Universal foundation concept
A SCM approach to industrialization
Ibsen, Lars Bo; Liingaard, Morten; Larsen, Kim André

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
? You may not further distribute the material or use it for any profit-making activity or commercial gain
? You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
UNIVERSAL FOUNDATION CONCEPT –
A SCM APPROACH TO INDUSTIALIZATION
Søren A. Nielsen (1), Lars Bo Ibsen (2)
(1) MBD Offshore Power A/S, (2) Aalborg University, Denmark.

Abstract

Supply Chain Management (SCM) is a driving factor in the development of new technology and the vision of industrialization, series/mass production and installation of foundations for offshore wind farms. As the sites are getting larger in the future wind farm developments, and in most cases more complicated in a geotechnical and logistic sense, it is a must to find more feasible ways to configure standard structures and procedures into unique foundations for each wind turbine position using the philosophy of systematic mass customization and to optimize the supply chain with a focus on the industrialization process.

Background

The development of the UFC system is initially based on the flexibility and characteristics of the bucket foundation concept as known today. The bucket foundation is a hybrid combining features from the gravitation platform and the mono pile, but with the ability to vary more parameters for the penetration depth and dead load than the traditional concepts.

Bucket foundation principle

The innovative foundation concept, inspired of the well know offshore technology suction anchors, was initiated by a research program in a joint venture formed by Marcon, Bladt Industries, MBD and Aalborg University. As it is a new concept, a design procedure had to be developed based on laboratory test and certified by DNV. The full scale foundation for the Vestas V90 3 MW turbine was build in Frederikshavn and transported to and installed in the semidry NearshoreLAB test site in October 2002.

Development

The development of the UFC system is initially based on the flexibility and characteristics of the bucket foundation concept as known today. The bucket foundation is a hybrid combining features from the gravitation platform and the mono pile, but with the ability to vary more parameters for the penetration depth and dead load than the traditional concepts.

Project development approach

Industriallized product development

From project development to development projects

• Focus on total supply chain
• Coordinated B&O in each link of the supply chain
• Active use of feedback

Technology transfer

• is not only using a product in a different location
• it is adapting technology to new physical environment
• it is adapting the organisation culture
• it is adapting the knowledge and education

UFC philosophy, a framework for project development

The UFC is a concurrent process, adding new processes and experiences to a database, used by a configuration methodology to produce the required documentation in each step of the wind farm projects focusing on:

• The optimal foundation for each turbine position
• Design is parameter driven
• Structure based on scaleable modules and elements
• Production based on series or mass production
• Installation in widest possible weather window
• Installation based on common available transport and installation vessels

Technology

Main objectives in the development of the concept

Cost reduction, reduction of steel consumption, rational production, smaller installation equipment, reduction of load regime.

Risk management, availability of vessels, weather window, seabed condition.

Going from “one off” to industrialized product. Optimized design at each position, parameter driven design, standardized construction elements, standardized installation procedures.

Organization

The database is containing description of principles, methods, procedures, structures stipulation the operation parameters and cost estimates for each element. The database is also updated with operation project experiences to ensure an efficient feed-back to be used in future projects

The project configuration system is a program defining the application range for each structure and procedure and the rules for combining the different elements to cover the entire wind farm. The system contains a decision support facility with the ability to estimate the involved cost-risk in the different project phases.

The documentation facility is based on standard output formats for each of the project phases, feasibility study, conceptual design, tender design, detail design, construction documentation and ‘as build’ documentation.

The UFC / SCM facilitator

The implementation of the concept is conducted by a facilitator organization with access to the IP-rights of the bucket concept and in close cooperation with the project developer/owner of the wind farm project. The functions of the facilitator are to ensure that the technology, methodologies, and procedures are optimized throughout the entire supply chain as well as ensure that the contract relations in between the different stakeholder is managed to utilize the full potential of the concept.

European Offshore Wind 2009 Conference & Exhibition, 14 – 16 September, Stockholm, Sweden