Hybrid Strategies for Link Adaptation Exploiting Several Degrees of Freedom in WiMAX Systems

Wang, Yuanye

Published in:
Wimax Evolution

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
WiMAX Evolution
WiMAX Evolution

Emerging Technologies and Applications

Marcos D. Katz
VTT, Finland

Frank H.P. Fitzek
Aalborg University, Denmark
Contents

List of Contributors xv
Foreword xxi
Preface xxiii
Acknowledgements xxvii
List of Acronyms xxix

I Introduction

1 **Introduction to WiMAX Technology** 3
Wonil Roh and Vladimir Yanover

1.1 Overview of State-of-the-art WiMAX Technology 4
1.1.1 Structure of the System Profile 4
1.1.2 Key PHY Features 5
1.1.3 Key MAC Features 7
1.1.4 Advanced Networking Features 9
1.2 WiMAX Evolution Path 9
1.2.1 Release 1.5 10
1.2.2 Release 2.0 12
References 12

II WiMAX Validation: Validating Current Fixed and Mobile WiMAX through Advanced Testbeds

2 **WiMAX Performance in Practice** 17
Kostas Pentikousis, Esa Piri, Jarno Pinola and Ilkka Harjula

2.1 Empirical Evaluations of WiMAX 18
2.2 Fixed WiMAX Testbed Evaluation 20
2.2.1 Audio and Video Traffic over WiMAX 21
2.2.2 Traffic Generation 22
CONTENTS

2.2.3 Host Clock Synchronization ... 22
2.2.4 Baseline Capacity Measurements 25

2.3 VoIP Over Fixed WiMAX .. 26
 2.3.1 VoIP Overhead .. 26
 2.3.2 Synthetic G.723.1 VoIP Over WiMAX 27
 2.3.3 Synthetic G.729.1 VoIP Over WiMAX 27
 2.3.4 Synthetic Speex VoIP over WiMAX 28
 2.3.5 VoIP Aggregation .. 29

2.4 IPTV Over fixed WiMAX ... 34

2.5 Mobile WiMAX Testbed Evaluation 36
 2.5.1 The VTT CNL Mobile WiMAX Testbed 37
 2.5.2 Baseline Capacity Measurements 38

2.6 Summary ... 39

2.7 Further Reading ... 40

References ... 41

III Novel Scenarios

3 Novel WiMAX Scenarios for Future Broadband Wireless Access Networks 47

Pedro Neves, Kostas Pentikousis, Susana Sargento, Marília Curado, Paulo Simões and Francisco Fontes

3.1 Introduction ... 47

3.2 WMAN Network Provider ... 48
 3.2.1 Broadband Wireless Access 48
 3.2.2 Advanced Mobile WiMAX ... 54

3.3 Telemedicine Applications .. 57
 3.3.1 Remote Patient Monitoring 58
 3.3.2 On-site Medical Assistance 59

3.4 Environmental Monitoring .. 60
 3.4.1 Seismic Activity .. 60
 3.4.2 Fire Prevention .. 61
 3.4.3 Other Applications .. 65

3.5 Conclusions ... 66

References ... 66

4 Pricing in WiMAX Networks

Ioannis Papapanagiotou, Jie Hui and Michael Devetsikiotis

4.1 Introduction ... 69

4.2 Economics in Network Engineering 70
 4.2.1 Building a Business Model 70
 4.2.2 Control and Pricing .. 71

4.3 Building the Pricing Schemes .. 73
 4.3.1 Utility, Demand Functions and Optimization Objectives 73
 4.3.2 Flat-rate Pricing .. 74
 4.3.3 User-based Pricing .. 75
CONTENTS

4.4 Pricing in Different WiMAX Topologies 76
 4.4.1 Point-to-point Unlimited Capacity 76
 4.4.2 Mesh Mode Operation ... 77
 4.4.3 Point-to-point Limited Capacity 78
 4.4.4 WiMAX/WiFi Architecture .. 81
4.5 Conclusion ... 83
References ... 83

IV Advanced WiMAX Architectures .. 85

5 WiMAX Femtocells .. 87
 Chris Smart, Clare Somerville and Doug Pulley

 5.1 Introduction ... 87
 5.1.1 A Brief History of Cell Sizes 87
 5.1.2 Definition of a Femtocell 87
 5.2 Architecture of a WiMAX Femtocell 88
 5.2.1 WiMAX Network Architectures for a Femtocell 88
 5.2.2 Femtocell Deployment Configurations 89
 5.3 Femtocell Fundamentals .. 90
 5.3.1 Synchronization .. 91
 5.3.2 Self-configuration ... 92
 5.3.3 Remote Configuration ... 94
 5.3.4 User Configuration ... 95
 5.3.5 Backhaul Security ... 95
 5.3.6 Handovers .. 95
 5.4 Femtocell–Macrocell Interference 97
 5.4.1 Interference Scenarios 97
 5.4.2 Downlink Coverage Definitions 98
 5.4.3 Downlink Coverage Analysis 99
 5.4.4 Setting the Maximum Femtocell Transmit Power 101
References ... 103

6 Cooperative Principles in WiMAX ... 105
 Qi Zhang, Frank H.P. Fitzek and Marcos D. Katz

 6.1 Introduction ... 105
 6.2 Cooperative Diversity Schemes in Mobile Multihop Relay Based WiMAX (802.16j) ... 112
 6.3 Cooperative Schemes for Multicast Broadcast Services in WiMAX .. 115
 6.3.1 Cooperative Transmission for Multimedia Multicast Services .. 116
 6.3.2 Cooperative Retransmission Scheme for Reliable Multicast Services Using Network Coding 118
 6.4 Network Coding Implementation in the Commercial WiMAX Mobile Device 123
 6.5 Conclusion .. 125
References ... 126
CONTENTS

7 The Role of WiMAX Technology in Distributed Wide Area Monitoring Applications
Francesco Chiti, Romano Fantacci, Leonardo Maccari, Dania Marabissi and Daniele Tarchi

- 7.1 Monitoring with the WSN Paradigm ... 129
- 7.2 Overall System Architecture .. 131
- 7.3 Efficient Access Management Schemes ... 133
 - 7.3.1 System Model and Problem Formulation 135
- 7.4 Secure Communications Approaches .. 136

References ... 142

8 WiMAX Mesh Architectures and Network Coding
Parag S. Mogre, Matthias Hollick, Christian Schwingenschloegl, Andreas Ziller and Ralf Steinmetz

- 8.1 Introduction ... 145
- 8.2 Background on the IEEE 802.16 MeSH Mode 147
- 8.3 Design Principles for Network Coding in the IEEE 802.16 MeSH Mode .. 149
- 8.4 Enabling WNC for the IEEE 802.16 MeSH Mode 153
 - 8.4.1 Modeling the Coding Gain .. 154
 - 8.4.2 Network Coding Framework ... 155
 - 8.4.3 Reservation Strategies ... 156
 - 8.4.4 Implementation Issues ... 158
- 8.5 Related Work ... 160
- 8.6 Conclusions and Outlook ... 161

References ... 162

9 ASN-GW High Availability through Cooperative Networking in Mobile WiMAX Deployments
Alexander Bachmutsky

- 9.1 Introduction ... 163
- 9.2 Classic HA Implementation ... 165
- 9.3 Network-based Resiliency Solutions for Routing 167
- 9.4 WiMAX Network Elements R4/R6 Health Management 168
- 9.5 R6 Load Balancing ... 172
- 9.6 ASN-GW Failure and Recovery ... 172
- 9.7 N:N Redundancy .. 177
- 9.8 Multi-instance ASN-GW .. 180
- 9.9 The Proposal Summary ... 181
- 9.10 Conclusions ... 182

V WiMAX Extensions

10 Robust Header Compression for WiMAX Femto Cells
Frank H.P. Fitzek, Gerrit Schulte, Esa Piri, Jarno Pinola, Marcos D. Katz, Jyrki Huusko, Kostas Pentikousis and Patrick Seeling
CONTENTS ix

10.1 Introduction185
10.2 ROHC in a Nutshell186
10.3 Scenario Under Investigation188
10.4 WiMAX and ROHC Measurement Setup190
10.5 WiMAX and ROHC Measurements Results 192
 10.5.1 ROHC on WiMAX Downlink 192
 10.5.2 ROHC on WiMAX Uplink 194
 10.5.3 ROHC Capacity Gain 195
10.6 Conclusion196
References197

