Aalborg Universitet

Forureningsfordeling i ventilerede lokaler

Engen, Hans

Publication date: 1985

Document Version Også kaldet Forlagets PDF

Link to publication from Aalborg University

Citation for published version (APA):

Engen, H. (1985). *Forureningsfordeling i ventilerede lokaler*. Institut for Bygningsteknik, Aalborg Universitetscenter. Aalborg Universitetscenter. Instituttet for Bygningsteknik. Report Bind R8513

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal -

Take down policy

If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to the work immediately and investigate your claim.

INSTITUTE OF BUILDING TECHNOLOGY AND STRUCTURAL ENGINEERING AALBORG UNIVERSITETSCENTER · AUC · AALBORG · DANMARK

FORURENINGSFORDELING I VENTILEREDE LOKALER

HANS ENGEN FORURENINGSFORDELING I VENTILEREDE LOKALER DECEMBER 1985

ISSN 0105-7421 R8513

Denne rapport markerer afslutningen på mit kandidatstipendium ved Instituttet for Bygningsteknik, AUC.

Jeg vil gerne takke først og fremmest min vejleder, C. E. Hyldgård, for råd og inspiration ved gennemførelsen af dette projekt.

Ved det eksperimentelle arbejde har jeg modtaget værdifuld hjælp fra Torben Christensen. Indskrivning og hjælp med tegnearbejdet er udført med omhu og en del tålmodighed af Vibeke Drustrup og Inge Nielsen. Hermed tak til alle tre. Desuden takkes de øvrige medarbejdere ved instituttet, som har støttet mig. Udenfor instituttet har jeg modtaget støtte og hjælp fra Peter V. Nielsen, Danfoss, som også takkes.

Projektets formål har været at undersøge sammenhængen mellem forureningsfordeling i ventilerede lokaler og den tilførte luftmængde samt forureningskildens placering.

Forsøgene er udført som 2-dimensionale forsøg og kan således bruges som dokumentation for en evt. numerisk beregning.

Rapporten er opdelt i hovedrapport og bilag. Bilag indeholder primært forsøgsresultater og tjener som underbygning af kommentarer og konklusion i hovedrapport.

Hans Engen December 1985

Indhold

Afsnit	Emne	Side
1	Indledning	l
2	Pilotforsøg	6
3	Undersøgelse af diffusionshastighed	8
4	Tidligere forsøg med forurenings- fordeling	11
5	2-dimensional strømning	14
5.1	Rummet og dets begrænsninger	14
5.2	Indblæsningsspalte	15
5.3	Indblæsningsstråle	17
5.4	Liniekilde	19
6	Sporgasmålinger	21
6.1	Begrænsninger	22
6.2	Udvalgte forsøg	23
7	Vurdering af resultater	27
7.1	Målemetodens anvendelighed	27
7.2	Plan strømning	29
7.3	Luftmængdetilførsel	29
7.4	Udsugning	30
7.5	Placering af gaskilde	30
7.6	Videre anvendelse	31
8	Konklusion	32
×	Litteraturliste	33
	Bilagsoversigt	35

		- 2 -	
Afs	snit	Emne	Side
BII	LAG 1	Instrumenter	36
BII	LAG 2	Måling af diffusionshastighed	48
BII	LAG 3	Indretning af rum til 2-dimensionale forsøg	51
BII	LAG 4	Linieformet gaskilde	54
BII	LAG 5	Linieformet indblæsning	58
BII	LAG 6.1	Måling af hastighedsprofil i ind- blæsningsstråle	62
BII	LAG 6.2	Luftbevægelser i rum	71
BIL	LAG 7	Målinger af gasfordeling og tempera- turkontrol	76

+

1. Indledning

Ventilation af lokaler har meget ofte 2 formål. Det oprindelige og stadig vel det væsentligste er at tilføre ren luft til lokalet, således at forureningskoncentrationer holdes på et acceptabelt niveau. Forurening skal her opfattes bredt som giftige/skadelige gasser, vanddamp eller ubehageligt lugtende stoffer. Som eksempel på skadelige gasser kan nævnes radon og formaldehyd, mens røg og kropslugt først og fremmest regnes som generende lugte. Tilførslen af ren luft skal yderligere sikre tilstrækkelig ilt til de folk, som opholder sig i det pågældende rum.

Ventilationsluften anvendes imidlertid ofte som energibærer; både til opvarmning og til fjernelse af overskudsvarme. Man vil derfor ofte møde indblæsningsluft, som ikke er neutral, men har en over eller undertemperatur i forhold til rummet. Indblæsningsstrålen vil her have enten en stigende eller faldende tendens i forhold til den neutrale stråle.

Af hensyn til anlægs- og driftsomkostninger vil der altid være et pres på at få den mindst mulige luftstrøm. Af denne grund er det væsentligt at sikre sig, at den anvendte friskluft anvendes mest effektivt.

Selve udformningen af et klimaanlæg, der skal dække begge førnævnte formål, starter med, at det/de pågældende rums køle- og varmebehov klarlægges. Derefter undersøges, hvordan denne energimængde kan tilføres rummet. Som tommelfingerregel ved man, at udsugningen ingen betydning har for luftbevægelserne. Disse er udelukkende bestemt af indblæsningsåbningernes udformning og placering.

Ser man på anlæg til beboelse og kontorlokaler, vil den videre projektering i al væsentlighed koncentrere sig om komfortkrav. Især hensynet til træk har været væsentligt. Lufthastighederne i opholdszonen må ikke overstige 0,15-0,30 m/s afhængig af temperatur, aktivitetsniveau og beklædning. Til undersøgelse af dette er der udviklet en del teori omkring indblæsningsstråler. Rummet deles i en primær og en sekundær zone. I primærzonen udvikles en form for jetstråle, som kan beskrives rimelig godt. Luftbevægelserne i sekundærzonen, (som indeholder opholdszonen), er mere diffuse. Forholdene i opholdszonen findes ud fra halvempiriske sammenhænge mellem karakteristiske data fra primærzonen, oftest kastelængder, og maksimale hastigheder i opholdszonen. Det er altså her komforten, der har været bestemmende for udformningen af det pågældende anlæg.

I kontor- og boligventilation vil de krav, der stilles til luftkvalitet, oftest være et krav om friskluftsindtag; ikke om maksimale forureningseksponeringer i opholdszonen. Det teoretiske apparat til at sikre sådan et forlangende er heller ikke nær så godt udbygget som det tilsvarende til imødekommelse af komfortkrav.

Velkendt indenfor ventilationsteknik er luftskiftet defineret som:

$$n = \frac{Q}{V_R}$$

Hvor

Q = Total luftstrøm (m³/h)

 V_{R} = Volumen af det ventilerede rum (m³)

Denne findes ofte ved afklingningsforsøg:

En vis mængde gas lukkes ind i et ventileret lokale, hvor der ved hjælp af blandingsventilatorer er stor omrøring. Ved fuldstændig opblanding vil koncentrationen, som måles i udsugningen, være:

$$c(\tau) = c(o) e^{-\frac{Q}{V_R} \cdot \tau}$$
(1.1)

hvor

 $c(\tau)$ = koncentrationen til tiden τ

c(o) = start koncentration

(Her er antaget, at indblæsningsluften ikke indeholder den pågældende gas).

Sammenhængen er

$$n = \frac{Q}{V_R} = \frac{1}{\tau} \ln \frac{c(o)}{c(\tau)}$$
(1.2)

n kaldes luftskiftet og angives ofte som et antal gange i timen, h^{-1} . Navnet og benævnelsen lægger op til mistolkning. Ved n = l h^{-1} og τ = l h og fuld opblanding i lokalet er 37% af rumluften ikke skiftet. Luftskiftet svarer kun til sit navn ved det, man kunne kalde en "stempelstrømning" eller fuldstændig deplacerende strømning.

Mange har prøvet at overføre begrebet til punkter i ventilerede rum, hvor man så kunne tale om et lokalt luftskifte. Målingen foregår ved at måle i det pågældende punkt i stedet for udsugningen, men forudsætter, at koncentrationen følger en kurve

$$-k\frac{\nabla}{V_{R}}\cdot\tau$$

$$c_{p}(\tau) = c(o)e \qquad (1.3)$$

hvor $n_p = k \frac{Q}{V_R}$ i så fald kunne tages som udtryk for

det lokale luftskifte i punkt p. For det første er det tvivlsomt, hvor god en tilnærmelse ovenstående ligning er. For det andet er det svært at anvende den fundne størrelse, da den fysiske betydning ikke er særlig klar.

En anden måde at beskrive ventilationen i et punkt er ved hjælp af begrebet ventilationseffektivitet.

I [7] foreslås en transient ventilationseffektivitet. Ved sporgasmålinger med afklingningsforsøg indgår arealet under koncentrationskurven i det punkt p, hvor vi måler. Den transiente relative ventilationskoefficient i punkt p benævnes ε_p^{tr} :

$$\varepsilon_{p}^{tr} = \frac{o^{\int_{0}^{\infty} c_{u}(\tau) d\tau}}{o^{\int_{0}^{\infty} c_{p}(\tau) d\tau}} \times 100$$
(1.4)

hvor

c_u = koncentration i udsugningsluften c_p = koncentration i punkt p

Ved fuld opblanding bliver $\varepsilon_p^{tr} = 100\%$. Sammenhængen med det tidligere lokale luftskifte er klar. Hvis koncentrationen i p følger (l.3) og i udsugning (l.2), vil man have:

$$\varepsilon_p^{\text{tr}} = \frac{n_p}{n} \times 100 \tag{1.5}$$

altså det lokale luftskifte i procent af det totale luftskifte. Den nye definition tager hensyn til, at koncentrationskurven ikke følger (1.3).

En stationær ventilationseffektivitet $\boldsymbol{\epsilon}_p$ er defineret som

$$\varepsilon_{p} = \frac{c_{u}(\infty)}{c_{p}(\infty)} \times 100$$
 (1.6)

hvor forudsætningen er en ligeligt fordelt forureningskilde i rummet.

Disse størrelser beskriver kun den pågældende indblæsningssituation. De siger noget kvalitativt om, hvilke områder der ventileres godt, og hvilke der ventileres dårligt. Men de er forureningskildeuafhængige forstået på den måde, at de ikke tager hensyn til, hvor en eventuel kilde er placeret i rummet.

Man er altså stadig henvist til at lave specifikke undersøgelser med forureningskildeplacering, hvis man ønsker forureningskoncentrationen fastlagt i et bestemt punkt af rummet.

En anden ulempe ved karakteristika fundet ved afklingningsforsøg ses i [1], hvor Hyldgård konkluderer, at sporgasmålinger er vanskelige at håndtere, og at især ved afklingningsforsøg er det ikke umiddelbart muligt, at resultater fra et rum kan overføres og være gyldigt for andre rum endsige almengyldigt. Dette betyder, at anvendelse af sporgasmålinger bør ske i form af stationære forsøg (ligevægtsforsøg) fremfor instationære.

