k, t_k, G_k)\) with \((z_k, t_k) \in G_{i-1}\), the points \(z_j \in Z\) with \(t_j < t_k\) and \(z_j \in z_k + G_k\) form a Poisson process on \(z_k + G_k\) with intensity \(t_k \lambda \leq t\lambda\). Consequently,
\[
\mathbb{E}[\#A_i | \#A_{i-1}] \leq \sum_{(z_k, t_k) \in A_{i-1}} t\lambda \mathbb{E}[|G_k|] = tb \#A_{i-1}.
\]
Taking the conditional expectation over the points in \(A_{i-1}\) given \(\#A_{i-1}\), we obtain
\[
\mathbb{E}[\#A_i | \#A_{i-1}] \leq tb \#A_{i-1}.
\]
By induction, beginning with \(\#A_0 = 1\), we find \(\mathbb{E}[\#A_i] \leq (tb)^i\) so, for \(0 \leq t < 1/b\),
\[
g(t) = \sum_{i=0}^{\infty} \mathbb{E}[\#A_i] \leq \sum_{i=0}^{\infty} (tb)^i = 1/(1 - tb).
\]
\hfill \Box

18
Lemma 3. There exists a fixed $B < \infty$ such that for all $t \in [0, 1]$, $g(t) \leq B$. Moreover, (6) remains true.

Proof. As in the proof of Lemma 1,

$$g(t) \leq 1 + \mathbb{E} \left[\sum_{i=1}^{N} \# C(z_i, t_i, G_i) \right], \quad (10)$$

where $\{(z_1, t_1), \ldots, (z_N, t_N)\}$ are the older neighbours of $(0, t, G_0)$. Conditional on G_0, these older neighbours form a Poisson process on $G_0 \times [0, t] \times \Omega$. Hence

$$\mathbb{E} \left[\sum_{i=1}^{N} \# C(z_i, t_i, G_i) \right] = \mathbb{E} \left[\mathbb{E} \left[\sum_{i=1}^{N} \# C(z_i, t_i, G_i) \bigg| G_0 \right] \right]$$

$$= \lambda \int_{0}^{t} \mathbb{E} \left[\int_{G_0} \int_{\Omega} \mathbb{E} \left[\# C(z, s, G) \bigg| G_0 \right] dQ(G) dz \right] ds \quad (11)$$

$$= \lambda \int_{0}^{t} \left[\int_{G_0} \int_{\Omega} \mathbb{E} \left[\# C(z, s, G) \right] dQ(G) dz \right] ds \quad (12)$$

$$= \lambda \int_{0}^{t} g(s) \left[\int_{G_0} dz \right] ds \quad (13)$$

$$= b \int_{0}^{t} g(s) ds, \quad (14)$$

using the Slivnyak-Mecke theorem and Fubini’s theorem in (11), the fact that G_0 is independent of Y^+ in (12), (9) in (13), and (8) in (14). Consequently, we have again established (6). The remainder of the proof can then be completed as in Lemma 1, using instead of (5) the fact that

$$g(t) \leq 1/[1 - 1/(2b)] \quad \text{whenever } 0 \leq t < 1/(2b). \quad (15)$$

Here (15) follows from Lemma 2.

With Lemma 3 in hand, the proof of Theorem 2 is identical to that of Theorem 1.

19
Inhomogeneous intensity Now, consider the further extension where the intensity λ is replaced by a locally integrable intensity function $\lambda(z)$ so that Y^+ is a Poisson process on $\mathbb{R}^d \times [0, 1] \times \Omega$ with intensity measure $\lambda(z) \, dz \, dt \, dQ(G)$. In this case, $b(z) = \mathbb{E}[\#(Z \cap (z + G_0))]$ and $g(t, z) = \mathbb{E}[\#C(z, t, z + G_0)]$ are no longer independent of z, and so new definitions are needed:

$$b := \sup_z \mathbb{E} \left[\#(Z \cap (z + G_0)) \right],$$
$$g(t) := \sup_z \mathbb{E} \left[\#(C(z, t, z + G_0)) \right].$$

When λ is a constant function these new definitions reduce to the previous ones. Note that

$$b = \sup_z \mathbb{E} \left[\int_{G_0} \lambda(x - z) \, dx \right].$$

Assuming that $b < \infty$, in the proofs of Lemmas 2 and 3 some equalities change to less than or equal to statements, but otherwise the proofs remain unchanged. Hence Theorem 2 still holds using these more general definitions of b and $g(t)$.

3.4 Speeding up the algorithm

In Algorithm 1, when the point z with time stamp t is considered, all points in the primary Poisson process within distance R to z are generated. This, however, is wasteful, since only those neighbours that have a time stamp smaller than t can possibly affect z. This ball of radius R about z, $B_R(z)$, is then added to the set U.