11 A WiMAX Cross-layer Framework for Next Generation Networks 199
Pedro Neves, Susana Sargento, Ricardo Matos, Giada Landi, Kostas Pentikousis, Marília Curado and Francisco Fontes

11.1 Introduction199
11.2 IEEE 802.16 Reference Model200
11.3 Cross-layer Design for WiMAX Networks 203
 11.3.1 Cross-layer Mechanisms for QoS Support 203
 11.3.2 Cross-layer Mechanisms for Seamless Mobility Optimization . 206
11.4 WEIRD: A Practical Case of WiMAX Cross-layer Design 210
 11.4.1 WEIRD Architecture 212
11.5 WEIRD Framework Performance Evaluation 215
 11.5.1 Cross-layer Signaling Measurements 215
 11.5.2 QoS Evaluation 219
11.6 Summary222
References224

12 Speech Quality Aware Resource Control for Fixed and Mobile WiMAX 227
Thomas Michael Bohnert, Dirk Staehle and Edmundo Monteiro

12.1 Introduction227
12.2 Quality of Experience versus Quality of Service Assessment 228
12.3 Methods for Speech Quality Assessment 230
 12.3.1 Auditory Quality Assessment 230
 12.3.2 Instrumental Quality Assessment 230
12.4 Continuous Speech Quality Assessment for VoIP 231
 12.4.1 VoIP Components and their Impact on Speech Quality 231
 12.4.2 Continuous Assessment of Time-varying QoE 233
 12.4.3 Instationary Quality Distortion and Human Perception 235
12.5 Speech Quality Aware Admission Control for Fixed IEEE 802.16 Wireless MAN 237
 12.5.1 IEEE 802.16d Background and the Deployment Scenario 237
 12.5.2 The Principle of Admission Control and its Application to VoIP . 238
 12.5.3 Experimental Setup and Parameterization 239
 12.5.4 Performance Results 240
12.6 The Idea of an R-score-based Scheduler 243
 12.6.1 Scenario243
12.6.2 The Most Simple R-Score Scheduler 244
12.6.3 Performance Evaluation ... 245
12.7 Conclusion .. 248
References ... 249

13 VoIP over WiMAX 251
Rath Vannithamby and Roshni Srinivasan

13.1 Introduction .. 251
13.2 Features to Support VoIP over WiMAX 252
 13.2.1 Silence Suppression using ertPS 252
 13.2.2 HARQ ... 253
 13.2.3 Channel Aware Scheduling 254
 13.2.4 Protocol Header Compression 255
13.3 Enhanced Features for Improved VoIP Capacity 255
 13.3.1 VoIP Traffic Characteristics 255
 13.3.2 Dynamic Resource Allocation for VoIP 255
 13.3.3 Individual Persistent Scheduling 257
 13.3.4 Group Scheduling ... 260
13.4 Simulation Results .. 260
13.5 Conclusion .. 262
References ... 263

14 WiMAX User Data Load Balancing 265
Alexander Bachmutsky

14.1 Introduction .. 265
14.2 Local Breakout Use for Load Balancing 265
 14.2.1 Local Breakout at the Base Station Level 266
 14.2.2 Local Breakout at the ASN-GW Level 267
14.3 Network-level Load Balancing over Tunneled Interfaces 267
 14.3.1 Is WiMAX Special for the Case of Traffic Load Balancing? 269
 14.3.2 Analysis of Possible Solutions 269
14.4 Conclusions .. 276

15 Enabling Per-flow and System-wide QoS and QoE in Mobile WiMAX 277
Thomas Casey, Xiongwen Zhao, Nenad Veselinovic, Jari Nurmi and Riku Jäntti

15.1 Introduction .. 277
15.2 Overview .. 279
 15.2.1 Incoming Traffic ... 279
 15.2.2 System and Resources .. 280
 15.2.3 QoS and QoE .. 281
15.3 Per-flow-based QoS and QoE .. 282
 15.3.1 MAC scheduler considerations 283
 15.3.2 Scheduler Optimization Based on the QoS and QoE Measures 284
15.4 System-wide Tools for Enabling QoS and QoE 287
 15.4.1 Load Balancing ... 287
CONTENTS

15.4.2 HO Prioritization 299
15.5 Conclusions 303
References .. 303

VI WiMAX Evolution and Future Developments 305

16 MIMO Technologies for WiMAX Systems: Present and Future 307
Chan-Byoung Chae, Kaibin Huang and Takao Inoue

16.1 Introduction 307
16.2 IEEE802.16e: Single-user MIMO Technologies 308
 16.2.1 Open-loop Solutions 309
 16.2.2 Closed-loop Solutions 311
 16.2.3 Limitations .. 311
16.3 IEEE802.16m: Evolution Towards Multiuser MIMO Technologies – Part I.
 Nonlinear Processing 312
 16.3.1 System Model 312
 16.3.2 Vector Perturbation 314
 16.3.3 Performance of a Vector Perturbation System 316
16.4 IEEE802.16m: Evolution Towards Multiuser MIMO Technologies – Part II.
 Linear Processing 316
 16.4.1 Linear Multiuser MIMO: Perfect Channel State Information 317
 16.4.2 Linear Multiuser MIMO: Limited Feedback 322
 16.4.3 Linear Multiuser MIMO: Multiuser Diversity 325
16.5 Conclusion .. 331
References .. 331

17 Hybrid Strategies for Link Adaptation Exploiting Several Degrees of
Freedom in WiMAX Systems 335
Suvra Sekhar Das, Muhammad Imadur Rahman and Yuanye Wang

17.1 Introduction 335
17.2 Link Adaptation Preliminaries 336
 17.2.1 Trade-offs and Optimization Target 337
17.3 Link Adaptation Algorithms 339
 17.3.1 SAMPDA Algorithm 340
17.4 Link Adaptation Scenario 341
 17.4.1 Link Adaptation Process 341
 17.4.2 System Parameters 342
 17.4.3 Frame Structure 343
17.5 Role of Power Adaptation in Collaboration with Bit Adaptation 344
 17.5.1 AMC and Power Adaptation at the Same Rate 345
 17.5.2 AMC and Power Adaptation at Different Rates 348
 17.5.3 Overhead Analysis 354
17.6 Link Adaptation Considering Several System Issues 356
 17.6.1 Subchannelization 357
 17.6.2 Fixed Coding Rate 357
17.6.3 AMC Rate .. 361
17.7 Summary .. 363
17.7.1 Guidelines for Hybrid Link Adaptation 363
17.7.2 Conclusion from Bit and Power Allocation Analysis 364
17.7.3 Future Work 365
References .. 365

18 Applying WiMAX in New Scenarios: Limitations of the Physical Layer and Possible Solutions 367
Ilkka Harjula, Paola Cardamone, Matti Weissenfelt, Mika Lasanen,
Sandrine Boumard, Aaron Byman and Marcos D. Katz

18.1 WiMAX in New Scenarios 367
18.2 Channel Model for Mountainous Environments 369
18.2.1 COST 259/273 369
18.2.2 3GPP/3GPP2 Statistical Channel Model 369
18.2.3 SUI Models and IEEE 802.16a Channel Models ... 370
18.2.4 WINNER Phase I and II Channel Models 370
18.3 Mountainous Scenario and Channel Modeling 371
18.3.1 Analytical Modeling of the Channel in the Presence of Mountains 371
18.3.2 Extension of the WINNER Phase I Channel Model for the Mountainous Scenario 371
18.4 Beamforming Algorithms and Simulation 372
18.4.1 Pre-FFT Receive EVD Beamforming 373
18.4.2 Post-FFT Receive EVD Beamforming 374
18.4.3 Simulation Results 374
18.5 A Timing Synchronization Study in a Mountain Environment 377
18.6 Analysis and Conclusions 382
References .. 383

19 Application of Radio-over-Fiber in WiMAX: Results and Prospects 385
Juan Luis Corral, Roberto Llorente, Valentín Polo, Borja Vidal, Javier Martí,
Jonás Porcar, David Zorrilla and Antonio José Ramírez

19.1 Introduction .. 385
19.1.1 Radio-over-Fiber systems 385
19.1.2 Analog Transmission on Fiber State-of-the-Art 387
19.1.3 Market Overview and Technology Forecast 387
19.2 Optical Transmission of WiMAX Signals 388
19.2.1 Optical Link Key Elements 388
19.2.2 Transmission Performance 390
19.3 WiMAX-on-Fiber Applications 394
19.3.1 Target Applications 394
19.3.2 Transmission Impairments 395
19.3.3 Field Trials 396
19.4 Conclusions .. 398
References .. 398
CONTENTS