2. Pilotforsøg

Der blev foretaget målinger i benyttede kontorlokaler. Resultaterne herfra er ikke medtaget i rapporten, men skal kort refereres her. Det ene kontorlokale, H x B x L = 2,75 m x 3,40 m x 6,40 m, var ventileret (n = 1,0 h⁻¹) med indblæsningsrist under loftet i væggen modsat vinduet. Opvarmning skete ved hjælp af radiatorer under vinduet. Indblæsningen var i rummets længderetning. Rummet blev under målingen benyttet af 2 personer. Der blev målt CO_2 -koncentrationer 6 steder i rummet, dels i meget fritliggende punkter, dels i punkter, der lå mere "skjult" af møbler.

Resultaterne herfra viste for det første, at ventilationen ikke kunne klare belastningen. CO_2 -koncentrationen steg næsten liniært og var langt fra en balancesituation, når det blev valgt at åbne et vindue og udlufte. Dette skete ved CO_2 -koncentrationer på hhv 0,12%, 0,12% og 0,135%. Dette svarer godt til, at Becher i [15] angiver, at lugten fra mennesker bliver ubehagelig stærk ved et CO_2 -indhold på 0,15%.

Der var forskel i CO₂-koncentrationer i de forskellige punkter, men de fulgte alle den samme stigning nogle dog med en 5-6 min. forsinkelse. Nogen egentlig skæv koncentrationsfordeling fandtes altså ikke. Det kan skyldes, at luftbevægelser fra indblæsningsrist, radiator, koldt vindue eller personer har sørget for tilstrækkelig opblanding i rummet. Eller også har forureningskilderne (de pågældende personer) og målepunkter været anbragt, så dårligt ventilerede områder ikke er blevet afsløret.

Det andet lokale var uden ventilation, H x B x L = 2,75 m x 3,45 m x 4,50 m, og benyttet af kun en enkelt person. Tendenserne var de samme. Der var ingen større forskel i CO_2 -koncentrationer i de målte punkter, kun en forsinkelse. En ting, man kunne kontrollere, var oplysninger fra [16] om CO_2 -tilførsel fra

mennesker. Her er angivet, at personer med lavt aktivitetsniveau udånder en luftmængde på 0,5 m 3 /h med et CO₂-indhold på ca. 4%. Beregninger udfra disse størrelser giver koncentrationer lidt mindre end de målte svarende til, at rummet ikke er helt tæt, men har et mindre luftskifte.

Disse pilotforsøg har ikke givet nogen præcis forestilling om, under hvilke forhold der opstår skæve forureningsfordelinger. Disse forhold er forsøgt klarlagt ved hjælp af laboratorieforsøg med sporgasmålinger.

3. Undersøgelse af diffusionshastighed

For at få et indtryk af sporgassens (CO_2) evne til at fordele sig udelukkende ved hjælp af diffusion blev der opstillet et forsøg.

I et 6 m lodret stillet rør blev en sporgasmængde lukket ind i bunden, og gassens udbredelse blev målt efter 2½ time. Forsøg og resultater er beskrevet i bilag 2.

Hvis det antages, at der ingen luftbevægelser er i røret, kan koncentrationsudbredelsen antages at følge ligningen:

$$\frac{\partial c}{\partial \tau} = D \cdot \frac{\partial^2 c}{\partial x^2}$$
(3.1)

hvor D er diffusionstal for CO_2 i atmosfærisk luft (D = 0,14 cm²/sek.). Den ligning kan omsættes til en differensligning, og ved at antage nogle startbetingelser kan man beregne CO_2 -udbredelsen. Den numeriske ligning bliver

$$c_{i}^{\tau+\Delta\tau} = c_{i}^{\tau} + \frac{D\Delta\tau}{\Delta x^{2}} (c_{i+1}^{\tau} - 2c_{i}^{\tau} + c_{i-1}^{\tau})$$
 (3.2)

hvor benævnelserne fremgår af fig. 3.1.

Fig. 3.1 Opdeling af rør ved numerisk beregning

En betingelse for stabile beregninger er

$$\Delta \tau \leq \frac{\Delta \mathbf{x}^2}{2D} \tag{2.3}$$

Startbetingelserne antages at være 50% CO_2 -koncentration i de nederste 20 cm af røret og 0,04% i resten af røret. Den beregnede og den målte udbredelse er optegnet i fig. 3.2.

Kommentar

De beregnede værdier ligger højest, hvilket er overraskende. Enhver forstyrrende luftbevægelse i forsøget burde give anledning til en hurtigere udbredelse. Forklaringen kan være, at den type rør, der er anvendt til forsøget, spiralvalset, ikke er helt lufttæt.

Hyldgård har i [1] lavet målinger af gasudbredelse i et lokale uden luftbevægelser. Gassen (N₂O) blev lukket ind ved gulv. Højeste målepunkt, 2,40 m over gulv, når gennemsnitsværdien efter ca. 2 timer. At fordelingen sker hurtigere i rummet, kan være fordi andre faktorer "hjælper" med at sprede gassen, som f. eks. gassens massefylde og små luftbevægelser, som er svære helt at fjerne.

4. Tidligere forsøg med forureningsfordeling

Hensigten med de efterfølgende forsøg er at undersøge den direkte sammenhæng mellem placering af en forureningskilde i et ventileret lokale og forureningskoncentrationen i forskellige punkter.

I et ventileret lokale med en forureningskilde, der tilfører en konstant forureningsmængde, vil der i hvert punkt af rummet indstille sig en ligevægt. Rent fysisk vil det være denne ligevægtskoncentration, man vil indånde i det pågældende punkt, og det er denne størrelse, der er interessant at få klarlagt.

I den gennemgåede litteratur fandtes nogle tilsvarende forsøg udført af Oppl [9] og Peter V. Nielsen [4].

Oppl har lavet forsøg med punktformige kilder i blandt andet recirkulerende strømninger, og eksempler fra hans målinger kan ses af fig. 4.1.

Fig. 4.1 Eksempler på gaskoncentrationer i rum med punktformig kilde. Fra [9]

Det fremgår ikke af [9], hvilke dimensioner det pågældende rum har. Her må man bruge tegningerne. Det fremgår heller ikke, at de målte værdier er fremkommet som ligevægtværdier, men det er de sandsynligvis.

Peter V. Nielsens forsøg er modelforsøg med en plan recirkulerende strømning. Han har i [2] påvist, at for store Reynolds tal vil strømningen ikke være afhængig af dette. Der vil ved forskellige indblæsningshastigheder opstå ligedannede strømninger.

Dermed fastslås, at gaskoncentrationer (og partikelkoncentrationer) i en isoterm, plan recirkulerende strømning med højt Reynolds tal kun er afhængig af indblæsningsarmaturets geometri og følgende størrelser

$$\frac{c}{c_u} = \text{funk} \left(\frac{h}{H}, \frac{L}{H}, \text{ placering af kilde}\right)$$
 (4.1)

hvor h, H og L er henholdsvis højde af indblæsningsspalte, højde af lokale og længde af lokale.

Den benyttede kilde var en liniekilde for at sikre det 2-dimensionale forløb.

De pågældende forsøg blev udført, ikke som forureningsforsøg, men med et svagt temperaturfelt.

Kigger man på de aktuelle modeltal

Prandls	tal	$\Pr = \frac{\mu_o C_p}{\lambda}$	(4.2)
		Λ	

Reynolds tal Re =
$$\frac{v_o h \rho_o}{\mu_o}$$
 (4.3)

Arkimedes tal Ar =
$$\frac{\beta g h \Delta T}{v_0^2}$$
 (4.4)

hvor

 $\mu_{o} = Viskositet$

- λ = Varmeledningsevne
- $v_{0} = Indblæsningshastighed$
- h = Indblæsningsåbnings højde
- $\rho_{O} = Massefylde$
- β = Udvidelseskoefficient
- ΔT = Temperaturforskel

Af disse tal ses, at samme strømningsmedium, luft, giver samme Prandls tal.

Krav om samme Reynolds tal i model og fuldskala betyder, at hvis modellen laves i målestoksforhold 1:M, så stiger hastigheden med en faktor, M. Samme resonnement med hensyn til Arkimedes tal giver, at ΔT skal stige med en faktor M³. Er målestoksforholdet 1:10, skal temperaturforskellene i modellen være 1000 gange så store som i fuldskala. Det gør det vanskeligt at lave modelforsøg med temperaturforskelle.

Det betyder til gengæld også, at små temperaturfelter ingen indflydelse har på strømningen i modellen. Dette er benyttet i [4], hvor forureningsmålinger er erstattet af temperaturmålinger.

Et eksempel fra [4] ses i fig. 4.2.

 $U/U_{0} = 0.26$

Fig. 4.2 Koncentrationsfordeling i lokale med planstrømning og liniekilde

5. 2-dimensional strømningstilstand

Sporgasmålingerne ønskes lavet i en tilstræbt plan strømning. Årsagen til dette er flere.

I mange ventilerede lokaler er indblæsningsarmaturer anbragt på linie langs en af væggene. Dette vil, jævnfør [3], i nogen afstand fra armaturerne ofte give en plan fristråle, eller hvis indblæsningen sidder tæt på en overflade – en plan vægstråle. Foruden en plan strømning er der i det følgende også anvendt en linieformet gaskilde. En sådan vil nok være mere sjælden, men giver et kvalitativt udsagn om betydning af en forureningskildes placering.

Et plant strømningsbillede for både friskluft og forurening giver større mulighed for at sammenligne med numeriske beregninger. Disse er meget vanskelige for 3-dimensionale problemer.

5.1 Rummet og dets begrænsninger

Det anvendte klimarum er vist på fig. 5.1.1.

Fig. 5.1.1 Klimarum og klimaaggregat

Rummets dimensioner er H x B x L = 2,40 m x 3,60 m x 5,40 m. For at kunne etablere et plant strømningsfelt er det nødvendigt at indføre både spalteformet indblæsning og udsugning. En af klimarummets vigtigste opgaver er at være tæt. Derfor er der ikke lavet spalte i klimarummets væg, men indført en kasse med spalte i rummet. Lufttilførslen er ført fra de to indblæsningsstudse til denne kasse med spiralslanger. Udsugningsspalten er opstået ved foran udsugningsvæggen at anbringe en ekstra bagvæg med 5 cm's afstand til gulv. Da det er vanskeligst at ventilere dybe rum [2], er der i det følgende fastholdt denne vægplacering. Rummets længde er reduceret til L = 5,29 m. Adgang til rummet kan derefter kun ske gennem den dør, som er angivet på fig. 5.1.1.

