Towards a Topological Basis for the Properties of Compressed Inorganic Glasses

Invited Talk

Smedskjær, Morten Mattrup; Svenson, Mouritz Nolsøe; Mauro, John C.

Publication date:
2014

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
Users may not further distribute the material or use it for any profit-making activity or commercial gain.
Users may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.
Towards a Topological Basis for the Properties of Compressed Inorganic Glasses

Morten M. Smedskjaer1, Mouritz N. Svenson,1 John C. Mauro2

1 Section of Chemistry, Aalborg University, Aalborg, Denmark
2 Science and Technology Division, Corning Incorporated, Corning, USA

Temperature-dependent constraint theory has successfully been applied to explain and quantitatively predict the composition dependence of macroscopic glass properties, most notably equilibrium liquid viscosity for chalcogenide, borate, borosilicate, phosphate, and borophosphate glass-forming systems. According to this theory, the topological constraints are counted as a function of both composition and temperature, since any given constraint will be broken at a sufficiently high temperature. However, glass structure, topology, and properties also vary as a function of pressure, and it is thus of interest to develop a tool for predicting the changes in macroscopic properties upon compression. Indeed molecular dynamics simulations have shown that the rigidity of topological constraints depends on pressure in addition to temperature, i.e., it should in principle be possible to develop pressure-dependent constraint theory with predictive capability. Here, we present our recent findings with respect to establishing a topological basis for selected properties of compressed oxide glasses, which in turn could lead to the development of a predictive model for designing compressed glasses with optimized properties.