20 Network Planning and its Part in Future WiMAX Systems 401
Avraham Freedman and Moshe Levin
20.1 Introduction 401
20.2 The Network Planning Process 403
 20.2.1 Data Collection 403
 20.2.2 Network Planning 404
 20.2.3 Planning Verification and Update 410
20.3 The Impact of WiMAX on Network Planning 411
 20.3.1 Flexibility of WiMAX Deployment 411
 20.3.2 WiMAX Network Planning 412
20.4 Planning of Future WiMAX Networks 414
 20.4.1 Advanced Spatial Techniques 414
 20.4.2 Relays, Femtocells and Mesh Networks 415
 20.4.3 Cognitive Radios, Self-configuring and Cooperative Networks 416
20.5 Modeling: the Key to Integration of Planning Information 417
 20.5.1 The Problem 418
 20.5.2 Suggested Solutions 419
20.6 Conclusions 420
References 422

21 WiMAX Network Automation: Neighbor Discovery, Capabilities Negotiation, Auto-configuration and Network Topology Learning 425
Alexander Bachmutsky
21.1 Introduction 425
21.2 WiMAX Network Elements Auto-discovery 426
21.3 Automatic Learning of the WiMAX Network Topology 430
21.4 Capabilities Exchange 433
21.5 Automatic WiMAX Version Management 434
21.6 Automated Roaming 437
21.7 Conclusion: Network Automation as a WiMAX Differentiator 438
References 439

22 An Overview of Next Generation Mobile WiMAX: Technology and Prospects 441
Sassan Ahmadi
22.1 Introduction 441
22.2 Summary of IEEE 802.16m System Requirements 442
22.3 Areas of Improvement and Extension in Mobile WiMAX 445
22.4 IEEE 802.16m Architecture and Protocol Structure 447
22.5 IEEE 802.16m Mobile Station State Diagram 452
22.6 IEEE 802.16m Physical Layer 456
22.7 IEEE 802.16m MAC Layer 460
22.8 Conclusions 462
References 462

Index 463
List of Contributors

Sassan Ahmadi
Intel Corporation
Mail Stop: JF3-336
2111 NE 25th Avenue
Hillsboro
OR 97124
USA
sassan.ahmadi@intel.com

Alexander Bachmutsky
Nokia Siemens Networks
313 Fairchild Drive
Mountain View
CA 94043
USA
alexander.bachmutsky@nsn.com

Thomas Michael Bohnert
SAP Research CEC Zurich
Kreuzstrasse 20
8008 Zurich
Switzerland
thomas.michael.bohnert@sap.com
and tmb@nginet.de

Sandrine Boumard
VTT Technical Research Centre of Finland
Kaitoväylä 1
FI-90571 Oulu
Finland
sandrine.boumard@vtt.fi

Aaron Byman
EB Corp.
Tutkijantie 7
90570 Oulu
Finland
Aaron.Byman@elektrobit.com

Paola Cardamone
THALES Security Solutions and Services S.p.A.
via Provinciale Lucchese, 33
50019 Sesto Fiorentino
Firenze
Italy
paola.cardamone@gmail.com

Thomas Casey
Elektrobit
Keilasatama 5
02150 Espoo
Finland
thomas.casey@elektrobit.com

Chan-Byoung Chae
Wireless Networking and Communications Group
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX
USA
cbchae@ece.utexas.edu

Francesco Chiti
Department of Electronics and Telecommunications
University of Florence
via di S. Marta 3
I-50139 Florence
Italy
francesco.chiti@unifi.it

Juan Luis Corral
Nanophotonics Technology Center
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia
Spain
jlcoral@ntc.upv.es
List of Contributors

Marília Curado
DEI-CISUC
University of Coimbra
Polo II, Pinhal de Marrocos
3030-290 Coimbra
Portugal
marilia@dei.uc.pt

Suvra Sekhar Das Ph.D
Tata Consultancy Services
Innovation Lab, Convergence Practice,
Tata Consultancy Services
Kolkata
India
svvra.das@tcs.com

Michael Devetsikiotis
Electrical and Computer Engineering
North Carolina State University
Raleigh
NC 27695-7911
USA
mdevets@ncsu.edu

Romano Fantacci
Department of Electronics and
Telecommunications
University of Florence
via di S. Marta 3
I-50139 Florence
Italy
romano.fantacci@unifi.it

Frank H.P. Fitzek
Electronic Systems – Mobile Device Group
Aalborg University
Denmark
ff@es.aau.dk

Francisco Fontes
Portugal Telecom Inovação
R. Eng. José Ferreira Pinto Basto
3810-106 Aveiro
Portugal
fontes@ptinovacao.pt

Avraham Freedman
Hexagon System Engineering Ltd
P.O. Box 10149
14 Imber Street
Suite 51
Petach Tikva 49001
Israel
avif@hexagonltd.com

Ilkka Harjula
VTT Technical Research Centre of Finland
Kaitoväylä 1
FI-90571 Oulu
Finland
ilkka.harjula@vtt.fi

Matthias Hollick
Multimedia Communications Lab (KOM)
TU Darmstadt
Merckstr. 25
64283 Darmstadt
Germany
matthias.hollick@kom.tu-darmstadt.de

Kaibin Huang
Department of Electrical and Electronic
Engineering
Hong Kong University of Science and
Technology
Hong Kong
huangkb@ieee.org

Jie Hui
Intel Communication Technology Lab
Portland, Oregon
USA
Jie.Hui@intel.com

Jyrki Huusko
VTT Technical Research Centre of Finland
Kaitoväylä 1
FI-90571 Oulu
Finland
Jyrki.Huusko@vtt.fi

Takao Inoue
Wireless Networking and Communications
Group
Department of Electrical and Computer
Engineering
The University of Texas at Austin
Austin, TX
USA
inoue@ece.utexas.edu

Riku Jäntti
Department of Communications and Networking
Helsinki University of Technology
PL 3000
02015 TKK Espoo
Finland
riku.jantti@tkk.fi
LIST OF CONTRIBUTORS

Marcos D. Katz
VTT Technical Research Centre of Finland
Kaitoväylä 1
FI-90571 Oulu
Finland
Marcos.Katz@vtt.fi

Giada Landi
Nextworks
Via Turati, 43
56125 Pisa
Italy
g.landi@nextworks.it

Mika Lasanen
VTT Technical Research Centre of Finland
Kaitoväylä 1
FI-90571 Oulu
Finland
mika.lasanen@vtt.fi

Moshe Levin
Hexagon System Engineering Ltd
P.O. Box 10149
14 Imber Street, Suite 51
Petach Tikva 49001
Israel
moshe@hexagonltd.com

Roberto Llorente
Nanophotonics Technology Center
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia
Spain
jlcorral@ntc.upv.es

Leonardo Maccari
Department of Electronics and Telecommunications
University of Florence
via di S. Marta 3
I-50139 Florence
Italy
leonardo.maccari@unifi.it

Dania Marabissi
Department of Electronics and Telecommunications
University of Florence
via di S. Marta 3
I-50139 Florence
Italy
dania.marabissi@unifi.it

Javier Martí
Nanophotonics Technology Center
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia
Spain
jmarti@ntc.upv.es

Ricardo Matos
IT/UA Telecommunications Institute/University of Aveiro
Campus Universitário de Santiago
3810-193 Aveiro
Portugal
ricardo.matos@ua.pt

Parag S. Mogre
Multimedia Communications Lab (KOM)
TU Darmstadt
Merckstr. 25
64283 Darmstadt
Germany
parag.mogre@kom.tu-darmstadt.de

Edmundo Monteiro
University of Coimbra
Pinhal de Marrocos, Polo II
3030 Coimbra
Portugal
edmundo@dei.uc.pt

Pedro Neves
Portugal Telecom Inovação
R. Eng. José Ferreira Pinto Basto
3810-106 Aveiro
Portugal
pedro-m-neves@ptinovacao.pt

Jari Nurmi
Elektrobit
Kehräämöntie 5
87400 Kajaani
Finland
jari.nurmi@elektrobit.com

Ioannis Papapanagiotou
Electrical and Computer Engineering
North Carolina State University
Raleigh
NC 27695-7911
USA
ipapapa@ncsu.edu
LIST OF CONTRIBUTORS

Kostas Pentikousis
VTT Technical Research Centre of Finland
Kaitoväylä 1
FI-90571 Oulu
Finland
kostas.pentikousis@vtt.fi

Jarno Pinola
VTT Technical Research Centre of Finland
Kaitoväylä 1
FI-90571 Oulu
Finland
jarno.pinola@vtt.fi