5.2 Indblæsningsspalte

Udsugningsspalten er beskrevet ovenfor, og der er ikke foretaget undersøgelser af, om spalten udsuger jævnt over hele sin spaltebredde. Det forventes, at rummet mellem de to bagvægge fungerer som ét stort undertrykskammer og skaber jævn udsugning.

Kassen med indblæsningsspalten er 0,2 m x 0,2 m x 3,6 m og har en spaltehøjde på 1 cm. Den er anbragt under loft ved indblæsningsvæggen og er i øvrigt beskrevet i bilag 5.

Fig. 5.2.1 Kasse med indblæsningsspalte

Ved indretningen af kassen blev der som mål for en jævn fordeling målt hastigheder i selve spalten. Disse blev så anvendt til at korrigere det indlagte filter og højden af spalten. Slutresultatet gav en variation af hastigheden i spalten på op til 8-9%, størst for de store luftmængder. Det var den bedste nøjagtighed, der kunne opnås med den nævnte udformning. Spaltehøjden er her og i det følgende holdt på 1,0 cm som et kompromis mellem to hensyn. Jo større spaltehøjden bliver, jo mindre bliver tryktabet gennem spalten. Det betyder, at kassen i mindre grad fungerer som trykkammer, og vi kan dermed forvente en mindre jævn spredning over spalten. Det andet hensyn er hensynet til nøjagtigt mål af spaltehøjden. Vi kan ikke forvente stor nøjagtighed i en sådan trækasse. Usikkerheden ligger omkring 1 mm, og det vil sige, at nøjagtigheden ligger omkring ±10% og værre for mindre spalter.

De hastigheder, der måles i selve spalten, er en usikker størrelse at bestemme fordelingen med. Hastigheden her er ikke særlig veldefineret, fordi spalten ikke er rigtig afrundet, og fordi der er en mindre afstand til loft (22 mm). Det sidste giver et "sug" mod loft, den såkaldte coandaeffekt.

Fig. 5.2.2 Indblæsningsstrålen klæber mod loftet

5.3 Indblæsningsstråle

I en vis afstand fra spalten vil der danne sig en plan vægstråle.

Fig. 5.3.l Plan vægstråle. Strålen har her fiktivt udgangspunkt (pol) i væggen bag åbningen med polafstand x_o

For en sådan stråle vil gælde ifølge [12]:

$$\frac{\delta}{h} = D_p \frac{x + x_o}{h} \tag{5.3.1}$$

og

$$\frac{V_x}{V_0} = K_p \left(\frac{h}{x + x_0}\right)^e$$
 (5.3.2)

hvor

 δ = strålens tykkelse h = spaltehøjde D_p = konstant for indblæsningen v_x = maksimalhastighed i afstand x v_o = indblæsningshastigheden K_p og e = konstanter for indblæsningen

Der er i det følgende valgt at måle på 3 indblæsningssituationer svarende til luftskifter på n = 2,67 h⁻¹, n = 4,24 h⁻¹ og n = 6,40 h⁻¹. Det er i dette område, bolig- og kontorlokalers luftskifte ligger. For større luftskifter ses det af bilag 5, at forudsætningen om planstrømning bliver sværere at overholde. For en omhyggelig udført plan vægstråle angives i [12] værdierne

$$\frac{x_0}{h} = 11,2$$
, Kp = 5,4, Dp = 0,068 og e = 0,56

I bilag 6 er der målt hastighedsprofiler i lodrette snit i samme afstand fra spalte. Hvis man anvender maksimal hastighed for den tilnærmede kurve og ovenstående konstanter, kan man ved at benytte (5.3.2) finde indblæsningshastigheden v_0 og dermed Reynolds tal, ligning (4.3), for de 3 indblæsningssituationer

for
$$n = 2,67 h^{-1}$$
: Re = 550
for $n = 4,24 h^{-1}$: Re = 930
for $n = 6,40 h^{-1}$: Re = 1260

Disse Reynolds-tal er forholdsvis små. De røgforsøg, der er vist i bilag 6, angiver strømningsforholdene, og her ses, at de 3 tilstande ikke giver ligedannede strømninger. Strømninger med luftskifte større end $n = 6,40 h^{-1}$ vil muligvis være ligedannede med denne strømning.

Målingerne af hastighedsprofiler i lodrette snit viser en dårligere fordeling end forventet udfra målinger af spaltehastigheder. Maksimalhastighederne varierer omkring en middelværdi med ca. ±11%, værst for luftskifte n = 2,67 h⁻¹ (12%). Det er under forsøget sikret, at de to indblæsningsstudse fik tilført lige meget frisk luft. Alligevel er der en svag tendens til, at de to halvdele af kassen ikke forsyner rummet ligeligt. Glasvægssiden (ved væg med 3 vinduer) ser ud til at være lidt underforsynet. Derimod er der en tendens til store hastigheder ude langs sidevæggene. Dette er overraskende, fordi man kunne forvente en bremsende effekt af disse sidevægge.

På de tre kurver er indtegnet normalfordelingskurver som et tilnærmet gennemsnit. I virkeligheden falder hastigheden til nul tæt ved loftsoverfladen og vil ifølge [12] have en facon som på fig. 5.3.2.

Fig. 5.3.2 Hastighedsprofil i vægstråle [12]

Hastigheden kaldet U er normeret med maksimalhastigheden, og strålens tykkelse er normeret med tykkelsen δ det sted i profilet, hvor hastigheden er U_v/2.

Det har ikke været muligt at forbedre indblæsningssituationen ved at justere på spaltehøjden eller på det filter, der ligger i kassen til fordeling af indblæsmingsluften.

Det blev derfor valgt at fortsætte med de målte skævheder i indblæsningsstrålen og senere måle direkte, hvad det betyder for koncentrationsfordelingen.

5.4 Liniekilde

Sporgassen til forsøgene skal for at opretholde 2-dimensionale forhold tilføres gennem en liniekilde. Også fra denne skal der være en jævn fordeling i hele rummets bredde.

Fig. 5.3.3 Udformning af liniekilde

Udformningen er gennemgået i bilag 5 og med hensyn til, om fordelingen er jævn, må det siges, at det kun er sandsynliggjort, idet det er meget vanskeligt at måle eksakt.

Igen må man med koncentrationsmålinger undersøge, om fordelingen er tilstrækkelig jævn.

6. Sporgasmålinger

Som nævnt i indledningen kan man på forskellige måder måle ventilationseffektiviteten i punkter i et ventileret lokale. En sådan størrelse vil dog ikke kunne sige noget præcist om, hvor stor en koncentration man udsættes for i dette punkt, hvis der introduceres en forureningskilde i rummet. Det vil afhænge af kildens placering. Det er derfor også nødvendigt at udføre forsøg, hvor man undersøger den direkte konsekvens af forureningskildens placering ved forskellige indblæsningssituationer. De fleste målinger af ventilationseffektivitet foregår som afklingningsforsøg. Sådanne forsøg er af Hyldgård i [1] vist at være meget problematiske. De efterfølgende forsøg er derfor lavet som ligevægts forsøg. Princippet er vist på fig. 6.1.

Fig. 6.1 Princip for målinger i rum

Der tilføres en konstant gasmængde til det ventilerede rum via liniekilden. Koncentrationen måles i udvalgte punkter, efter at der er opnået stabil tilstand i rummet (i princippet efter uendelig lang tid). Samtidig måles temperaturerne i de samme punkter.

6.1 Begrænsninger

Det er allerede nævnt, at spaltehøjden fastholdes på h = 1,0 cm, og ligeledes fastholdes rumlængden (som der også er mulighed for at variere) L = 5,29 m, hvilket er det maksimalt mulige. Det sidste fastholdes, fordi "lange" rum er sværere at ventilere end "korte", jvnf. [2]. Det er nævnt, at der til klimarummet kun er adgang gennem én dør, se fig. 5.1.1. Dette begrænser både indblæsningsplacering og liniekildeplacering. Indblæsningen kan ikke anbringes på væggen bag døren og er derfor fastholdt med indblæsning langs loft som vist på fig. 6.1.

Heller ikke liniekilden kan placeres i det område, hvor døren sidder. Dette er en væsentlig begrænsning, idet der er tendens til dødzone i dette område. Udover de nævnte begrænsninger er der kun foretaget målinger med isotermisk strømning.

Der er varieret på placeringen af gaskilden og på lufttilførslen.

Gaskilden er anbragt i 3 forskellige punkter. 2 af disse svarende til fx CO_2 -tilførsel fra en siddende person, og l er placeret nær gulv.

Placeringen er vist på fig. 6.2.1.

二米

Fig. 6.2.1 Placering af gaskilde

Placering l svarer til en siddende person i et område, hvor man vil forvente en pæn frisklufttilførsel, hvis man ser på luftbevægelserne i bilag 6. Placering 2 svarer til en siddende i den dårligst ventilerede del af lokalet. (På grund af indgangsdør til klimarummet kunne kilden ikke anbringes tættere på indblæsningsvæggen). Placering 3 er valgt for at undersøge, om den tunge gas, hvis den lukkes ud nær gulv, vil holde sig overvejende der.

Alle målinger er gennemført ved 3 luftskifter - tæt på de luftskifter, der er angivet i bilag 6:

$$n = 2,67 h^{-1}$$
, $n = 4,24 h^{-1}$ og $n = 6,40 h^{-1}$

Med hensyn til målepunktsplacering kan man måle 6 steder på en gang med den anvendte gasanalysator. De to af disse skal bruges til at måle koncentrationen i indblæsningsluften c_i, der hentes fra laboratoriehallen, og i udsugningsluften c_u, som afkastes til det fri. Årsagen til, at to af målepunkterne må reserveres den tilførte og afkastede luft er, at disse skal bruges ved normering af målingerne i de forskellige punkter i rummet. Kaldes den normerede koncentration i punkt p for k_p, gælder:

$$k_{p} = \frac{c_{p} - c_{i}}{c_{u} - c_{i}}$$
(6.2.1)

Tilbage er 4 målepunkter. Disse er valgt anbragt i rummets opholdszone på to måder kaldet A-MIDT og B-MIDT, og som er vist på fig. 6.2.2 og 6.2.3 og med mål i bilag 7.

Pkt.6

Fig. 6.2.3 Målepunktsplacering B-MIDT

Her er målepunkterne placeret i et midtersnit lige langt fra de to sidevægge.

Desuden er der valgt en placering A-SIDE, hvor målepunkterne er anbragt tættere på den ene sidevæg. Målinger med denne placering er anvendt til at vurdere, om forudsætningen om plane tilstande er opfyldt.

Der er lavet 15 målinger, som falder i sæt med 3 i hver; oversigt findes i bilag 7.

1. sæt, forsøg 1, 2 og 6: Med kildeplacering 1 og målepunktsplacering A-MIDT.