By only generating points in $B_R(z)$ with times stamps smaller than t, the algorithm becomes much faster and gives rise to our Algorithm 2. The set U in Algorithm 1 is replaced in Algorithm 2 by a subset V of space-time, and when the points with time stamp less than t are generated, the space-time cylinder $B_R(z) \times [0, t]$ is added to V. Generation of points in $(B_R(z) \times [0, t]) \setminus V$ is accomplished by first generating points in $B_R(z) \times [0, t]$, and then retaining those points that lie outside of V. Using the same primary Poisson process in the two algorithms, Algorithm 2 generates fewer points than Algorithm 1. In fact, for high primary intensities λ the distribution of times $\{t_i\}$ of retained points is clustered close to zero so the reduction in running time is substantial. When $b > 1000$ this reduction often exceeded three orders of magnitude in our trials.
Algorithm 2 Perfect simulation of Matérn III

Input: $W \subset \mathbb{R}^d$ of finite volume, $\lambda > 0$, $R \geq 0$

Output: $X_W = X_{III} \cap W$, a Matérn III process within the window W

1: $X_W \leftarrow \emptyset$, $V \leftarrow W \times [0, 1]$
2: draw $Y_V \leftarrow \text{Poi}(V, \lambda)$
3: while $Y_V \cap (W \times [0, 1]) \neq \emptyset$ do
4: let (z, t) be the point in Y_V with smallest time
5: draw $Y' \leftarrow \text{Poi}([(B_R(z) \times [0, t]) \setminus V], \lambda)$
6: $V \leftarrow V \cup (B_R(z) \times [0, t])$
7: $Y_V \leftarrow Y_V \cup Y'$
8: if $Y' = \emptyset$ then
9: $Y_V \leftarrow Y_V \setminus (B_R(z) \times [0, 1])$
10: if $z \in W$ then $X_W \leftarrow X_W \cup \{z\}$ end if
11: end if
12: end while

4 Packing densities

For a stationary hard core process X in \mathbb{R}^d with hard core $R \geq 0$ and intensity $\rho < \infty$, the packing density τ is the volume fraction taken up by the (disjoint) balls of radius $R/2$ centered at the points; for an arbitrary Borel set $A \subset \mathbb{R}^d$ of positive and finite Lebesgue measure $|A|$, $\tau = \frac{1}{|A|} \mathbb{E} \left| \bigcup_{x \in X} (B_{R/2}(x) \cap A) \right|$, which by stationarity does not depend on the choice of A. By Campbell’s theorem (see, e.g., Stoyan et al., 1995, p. 103), $\tau = \rho \omega_d (R/2)^d$. (16)

Furthermore, for Z a stationary Poisson process with intensity λ, the Boolean model $Z_R = \bigcup_{z \in Z} B_{R/2}(z)$ has expected volume fraction $\tau_0 := \mathbb{E}|Z_R \cap A|/|A| = 1 - \exp \left(-\lambda \omega_d (R/2)^d \right)$. Using an obvious notation, we obtain for Matérn I–III generated by a primary Poisson process Y with intensity $\lambda > 0$ the following relation between the packing densities $\tau_I < \tau_{II} < \tau_{III} < \tau_0$, 21
cf. Proposition 1. Note that \(\tau_i \) \((i = I, II, III)\) depends on \((\lambda, R)\) only through
\[b = \lambda \omega d R^d. \]
By stationarity in \(R^d\) and using (16), we have
\[\tau_i = (b/2^d) \int_0^1 p_i(t) \, dt, \quad i = I, II, III, \]
where \(p_i(t)\) is the probability that \(0 \in R^d\) with associated time \(t\) is not \(i\)-thinned by the marked points in \(Y \) \((i = I,II,III)\).

4.1 Packing densities for Matérn I and II

Since \(b\) is the expected number of primary points in a ball of radius \(R\),
\[p_I(t) = \exp(-b) \text{ and } p_{II}(t) = \exp(-bt), \]
and hence by (17),
\[\tau_I = b e^{-b}/2^d, \quad \tau_{II} = (1 - e^{-b})/2^d. \]
Evidently \(\tau_I\) takes its maximum when \(b = 1\), and \(\tau_{II}\) approaches its maximum as \(b \to \infty\), with
\[\sup \tau_I = 2^{-d}/e, \quad \sup \tau_{II} = 2^{-d}. \]