Esa Piri
VTT Technical Research Centre of Finland
Kaitoväylä 1
FI-90571 Oulu
Finland
esia.piri@vtt.fi

Valentín Polo
AIMPLAS
València Parc Tecnològic
C/ Gustave Eiffel, 4
46980 Paterna
Spain
vpolo@aimplas.es

Jonás Porcar
DAS Photonics S.L.
Camino de Vera s/n
Building 8F
46022 Valencia
Spain
jporcar@das photonics.com

Doug Pulley
picoChip
Riverside Buildings
108 Walcot Street
Bath BA1 5BG
UK
doug.pulley@picochip.com

Muhammad Imadur Rahman Ph.D
Center for TeleInFrastrutur (CTIF)
Department of Electronic Systems
Aalborg University
Denmark
imr@ieee.org

Antonio José Ramírez
DAS Photonics S.L.
Camino de Vera s/n
Building 8F
46022 Valencia
Spain
aramirez@das photonics.com

Wonil Roh
Samsung Electronic Corp., Ltd
416 Maetan-3dong
Yeongtong-gu
Suwon-city
Gyeonggi-do, 443-742
Korea
wonil.roh@samsung.com

Susana Sargento
IT/UA Telecommunications Institute/University of Aveiro
Campus Universitário de Santiago
3810-193 Aveiro
Portugal
susana@ua.pt

Gerrit Schulte
anticom
Am Borsigturm 42
13507 Berlin
Germany

Christian Schwingenschloegl
Siemens AG
Corporate Technology, Information and Communication
Otto-Hahn-Ring 6
81730 Munich
Germany
chris.schwingenschloegl@siemens.com

Patrick Seeling
Department of Computing and New Media Technologies
University of Wisconsin - Stevens Point
Science Building, Room B243
Stevens Point
WI 54481
USA
pseeling@uwsp.edu
LIST OF CONTRIBUTORS

Paulo Simões
DEI-CISUC
University of Coimbra
Polo II, Pinhal de Marrocos
3030-290, Coimbra
Portugal
psimoes@dei.uc.pt

Chris Smart
picoChip
Riverside Buildings
108 Walcot Street
Bath BA1 5BG
UK
chris.smart@picochip.com

Clare Somerville
picoChip
Riverside Buildings
108 Walcot Street
Bath BA1 5BG
UK
clare.somerville@picochip.com

Roshni Srinivasan
Intel Corporation
2200 Mission College Boulevard RNB 5-123
Santa Clara
CA 95052
USA
roshni.srinivasan@intel.com

Dirk Staehle
University of Wuerzburg
Institute of Computer Science
Chair of Distributed Systems
Am Hubland
D-97074 Wuerzburg
Germany
dstaehle@informatik.uni-wuerzburg.de

Ralf Steinmetz
Multimedia Communications Lab (KOM)
TU Darmstadt
Merckstr. 25
64283 Darmstadt
Germany
ralf.steinmetz@kom.tu-darmstadt.de

Daniele Tarchi
Department of Electronics and
Telecommunications
University of Florence
via di S. Marta 3
I-50139 Florence
Italy
daniele.tarchi@unifi.it

Rath Vannithamby
Intel Corporation
2111 NE 25th Avenue
Mail Stop JF3-206
Hillsboro
OR 97124
USA
rath.vannithamby@intel.com

Borja Vidal
Nanophotonics Technology Center
Universidad Politécnica de Valencia
Camino de Vera s/n
46022 Valencia
Spain
borvirod@ntc.upv.es

Nenad Veselinovic
Elektrobit
Keilasatama 5
02150 Espoo
Finland
nenad.veselinovic@elektrobit.com

Yuanye Wang M.Sc
Aalborg University
Radio Access Technology Section
Department of Electronic Systems
Aalborg University
Denmark
ywa@es.aau.dk

Matti Weissenfelt
VTT Technical Research Centre of Finland
Kaitoväylä 1
FI-90571 Oulu
Finland
matti.weissenfelt@vtt.fi

Vladimir Yanover
Alvarion Ltd
11/4 Nahshon Str.
Kfar Saba 44447
Israel
vladimir.yanover@alvarion.com
Qi Zhang
Department of Communications, Optics and Materials
Technical University of Denmark
Denmark
qz@com.dtu.dk

Xiongwen Zhao
Elektrobit
Keilasatama 5
02150 Espoo
Finland
xiongwen.zhao@elektrobit.com

Andreas Ziller
Siemens AG
Corporate Technology, Information and Communication
Otto-Hahn-Ring 6
81730 Munich
Germany
andreas.ziller@siemens.com

David Zorrilla
DAS Photonics S.L.
Camino de Vera s/n
Building 8F
46022 Valencia
Spain
dzorrilla@das photonics.com
Foreword

Mobile WiMAX: the Enabler for the Mobile Internet Revolution

The Internet has become one of the most important assets for the growth of economies across the globe. More than a billion people use the Internet at their workplace and in their daily lives for business interactions, social interactions and entertainment. The Internet has had a profound effect on the economy of developed and developing nations having made economic activity more efficient, accessible and affordable. Most of the productivity gains in today’s economies are thanks to the Internet and ecommerce. There have been profound social impacts from increased access to valuable information and social interaction between the masses. The impact is at many socioeconomic levels: business productivity, energy savings, healthcare delivery, improved government functions, education, improved citizen interactions (locally and globally), etc. Despite the benefits of the Internet, today only about 20% of the world’s population have access to the Internet. In particular, the emerging countries that could benefit greatly are seriously deprived of this valuable asset. There are a number of reasons for the small number of users in the emerging countries: lack of infrastructure, affordability of personal computers, unaffordable access fees, etc.

The next big step in the evolution of the Internet is ubiquitous availability enabled through mobile Internet. This revolutionary step is poised to increase the value of the Internet enormously as it will create a fundamental shift in the use of the Internet by bringing the Internet to the users as opposed to users having to go to the Internet. For this vision to become a reality, a number of requirements need to be met. First and foremost, affordable and ubiquitous mobile Internet access needs to be provided using the mobile cellular concept. This is poised to be fulfilled thanks to mobile WiMAX. Secondly, affordable and low-power mobile Internet devices and mobile PCs are needed. This is also happening with the computer industry making huge strides in making these devices more affordable. The low-cost netbook category with examples such as the ASUS Eee PC and variety of small mobile PCs or Mobile Internet Devices (MIDs) are now available and will undoubtedly become even more affordable in the near future.

Mobile WiMAX has been designed with the purpose of enabling mobile Internet from the physical layer to the network layer. The physical layer design relies on Orthogonal Frequency Division Multiple Access (OFDMA) and Multiple Input Multiple Output (MIMO) as the two key technologies to optimize coverage and spectral efficiency. In addition, sophisticated techniques for link adaptation and error control provide improved performance and robustness. Mobile WiMAX technology includes many other important aspects such as security.
and power-saving methods, provisions for location-based services, support for hierarchical deployments, quality-of-service, and open Internet user and network management schemes, which are essential in enabling deployment and consumer adoption of the technology.

The Internet is dynamic by nature and is evolving rapidly on the application level and creating ever-increasing demands on connectivity. Studies indicate that Internet traffic has been doubling roughly every two years. Mobile Internet will undoubtedly change the Internet as we know it today and may create even more traffic than ever anticipated. Mobile WiMAX needs to evolve constantly to keep up with the growth of mobile Internet. The WiMAX industry has already been working on the next technology in IEEE 802.16m to build the basis for the next generation of mobile Internet.

This book provides the material that is essential to understand the underlying concepts for mobile WiMAX and it also provides an overview of technologies that will enable the evolution of the technology in the future. I sincerely hope that the book will further motivate researchers and developers to create innovative ideas and techniques that will help fulfill the promise of the new era of mobile Internet.