2. sæt, forsøg 3, 4 og 5: Med kildeplacering l og målepunktsplacering A-SIDE.

3. sæt, forsøg 7, 8 og 9: Med kildeplacering 2 og målepunktsplacering A-MIDT.

4. sæt, forsøg 10, 11 og 12: Med kildeplacering 2 og målepunktsplacering B-MIDT.

5. sæt, forsøg 13, 14 og 15: Med kildeplacering 3 og målepunktsplacering B-MIDT.

Fremgangsmåden ved forsøgene er beskrevet i detaljer i bilag 7. Kort fortalt reguleres ventilationen med en

frekvensomformer til den ønskede luftmængde. Der tilsættes en konstant gasstrøm til liniekilden, og der måles gaskoncentrationer og temperaturer i de udvalgte punkter. Når der er opstået ligevægt, aflæses slutkoncentrationerne og temperaturerne undervejs.

7. Vurdering af resultater

Vurderingen af resultaterne er først og fremmest af kvalitativ art. Hele koncentrationsfordelingen er ikke bestemt ved at måle i enkelte punkter, men de målte koncentrationer kan give anledning til nogle kvalificerede gæt på, hvad der foregår i rummet. Forudsætningen om isoterme strømninger er overalt op-

fyldt indenfor få tiendedele grader.

7.1 Målemetodens anvendelighed

Hyldgård har i [1] gjort opmærksom på, at den her anvendte metode til måling af gaskoncentrationer er vanskelig at anvende, idet der tilsyneladende svæver store skyer af gas rundt i lokalet, så den enkelte måling svingermeget. Det gør de også, hvilket fremgår af de udsving, der i bilag 7 er anført ved nogle af koncentrationsmålingerne. På fig. 7.1.1 er vist sporgasmålingerne fra forsøg nr. 15. Målingerne er her udført i mere end dobbelt så lang tid, som nogen af de øvrige forsøg. Her ses de store udsving for et par af punkterne. Imidlertid tyder meget på, at disse kun er almindelige udsving omkring en middel-værdi. Tilstanden er stabil med visse fluktuationer. En måling afsluttet efter 2 timer ville have givet samme resultater, som nu er aflæst.

En anden sag er, om gasmålemetoden er praktisk anvendelig. Metoden er meget langsommelig. I disse forsøg er hver gang anvendt mindst 1,5-2 timer afhængig af luftskifte. Hertil kommer, at der her er brugt næsten samme tid på efterfølgende afklingningsforsøg. Disse har i øvrigt vist, at alle punkter når indblæsningskoncentrationen på omkring 80 min. Mere for mindre luftskifter og mindre end 80 min. for større luftskifter.

7.2 Plan strømning

Trods den tilsyneladende store skævhed i indblæsningsstrålen og usikkerheden om liniekildens gasfordeling giver sporgasmålingerne en meget ens gasfordeling i de to målesæt, der er angivet i afsnit 6.2 som 1. og 2. sæt. Her er en forbløffende god overensstemmelse mellem punkter, der er målt i 0,9 m og 1,8 m's afstand fra den ene sidevæg. Overensstemmelsen gælder alle 3 indblæsningssituationer. Resultatet viser også, at målingerne er reproducerbare, og at det er nok at måle i midten af rummets bredde, som det er tilfældet ved de øvrige målinger.

7.3 Luftmængdetilførsel

Når man bedømmer luftmængdetilførslens betydning, skal man sammenligne målinger indenfor samme sæt.

Som det i forvejen lå klart fra bilag 6, hvor luftbevægelserne er optegnet, er de tre indblæsningssituationer ikke ligedannede. I 1. sæt (som er næsten identisk med 2. sæt) ses, at de to største luftskifter har samme tendens. De er i stand til at rive noget gas ud i lokalet, hvilket det mindste luftskifte ikke er. Situationen kan skyldes, at indblæsningsstrålen ved lavt luftskifte knækker ned fra loft - rammer gaskilden og ryger ned i nærheden af udsugningen. At luftstrømningen ved n = 2,67 h^{-1} skulle opføre sig udelukkende som en sådan "kortslutningsstrøm" afkræftes bl. a. af nederste højre hjørne i forsøg 9. Koncentrationen her burde i givet fald være meget højere.

I 3. sæt er tendensen mindre klar. Største luftskifte har dog den mest jævne opblanding. Alle 3 luftskifter har tendens til dårligt luftskifte eller dødzone i området i nederste højre hjørne.

4. sæt viser tilsyneladende, at dødzonen fra før får en større udstrækning, når man går fra største til mellemste luftskifte. Ved mindste luftskifte er det tilsyneladende noget nyt, der sker. Koncentrationsbilledet har helt skiftet karakter.

5. sæt giver ikke yderligere information.

Disse overvejelser om ændring i luftmængder kan bruges til at advare om, at det kan være særdeles vanskeligt at lave behovsstyret ventilation. Hvis man vel at mærke ønsker en behovsstyret ventilation med luftmængderegulering. I så fald skal man være opmærksom på denne mulige karakterforandring i koncentrationsfordelingen. Den føler, der styrer ventilationsmængden, vil ikke kunne kompensere for den nævnte forandring.

7.4 Udsugning

"Udsugning har ingen betydning for luftbevægelserne i et ventileret lokale", er en kendt tommelfingerregel. Noget tyder på, at det ikke gælder, når luftbevægelserne bliver små. Det er nævnt, at der sker noget nyt, når luftmængden falder i 4. forsøgssæt. Dødzonen i nederste højre hjørne bliver mindre markant. Dette kan skyldes, at den tunge gas CO, søger mod gulv, hvis ingen store luftbevægelser hindrer dette. Herfra suges sporgassen ud langs gulvet af udsugningen, også under forudsætning af, at ingen større luftbevægelser hindrer denne transport. Denne teori sandsynliggøres også af forsøg nr. 15, hvor den tunge gas tilsyneladende suges ud under målepunkterne, som er anbragt i 0,5 m højde over gulv. Det ses også heraf, at når der er luftbevægelser i rummet, er gasdiffusion uden væsentlig betydning ved koncentrationsfordeling. Dette stemmer overens med diffusionsforsøg i bilag 2.

7.5 Placering af gaskilde

Hvis kilden placeres, hvor der er store lufthastigheder, som ikke er rettet mod udsugning, vil vi få en ret jævn fordeling i rummet. Dette er ikke overraskende. Hvis kilden er anbragt i et dårligt ventileret område, vil

der ske en gasophobning i dette område, med mindre andre faktorer begynder at gøre sig gældende. Ovenfor er nævnt tung gas og uforstyrret udsugning langs gulv.

7.6 Videre anvendelse

Forsøgene her bringer nogle konklusioner, som kunne styrkes og udbygges ved mere detaljerede målinger med fx. flere målepunkter i rummet. Der er ikke målt maksimale koncentrationer. I de tilfælde, hvor koncentrationen overstiger 4000 ppm, kunne forsøget gentages med en mindre gastilførsel. Eller de målte data kunne anvendes som dokumentation for en numerisk beregning, hvorefter man kan beregne koncentrationsfordeling overalt i rummene. Sammenlignes forsøgene med pilotforsøgene fra virkelige kontorlokaler, ses det, at pilotforsøgene ikke gav nogen særlig stor koncentrationsforskel i rummet. Der ligger derfor en opgave i at bestemme, under hvilke betingelser koncentrationsfordelingen bliver skæv. Er en enkelt persons kropsvarme nok til at hindre dette?
8. Konklusion

De udførte forsøg viser, at det kan lade sig gøre at etablere 2-dimensionale strømningsforhold i en fuldskalamodel af et ventileret lokale. Ligeledes er det vist, at det er muligt for en bestemt situation at bestemme forureningskoncentrationen i et punkt i lokalet ved hjælp af sporgasmåling baseret på ligevægtsprincip. Det er med sådanne målinger vist, hvordan koncentrationsfordelingen kan skifte karakter, hvis man sætter lufttilførslen væsentlig ned. Dette er væsentligt i forbindelse med behovsstyret ventilation, hvis man ønsker at variere på indblæsningen. En føler til styring af en sådan lufttilførsel kunne risikere at være anbragt et sted, hvor fx. større luftskifte gav større koncentration.

I bygningsreglementet står, at i beboelser skal hver boligenhed have mulighed for et samlet luftskifte på 0,5 h⁻¹. Forsøgene her i den rapport har været væsentlig større og alligevel givet anledning til store koncentrationsforskelle. Dette må man være meget opmærksom på, hvis man inden for de kommende år regner med at indføre bolighygiejniske grænseværdier.

I rapporten er endvidere påvist, at udsugningens placering kan have stor indflydelse på fordeling af forurening i et lokale. En udsugning ved gulv vil være i stand til at udsuge en tung gas, der lægger sig langs gulvet, hvis luftbevægelserne i rummet i øvrigt er små. Dette er et oplagt emne for videre undersøgelser, idet en sådan styret udsugning er meget attraktiv.

Litteraturliste

- [1] C. E. Hyldgård: Sporgasmåling i rum. Instituttet for bygningsteknik. AUC. 1981.
- [2] Peter V. Nielsen: "Strømningsforhold i luftkonditionerede lokaler". Nordborg 1974.
- [3] Peter V. Nielsen: "Luftstrømning i ventilerede arbejdslokaler". SBI-rapport 128, 1981.
- [4] Peter V. Nielsen: "Forureningsfordeling i ventilerede lokaler med plan recirkulerende strømning". (artikel i) Tekniska Meddelanden 1981:16.
- [5] Tekniska Meddelanden 1983:1, Inst. för Uppvärmningsoch Ventilationsteknik KTH, Stockholm.
- [6] Tekniska Meddelanden 1984:4, Inst. för Uppvärmningsoch Ventilationsteknik KTH, Stockholm.
- [7] Blomqvist, C., Sandberg, M., Svenson, A. "Mätning af ventilationseffektivitet vid SIB. Meddelande M81:16. Statens institut för byggnadsforskning, Gävle pp 69-75.
- [8] Eimund Skåret: "Luftbevegelse i ventilerte rom". Trondheim 1976.
- [9] Oppl, L.: "Luftströmung in gelüfteten Räumen", Ölund Gasfeuerung, nr. 9, p 908, 1969.
- [10] Mats Sandberg: "What is ventilation efficiency?" Building and Environment, Vol. 16, No. 2, 1981, pp 123-135.