4.2 Packing density for Matérn III

4.2.1 Analytical results

Suppose that \(\{(z_1, t_1), \ldots, (z_N, t_N)\}\) is the Poisson process of primary marked points in \(B_R(0) \times [0, t]\); note that \(N\) is Poisson distributed with mean \(bt\). Conditional on these primary marked points, for \(N = n \geq 1\), let \(q_n(z_1, t_1, \ldots, z_n, t_n)\) denote the probability that every \((z_i, t_i) \) \((i = 1, \ldots, n)\) is non-retained after III-thinning (we say shortly that \((z_i, t_i)\) is III-thinned) by marked points in \(Y \setminus (B_R(0) \times [0, 1])\). If \((0, t)\) is not III-thinned by \(Y\) and \(t_{(1)} < \ldots < t_{(n)}\) are the ordered times, then by induction on \(i = 1, \ldots, n\) we see that each \((z_{(i)}, t_{(i)})\) must be III-thinned by some Matérn III points outside \(B_R(0)\) with marks less than \(t\). Thus \(p_{III}(t)\) in Equation (17) is given by
\[p_{III}(t) = e^{-bt} \left[1 + \sum_{n=1}^{\infty} \frac{(bt)^n}{n!} \int \cdots \int q_n(z_1, t_1, \ldots, z_n, t_n) \right. \]
\[\left. d\nu_t(z_1, t_1) \cdots d\nu_t(z_n, t_n) \right], \]
where \(\nu_t \) denotes the uniform distribution on \(B_R(0) \times [0, t] \). The earlier lower bound \(\tau_{III} > \tau_{II} \) follows simply from the positivity of the sum in (18). It seems challenging to express \(q_n(z_1, t_1, \ldots, z_n, t_n) \) in closed form, and extremely difficult even to derive a lower bound on \(q_1(z_1, t_1) \), since \((z_1, t_1) \) has to be III-thinned by some \((z_2, t_2) \in Y \cap ([B_R(z_1) \setminus B_R(0)] \times [0, t_1]) \) which in turn is not III-thinned. We have also not been successful in establishing a useful upper bound on \(q_n(z_1, t_1, \ldots, z_n, t_n) \).

4.2.2 Simulated results

Algorithm 2 was implemented in the \texttt{R} programming environment (R Development Core Team, 2006) and was run on a 2.66GHz dual quad-core Xeon-based desktop computer at a range of primary intensities, evenly spaced on a logarithmic scale. All simulations used radius \(R = 1 \) on a 10 \times 10 square window \(W \). Running times varied from microseconds per run at the lowest value of \(b = 1.0 \) to five hours per step for the highest value of \(b = 10^{5.5} \). Memory limitations prevented the exploration of higher values of \(b \).

The solid line in Figure 7 gives the estimated packing density \(\tau_{III} \) of the Matérn III process as a function of \(b \). Circles indicate values of \(b \) at which simulations were run. Short vertical lines give 99\% uncertainty range reflecting simulation variability, which was negligible except for the highest densities. Dashed lines indicate the approximate packing density of points in generations 1–7; no points of higher generations were observed. Generation 1 has the Matérn II distribution, and quickly reaches its asymptotic value of \(\tau_{II} = 1/4 \) in \(d = 2 \) dimensions.

Feder (1980) offered empirical evidence for his conjecture that the error in estimating the packing density for the RSA process with \(n \) attempts to place a new disk decreased like \(n^{-1/2} \) in two dimensions. Figure 8 presents a plot of our estimated packing density against the inverse square root of \(b \) for the Matérn III process. A linear regression fit to the values from the highest four intensities is presented as a dashed line; its intercept, the ‘Feder extrapolation’ of the packing density to infinite intensity \(1/\sqrt{b} \approx 0 \), is \(0.5468 \pm 0.00044 \), consistent with reported estimates of RSA intensity at the jamming limit \((0.547 \pm 0.002 \text{ by Feder (1980, p. 240)}, 0.5471 \pm 0.0051 \text{ by Hinrichsen, Feder, and Jossang (1986, p. 801)}, 0.5467 \pm 0.0003 \text{ by Meakin and Jullien (1992, p. 2030)}, 0.5473 \pm 0.0009 \text{ by Tanemura (1979, p. 362)}, 0.5444 \pm 0.0024 \text{ by Tory, Jodrey, and Pickard (1983, p. 444)}) \).
Figure 7: Illustration of dependence of Matérn III packing density τ_{III} on standardized intensity of primary process (solid curve). Dashed curves are contributions of points in $X^{(i)}$ for $i = 1, 2, \ldots, 7$ (top to bottom). Short vertical lines at nodes are 99% intervals.
Figure 8: Extrapolation estimate of τ_{III} following Feder (1980).
Acknowledgments

The authors are grateful to the Department of Mathematical Sciences of Aalborg University for support during the writing of this paper. This work was partially supported by the Danish Natural Science Research Council, grant 272-06-0442, “Point process modelling and statistical inference”, and by U. S. National Science Foundation grants DMS-0112069, DMS-0548153, and DMS-0757549. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the NSF.

References