Siavash M. Alamouti, Intel Fellow
Chief Technology Officer, Mobile Wireless Group
The remarkable development of wireless and mobile communications in the last two decades is a unique phenomenon in the history of technology. Even the most optimistic predictions on penetration of mobile subscribers and capabilities of wireless devices have been surpassed by reality. In a quarter of century the number of mobile subscribers soared from a few to half the world population (in 2008), and according to some forecasts by 2010 the number of mobile users will exceed the number of toothbrush users (four billion). The Wireless World Research Forum (WWRF) envisions that by year 2017 there will be seven trillion wireless devices serving seven billion people. Two main development directions in untethered communications can be identified, wide-area communications, with the omnipresent cellular systems as the most representative example, and short-range communications, involving an array of networking technologies for providing wireless connectivity over short distances, for instance Wireless Local Area Networks (WLANs), Wireless Personal Area Networks (WPANs), Wireless Body Area Networks (WBANs), Wireless Sensor Networks (WSNs), Bluetooth, etc. Recent years have witnessed an enormous growth in interest in the metropolitan wireless networks. This should not be a surprise, as in 2008, for the first time in history more than half of the world population lives in urban areas, according to the United Nations Population Fund. WiMAX (Worldwide Interoperability for Microwave Access) is the most representative worldwide initiative focusing on metropolitan communications. WiMAX, based on the IEEE 802.16 standard, defines wireless networks combining key characteristics of wide-area cellular networks as well as short-range networks, namely mobility and high data throughput. IEEE 802.16 is a very active and rapidly evolving standard that serves as the fundamental basis for WiMAX systems. Several amendments are currently being developed addressing particular technical aspects or capabilities, including 802.16g, 802.16h, 802.16i, 802.16j, 802.16k and 802.16m. There are already several books dealing with WiMAX technology, describing mostly the basic operating principles, current standards and associated technical solutions. The current vertiginous developments in the WiMAX arena have lead the Editors to conceive of this book, taking over where most of the published WiMAX volumes left off, that is, looking in future directions. Leading research scientists and engineers from key WiMAX industry, academia and research centers worldwide have contributed to this book with their ideas, concepts, concrete technical suggestions and visions.

As WiMAX as a whole encompasses a very broad area, it is impossible to find a single author able to write in detail about a large array of advanced concepts and solutions applicable at different system levels of WiMAX: the Editors have thus invited specialists in the field to contribute with their ideas in different chapters. The goal of this book is
to create concrete supportive links between the presented concepts and future metropolitan communication systems, discussing technical solutions as well as novel identified scenarios, business applications and visions that are likely to become integral parts of the future WiMAX. Thus, this book tries to answer questions including the following. Which are the emerging WiMAX technologies that are being developed? What are the new scenarios for deploying WiMAX? What are the most promising WiMAX applications and business? How are standards evolving? What are the visions of industry? What are the capabilities and measured performance of real (commercial) WiMAX systems?

As shown in Figure 1, this book has been organized into six independent parts, covering different aspects of WiMAX technology and its evolution. Part One overview of the current state of WiMAX technology, serving as an introduction to WiMAX. Part Two presents measurements and validation results carried out on real state-of-the-art WiMAX testbeds (fixed and mobile), providing unique results on the achievable capabilities of commercial equipment operating in real scenarios. Novel scenarios and business cases for WiMAX are considered in Part Three. In Part Four new promising architectures for WiMAX are discussed, including wireless sensor networks, mesh and cooperative networking as well as femtocells. Part Five discusses several extensions to the current WiMAX, that is, new solutions that can be used in conjunction with the current WiMAX standard. Finally, Part Six looks into technical developments beyond the immediate WiMAX future, including PHY and MAC evolution, prospects and visions, emerging technologies, evolution of standards, etc.

WiMAX Evolution: Emerging Technologies and Applications is a book intended for research, development and standardization engineers working in industry, as well as for scientists in academic and research institutes. Graduate students conducting research in
WiMAX and next generation mobile communications will also find in this book relevant material for further research. The Editors think that this book provides novel views and detailed technical solutions, foreseeing future WiMAX while being a stimulating source of inspiration for further advanced research in the field.

The Editors welcome any suggestions, comments or constructive criticism on this book. Such feedback will be used to improve forthcoming editions. The Editors can be contacted at wimixeditor@es.aau.dk.

Marcos D. Katz
VTT (Technical Research Centre of Finland), Finland

Frank H.P. Fitzek
Aalborg University, Denmark

September 2008
Acknowledgements

At times, our own light goes out, and is rekindled by a spark from another person. Each of us has cause to think with deep gratitude of those who have lighted the flame within us.

Albert Schweitzer

The Editors are deeply indebted to each and every contributor to this book. Without the valuable contributions and enthusiastic participation of specialists around the globe this book would have never been possible. We wish to place on record our deep appreciation to all of the authors of the chapters, who are, in alphabetical order:

We would like to express our gratitude to several people and organizations that supported this book. First, we are grateful to Mr Siavash Alamouti, Intel Fellow and CTO of the Mobile Wireless Group, for his motivating and enlightening foreword.

VTT, the Technical Research Centre of Finland, provided financial and logistical support for the preparation of this book. We are grateful to Technology Director Dr Jussi Paakkari, Technology Manager Kyösti Rautiola and Research Professor Dr Aarne Mämmelä for their unconditional support during this initiative. We also thank our research colleagues at VTT (Communications Platform Group, and in particular the Cooperative and Cognitive Networks Team) for their technical contributions, motivating discussions and for creating a truly pleasant working atmosphere. Our colleagues from the Converging Networks Laboratory (CNL) also deserve our deep appreciation, particularly Dr Marko Jurvansuu, Jyrki Huusko, Marko Palola, Dr Kostas Pentikousis and Dr Martin Varela Rico.
The European Project WEIRD (WiMAX Extension to Isolated Research Data Networks), coordinated and technically supervised by Enrico Angori (Datamat, Italy) and Marcos Katz, respectively, was the source of several chapters of this book. We are grateful to the WEIRD consortium and its people across Europe for the received support. For their support and enlightening discussions, we are also grateful to Gerrit Schulte (acticom, Germany), Kari Horneman (Nokia Siemens Networks, Finland), Dr Wonil Roh (Samsung Electronic Corp., Ltd, Korea), Dr Jaakko Talvitie (Elektrobit, Finland) and Professor Garik Markarian (Lancaster University, UK).

Parts of the book were financed by the X3MP project granted by the Danish Ministry of Science, Technology and Innovation. Furthermore we would like to thank our colleagues from Aalborg University, Denmark for their support, namely Børge Lindberg, Ben Kroyer, Peter Boie Jensen, Bo Nygaard Bai, Henrik Benner, Finn Hybjerg Hansen and Svend Erik Volsgaard.

The Editors would like to thank Nokia for providing invaluable technical support as well as mobile devices for testing purposes. Special thanks go to Harri Pennanen, Nina Tammelin and Per Møller from Nokia. We are grateful to Jarmo Tikka (Nokia) who kindly provided the N810 wireless tablets that were used in the measurement setup of Chapter 6. Particular thanks go to Alberto Bestetti and Antonio Cimmino (Alcatel-Lucent, Italy) and Arto Grönholm (Alcatel-Lucent, Finland) for support with the WiMAX equipment used in some of the measurement test-beds.

We thank John Wiley & Sons Ltd, for their encouragement and support during the process of creating this book. Special thanks to Tiina Ruonamaa, Anna Smart and Sarah Tilley for their kindness, patience, flexibility and professionalism. Birgitta Henttunen from VTT, Finland is acknowledged for her support in many administrative issues.