- [11] Mats Sandberg: "Mechanical Ventilation Heat Recovery and Ventilation Efficiency". Talk given at SEGAS, Central Laboratories, London, 11th May, 1981.
- [12] P. V. Nielsen: "Bestemmelse af den maksimale lufthastighed i et luftkonditioneret lokales opholdszone". VVS9. 1981.
- [13] David Södergren og Antero Puntila: "Behovsstyret ventilation". Rapport R67:1983. Byggforskningsrådet.
- [14] L. Evensen: Undervisningsnoter i faget luftstrømningslære.
- [15] Poul Becher: "Varme og Ventilation bind 3", 1972.
- [16] Ruth og Anders Munk: Biologi 1, 1968.

Bilag 1: Instrumenter

.

Bilag 2: Målinger af diffusionshastighed

Bilag 3: Indretning af rum til 2-dimensionale forsøg

Bilag 4: Linieformet gaskilde

Bilag 5: Linieformet indblæsning

Bilag 6: Måling af luftbevægelser i rummet

Bilag 7: Målinger af gasfordeling og temperaturkontrol

B	Ι	LAG	1
	-		-

BILAG 1.1: FORSØGSAPPARATUR Lufthastighed DISA 54N10 Multichannel Flow Analyzer i lodrette snit: (bilag 1.2) DISA 54R10 Kugleprober (bilag 1.3) Microline printer DISA 54N50 Low Velocity Flow Analyzer med Lufthastigheder i spalte: tilhørende kugleprobe (bilag 1.4) Luftmængder: DEBRO Micromanometer (bilag 1.5) Fläkt måleblænder type EHBA-016 og EHBA-010 (bilag 1.6) Luftstrømning: Røggenerator - Statens Institut för Byggnadsforskning (bilag 1.7) Gas(CO₂)-måling: H&B URAS 7N gasanalysator (bilag 1.8) Philips PM8236 multipoint Recorder Temperatur: Termoelementer - type K KAYE ispunktreference

Philips PM8226 Six Pen Recorder

Til måling af lufthastighed i lokalet anvendes DISA 54N10 Multichannel Flow Analyzer.

Fig. 1.2.1 DISA 54N10 Multichannel Flow Analyzer

Denne kan programmeres til måling og regis‡rering af lufthastighed og temperatur i op til 24jpunkter. DISA 54N10 anvendes i forbindelse med/kugleprober af typen DISA 54R10 (bilag 1.3). Enjindbygget regneenhed muliggør statistisk behandling af de målte værdier. DISA 54N10 er forsynet med 5 udgange:

2 analoge udgange til skrivere : 2 multistik til printer og/eller datalogger 1 multistik til computer ; DISA 54N10 kan opereres på 2 måder: 1) På et display udskrives målte (aktuelle) værdier direkte (2 pr. sekund).

÷.

 Der kan måles over en vilkårlig periode, hvorefter middelværdien for lufthastighed eller temperatur udregnes og udskrives på displayet.

Valg af målemetode samt af den værdi, der ønskes udregnet, sker på frontpanelet. Man kan vælge at lade værdierne blive udskrevet via printer eller datalogger.

DISA 54N10 kan også programmeres til at foretage måling til et valgt tidspunkt og/eller måle med et fast tidsinterval. Endvidere kan måletid og pauser ved disse målinger vælges på forhånd. Når en måleperiode er slut, foretages de statiske beregninger på de målte værdier, og beregningsresultater udskrives på printer eller datalogger.

Usikkerhed ved apparatur.

Aktuel værdi:

0-1 m/s:	±2,5%	af aflæsning ±l cm/s
1-5 m/s:	± 5%	af aflæsning
temperatur:	±0,5C	for v > 5 cm/s

Middelværdi:

0-1 m/s:	±3% af aflæsning ±1 cm/s
1-5 m/s:	±5% af aflæsning
temperatur:	$\pm 0,5C$ for v > 5 cm/s

BILAG 1.3: DISA 54R10 KUGLEPROBE

Kugleproben består af 2 hastighedsfølere og en termistor til temperaturmåling.

Fig. 1.3.1 DISA 54R10 kugleprobe

Hastighed: Denne måles ved hjælp af de 2 kugler, der hver er 3 mm i diameter. Måleprincippet er baseret på sammenhængen mellem lufthastigheden og den fra kuglerne konvektivt afgivne varme. (Kuglerne er blanke, således at varme overført ved stråling er nær nul). Den øverste kugle er den egentlige hastighedsføler, og den nederste er temperaturkompensator for denne. Hastighedsføleren opvarmes til en temperatur, der er højere end lufttemperaturen (konstant 30C højere). Den nødvendige elektriske effekt til opretholdelse af denne overtemperatur er et udtryk for lufthastighed.

Temperatur:Denne måles med en termistor, hvis modstand er afhængig af temperaturen. Ved at sende en konstant strømstyrke gennem termistoren fås en spænding over denne, og spændingen er dermed et udtryk for den aktuelle temperatur. Til måling af lufthastigheder i spalten benyttes en DISA 54N50 Low Velocity Flow Analyzer.

Fig. 1.4.1 DISA 54N50 Low Velocity Flow Analyzer

Apparatet kan måle de samme ting som DISA 54N10. Dog kan der kun tilsluttes 1 kugleprobe (type 54R10) til hastigheds- og temperaturmåling. DISA 54N50 er forsynet med 1 analog udgang med mulighed for tilslutning af en skriver. Desuden er der indbygget en regneenhed, der muliggør statistisk behandling af de målte data.

DISA 54N50 kan opereres på 2 måder:

- På displayet udskrives målte aktuelle værdier direkte (2 pr. sekund).
- 2) Der kan måles over en periode på 1 min. (4 målinger pr. sekund) eller 3 min. (der måles 2 gange pr. sekund). Derefter kan følgende statistiske værdier aflæses ved

valg på frontpanelet: Middeltemp., middelhast., RMS-værdi for hastighed og 90% fraktil for hastighed. Til måling af indblæste luftmængder anvendes et DEBRO Micromanometer. Med dette måles trykfaldet over nogle Fläkt måleblænder (BILAG 1.6), som er indsat i indblæsningssystemet.

Fig. 1.5.1 DEBRO Micromanometer

Trykmåleren er i al sin enkelhed 2 forbundne kar. De to kamre over vandoverfladerne tilsluttes det trykfald, man ønsker at måle. Forskellen i vandstand aflæses på en skala anbragt på en flyder i det ene kar. Der aflæses med mikroskop, der kan forskydes med en mikrometerskrue.

Usikkerhed

±0,02 mm VS

Luftmængdemålingen fås ved at måle trykfaldet over Fläkt måleblænde type EHBA-016 og EHBA-010.

Fig. 1.6.1 Fläkt måleblænde type EHBA-016

Måleblænderne er almindelige måleblænder i rør beregnet til indbygning i ventilationsanlæg. Nøjagtigheden er forbedret ved ikke at anvende fabriksdata. Rørene er kalibreret i jetvindtunnel.

Efter kalibrering kan man regne med en usikkerhed på ca. 1%.

Drivmidlet er luft, der leveres gennem en kompressor, og røgen er på oliebasis. Luften sendes sammen med små oliepartikler gennem en opvarmet kobberslange, hvori olien konverteres til damp opblandet i luften ved ca. 400C. Ved en trevejsventil bestemmes, om dampen ledes direkte ud eller ledes gennem en nåleventil ud i mundstykket, hvor luften køles, og olien dermed kondenserer. Ved kondensationen fremkommer en kraftig grålig damp ("røg"), som er velegnet til visualisering af luftbevægelserne i et rum.

Fig. 1.7.1 Røggenerator

Til måling af gaskoncentration i rummet anvendes en URAS 7N infrarød gasanalysator i forbindelse med en omskifterenhed (type CGU6) til 6 målepunkter.

Fig. 1.8 H&B URAS 7N gasanalysator

Gasanalysatoren virker efter følgende skitserede (og forenklede) princip - fig. 1.8.2.

2 ens infrarøde lysstråler sendes ind ved l henholdsvis 2. Den ene lysstråle sendes derefter ind gennem et kammer (Ml), hvor den luft/gasblanding, der skal analyseres, pumpes igennem. En del af lyset afsorberes på grund af indholdet af målegas (CO_2). Den anden lysstråle sendes ind gennem et referencekammer (M2) uden absorberende molekyler.

De 2 lysbundter har nu forskellig energiindhold og bevirker derfor en uens opvarmning af de to kamre Ml og M2. Membranen (El) påvirkes af den trykforskel, der opstår mellem de to kamre, og dette påvirker igen et elektrisk kredsløb. Indholdet af sporgas kan dernæst aflæses på viserinstrumentet (eller udtages via en skriver). Omskifterenheden sørger via et ventilsystem for omskiftningen mellem de 6 måleslanger. Systemet er således indrettet, at mens målingen i et målepunkt foregår, suges allerede gennem måleslangen til næste målepunkt. Måleslangen (der kan være lang) er således "gennemskyllet" af den rette luft/gasblanding, når man skifter til måling i næste punkt.

Mellem hver måling er der 1 minut.

Gennem målepumpen er gennemstrømningen ca. 0,7 l/min.

Gennem forberedelsespumpen er gennemstrømningen ca. 2,0 1/min.

Usikkerhed ved 20C: ±5%.

Ved afvigelse fra 20C stiger usikkerheden. Tæt ved 20C stiger usikkerheden med 0,2% pr. 1C.

47

BILAG 2 MÅLING AF DIFFUSIONSHASTIGHED

Baggrund Mange faktorer kan tænkes at have indflydelse på gasfordelingen i et lokale. Ud over luftbevægelser stammende fra ventilationsanlæg og temperaturbestemte bevægelser kunne man tænke sig, at gassens massefylde og gassens diffusionshastighed i atmosfærisk luft havde betydning.

> Gassen her (CO₂) er tungere end luft. Molekylvægten er 44 imod 29 for atmosfærisk luft, og gassen vil have en tendens til at søge mod gulv.

For at undersøge betydningen af gassens diffusionshastighed er følgende forsøg lavet:

Fig. 4.1 Forsøgsopstilling ved diffusionsmåling

Forsøgsbeskrivelse Til start blev målt, om temperaturforskelle i røret ville give anledning til uønskede luftbevægelser. Temperaturen blev målt med termoelementer, som blev sænket ned i røret. Herefter blev der lukket CO₂ ind i bunden af røret i en mængde på 2,0 1, og det hele fik lov at stå i ro i 2½ time.

> Efter 2½ time måles gaskoncentrationen i 6 punkter i røret. Der måles fra toppen af røret og ned.

Der kan ikke måles kontinuerligt i røret, mens gassen breder sig opad. Det skyldes, at gasanalysatoren for hver måling suger en luftmængde svarende til 5 cm luftsøjle i røret. Er der flere måleslanger i røret, således at forberedelsespumpen er i gang, suges der ekstra 20 cm luftsøjle pr. måling.