Finally, the Editors would like to thank their respective families for their support and understanding during the entire process of creating this book.
List of Acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>µC</td>
<td>MicroController</td>
</tr>
<tr>
<td>16-QAM</td>
<td>16 Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>2G</td>
<td>2nd Generation</td>
</tr>
<tr>
<td>3G</td>
<td>3rd Generation</td>
</tr>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
<tr>
<td>3GPP2</td>
<td>3rd Generation Partnership Project 2</td>
</tr>
<tr>
<td>4G</td>
<td>Fourth Generation</td>
</tr>
<tr>
<td>A/V</td>
<td>Audio/Visual</td>
</tr>
<tr>
<td>AAA</td>
<td>Authentication, Authorization and Accounting</td>
</tr>
<tr>
<td>AAS</td>
<td>Adaptive Antenna System</td>
</tr>
<tr>
<td>AC</td>
<td>Admission Control; Antenna Circulation</td>
</tr>
<tr>
<td>ACIR</td>
<td>Adjacent Channel Interference Ratio</td>
</tr>
<tr>
<td>ACK</td>
<td>Acknowledgement</td>
</tr>
<tr>
<td>ACR</td>
<td>Absolute Category Rating</td>
</tr>
<tr>
<td>ADSL</td>
<td>Asymmetric Digital Subscriber Line</td>
</tr>
<tr>
<td>AG</td>
<td>Antenna Grouping</td>
</tr>
<tr>
<td>AMC</td>
<td>adaptive modulation and coding</td>
</tr>
<tr>
<td>AMR</td>
<td>Adaptive Multi-Rate</td>
</tr>
<tr>
<td>AMS</td>
<td>Adaptive MIMO Switching</td>
</tr>
<tr>
<td>AP</td>
<td>Access Point</td>
</tr>
<tr>
<td>APD</td>
<td>Adaptive Power Distribution</td>
</tr>
<tr>
<td>APFR</td>
<td>Adaptive Power Fixed Rate</td>
</tr>
<tr>
<td>API</td>
<td>Application Programming Interface</td>
</tr>
<tr>
<td>APMC</td>
<td>Adaptive Power, Modulation and Coding</td>
</tr>
<tr>
<td>AQ</td>
<td>Assessed QoS</td>
</tr>
<tr>
<td>ARP</td>
<td>Address Resolution Protocol</td>
</tr>
<tr>
<td>ARQ</td>
<td>Automatic Repeat Request</td>
</tr>
<tr>
<td>AS</td>
<td>Antenna Selection</td>
</tr>
<tr>
<td>ASN</td>
<td>Access Service Network</td>
</tr>
<tr>
<td>ASN-GW</td>
<td>Access Service Network Gateway</td>
</tr>
<tr>
<td>ATM</td>
<td>Asynchronous Transfer Mode</td>
</tr>
<tr>
<td>AVC</td>
<td>Advanced Video Coding</td>
</tr>
<tr>
<td>AWGN</td>
<td>Additive White Gaussian Noise</td>
</tr>
<tr>
<td>BD</td>
<td>Block Diagonalization</td>
</tr>
<tr>
<td>BE</td>
<td>Best Effort</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BF</td>
<td>Beamforming</td>
</tr>
<tr>
<td>BGP</td>
<td>Border Gateway Protocol (routing)</td>
</tr>
<tr>
<td>BLER</td>
<td>Block Error Rate</td>
</tr>
<tr>
<td>BOM</td>
<td>Bill Off Materials</td>
</tr>
<tr>
<td>bps</td>
<td>Bits Per Second</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>BS</td>
<td>Base Station</td>
</tr>
<tr>
<td>BSID</td>
<td>Base Station Identifier</td>
</tr>
<tr>
<td>BWA</td>
<td>Broadband Wireless Access</td>
</tr>
<tr>
<td>C/I</td>
<td>Carrier to Interference Ratio</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital Expenditures</td>
</tr>
<tr>
<td>CATV</td>
<td>Cable Television</td>
</tr>
<tr>
<td>CBC</td>
<td>Cipher Block Chaining</td>
</tr>
<tr>
<td>CBF</td>
<td>Coordinated Beamforming</td>
</tr>
<tr>
<td>CBR</td>
<td>Constant Bit Rate</td>
</tr>
<tr>
<td>CC</td>
<td>Chase Combining; Convolutional Code; Coordination Center</td>
</tr>
<tr>
<td>CCF</td>
<td>Call Control Function</td>
</tr>
<tr>
<td>CCP2P</td>
<td>Cellular Controlled Peer to Peer</td>
</tr>
<tr>
<td>CDF</td>
<td>Cumulative Distribution Function</td>
</tr>
<tr>
<td>CDL</td>
<td>Clustered Delay Line</td>
</tr>
</tbody>
</table>
CDMA Code Division Multiplex Access
CELP Code Excited Linear Prediction
CH Compressed Header
C/I Carrier-to-Interference Ratio
CID Connection Identifier
CI-STBC Coordinate Interleaved Space–Time Block Code
CMIP Client Mobile IP
CN Correspondent Node
CN Core Network
CNL VTT Converging Networks Laboratory
CNR Channel-to-Noise Ratio
CoA Care-of-Address
CODEC Compression/Decompression
COST European Cooperation in the Field of Scientific and Technical Research
COTS Commercial Off The Shelf
CP Cyclic Prefix
CPE Customer Premises Equipment
CPS Common Part Sublayer
CPU Central Processing Unit
CQI Channel Quality Indicator
CQICH Channel Quality Indicator Channel
CRC Cyclic Redundancy Check
CS Convergence Sublayer
C-SAP Control Service Access Point
CSG Closed Subscriber Group
CSI Channel State Information
CSN Connectivity Services Network
CTS Clear to Send
DAS Distributed Antenna System
DCA Dynamic Channel Allocation
DCD Downlink Channel Descriptor
DCF Discounted Cash Flow
DES Data Encryption Standard
DFB Distributed Feedback
DHCP Dynamic Host Configuration Protocol
DL Downlink
DMTBR Dynamic Multiple-Threshold Bandwidth Reservation
DNS Domain Name System
DNS-SD Dynamic Name System Service Discovery
DPT Dirty Paper Theory
DRR Deficit Round Robin
DRX Discontinuous Reception
DS-CDMA Direct Sequence Code Division Multiple Access
DSL Digital Subscriber Line
DSLAM Digital Subscriber Line Access Multiplexer
DWRR Deficit Weighed Round Robin
EAP Extensible Authentication Protocol
ECMP Equal Cost Multi-Path
EDF Earliest Deadline First
EpBR Energy per Bit Ratio
ertPS Extended Real-Time Polling Service
ERT-VR Extended Real-Time Variable Rate
ESP Encapsulating Security Payload
ETX Expected Transmission Count
EVD Eigenvalue Decomposition
EVRC Enhanced Variable Rate Codec
FA Foreign Agent
FBSS Fast Base Station Switching
FCH Frame Control Header
FDD Frequency-Division Duplex
FDM Frequency Division Multiplexing
FEC Forward Error Correction
FER Frame Error Rate
FFMS Forest Fire Monitoring Station
FFT Fast Fourier Transform
FIFO First In First Out
FP Framework Programme
FPAR Fixed Power Adaptive Rate
FPGA Field-programmable Gate Array
FTP File Transfer Protocol
FUSC Fully Used Subcarriers
GA Generic Adapter
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS</td>
<td>Geographic Information Systems</td>
</tr>
<tr>
<td>GIST</td>
<td>General Internet Signaling Transport</td>
</tr>
<tr>
<td>GMH</td>
<td>Generic MAC Header</td>
</tr>
<tr>
<td>GoS</td>
<td>Grade of Service</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GRE</td>
<td>Generic Routing Encapsulation</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile Communications</td>
</tr>
<tr>
<td>GTP</td>
<td>GPRS Tunneling Protocol</td>
</tr>
<tr>
<td>GUI</td>
<td>Graphical User Interface</td>
</tr>
<tr>
<td>GW</td>
<td>Gateway</td>
</tr>
<tr>
<td>HA</td>
<td>High Availability; Home Agent</td>
</tr>
<tr>
<td>HARQ</td>
<td>Hybrid Automatic Repeat Request</td>
</tr>
<tr>
<td>HD</td>
<td>High Definition</td>
</tr>
<tr>
<td>HFC</td>
<td>Hybrid Fiber Coaxial</td>
</tr>
<tr>
<td>HFDD</td>
<td>Half-duplex Frequency Division Duplex</td>
</tr>
<tr>
<td>HFR</td>
<td>Hybrid Fiber Radio</td>
</tr>
<tr>
<td>HHO</td>
<td>Hard Handover</td>
</tr>
<tr>
<td>HO</td>
<td>Handover</td>
</tr>
<tr>
<td>HSDPA</td>
<td>High Speed Data Packet Access</td>
</tr>
<tr>
<td>HSPA</td>
<td>High Speed Packet Access</td>
</tr>
<tr>
<td>HSRP</td>
<td>Hot Standby Router Protocol</td>
</tr>
<tr>
<td>HTTP</td>
<td>Hyper Text Transfer Protocol</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
</tr>
<tr>
<td>ICMP</td>
<td>Internet Control Message Protocol</td>
</tr>
<tr>
<td>ICT</td>
<td>Information and Communication Technologies</td>
</tr>
<tr>
<td>ID</td>
<td>Identification</td>
</tr>
<tr>
<td>IETF</td>
<td>Internet Engineering Task Force</td>
</tr>
<tr>
<td>IFFT</td>
<td>Inverse Fast Fourier Transform</td>
</tr>
<tr>
<td>IMDD</td>
<td>Intensity Modulation, Direct Detection</td>
</tr>
<tr>
<td>IMS</td>
<td>IP Multimedia Subsystem</td>
</tr>
<tr>
<td>IMT</td>
<td>International Mobile Telecommunications</td>
</tr>
<tr>
<td>IP</td>
<td>Internet Protocol</td>
</tr>
<tr>
<td>Ipsec</td>
<td>Internet Protocol Security</td>
</tr>
<tr>
<td>IPTV</td>
<td>Internet Protocol Television</td>
</tr>
<tr>
<td>IPv4</td>
<td>Internet Protocol version 4</td>
</tr>
<tr>
<td>IPv6</td>
<td>Internet Protocol version 6</td>
</tr>
<tr>
<td>IQ</td>
<td>Intrinsic QoS</td>
</tr>
<tr>
<td>IQA</td>
<td>Instrumental Quality Assessment</td>
</tr>
<tr>
<td>IRR</td>
<td>Internal Rate of Return</td>
</tr>
<tr>
<td>ISD</td>
<td>Inter-site Distance</td>
</tr>
<tr>
<td>IST</td>
<td>Information Society Technologies</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunications Technologies</td>
</tr>
<tr>
<td>kbps</td>
<td>Kilobits per second (1000 bits s(^{-1}))</td>
</tr>
<tr>
<td>KPI</td>
<td>Key Performance Indicator</td>
</tr>
<tr>
<td>L1</td>
<td>Layer 1 (Physical Layer)</td>
</tr>
<tr>
<td>L2</td>
<td>Layer 2 (Data Link Layer)</td>
</tr>
<tr>
<td>L2TP</td>
<td>Layer 2 Tunneling Protocol</td>
</tr>
<tr>
<td>LA</td>
<td>Link Adaptation</td>
</tr>
<tr>
<td>LACP</td>
<td>Link Aggregation Control Protocol</td>
</tr>
<tr>
<td>LAG</td>
<td>Ling Aggregation</td>
</tr>
<tr>
<td>LAN</td>
<td>Local Area Network</td>
</tr>
<tr>
<td>LBC</td>
<td>Load Balancing Cycle</td>
</tr>
<tr>
<td>LBS</td>
<td>Location Based Services</td>
</tr>
<tr>
<td>LDAP</td>
<td>Lightweight Directory Access Protocol</td>
</tr>
<tr>
<td>LLA</td>
<td>Low Level Agent</td>
</tr>
<tr>
<td>LLL</td>
<td>Lenstra–Lenstra–Lovász</td>
</tr>
<tr>
<td>LOS</td>
<td>Line-of-Sight</td>
</tr>
<tr>
<td>LPC</td>
<td>Linear Predictive Coding</td>
</tr>
<tr>
<td>LPM</td>
<td>Loss Packet Matrix</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>LU</td>
<td>Lenstra–Lenstra–Lovász</td>
</tr>
<tr>
<td>MAC</td>
<td>Medium Access Control</td>
</tr>
<tr>
<td>MAN</td>
<td>Metropolitan Area Network</td>
</tr>
<tr>
<td>MAP</td>
<td>Medium Access Protocol; Mobile Application Part</td>
</tr>
<tr>
<td>MBAC</td>
<td>Measurement Based Admission Control</td>
</tr>
<tr>
<td>MBB</td>
<td>Make Before Break</td>
</tr>
<tr>
<td>MBMS</td>
<td>Multimedia Broadcast Multicast Service</td>
</tr>
<tr>
<td>Mbps</td>
<td>Megabits per second (1 000 000 bits s(^{-1}))</td>
</tr>
<tr>
<td>MBS</td>
<td>Mesh Base Station; Multicast and Broadcast Service</td>
</tr>
<tr>
<td>MCBCS</td>
<td>Multicast and Broadcast Service</td>
</tr>
<tr>
<td>MCS</td>
<td>Modulation and Coding Scheme</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>MCW</td>
<td>Multi Codeword</td>
</tr>
<tr>
<td>MDHO</td>
<td>Macro Diversity Handover</td>
</tr>
<tr>
<td>MeSH</td>
<td>IEEE 802.16-2004 Mesh Mode</td>
</tr>
<tr>
<td>MIB</td>
<td>Management Information Base</td>
</tr>
<tr>
<td>MICS</td>
<td>Media Independent Command Service</td>
</tr>
<tr>
<td>MIES</td>
<td>Media Independent Event Service</td>
</tr>
<tr>
<td>MIH</td>
<td>Media Independent Handover</td>
</tr>
<tr>
<td>MIHF</td>
<td>Media Independent Handover Function</td>
</tr>
<tr>
<td>MIHO</td>
<td>Mobile Initiated Handover</td>
</tr>
<tr>
<td>MIHU</td>
<td>Media Independent Handover User</td>
</tr>
<tr>
<td>MIIS</td>
<td>Media Independent Information Service</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple Input Multiple Output</td>
</tr>
<tr>
<td>MIP</td>
<td>Mobile Internet Protocol</td>
</tr>
<tr>
<td>ML</td>
<td>Maximum Latency</td>
</tr>
<tr>
<td>MLD</td>
<td>Maximum Likelihood Decoder</td>
</tr>
<tr>
<td>MLI</td>
<td>Modulation Level Information</td>
</tr>
<tr>
<td>MM</td>
<td>Mobility Management</td>
</tr>
<tr>
<td>MMF</td>
<td>Multimode Fiber</td>
</tr>
<tr>
<td>MMR</td>
<td>Mobile Multihop Relay</td>
</tr>
<tr>
<td>MMSE</td>
<td>Minimum Mean Square Error</td>
</tr>
<tr>
<td>MN</td>
<td>Mobile Node</td>
</tr>
<tr>
<td>MOS</td>
<td>Mean Opinion Score</td>
</tr>
<tr>
<td>MPEG</td>
<td>Moving Picture Experts Group</td>
</tr>
<tr>
<td>MRC</td>
<td>Maximum Ratio Combining</td>
</tr>
<tr>
<td>MRT</td>
<td>Maximum Ratio Transmission</td>
</tr>
<tr>
<td>MRTR</td>
<td>Minimum Reserved Traffic Rate</td>
</tr>
<tr>
<td>MS</td>
<td>Mobile Station</td>
</tr>
<tr>
<td>M-SAP</td>
<td>Management Service Access Point</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>MSDU</td>
<td>MAC Service Data Unit</td>
</tr>
<tr>
<td>MSE</td>
<td>Mean Square Error</td>
</tr>
<tr>
<td>MSID</td>
<td>Mobile Subscriber ID</td>
</tr>
<tr>
<td>MSTR</td>
<td>Maximum Sustained Traffic Rate</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean Time Between Failures</td>
</tr>
<tr>
<td>MTU</td>
<td>Maximum Transmission Unit</td>
</tr>
<tr>
<td>NACK</td>
<td>Negative Acknowledgement</td>
</tr>
<tr>
<td>NAI</td>
<td>Network Access Identifier</td>
</tr>
<tr>
<td>NC</td>
<td>Network Coding</td>
</tr>
<tr>
<td>NCMS</td>
<td>Network Control and Management System</td>
</tr>
<tr>
<td>NDCQ</td>
<td>Nondegenerate Constraint Qualification</td>
</tr>
<tr>
<td>NE</td>
<td>Network Element</td>
</tr>
<tr>
<td>NET</td>
<td>Network Layer</td>
</tr>
<tr>
<td>NGMN</td>
<td>Next-Generation Mobile Network</td>
</tr>
<tr>
<td>NGN</td>
<td>Next Generation Network</td>
</tr>
<tr>
<td>NIHO</td>
<td>Network Initiated Handover</td>
</tr>
<tr>
<td>NLOS</td>
<td>Non-Line-of-Sight</td>
</tr>
<tr>
<td>NMS</td>
<td>Network Management System</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>NR</td>
<td>Non-real-time</td>
</tr>
<tr>
<td>nrtPS</td>
<td>Non-real-time Polling Service</td>
</tr>
<tr>
<td>NSIS</td>
<td>Next Steps in Signaling</td>
</tr>
<tr>
<td>NSLP</td>
<td>NSIS Signaling Layer Protocol</td>
</tr>
<tr>
<td>NTLP</td>
<td>NSIS Transport Layer Protocol</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Time Protocol</td>
</tr>
<tr>
<td>NWG</td>
<td>Network Working Group</td>
</tr>
<tr>
<td>O&M</td>
<td>Operations and Management</td>
</tr>
<tr>
<td>OFDM</td>
<td>Orthogonal Frequency Division Multiplexing</td>
</tr>
<tr>
<td>OFDMA</td>
<td>Orthogonal Frequency Division Multiple Access</td>
</tr>
<tr>
<td>OGBF</td>
<td>Orthogonal Beamforming</td>
</tr>
<tr>
<td>OMC</td>
<td>Operation and Maintenance Center</td>
</tr>
<tr>
<td>OMF</td>
<td>Operation and Maintenance Function</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operational Expenditures</td>
</tr>
<tr>
<td>OSPF</td>
<td>Open Shortest Path First</td>
</tr>
<tr>
<td>P2P</td>
<td>Peer to Peer</td>
</tr>
<tr>
<td>PA</td>
<td>ITU Pedestrian A</td>
</tr>
<tr>
<td>PB</td>
<td>ITU Pedestrian B</td>
</tr>
<tr>
<td>PAN</td>
<td>Personal Area Network</td>
</tr>
<tr>
<td>PAPR</td>
<td>Peak to Average Power Ratio</td>
</tr>
<tr>
<td>PBE</td>
<td>Perfect Bayesian Equilibrium</td>
</tr>
<tr>
<td>PC</td>
<td>Paging Controller; Power Control</td>
</tr>
<tr>
<td>PCM</td>
<td>Pulse Code Modulation</td>
</tr>
<tr>
<td>PDA</td>
<td>Personal Digital Assistant</td>
</tr>
<tr>
<td>PDU</td>
<td>Protocol Data Unit</td>
</tr>
</tbody>
</table>
LIST OF ACRONYMS