Resultater

Afstand fra rørtop (m)	0	l	2	3	4	5	6
Temperatur							
(C)	23,2	23,0	22,9	22,2	21,4	20,1	18,7

Fig.4.2 Temperaturer i rør

Herefter lukkes forsigtigt en gasmængde på ca. 2,0 l ind ibunden af røret og efter 2½ time måles følgende koncentrationer.

Afstand fra rørtop (m)	0	1	2	3	4	4,5	5	5,5	6
CO ₂ -konc. (ppm)	500	492	512	548	712	1760	2152	>4000	>4000

Fig. 2.3 CO₂-koncentrationer

Kommentarer Det ses at temperaturerne stiger hele vejen fra gulv til loft. Det vil sige, at man kan se bort fra CO2-transport som følge af termisk opdrift. At CO2-koncentrationen er en anelse større i toppen af røret, kan bero på udåndingsluft fra den person, der passer instrumenterne. Hele koncentrationsmålingen strakte sig over 15-20 min. Resultaterne er optegnet i hovedrapporten ved siden af beregnede værdier.

BILAG 3 INDRETNING AF RUM TIL 2-DIMENSIONALE FORSØG

Baggrund For at have mulighed for at sammenligne målte resultater med EDB-gennemregninger er det ønskeligt, at den situation, der måles på, bliver 2-dimensional. D.v.s. at indblæsningsåbningen skal være spalteformet med samme spaltehøjde i hele rummets bredde. Gaskilden skal være linieformet i rummets bredde, og udsugningen også gerne ens i fuld rumbredde. Det sidste er mindst væsentligt, da udsugningens udformning har meget lille betydning for luftbevægelserne i rummet.

Fig. 3.1 Klimarum og klimaaggregat

.

Fig. 3.2 Klimarummet med hovedmål

Beskrivelse I klimarummet er indsat en væg med en 5 cm spalte for neden, foran væggen med udsugningsåbningen. Rummets længde forkortes dermed med ll cm til 5,29 m.

> Fra de to indblæsningsåbninger er trukket to slanger op til en kasse (0,20 m x 0,20 m x 3,60 m) under loft. Fra kassen blæser indblæsningsluften ud gennem en 1,0 cm spalte lige under loft.

En principskitse af rummet ser derfor ud som fig. 3.3.

Fig. 3.3 Principskitse af rum

BILAG 4 LINIEFORMET GASKILDE

Den linieformede gaskilde skulle opfylde flere Generelt formål. Den skulle kunne fordele gassen jævnt over rummets bredde (3,60 m). Hastigheden på den introducerede gas skulle være minimal. Kilden skulle være praktisk håndterlig, så den kunne flytte rundt i rummet. Det sidste blev klaret ved at dele den op.

Fig. 4.1 Princip for gasliniekilde

Beskrivelse Gassen ledes til centrum af en 3-grenet fordeler og derfra til 3 punkter, som hver forsyner 2 strækninger af længde 0,90 cm. Dermed er problemet reduceret til at fordele gassen jævnt over en 0,90 m streng, som forsynes i den ene ende. Det er forsøgt klaret med en udformning af fordelerrøret, som er vist på fig. 4.2.

Fig. 4.2 Snit gennem gasfordelingsrør

De to rør inden i hinanden er lavet i forsøg på at fordele gassen over de 0,90 m. Vigtigst er naturligvis, at tryktabet ud gennem de små huller er stort sammenlignet med tryktabet inde i rørene.

At teste, om fordelingen er god, er gjort ved at sende røg igennem. Herved dannes en række røgsøjler, som flyder sammen til et tæppe, inden det blandes med rumluften. Dette røgtæppe anbringes i et konstant hastighedsfelt efter en jetvindtunnel, se fig. 4.3.

Fig. 4.3 Forsøgsopstiling

Hullerne i gasfordelingsrøret nummereres fra l til 90. l, 2, 3 nærmest røgforsyningen. Røgsøjlehøjden måles med skydelære til, hvor røgsøjlerne knækker.

Resultater	Lufthastighed	0,30 m/s		
	Røggasmængde			10 1/min.
	Røgsøjlehøjde	ved hul	1	1,9-2,0 cm
	Røgsøjlehøjde	ved hul	45	1,9 cm
	Røgsøjlehøjde	ved hul	90	1,9 cm

Kommentar Metoden kan naturligvis ikke give noget eksakt billede af fordelingen. Det, der kontrolleres, er, om hastigheden i røgsøjlerne er ens. Det måles ikke, om røgsøjlerne er lige "tykke" indeholder samme mængde røggas.

> En anden metode til at undersøge, om røret fordeler gassen jævnt, er at anbringe røret i vand og opsamle gassen fra forskellige huller. Dette er ikke forsøgt her, idet tryktabet ud gennem hullerne ville være helt anderledes.

Den valgte metode antyder en vis skævhed (større røggasmængde gennem huller tæt ved røgindtaget). Der er ikke foretaget yderligere for at fjerne denne skævhed.

Ved anvendelse i klimarum er der trukket en strømpe af groft grundfilter hen over gasfordelingsrøret. Dette er gjort for at fjerne hastigheden i den tilledte gas, således at kun rummets luftbevægelser fordeler gassen.

Der vil i de 3 samlingssteder mangle gastilførsel svarende til et enkelt hul.

På fig. 4.4 ses en sådan samling med filter-"strømpen" trukket til side.

Fig. 4.4 Samlingssted - gasliniekilde

BILAG 5 LINIEFORMET INDBLÆSNING

2

- Baggrund Til et 2-dimensionalt hastighedsfelt hører også en linieformet indblæsning. Denne udføres som en spalte i en kasse, der fungerer som trykkammer.
- Beskrivelse Kassen udføres i træ i fuld rumbredde (3,60 m). Spaltehøjden kan varieres, men er i disse forsøg fastholdt på 10 mm.

Fig. 5.1 Snit i indblæsningsaggregat

I kassen er anbragt et groft grundfilter, som er hæftet fast. Dette er anbragt for at dæmpe den hastighed, luften har i de to kanaler, der forsyner kassen. Disse er anbragt i bunden af kassen, hvilket fremgår af fig. 5.2.

Fig. 5.2 Indblæsningsanordning

Målinger

Ved indretning af indblæsningsspalte er der blevet målt hastigheder i selve spalten. Opstillingen er vist i fig. 5.3. Der er målt 9 steder på tværs af spalten.

Fig. 5.3 Måleopstilling (mål i cm)

59

Resultater	Spaltehøjde	Spaltehøjde						
	Måletid		l min.					
	Afstand til	loft	ca. 22 mm					
	Afstand til	spalte	0 mm					

I fig. 5.4 er vist hastighederne i cm/s. Disse er tegnet op på fig. 5.5.

Frekvens- omformer-	Luft- skifte				Mä	ilepu	inkte	er		
ling	[h ⁻¹]	1	2	3	4	5	6	7	8	9
2	2,78	99	99	100	99	100	103	101	98	98
3	3,65	131	131	129	130	130	135	134	128	129
4	4,75	159	161	161	162	168	167	161	159	159
5	5,58	200	200	205	203	207	209	200	200	195
6	6,61	231	231	235	240	241	245	230	229	230
7	7,50	277	278	285	282	286	289	280	278	270
8	8,58	307	307	319	317	320	320	307	310	308.

Fig. 5.4 Hastighedsmålinger i spalte [cm/s]

Kommentar

Det ses, at hastighed varierer over tværsnittet op til 8-9%. Der er tendens til, at de største afvigelser sker ved de største luftmængder. Resultaterne kan dog ikke bruges til at sige noget afgørende om indblæsningsforholdene. Dette skyldes, at udformningen af spalten ikke er optimal. Det betyder, at der først i en vis afstand fra spalten vil indstille sig en plan vægstråle. Målinger af denne kan ses i bilag 6.

Fig. 5.5 Spaltehastigheder optegnet

- BILAG 6.1 MÅLINGER AF HASTIGHEDSPROFIL I INDBLÆSNINGSSTRÅLE
- Generelt Som nævnt i bilag 5 er luftbevægelserne i rummet ikke tilstrækkeligt bestemt ved måling af nogle tilsyneladende hastigheder i selve indblæsningsspalten. I det følgende er foretaget målinger i en vis afstand fra spalten, således at strålen har udviklet sig til en egentlig plan vægstråle.

Forsøgsopstilling

Fig. 6.1.1 Måleopstilling

Måleprincip Måleproberne måler hastigheden i lodrette snit i den plane vægstråle i afstanden 0,5 cm - 20,0 cm fra loft.

Luftskifte n = 2,67 h^{-1}

Afstand til spalte 50 cm

Afstand loft [cm]	Målt pkt.1	Sand pkt.1	Målt pkt.2	Sand pkt.2	Målt pkt.3	Sand pkt.3	Målt pkt.4	Sand pkt.4	Målt pkt.5	Sand pkt.5	Målt pkt.6	Sand pkt.6
									-			
0,5	0,376	0,420	0,327	0,396	0,364	0,428	0,297	0,330	0,308	0,377	0,371	0,386
1,0	0,413	0,458	0,360	0,424	0,412	0,477	0,323	0,370	0,335	0,409	0,412	0,428
2,0	0,423	0,470	0,337	0,408	0,418	0,482	0,318	0,358	0,328	0,400	0,427	0,440
3,0	0,367	0,409	0,298	0,361	0,373	0,438	0,286	0,315	0,295	0,355	0,387	0,400
4,0	0,309	0,345	0,247	0,302	0,320	0,374	0,238	0,268	0,259	0,313	0,356	0,370
5,0	0,249	0,275	0,196	0,236	0,254	0,292	0,191	0,216	0,210	0,270	0,292	0,310
6,0	0,190	0,205	0,163	0,192	0,188	0,206	0,149	0,157	0,170	0,210	0,245	0,273
7,0	0,149	0,149	0,116	0,124	0,114	0,121	0,119	0,111	0,131	0,150	0,217	0,255
8,0	0,108	0,098	0,080	0,070	0,076	0,063	0,100	0,086	0,110	0,110	0,167	0,168
9,0	0,091	0,071	0,061	0,049	0,060	0,044	0,074	0,057	0,089	0,082	0,121	0,105
10,0	0,077	0,056	0,045	0,029	0,053	0,035	0,062	0,042	0,072	0,060	0,110	0,090
11,0	0,071	0,049	0,048	0,033	0,047	0,026	0,058	0,036	0,060	0,046	0,088	0,069
12,0	0,064	0,041	0,043	0,027	0,053	0,035	0,052	0,027	0,055	0,041	0,068	0,048
13,0	0,060	0,035	0,044	0,028	0,047	0,026	0,049	0,023	0,048	0,035	0,065	0,045
14,0	0,058	0,033	0,043	0,027	0,054	0,036	0,050	0,024	0,048	0,035	0,063	0,042
15,0	0,064	0,041	0,042	0,025	0,052	0,033	0,052	0,027	0,046	0,032	0,067	0,047
17,0	0,059	0,034	0,042	0,025	0,050	0,031	0,048	0,021	0,047	0,034	0,060	0,038
20,0	0,056	0,030	0,044	0,028	0,044	0,021	0,047	0,019	0,041	0,025	0,058	0,035

Fig. 6.1.3 Målte og korrigerede hastigheder i lodret snit [m/s]

Fig.6.1.4 Hastigheder i lodrette snit 50cm fra spalte.