PEP Performance Enhancing Proxy
PER Packet Error Rate
PHB Per Hop Behavior
PHY Physical Layer
PLC Packet Loss Concealment
PLR Packet Loss Rate
PMIP Proxy Mobile IP
PMP Point to Multipoint
PN Pseudo Random Noise
POF Plastic Optical Fiber
PQ Perceived QoS
PSTN Public Switched Telephone Network
PTMP Point-to-Multipoint
PTP Precision Time Protocol
PTP Point-to-point
PU2RC Per-User Unitary and Rate Control
PUSC Partially Used Subcarrier; Partially Used Subchannelization
QAM Quadrature Amplitude Modulation
QoE Quality of Experience
QoS Quality of Service
QPSK Quadrature Phase-Shift Keying
RADIUS Remote Authentication Dial-In User Service
RAN Radio Access Network
RAU Remote Antenna Unit
RB Resource Block
RF Radiofrequency
RFC Request for Comments (IETF standard document)
RMF Resource Management Function
RMS Root Mean Square
RoF Radio-over-Fiber
ROHC Robust Header Compression
RRM Radio Resource Management
RS Relay Station
RSS Received Signal Strength
RSSI Received Signal Strength Indicator
rt real-time
RTP Real-time Transport Protocol
rtPS Real-Time Polling Service
RTS Request to Send
RTT Round Trip Time
RT-VR Real-Time Variable Rate
Rx Receive
SA Specific Adapter
SAF Service Availability Forum
SAMPDA Simple Adaptive Modulation and Power Adaptation Algorithm
SAP Service Access Point
SBS Serving Base Station
SC Serra do Carvalho
SCM Spatial Channel Model
SCR Spare Capacity Report
SCTP Stream Control Transmission Protocol
SCW Single Codeword
SDMA Spatial Division Multiple Access
SDU Service Data Unit
SE Spectral Efficiency
SF Service Flow
SFDR Spurious Free Dynamic Range
SFM Service Flow Management
SID Silent Insertion Descriptor
SINR Signal-to-Interference + Noise Ratio
SIP Session Initiation Protocol
SISO Single Input Single Output
SL Serra da Lousã
SLA Service Level Agreement
SM Spatial Multiplexing
SMF Singlemode Fiber
SMS Short Message Service
SNMP Simple Network Management Protocol
SNR Signal-to-Noise Ratio
S-OFDMA Scalable Orthogonal Frequency Division Multiple Access
SOHO Small Office/Home Office
SON Self-Organized Network
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Synchronization Pattern</td>
</tr>
<tr>
<td>SRA</td>
<td>Simple Rate Adaptation</td>
</tr>
<tr>
<td>SRD</td>
<td>System Requirement Document</td>
</tr>
<tr>
<td>SS</td>
<td>Subscriber Station</td>
</tr>
<tr>
<td>SSL</td>
<td>Secure Socket Layer</td>
</tr>
<tr>
<td>STBC</td>
<td>Space Time Block Coding</td>
</tr>
<tr>
<td>STC</td>
<td>Space-Time Coding</td>
</tr>
<tr>
<td>SUI</td>
<td>Standford University Interim</td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
</tr>
<tr>
<td>TBS</td>
<td>Target Base Station</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplex</td>
</tr>
<tr>
<td>TDM</td>
<td>Time Division Multiplexing</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>TEM</td>
<td>Telecommunications Equipment Manufacturer</td>
</tr>
<tr>
<td>TETRA</td>
<td>Terrestrial Trunked Radio</td>
</tr>
<tr>
<td>TTI</td>
<td>Transmission Time Interval</td>
</tr>
<tr>
<td>TTP</td>
<td>Trusted Third Party</td>
</tr>
<tr>
<td>TWG</td>
<td>Technical Working Group</td>
</tr>
<tr>
<td>Tx</td>
<td>Transmit</td>
</tr>
<tr>
<td>UC</td>
<td>University of Coimbra</td>
</tr>
<tr>
<td>UCD</td>
<td>Uplink Channel Descriptor</td>
</tr>
<tr>
<td>UDP</td>
<td>User Datagram Protocol</td>
</tr>
<tr>
<td>UGS</td>
<td>Unsolicited Grant Service</td>
</tr>
<tr>
<td>UL</td>
<td>Uplink</td>
</tr>
<tr>
<td>UMB</td>
<td>Ultra Mobile Broadband</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>UMTS-LTE</td>
<td>Universal Mobile Telecommunications Systems – Long Term Evolution</td>
</tr>
<tr>
<td>VAD</td>
<td>Voice Activity Detection</td>
</tr>
<tr>
<td>VBR</td>
<td>Variable Bit Rate</td>
</tr>
<tr>
<td>VCEG</td>
<td>Video Coding Experts Group</td>
</tr>
<tr>
<td>VCSEL</td>
<td>Vertical Cavity Surface Emitting Laser</td>
</tr>
<tr>
<td>VDT</td>
<td>Virtual Drive Test</td>
</tr>
<tr>
<td>VLSI</td>
<td>Very-Large-Scale Integration</td>
</tr>
<tr>
<td>VoD</td>
<td>Video on Demand</td>
</tr>
<tr>
<td>VoIP</td>
<td>Voice over Internet Protocol</td>
</tr>
<tr>
<td>VP</td>
<td>Vector Perturbation</td>
</tr>
<tr>
<td>VR</td>
<td>Virtual Router</td>
</tr>
<tr>
<td>VRRP</td>
<td>Virtual Router Redundancy Protocol</td>
</tr>
<tr>
<td>W3GPP</td>
<td>third generation partnership project</td>
</tr>
<tr>
<td>WAC</td>
<td>Wireless Access Controller</td>
</tr>
<tr>
<td>WDM</td>
<td>Wavelength Division Multiplexing</td>
</tr>
<tr>
<td>WEIRD</td>
<td>WiMAX Extension to Isolated Research Data Networks</td>
</tr>
<tr>
<td>WEP</td>
<td>Wired Equivalent Privacy</td>
</tr>
<tr>
<td>WiFi</td>
<td>Wireless Fidelity</td>
</tr>
<tr>
<td>WiMAX</td>
<td>Worldwide Interoperability for Microwave Access</td>
</tr>
<tr>
<td>WINNER</td>
<td>Wireless World Initiative New Radio</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Area Network</td>
</tr>
<tr>
<td>W-LSB</td>
<td>Windowed Least Significant Bits</td>
</tr>
<tr>
<td>WMAN</td>
<td>Wireless Metropolitan Area Network</td>
</tr>
<tr>
<td>WMN</td>
<td>Wireless Mesh Network</td>
</tr>
<tr>
<td>WNC</td>
<td>Wireless Network Coding</td>
</tr>
<tr>
<td>WNEA</td>
<td>WiMAX Network Element Advertisement</td>
</tr>
<tr>
<td>WPAN</td>
<td>Wireless Personal Area Network</td>
</tr>
<tr>
<td>WRR</td>
<td>Weighted Round Robin</td>
</tr>
<tr>
<td>WSN</td>
<td>Wireless Sensor Network</td>
</tr>
<tr>
<td>WT</td>
<td>WiMAX Terminal</td>
</tr>
<tr>
<td>WWRF</td>
<td>Wireless World Research Forum</td>
</tr>
<tr>
<td>ZFBF</td>
<td>Zero-Forcing Beamforming</td>
</tr>
</tbody>
</table>