8	:	Afstand	til	sort	væg	50cm
V	:	n	"		.11	100cm
•	:	н		н	11	180cm
Δ	:	н		glas	væg	100cm
0	:	"	н			50cm
×	:	."		**		20cm (<u>y</u>) ²
	:	Tilnærme	et ki	irve v	vmido	del = 45,0•e ^{-0,5`4,5'}
		(hvor y	er a	afstar	nd t	il loft i cm)

Luftskifte n = 2,67 h^{-1}

Luftskifte n = 4,24 h^{-1} 66

Afstand til spalte 50 cm

Afstand	Målt	Sand	Målt	Sand	Målt	Sand	Målt	Sand	Målt	Sand	Målt	Sand
loft [cm]	pkt. 1	pkt. 1	pkt. 2	pkt. 2	pkt. 3	pkt. 3	pkt. 4	pkt. 4	pkt.5	pkt. 5	pkt. 6	pkt.6
0,5	0,710	0,727	0,582	0,665	0,592	0,670	0,556	0,612	0,584	0,665	0,762	0,720
1,0	0,756	0,760 -	0,610	0,693	0,650	0,726	0,582	0,640	0,642	0,712	0,826	0,772
2,0	0,716	0,730	0,538	0,620	0,634	0,711	0,538	0,596	0,590	0,670	0,796	0,749
3,0	0,600	0,638	0,451	0,536	0,558	0,634	0,456	0,516	0,528	0,614	0,698	0,669
4,0	0,457	0,502	0,347	0,418	0,460	0,530	0,347	0,403	0,410	0,490	0,574	0,572
5,0	0,353	0,393	0,265	0,325	0,336	0,391	0,257	0,287	0,320	0,390	0,471	0,481
6,0	0,259	0,288	0,182	0,220	0,221	0,250	0,204	0,230	0,243	0,302	0,367	0,380
7,0	0,168	0,175	0,116	0,121	0,134	0,135	0,145	0,151	0,175	0,221	0,269	0,292
8,0	0,111	0,105	0,084	0,074	0,090	0,077	0,081	0,066	0,108	0,108	0,180	0,171
9,0	0,084	0,064	0,066	0,054	0,069	0,055	0,059	0,038	0,060	0,046	0,116	0,116
10,0	0,077	0,056	0,058	0,045	0,054	0,036	0,056	0,033	0,047	0,034	0,085	0,067
11,0	0,071	0,049	0,056	0,043	0,058	0,042	0,060	0,039	0,047	0,034	0,064	0,044
12,0	0,069	0,047	0,052	0,039	0,054	0,036	0,054	0,030	0,049	0,037	0,058	0,037
13,0	0,067	0,044	0,054	0,040	0,059	0,043	0,051	0,026	0,042	0,027	0,050	0,026
14,0	0,065	0,042	0,048	0,033	0,053	0,035	0,054	0,030	0,044	0,029	0,051	0,028
15,0	0,066	0,043	0,053	0,039	0,056	0,039	0,048	0,021	0,041	0,025	0,056	0,034
17,0	0,063	0,039	0,041	0,024	0,047	0,026	0,061	0,041	0,049	0,037	0,062	0,041
20,0	0,064	0,041	0,048	0,033	0,053	0,035	0,051	0,026	0,047	0,034	0,055	0,033

Fig. 6.1.5 Målte og korrigerede hastigheder i lodrette snit [m/s]

Fig 6.1.6 Hastigheder i lodrette snit 50cm fra spalte. : Afstand til sort væg 50cm 8 11 11 " 100cm ... : V " 180cm 11 11 . • : Δ 11 11 glasvæg 100cm . 11 50cm 0 : $= : \text{Tilnærmet kurve } v_{\text{middel}} = 75,0 \cdot e^{-0,5} \left(\frac{y}{4,0}\right)^2$ u. n 10 20cm × (hvor y er afstand til loft i cm)

Luftskifte n = 4,24 h^{-1}

Luftskifte	n	=	6.40	h ⁻¹
THTCOUTTCC	**		0,10	1.

Afstand til spalte 80 cm

Afstand loft [cm]	Målt pkt.1	Sand pkt.1	Målt pkt.2	Sand pkt.2	Målt pkt.3	Sand pkt.3	Målt pkt.4	Sand pkt.4	Målt pkt.5	Sand pkt.5	Målt pkt.6	Sand pkt.6
0,5	0,814	0,854	0,702	0,752	0,848	0,790	0,646	0,692	0,648	0,730	0,764	0,840
1,0	0,866	0,894	0,772	0,810	0,892	0,826	0,728	0,739	0,728	0,808	0,846	0,912
2,0	0,870	0,898	0,760	0,800	0,880	0,816	0,716	0,731	0,714	0,794	0,854	0,930
3,0	0,816	0,856	0,702	0,759	0,848	0,790	0,658	0,689	0,690	0,771	0,800	0,871
4,0	0,716	0,760	0,624	0,700	0,750	0,712	0,586	0,623	0,636	0,719	0,740	0,818
5,0	0,638	0,692	0,536	0,622	0,702	0,672	0,518	0,560	0,538	0,622	0,640	0,716
6,0	0,550	0,607	0,483	0,570	0,586	0,582	0,447	0,491	0,480	0,565	0,566	0,641
7,0	0,470	0,510	0,400	0,480	0,508	0,516	0,396	0,440	0,423	0,508	0,465	0,535
8,0	0,394	0,454	0,352	0,430	0,394	0,408	0,316	0,355	0,324	0,394	0,395	0,460
9,0	0,326	0,370	0,287	0,343	0,332	0,349	0,254	0,285	0,264	0,324	0,336	0,391
10,0	0,259	0,290	0,242	0,300	0,290	0,310	0,213	0,235	0,222	0,274	0,271	0,313
11,0	0,209	0,238	0,199	0,256	0,224	0,258	0,171	0,182	0,178	0,211	0,210	0,235
13,0	0,131	0,130	0,121	0,131	0,144	0,140	0,111	0,111	0,108	0,112	0,123	0,120
15,0	0,104	0,095	0,101	0,095	0,120	0,102	0,092	0,072	0,074	0,063	0,090	0,077
17,0	0,093	0,080	0,090	0,083	0,122	0,104	0,091	0,071	0,069	0,058	0,065	0,050
20,0	0,078	0,062	0,070	0,062	0,101	0,085	0,087	0,067	0,063	0,051	0,056	0,039

Fig. 6.1.7 Målte og korrigerede hastigheder i lodrette snit [m/s]

.

ų.

Fig. 6.1.8 Hastigheder i lodrette snit 80cm fra spalte. ⊗ : Afstand til sort væg 50cm " 100cm : 11 ∇ ** n 180cm : 11 11 11 н glasvæg 100cm Δ : ** 50cm 0 : ... n ... - : Tilnærmet kurve $v_{middel} = 82,5 \cdot e^{-0},5 \left(\frac{y}{7,0}\right)^2$ (hvor y er afstand til loft i cm)

```
Luftskifte n = 6,40 h^{-1}
```


Kommentarer Der viser sig at være større skævhed end man kunne forvente fra måleresultaterne i bilag 5. Dette understreger, at det ikke er nok at måle hastigheden i selve spalten. En forbedring af indblæsningssituationen kunne være at anbringe flere tilledninger til indblæsningskassen. Hvis spalten ikke laves med mulighed for variation af spaltehøjden, vil man måske kunne lave åbningen mere nøjagtig. I forsøgene er højden 1,0 cm ± 0,1 cm. Man kunne eventuelt anvende metal i stedet for træ.

BILAG 6.2 LUFTBEVÆGELSER I RUM

Generelt I de efterfølgende gasfordelingsforsøg er der benyttet 3 forskellige luftskifter. I dette afsnit er luftbevægelsesmønstrene for disse tre situationer optegnet ved hjælp af røgforsøg.

Opstilling

Fig. 6.2.1 Forsøgsprincip

Luftmængden måles med et DEBRO micromanometer og den indbyggede måleblænde. Røges tilføres, og luftbevægelserne tegnes ud fra synsindtryk gennem de store vinduer i klimakammeret. Her og senere tages indblæsningsluften fra laboratoriehallen, og udsugning afleveres til det fri. Det første sker for at få en isoterm indblæsning; det andet for ikke at forurene laboratorieluften.

Resultater Er vist i fig. 6.2.2, 6.2.3 og 6.2.4.

Fig. 6.2.2 Luftbevægelse ved luftskifte n = 2,67 h⁻¹

Fig. 6.2.3

Luftbevægelse ved luftskifte n = 4,24 h⁻¹

Fig. 6.2.4

Luftbevægelse ved luftskifte n = $6,40 \text{ h}^{-1}$

Kommentar

Det har været vanskeligt/umuligt at konstatere, hvordan luftbevægelserne har været i det nederste højre hjørne. Sandsynligvis har de været små. Man kan iagttage røgens bevægelser ved at sætte projektørlys på (gennem vinduer i loftet). Disse giver meget hurtigt anledning til, at det sorte gulv opvarmes og skaber opadgående strømninger. Disse har ikke været til at adskille fra de sikkert meget langsomme luftstrømninger, der ellers ville være i dette område.

På grund af ovennævnte kan det ikke med sikkerhed siges, at fig. 6.2.4 udgør en fuldt recirkulerende strømning. Dog er det tydeligt i fig. 6.2.2 og fig. 6.2.3, at indblæsningsstrålen slår ned, inden den når bagvæggen.

BILAG 7 MÅLINGER AF GASFORDELING OG TEMPERATURKONTROL

Generelt I det tilnærmede 2-dimensionale strømningsfelt udføres målinger af gasfordeling med en linieformet gaskilde. Der udføres målinger med 3 forskellige indblæsningsmængder. Desuden måles temperaturen i alle målepunkter for at sikre, at strømningen sker isotermt.

Måleopstilling

Fig. 7.1 Klimarum og apparatur ved måling

Måleprincip

Fig. 7.2 Princip for gasfordelingsmåling

Måleprodecure Proceduren i målingen er følgende:

- Med ventilationssystemet slået fra tilføres en mængde gas (CO₂) svarende til halvt udslag på gasanalysatoren, 2000 ppm, ved fuld opblanding i klimarummet. Luften i rummet røres om med en elektrisk drevet propel (bordventilator) i 5 min., hvorefter den slukkes.
- Ventilationsanlægget startes, og via en frekvensomformer indstilles luftmængden, der kontrolleres med DEBRO micromanometer og en indbygget Fläkt måleblænde.
- 3) Samtidig tilføres CO₂ til gaskilden i en jævn strøm. Denne indstilles med trykreduktionsventil og efterfølgende gasmængdemåler således, at CO₂ koncentrationen i udsugningen bliver ca. 2000 ppm (en nøj-

agtig indstilling er ikke nødvendig, idet de målte koncentrationer normeres i forhold til koncentrationen i udsugningen. Vigtigst er, at gastilførslen bliver holdt konstant).

- 4) Gasanalysatoren måler nu gaskoncentrationen i 6 punkter i rummet (incl. et punkt i indblæsningen og et i udsugningen). Målingerne udlæses på en 6-punkt skriver.
 I de samme 6 punkter måles temperaturen ved hjælp af termoelementer og en ispunktreference. Resultaterne tegnes ud på en 6-kanalskriver.
- 5) Målingerne fortsættes, til der er opnået stationære tilstande.
- 6) Herefter afbrydes gastilførslen, og gaskoncentrationen i de enkelte punkter falder efterhånden til koncentrationen i indblæsningsluften. Hvor hurtigt dette sker fortæller noget om luftskiftet i hvert enkelt punkt.
- Resultater I det følgende er resultaterne forelagt. På fig. 7.3 og 7.4 er vist målene på klimarummet og de 3 valgte placeringer af målepunkterne kaldet A-MIDT, A-SIDE og B-MIDT. Fig. 7.5 er en oversigt over de udførte forsøg.

Derefter følger figurer af resultater af gaskoncentrations- og temperaturmålinger. Disse er vist på figurer, hvor også gaskilden er indtegnet.

79

* Pkt.6 Fig. 7.4 Placering af målepunkter ved gaskoncentrationsmålinger.

15	B-MIDT	126	126	2,76	0,25		3,57
14	B-MIDT	297	300	6,54	0,25	1,02	8,20
13	B-MIDT	191	191	4,18	0,25	1,02	5,47
12	B-MIDT	191	161	4,18	1,00	1,02	5,47
11	B-MIDT	296	297	6,50	1,00	1,02	8,20
10	B-MIDT	127	127	2,78	1,00	1,02	3,57
6	A-MIDT	127	127	2,78	1,00	1,02	3,57
8	A-MIDT	292	291	6,39	1,00	1,02	3,57
7	A-MIDT	192	191	4,20	1,00	1,02	5,47
9	A-MIDT	193	193	4,22	1,00	3,79	5,47
5	A-SIDE	193	191	4,20	1,00	3, 79	5,47
4	A-SIDE	305	I	6,67	1,00	3, 79	8,20
3	A-SIDE	123	1	2,69	1,00	3,79	3,80
2	A-MIDT	125	122	2,71	1,00	3,79	3,57
1	A-MIDT	290	296	6,41	1,00	3,79	8,20
	1	U	U	Ø	ц	ra -væg	[l/min]
Forsøgsnr	Målepunkt placering	Luftmængd ved start [m ³ /h]	Luftmængd ved slut [m ³ /h]	Luftskift (h ⁻¹)	Gaskilde Højde ove gulv [m]	Gaskilde Afstand f indblæsn. [m]	Gasstrøm

Fig. 7.5 Forsøgsoversigt

Målepunkt	1	2	3	4	5	6
Temperatur [C]	20,15	20,15	20,10	20,10	20,10	20,05
CO ₂ -koncentration [ppm]	320	2640	2800	2840	2340	2310
Udsving [ppm]	±0	±30	±130	±40	±50	±20
Normeret CO ₂ -konc.	0	1,17	1,25	1,27	1,02	1,00

Forsøg nr. 2

Målepunkt	1	2	3	4	5	6
Temperatur [C]	20,70	20,75	20,70	20,70	20,65	20,75
CO ₂ -koncentration [ppm]	280	1280	840	640	660	1880
Udsving [ppm]	±0	±160	±30	±0	±10	±40
Normeret CO ₂ -konc.	0,0	0,63	0,35	0,23	0,24	1,00

Målepunkt	1	2	3	4	5	6
Temperatur [C]	20,6	20,7	20,6	20,65	20,55	20,6
CO ₂ -koncentration [ppm]	320	1840	880	780	840	2540
Udsving [ppm]	±0	±100	±60	±0	±160	±80
Normeret CO ₂ -konc.	0,00	0,68	0,25	0,21	0,23	1,00

Forsøg nr. 4

Målepunkt	1	2	3	4	5	6
Temperatur [C]	21,40	21,35	21,35	21,40	21,30	21,30
CO ₂ -koncentration [ppm]	260	2680	2760	2760	2200	2250
Udsving [ppm]	±20	±20	±40	±20	±25	±15
Normeret CO ₂ -konc.	0,00	1,22	1,26	1,26	0,97	1,00

Målepunkt	1	2	3	4	5	6
Temperatur [C]	20,5	20,5	20,4	20,4	20,55	20,4
CO ₂ -koncentration [ppm]	170	2490	2480	2320	1940	1940
Udsving [ppm]	±10	±40	±10	±70	±20	±10
Normeret CO ₂ -konc.	0,00	1,31	1,31	1,21	1,00	1,00

Forsøg nr. 6

Målepunkt	1	2	3	4	5	6
Temperatur [C]	20,30	20,40	20,30	20,30	20,30	20,30
CO ₂ -koncentration [ppm]	180	2460	2410	2200	1900	1900
Udsving [ppm]	±0	±90	±30	±40	±40	±0
Normeret CO ₂ -konc.	0,00	1,33	1,30	1,17	1,00	1,00

Målepunkt	1	2	3	4	5	6
Temperatur [C]	20,95	21,10	21,00	20,95	21,10	21,00
CO ₂ -koncentration [ppm]	260	>4000	2320	1380	1280	1920
Udsving [ppm]	±0		±40	±20	±20	±210
Normeret CO ₂ -konc.	0,0	>2,25	1,24	0,67	0,61	1,00

Forsøg nr. 8

Målepunkt	1	2	3	4	5	6
Temperatur [C]	20,85	20,8	20,8	20,8	20,75	20,8
CO ₂ -koncentration [ppm]	320	>4000	3100	2120	2040	2080
Udsving [ppm]	±0		±160	±40	±30	±10
Normeret CO ₂ -konc.	0,00	>2,09	1,58	1,02	0,98	1,00

Målepunkt	1	2	3	4	5	6
Temperatur [C]	20,8	20,85	20,8	20,8	20,75	20,85
CO ₂ -koncentration [ppm]	320	2760	880	660	660	2100
Udsving [ppm]	±0	±140	±50	±0	±0	±50
Normeret CO ₂ -konc.	0,00	1,37	0,31	0,19	0,19	1,00

*

Forsøg nr. 10

Målepunkt	1	2	3	4	5	6
Temperatur [C]	21,60	21,60	21,60	21,55	21,60	21,45
CO ₂ -koncentration [ppm]	240	1840	2100	2460	1320	2040
Udsving [ppm]	±0	±530	±130	±40	±120	±40
Normeret CO ₂ -konc.	0,00	0,89	1,03	1,23	0,60	1,00

Målepunkt	1	2	3	4	5	6
Temperatur [C]	21,85	21,8	21,8	21,8	21,75	21,7
CO ₂ -koncentration [ppm]	310	3240	>4000	2160	2140	2180
Udsving [ppm]	±0	±240		±30	±60	±10
Normeret CO ₂ -konc.	0,00	1,57	>1,97	0,99	0,98	1,00

Forsøg nr. 12

Målepunkt	1	2	3	4	5	6
Temperatur [C]	21,55	21,50	21,55	21,50	21,45	21,30
CO ₂ -koncentration	320	3800	3800	>4000	1860	2100
Udsving [ppm]	±0	*	*		±40	±80
Normeret CO ₂ -konc.	0,00	1,96	1,96	>2,07	0,87	1,00

* Udsvingene var store - nogle ud af skalaen

Målepunkt	1	2	3	4	5	6
Temperatur [C]	21,05	21,10	21,10	21,05	21,05	21,05
*CO ₂ -koncentration [ppm]						
Udsving [ppm]	×					
Normeret CO ₂ -konc.						

* Målinger uanvendelige

Forsøg nr. 14

Målepunkt	1	2	3	4	5	6
Temperatur [C]	22,05	22,05	22,00	22,00	22,00	21,95
CO ₂ -koncentration [ppm]	280	2820	3020	3600	2020	2000
Udsving [ppm]	±20	±40	±30	±200	±10	±20
Normeret CO ₂ -konc.	0,00	1,48	1,59	1,93	1,01	1,00

.

Målepunkt	1	2	3	4	5	6
Temperatur [C]	21,75	21,80	21,75	21,70	21,70	21,65
CO ₂ -koncentration [ppm]	290	740	860	960	600	2140
Udsving [ppm]	±10	±20	±20	±90	±0	±40
Normeret CO ₂ -konc.	0,00	0,24	0,31	0,36	0,17	1,00

Forsøg nr. 1
Luftskifte = 6,41 h⁻¹
Målepunkts placering: A-MIDT

Forsøg nr. 2 Luftskifte = 2,71 h⁻¹ Målepunkts placering: A-MIDT

Forsøg nr. 3
Luftskifte = 2,69 h⁻¹
Målepunkts placering: A-SIDE

Forsøg nr. 4 Luftskifte = 6,67 h^{-1} Målepunkts placering: A-SIDE

<u>Forsøg nr. 5</u> Luftskifte = 4,20 h⁻¹ Målepunkts placering: A-SIDE

Forsøg nr. 6 Luftskifte = 4,22 h⁻¹ Målepunkts placering: A-MIDT

Forsøg nr. 7 Luftskifte = 4,20 h⁻¹ Målepunkts placering: A-MIDT

Forsøg nr. 8 Luftskifte = 6,39 h^{-1} Målepunkts placering: A-MIDT

Forsøg nr. 9 Luftskifte = 2,78 h^{-1} Målepunkts placering: A-MIDT

Forsøg nr. 10 Luftskifte = 2,78 h⁻¹ Målepunkts placering: B-MIDT


```
Forsøg nr. 11
Luftskifte = 6,50 h<sup>-1</sup>
Målepunkts placering: B-MIDT
```


Forsøg nr. 12
Luftskifte = 4,18 h⁻¹
Målepunkts placering: B-MIDT

Forsøg nr. 14 Luftskifte = 6,54 h⁻¹ Målepunkts placering: B-MIDT

Forsøg nr. 15 Luftskifte = 2,76 h⁻¹ Målepunkts placering: B-MIDT

